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Leveraging Multiplexing Gain in
Network Slice Bundles

Qian Xu ", Xiang Yan, Kui Wu", Jianping Wang

Abstract—In this paper, we propose strategies and develop
solutions for a network service provider (NSP) to cost-effectively
provision and manage a large number of network slices.
Specifically, we propose a novel framework, namely, network slice
bundling, in which (1) an NSP can allocate resources and create
multiple network slice bundles in advance, (2) a network slice
request can be quickly instantiated in the bundle that supports its
service requirements, and (3) network slices in the same bundle
can share the resources and achieve a multiplexing gain by
leveraging the stochastic behaviors of resource usage. Within this
framework, we focus on a core problem, which is how to leverage
the multiplexing gain to maximize the utility by optimally
assigning multiple network slices to a set of pre-defined bundles.
We formulate an optimization problem and theoretically analyze
the irregularity of constraints and the difficulty of the problem.
We develop a novel reinforcement learning (RL) based slice
assignment solution. Finally, we conduct extensive data-driven
simulation experiments. The numerical results confirm that the
proposed solution can efficiently solve the network slice
assignment problem and achieve significantly higher utility than
the best baseline algorithm.

Index Terms—Multiplexing gain, network slice bundles, quality-
of-service, reinforcement learning.

I. INTRODUCTION

T is expected that mobile data traffic will increase seven-
fold between 2017 and 2022 with a compound annual
growth rate of 47% [1]. Coupled with booming Internet traffic
are diverse services demanding different quality-of-service
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(QoS) requirements: from delay-tolerant content delivery
applications to delay-sensitive real-time cyber-physical sys-
tem (CPS) and virtual/augmented/mixed reality (VR/AR/MR)
applications [2]. To address such a challenge, network slic-
ing [3], [4] has been proposed to facilitate sustainable business
models in future networking markets [5]. With network slic-
ing, a logic network (a.k.a., network slice) can be created
through a set of virtual network functions (VNFs) with suffi-
cient resources to provide performance guarantee on shared
physical infrastructure.

The advantages of network slicing in enabling various serv-
ices of diverse QoS requirements have been widely recognized
by 5 G industries. A joint study conducted by BT and Ericsson
has demonstrated that network slicing in Internet of Things
(IoT) services can bring an overall 150% increased economic
benefit [6]. The efficiency and revenue achieved by network
slicing make it a fundamental block to leverage the potential
of 5 G. Still, there are several challenges to be tackled in order
to achieve network slice as a service in reality.

Firstly, although it is desirable to create each network slice
according to its QoS requirements, it is very difficult to
quickly provision a network slice on-demand because the Net-
work service provider (NSP) must provision and orchestrate
many resources, including networking, computing, and func-
tionality [7]. To address this challenge, a recent IETF draft [7]
recommends a practical provisioning scheme, in which an
NSP can define some network slice templates in advance, and
a network slice tenant can choose the best template that fits its
QoS requirements. Nevertheless, such a scheme may lead to
over-provisioning of resources for each network slice, which
is expensive and not scalable.

Secondly, the QoS guarantee for network slices is still a
major challenge, especially when multiple network slices are
operating using the same infrastructure resources and the traf-
fic of each network slice is fluctuating. To this end, most pre-
vious work proposed adaptive solutions for the dynamic
traffic in a network slice [8]-[10]. However, the reconfigura-
tion of the network slice may lead to instability, service dis-
ruptions, and performance degradation [11].

To efficiently create multiple network slices on-demand, we
propose a novel network slice provisioning model, namely,
network slice bundling.1 In this framework, an NSP can allo-
cate and orchestrate resources in advance, which can help

'Note that the definition of network slice bundle is different from that
in [5] where a bundle is to group a set of vertical services.
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NSP to ease the management and orchestration of resources
for network slices. Although a similar idea has been adopted
in the ready-made network slice in [7], our framework is novel
in that each network slice bundle can accommodate multiple
network slices that cover similar areas and have similar QoS
requirements. In this manner, a network slice request can be
assigned to an appropriate bundle that can guarantee its QoS
requirements. Moreover, multiple network slices in the same
bundle can share the resources and thus can further exploit the
multiplexing gain, i.e., given the stochastic nature of traffic
from different network slices, multiplexing makes it possible
for two or more combined network slices to consume less
resources than the summation of resources needed individually.

In this paper, as the first step to validate the proposed bun-
dling framework, we focus on a fundamental issue, i.e., how
to maximize the utility of NSP by optimally assigning multi-
ple network slices to a set of pre-defined bundles. Specifically,
we consider that a network slice request can be assigned to
one of multiple bundles that provide exact or higher QoS guar-
antees than the requirement. We also assume that each net-
work slice is associated with a stochastic model for traffic
arrival in the time domain.> Moreover, we consider a practical
but tough scenario that the arrival models for any two network
slices are correlated.

Although there are many existing studies on different
aspects of the multiplexing gain in various communication
and networking systems [12]-[14], the multiplexing gain
problem in the context of network slice bundle is unique due
to the following main reasons:

1) A network slice request may be admitted into a bundle
that supports a higher QoS level than needed. Therefore,
the aggregation may upgrade the QoS of some requests
in the bundle, which may result in using more resources
than multiplexing gain. Thus the framework of network
slice bundle, if not managed carefully, would naturally
lead to resource waste.

2) A network slice bundle is pre-configured with allocated
total resources. In this setting, the problem of admitting
a network slice request seems similar to a stochastic
version of multiple knapsack problem, but it has a
unique feature that voids all previous solutions
(Section IV). To be specific, when two network slice
requests, say A and B, are admitted into a bundle, the
total resources needed to guarantee the QoS of both
requests is not simply the resources needed to guarantee
the QoS of A plus the resources needed to guarantee the
QoS of B. The actually needed resources may be
smaller or even larger than the sum, depending on the
statistical profiles of A and B.

3) There is no unified analytical model that can be directly
applied to estimate the total resources when a network
slice bundle accepts two or more network slice requests
with correlated traffic.

2Since the problem is already very complicated, we will investigate the time
domain models in this study.

To address the above issues, we first formulate a general
optimal slice assignment problem, namely G-OSA, that aims to
maximize the total utility of NSP. Based on the formulation,
we further define an optimization problem, namely, f-OSA,
when the traffic of network slices are characterized by corre-
lated fractional Brownian motion (fBm) models. Next, we
show that f~-OSA is an NP-hard combinatorial optimization
problem that has irregular constraints, which are more complex
and cannot be solved with existing combinatorial optimization
algorithms. For instance, existing schemes such as greedy algo-
rithms, local search, simulated annealing, etc. are more adapted
to particular structures of problems, e.g., Euclidean TSPs and
knapsack, and usually need extensive parameter tuning and
domain expertise [15]. Inspired by recent learning-based meth-
ods for solving NP-hard problems [15], [16], we propose a
novel reinforcement learning based approach that can automat-
ically search for good results based on rewards (Section V).

In a short summary, the concept of network slice bundles is
proposed to simplify the management of network slicing. The
utility of NSaaS is maximized by leveraging multiplexing gain
among network slice requests which is highly related to the net-
work slice assignment method. The reinforcement learning
approach is proposed to solve optimization problem. We tackle
these challenges and make the following contributions:

e We formulate an optimization problem for assigning net-
work slice requests into appropriate bundles so that the
total utility of NSP can be maximized. This general model
considers the constraints on QoS of each network slice
request and the capacity of each bundle. In addition, it
presents a general framework, within which a flexible traf-
fic model, fractional Brownian motion (fBm), is adopted
to showcase the calculation of total resources needed for
guaranteeing the QoS of all requests in a bundle.

e We analyze the special difficulty in the fBm-based opti-
mal slice assignment problem that does not allow a poly-
nomial-time approximation solution. We then propose a
reinforcement learning (RL) approach, RL-Assign, that
uses Policy Gradient to tackle this difficulty.

e With extensive trace-driven simulation, we demonstrate
the superior performance of RL-Assign over four base-
lines: First-Fit, Best-Fit,a branch-and-bound method
MTM [17], and a constraint integer programming
approach CIP [18].

The rest of the paper is organized as follows. We introduce the
network slice bundling framework in Section II. We formulate
an optimization problem for assigning network slice requests
into network slice bundles in Section III. The difficulty in the
optimal slice assignment problem is addressed in Section IV,
and reinforcement learning approach, RL-Assign, is presented
in Section V. Section VI shows the performance evaluation. We
discuss related work in Section VII. Section VIII concludes the

paper.

II. A NETWORK SLICE BUNDLING FRAMEWORK

In this section, we first present the background of network
slice provisioning. We then introduce the network slice
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bundling framework. Finally, we use an example to demon-
strate the applicability of the framework and the multiplexing
gain within the proposed framework.

A. An Overview of Network Slice Provisioning

To support potential applications with diverse needs, a
network slice must be provisioned with different types of
resources [7]: networking, computing, and functionality. To
provision resources for network slices, IETF [7] states that
network slices can be created as follows:

1) A ready-made network slice is designed by the NSP and
it can be created in advance. A network slice tenant can
select a ready-made network slice that best supports its
requirements.

2) A custom-made network slice is created by the NSP
according to the requirements specified by the tenant.

3) A semi-custom-made network slice is designed by the
NSP in advance but can be tuned according to the ten-
ant’s needs.

B. The Network Slice Bundling Framework

From the previous introduction, we first note that a network
slice needs various resources and thus it can be very compli-
cated to provision a new network slice according to the require-
ments of a tenant. Therefore, to simplify network slice
provisioning, it has been recommended that an NSP can define
the details of multiple network slices in advance, and allow ten-
ants to select the best ones that fit their needs. Such a scheme is
practical because an NSP can design appropriate network slices
based on the analysis of historical network slice requests and
the prediction of demands for future network slices.

Although the aforementioned scheme can quickly instanti-
ate a network slice for a tenant, there are some major issues.
First, from the perspective of a tenant, a pre-defined network
slice may occupy more resources than it needs so the tenant
may pay more to the NSP. Secondly, from the perspective of
the NSP, it is unclear how to optimally utilize the resources to
exploit the potential multiplexing gain. For example, when
one network slice has a high volume of traffic, another net-
work slice may have low traffic volume. In such a case, the
total traffic volume may be much lower than the sum of the
peak traffic volume of these two network slices.

To address the above issues, we can exploit two major
opportunities. First, if an NSP can define network slices in
advance, then there may be multiple tenants who are interested
in creating the same type of network slices. As shown in
Fig. 1, multiple tenants may want to provision network slices
for industrial Internet-of-things (IIoT) that cover the same
industrial park. Secondly, network slices that share common
features, e.g., the same types of resources organized with a
similar workflow, may have some different service require-
ments. For example, in Fig. 1, several network slices for video
services may cover the same road area in a city for different
purposes, e.g., surveillance and autonomous driving, and thus
require different delay guarantees.
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Fig. 1. Network Slice Bundling Framework.

Based on the analysis above, we propose a novel network
slice bundling framework. Specifically, in this framework, an
NSP can create multiple network slice bundles in advance,
each of which has sufficient resources to guarantee one type
of service level on a set of functionalities and can accommo-
date multiple network slices. Network slices that use same
type of functionalities can be grouped into the same bundle.
Consequently, when a tenant requests to create a network slice
with certain service requirements, the NSP can choose the
best bundle and quickly instantiate the network slice using the
available resources in the bundle. Finally, during the operation
stage, all network slices that are in the same bundle can share
the resources so that the multiplexing gain can be leveraged to
improve the utility of NSP.

To implement network slice bundling, one key issue to be
solved is to assign network slice requests to its most appropri-
ate network slice bundle so that the utility of NSP is maxi-
mized. In the rest of this paper, we will focus on such a
problem.

C. An Example Case Study

As an example of our framework, Fig. 1 shows that an NSP
has provisioned six network slice bundles: two for the indus-
trial park areas, two for the highway areas, and two for all
areas. Moreover, each bundle is associated with a capacity of
traffic volume, a delay requirement, and a probability to guar-
antee the service level.

Specifically, for the highway areas, the first bundle has a
capacity of 8 Gb/s and can guarantee that 95% of packets have
less than 10 ms end-to-end delay, while the second bundle has
a capacity of 10 Gb/s and can guarantee that 90% of packets
have less than 15 ms end-to-end delay. For such a setting, we
assume that there are 6 network slice requests waiting to be
assigned into these two bundles, and each request has a peak
arrival rate and a delay requirement, as shown in Fig. 2.

To assign these requests to the two bundles, we may have
two naive allocation methods: First-Fit and Best-Fit. Note
that for fair comparison of different methods in the same set-
ting, we do not consider adaptive resource re-allocation
between bundles.

In the First-Fit method, network slice requests are assigned
to the bundle which firstly meets their QoS requirements. We
begin to assign the requests to bundle 1 until it cannot hold
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Fig. 2. Anexample of assigning network slice requests to bundles.

any more requests. Then we assign the requests to bundle 2
until it cannot hold any more requests. The assignment result
is shown in the “First-Fit” part in Fig. 2. As a result, network
slice requests 1 and 2 are allocated to bundle 1, and network
slice requests 4 and 5 are allocated to bundle 2.

In the Best-Fit method, network slice requests are assigned to
the bundle of the least available resources which meets their
requirements. This heuristic is aimed at maximizing a bundle’s
resource utilization. As a result, network slice requests 1, 2,
and 5 are allocated to bundle 1, and network slice requests 4
and 6 are allocated to bundle 2.

Using our reinforcement learning (RL) based method devel-
oped in this paper, we obtain the result shown in the “RL Assign”
part of Fig. 2. Obviously, the bundles can host more requests
using our strategy. Though the sum of maximal required capac-
ity of network slice requests exceeds the capacity of the network
slice bundle, the performance of each network slice requests can
still be guaranteed due to the multiplexing gain. Intuitively, the
bursts of traffic arrivals are smoothed out by aggregating nega-
tively correlated traffic patterns, which reduces the total capacity
required to guarantee QoS. In this way, resource utilization is
always high without the cost of dynamic slice resizing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the system model, then for-
mulate the general network slice request assignment problem,
which assigns each network slice request to an appropriate
bundle to maximize the total utility. At last, we present the
model with fractional Brownian motion traffic model to show-
case the resource needed by requests in a bundle.

A. Network Slice Bundle

We assume that NSaaS service provider divides all its avail-
able resources into a set of bundles, where each bundle offers a
set of functionalities and provides a certain amount of resources
to meet a given QoS requirement, including any particular net-
working/computing/functional resources relevant to the func-
tionalities. The consideration for this practical assumption is
that each bundle only handles a set of functionalities, thus,
functionalities can be pre-deployed which can ease the man-
agement overhead of NSP. Moreover, given the resources allo-
cated to each bundle and its offered set of functionalities, the
QoS that each bundle can guarantee can be determined.

The same set of functionalities may be offered in multiple
bundles so that applications requiring the same set of function-
alities but with different QoS requirements can be

accommodated by different bundles. The consideration for
this assumption is to maximize the utility of NSP. Applica-
tions with the same set of functionalities may have different
QoS requirements, e.g., some may be very delay sensitive,
while some are not. If all of them are admitted to one network
slice bundle, the ones with low QoS requirements may enjoy
high QoS guarantee while paying according to their required
QoS, which will reduce the utility of NSP.

Under such network slice bundle creation assumptions,
applications with different sets of functionalities, will be
accommodated to different network slice bundles, while appli-
cations with the same set of functionalities may or may not be
accommodated to the same network service bundle depending
on whether aggregating them into one bundle will improve the
utility of the NSP.

Given a set of network slice bundles and network slice
requests, the general problem of assigning network slice
requests to the appropriate bundles to maximize the utility of
NSP thus can be decomposed to assign network slice requests
with the same set of functionalities to a set of network slice
bundles offering the corresponding set of functionalities inde-
pendently. Therefore, in the rest discussion, we only consider
how to assign a set of network slice requests with the same set
of functionalities to a set of bundles offering the same set of
functionalities.

We use {C,...,C),} to denote the capacity of the m bun-
dles, respectively, and use { < p',T' >,..., < p™, T™ >}
to denote the QoS guaranteed by the m bundles, respectively.
The capacity is the number of packets which can be processed
per second on the network slice bundle, which is pre-deter-
mined by the resources allocated to this bundle. The QoS <
p’, T" > means that p'(%) packets passing through a network
slice from bundle 4 have less than 7" end-to-end delay.

B. Service Requests

Assume that there are n network slice requests, denoted
as {< Ay,p,Th,w >,..., < Ay, pn, Tn,w, >}, respec-
tively. Here, A; denotes the traffic arrivals and < p;,T; >
the QoS requirement of network slice request j. By accepting
the service request j, the NSP gains a utility w;.

We assume that both the traffic pattern from a network slice
request and the correlation between traffic patterns in different
network slice requests can be estimated [19]. This assumption
is widely accepted in traffic prediction work where the predic-
tion models are based on spatial and temporal patterns captured
from real-world observations [20]-[22]. As shown in Fig. 3,
the real-world traffic arrivals for GEANT-CPS service at Kra-
kow, Poland and Akai-Cluster service at Cambridge US have a
similar pattern and are highly correlated, e.g., due to the time
difference, traffic amount at US area is high when the amount
at Poland area is low. Note that these preliminary analysis
results of daily traffic pattern and pattern diversity indeed exist
among all service requests. Our model fully utilizes the tempo-
ral difference of traffic arrivals of service requests.

We then use these two requests to illustrate the multiplexing
gain of bundling them together. Assume that the QoS
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Fig. 3. One-week average out traffic with GEANT-CPS at Krakow, Poland

and Akamai-Cluster at Cambridge, US.

requirement of GEANT-CPS request is that 95% of packets
have less than 20 ms end-to-end delay while the QoS require-
ment of Akamai-Cluster request is that 90% packets have less
than 30 ms end-to-end delay. The capacity required by each
individual network slice request is shown in Fig. 3 as 10.1
Gbit/s and 3.5 Gbit/s, respectively. As shown in Fig. 4, when
we bundle these two requests in a network slice bundle whose
QoS is setas < 95%,20ms >, the required capacity to guar-
antee the performance of the bundled request is 11.1 Gbit/s,
which saves 2.5 Gbit/s capacity for NSP. Obviously, when
traffic of requests are negatively correlated, the multiplexing
gain achieved by bundling requests together increases the util-
ity of NSP while QoS of some requests may be upgraded.
Based on the above assumption of system configuration and
service requests, the problem that an NSP faces is: how to
assign the network slice requests into different bundles such
that the total utility is maximized subject to both capacity and
QoS constraints? We call this problem optimal slice assign-
ment (OSA) problem. In what follows, we first provide a gen-
eral formulation of OSA, and then investigate a detailed
formulation under a general Internet traffic model.

C. The General Form of Optimal Slice Assignment Problem

To meet the QoS constraint, a network slice request can
only be assigned to a bundle which offers higher QoS than
what the request demands. In other words, network slice
request j can only be assigned to the bundle ¢ when p; < Pl
and T; > T

To meet the capacity constraint, the total amount of resources
required by the network slices in a bundle should be below the
capacity of the bundle. For a network slice request j allocated to
bundle 4, its allocated capacity is calculated as f(A;,p',T"),
which depends on specific traffic pattern and will be discussed
in Section III-D. Since the QoS that a network slice will receive
is at least what is requested or higher than that when it is
assigned to a network slice bundle, the required capacity is natu-
rally increased, ie., f(A;,p",T") > f(A;j,p;,T;). In other
words, NSP costs more resources in order to get utility w;. How-
ever, due to the correlated traffic among different requests, the
capacity required for the bundled requests may be smaller than
the summation of capacities individually required, so-called
multiplexing gain. Let x;; be a binary variable which equals 1 if
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request j is assigned into bundle 7, and equals 0, otherwise. Mul-
tiplexing gain should be a function of the aggregated traffic and
the QoS defined by bundle 7. The total multiplexing gain for net-
work slice bundles can be derived as:

Gain = Zf 77pJa A/$77,p7,T]> (1)

m

Only when Gain > 0, the NSP can benefit from multiplex-
ing gain since less amount of resources is consumed to achieve
utility Z;le w;. In addition, minimizing the amount of resour-
ces for assigning requests to bundles equals to maximizing
multiplexing gain since the summation of resources for indi-
vidual request is fixed.

Consider our assumption that network slice bundles are pre-
deployed with determined resources, we formulate the general
form of OSA problem as follows:

Problem 1 (General Optimal Slice Assignment (G-OSA)):

m n

max g E W;iTij

i=1 j=

s.t. f(z Ajl'qjj,pi,Ti) < Ci, Vi € [l,m]

= . , )
zi;=01if p; >, T; < T, Vie[l,m],Vje[l,n]

Zx” <1,

z;j € {0,1},

vj e[l n]

Vie[l,m],Vje[l,n]

The constraint f(3__; Ajwij,p', T') < C" ensures capacity
constraint for each bundle The constraint p; < p',T; > T
ensures that the QoS of each network slice request is guaran-
teed, and the last constraint z;; € {0,1} ensures that each
request is assigned to at most one bundle.

The object of G-OSA problem is to maximize the utilities of
accepting network slice requests into network slice bundles
with limited resources. The optimal solution is achieved when
the resources required for the bundled requests are the mini-
mum. In other words, the max utility of NSaaS is achieved by
leveraging the multiplexing gain to make full use of resources.
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D. Optimal Slice Assignment With Fractional Brownian
Motion (fBm)

G-OSA is not solvable until the concrete form of function f
is given. To derive f, we need to (a) profile traffic arrivals A;
and (b) estimate the required capacity based on the traffic
arrivals and the QoS requirement.
1) Traffic Profile: While Poisson traffic has been broadly
used in telecommunication networks, Internet traffic generally
cannot be modelled as Poisson traffic [23]. Due to this consid-
eration, we adopt fractional Brownian Motion (fBm) traffic
model [23], [24], which is considered as a general model of
Internet traffic and can well capture both long-range depen-
dence as well as self-similarity of network traffic [23]-[25].
To make the paper self-contained, we introduce fBm traffic
model as follows.
Definition 1 (fractional Brownian motion (fBm)): Let
A(0, 7) be the amount of traffic that arrives during the interval
(0, 7). An arrival process {A(0, t) : T > 0} is said to be frac-
tional Brownian motion with Hurst parameter H if
1) {A(0,7) : v > 0} has stationary increments;
2) Vr >0, {A(0,7) : T > 0} is normally distributed with
mean p and variance o272

3) Denote the increments of A(0,7) as Z(k) = A0,k +
1) — A(0,k),k > 0. The autocorrelation function of
Z(k), py(k), satisfies

1
pa(k) = 5 {k+ 17 + b — 17 — 2 B2}

It has been shown [26] that when H > %, the incre-
ments of A(0,7) are long-range dependent. In the rest of
the paper, we assume that traffic arrivals in each network
slice follow fBm.

2) Capacity Estimation: Due to the stochastic nature of
fBm and the rich dynamics that fBm can model [24]-[26], it is
generally difficult to analyze the delay of a queueing system
with fBm input. To handle the difficulty, we resort to the the-
ory of effective bandwidth [27] to estimate the required capac-
ity for a network slice with fBm traffic.

Effective bandwidth is the theory developed to provide a
measurement of resource usage, taking account of the sta-
tistical characteristics and QoS requirements for diverse
traffic patterns. Combined with the large deviation the-
ory [28], effective bandwidth can be used to approximate
the probability of overflow given the buffer size and
capacity in a finite system [26], [29]. On the other side,
the required capacity can be derived once other factors
have been determined. In particular, effective bandwidth
function can be estimated statistically with real traffic
arrival described in discrete time, where the statistic char-
acteristics like correlation can be considered. While a lot
of research work studied the relationship between service
capacity and traffic process, they usually assume that two
traffic flows are independent. As pointed out in
Section III-B, traffic arrivals from the network slices may
be correlated. As such, their correlation should be

considered since the total capacity is allocated to meet the
QoS of the aggregated traffic.
The effective bandwidth of traffic A(0, t) is defined as:
Definition 2: Effective Bandwidth

1
ay(0,7) = 5108; E[e?40)] 3)

Denote the rate function of overflow as I. The large devia-
tions rate function [ for overflow in a discrete time queue with
capacity C' and buffer size B for input process A(0, 7) can be
calculated as [26]:

I =infsupf(B+ Ct) — 6taq (0, 7) 4)
20 >0

where the optimal 6%, * in the above equation are referred
to as the critical point of the system. At the critical point,
the traffic flow is regarded as a constant traffic stream of
rate a4(0",7") equivalently, and I is used to approximate
(i.e., the most likely value) —log P(overflow), where
P(overflow) denotes the probability of overflow [26].
Suppose that the traffic arrivals follow fBm with mean
arrival rate p, variance o2, and Hurst parameter H. The
effective bandwidth of fractional Brownian motion is:

2

6
@a(0,7) = p+ -, 5)

The critic points of fractional Brownian motion are

. B H

tTCoul-H ©

g BH(C -

o2 ()

) ()

For simplicity, denote P(overflow) = p. The capacity C
can be derived as:

2
. 2H\/2(1 — H)*0*(~log(p)) BH
2HVB(1 — H)

+u (3)

With the above equation, we can derive the capacity
required for each network slice request. When multiple
requests with common Hurst parameter’ H are aggregated,
the aggregated traffic also follows fractional Brownian motion
where ji,, = >0 p; and oo, =1 07+ 230, cov.
To ensure the QoS, the buffer size of each network slice bun-
dle is approximated as B; = C*T". Thus, the first constraint
function in G-OSA, which is to meet the total capacity con-
straint of each bundle and ensures the performance of all

*We ignore the case where traffic arrivals with different Hurst parameters
are aggregated. This omission is reasonable because a network slice is for one
specific service type and the traffic for the same service type is considered to
have similar traffic pattern.
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requests in the bundle, can be formulated as:

1
n n 2H
g /Lja?i(j—i—ni( E xmr? +2 g xq;jsr:ikcov(Aj,Ak)> <l
p =1

J#k
Vi € [1,m)]
C))

v/ 2 B
2HV20-H) (ClogW Bl qatermined by the prior
2H./B2(1-H)
knowledge of the network slice bundle configurations and the
traffic type.

To simplify the above equation, we rewrite it in the vector

form as follows: :ciTU n n,;(xiTVa:i)ﬁ < o (10)

where 1, =

where ;7 = [zi1, ..., 2], U = [y, ..., ,]", and V is sym-
metric matrix defined as follows
Var(Al) : COU(AI; An)
V= : . : 11
cov(Ap, Ar) -+ Var(4,)

3) OSA With Fbm: After we have analyzed the traffic
arrivals and derived the capacity needed to meet QoS, Prob-
lem 1 can be recast in the following more concrete form:

Problem 2: fBm-based Optimal Slice Assignment (f-OSA):

maxZijxij (12)
i=1 j=1
stz U+ m(a:iTV:l:i)ﬁ < C' Vi€ [1,m)] (13)
zij=0if p; > p', Ty < T',Vie[L,m],Vj€[l,n]  (14)
m
Sz <1, Yie(ln) (15)
i=1
z; € {0,1}, Vie[l,m],Vje [1,n] (16)

To maximize the utility for NSP, the assignment strategy x
needs to assign negative-correlated requests in a bundle to save
resources so that more requests can be accommodated, i.e., to
maximize the multiplexing gain through minimizing ;" Vz;.
In what follows, we first show the difficulty of solving f-OSA
and then propose a reinforcement learning-based solution.

IV. ON THE HARDNESS OF F-OSA

In this section, we analyze the difficulty in the fBm-based
optimal slice assignment problem developed above in terms
of the irregularity of constraints and the hardness of approxi-
mating in polynomial-time.

A. Irregularity of Constraints

We note that the left hand side of constraints (13) is an
irregular function of U and V.

It is easy to see that when two network slice requests are
assigned into the same bundle, if the Hurst parameter is 0.5, the
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Fig. 5. Required capacity under different variances/covariances

with different Hurst parameters (mean arrival rates @, = 12 and o, = 12).

left hand side of (13) is a linear function of U and V/, meaning
that the total resource demand for the two requests is linear to
the resource allocated to each individual request. Nevertheless,
if the Hurst parameter is larger (or smaller) than 0.5, the left
hand side of (13) is a convex (or concave) function of V. Using
two slice requests as an example, Figure 5 illustrates the curva-
ture of the left hand side of (13) with different Hurst parameters
and different variances/covariances. We can conclude that the
constraint (13) is quite irregular (i.e., it could be linear, con-
cave, or convex depending on the Hurst parameter). The total
required resource is highly coupled with the Hurst parameter of
the traffic patterns and the correlation in the traffic from net-
work slices.

B. Hardness of Approximating f-OSA

The easiest form of the f-OSA problem (i.e., the constraint (13)
is linear when Hurst parameter = 0.5) has the similar form with
multiply-constrained (multiple) knapsack problem (MCKP) [30].
f-OSA is constrained by resources and implicitly by traffic corre-
lations, as defined in (13), as well as by QoS, as defined in (14). It
is well known that the 0-1 variant version of MCKP (for any fixed
m > 2 where m is the number of constraints) is NP-complete
and does not even have a polynomial-time approximation scheme
(PTAS) unless P=NP [31]-[33].

Indeed, the general case of f-OSA is even harder than
MCKP due to the irregular constraints posed by (13), where
the amount of resources required for network slice requests is
determined by an irregular function of their traffic arrivals. As
shown in Section IV-A, such irregularity not only makes a
close-form theoretical analysis hopeless, but also makes accu-
rate approximation extremely hard.

Due to the above difficulties and inspired by the success of
reinforcement learning in solving NP-hard problems and com-
binatorial optimization problem [34], [35], in the next section
we develop a reinforcement learning (RL) based solution for
f-OSA, called RL-Assign. RL-Assign, as we shall show later,
can effectively handle the complexity introduced by traffic
correlation and the irregular resource-traffic constraint func-
tion and obtain much better solutions than other baseline
methods.
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Fig. 6. Architecture of RL-Assign.

V. THE REINFORCEMENT LEARNING APPROACH: RL-ASSIGN

In this section, we first give an overview of our approach
with definitions of the basic elements of reinforcement learn-
ing, and then introduce the details of RL-Assign using Policy
Gradient.

A. Overview of RL-Assign

RL-Assign is designed to work in the reinforcement
learning framework as shown in Fig. 6. The agent is to
make action for each network slice request according to
the observation of the features of the to-be-assigned
requests, the bundles’ states, as well as the features of the
requests already assigned in the bundles. The environment
interacts with the agent to correct bad actions and encour-
age good actions through the reward. The problem solved
by RL-Assign is equivalent to the f-OSA problem, where
the environment corresponds to the constraints, the actions
correspond to the solution z, and the total reward corre-
sponds to the objective function.

Agent: The agent makes a network slicing assignment strat-
egy (also called policy), which inputs the request’s features
and bundles state, and outputs the action that to which bundle
the request is assigned. The mapping function between the
observations to the action, when it is too complicated, is usu-
ally approximated with a neural network. When the agent
explores the possible actions, it gets feedback from the envi-
ronment which measures how good the strategy is. After the
exploitation and exploration, the agent is able to learn a strat-
egy that tries to assign the network slice requests to the bun-
dles to gain the highest utility. That is, the agent works as the
brain to solve the assignment problem.

Observations: The observations are to find the useful and
relevant data from the environment for agent to make deci-
sions. Based on the constraint functions in f-OSA, the state of
the environment is mostly affected by Equation (13), where
the required capacity of the network slice requests cannot
exceed the pre-defined capacity of the network slice bundles.
We can decompose Equation (13) into three parts: (1) the fea-
tures of the to-be-assigned request corresponding to ;" U, (2)
the features related with the other requests in the bundle corre-
sponding to z;TVx;, and (3) the feature of the remaining
capacity of the bundle corresponding to C'=C" —xz,"U -
n;(x;TVx;)2A. Equation (13) is the overall constraint for all
requests in each bundle.

For the observations of a to-be-assigned network slice
request, one of the basic features is the mean of the traffic
arrivals of the request, denoted as jt;. To help the agent learn
better, we also need variance UJQ-, utility w; in the features.
Note that in Equation (13), the variance is included in V.

The next part is the features related to other requests in the
network slice bundle. Intuitively, in order to accommodate
more requests in the bundle, the agent is more likely to assign
the request to the bundle where the sum of the covariances is
smaller. Thus, we set the ;7 V[j],i € [1,m] for the second
part of the observations for request j. The x;’s, ¢ € [1,m] have
included the actions of the assigned network slice requests.

The last part of the observations is straightforward. It is
the remaining capacity of the bundle. To help the agent
learn more effectively, we use one trick to quickly find out
the remaining capacities. In the aforementioned constraint
functions, the network slice bundle will not be chosen if it
cannot satisfy the QoS requirement for the network slice
request, i.e., z;; = 0 if p; > p', Tj < T". Instead of modify-
ing the action after it is done by the agent, we can prevent
this case in advance with the remaining capacity of the
bundles set as 0 if it cannot meet the performance require-
ment of the request.

Action: The action for the network slice requests is
made by the agent according to the observations. We use a
sequence of integer number 1,2,...,m to denote the bun-
dle number and 0 as request rejection. That is, z;; = 1 if
and only if a; =4 and 7 # 0. For a given action, the agent
needs to double check whether the action is valid by eval-
uating the remaining capacity of the assigned network slice
bundle. In practice, each time the agent has an observation,
it provides the probability of choosing each action. It sorts
all the actions in decreasing order with respect to the prob-
abilities, then double check whether the first choice is
valid by evaluating the remaining capacity of the assigned
network slice bundle. If the remaining capacity is not posi-
tive, the action will be changed to the second best action
and be checked again. Such process repeats until any
action is valid or all actions fail, in which case the agent
chooses a; = 0.

Reward: The reward from the environment works as a critic
for the agent. Once the network slice request 7 is assigned to a
bundle, the step reward r; is set as the utility of admitting this
request. Otherwise, the reward r; is set as 0 (i.e., no utility
gain). The sum of utilities of assigned network slice requests
is denoted as the total reward, which is equal to the objective
function of f-OSA.

Transition: The agent starts the whole process with an
observation OBS; with respect to the first to-be-assigned
request, i.e., request 1, and takes an action a; accordingly.
After the agent takes an action a; according to each observa-
tion OBS}, i.e., assigning request j to some specific bundle or
rejecting the request, the observation transits to another obser-
vation OBS;;; corresponding to the next to-be-assigned
request j+ 1. In precise, for request j + 1, Equation (13) is
still decomposed into three parts: (1) the features of request
4 -+ 1 corresponding to z;7 U, (2) the features related to other
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requests in the bundle corresponding to x;” Vz; (remain the
same in OBS;+1), and (3) the feature of the remaining capac-
ity of the bundle after request J is assigned, corresponding to
C' = C" — ;U — n(z;"Vx;)2A. Such a process is a Markov
decision process since the next observation can be decided by
only the current observation and the corresponding action.

B. The Details of RL Algorithms

Reinforcement learning problems are generally studied as a
discrete-time Markov decision problem (MDP), defined by
(S, A,P,R), where S C R,, is an n dimensional state space,
A CR,, an m action space, P:S x A xS — R, a transi-
tional probability function, and R :S x A — R a reward
function. The agent receives observation s € S from the envi-
ronment, generates action a € A by policy m, where 6 are
parameters of the neural network approximating the policy,
and then interacts with the environment receiving reward r €
R. The goal of the agent is to study a good policy 7y which
can maximize the total reward of the problem.

Following the above framework, each decision that RL-
Assign makes is considered as a step of the whole assignment
problem. Thus, the interaction sequence can be fully described
as S1,a1,71,82,02,79, ..., Sy, An, Ty, Which is referred as one
episode. The common approach to learning the optimal policy
my can be classified into two categories, (a) value-based
approaches which aim to learn the state-action value and then
to select the optimal actions accordingly, and (b) policy-based
approaches which learn the policy directly.

RL-Assign uses the classical policy-based approach, Policy
Gradient, based on three reasons: (1) Policy Gradient can handle
large-scale problems, where the performance of value-based
approaches become worse as the dimension of action space
increases, since these approaches require more training samples
to estimate the Q-value accurately (this has been validated when
the number of slice bundles is larger than 10). (2) It can learn the
stochastic policy which is useful for balancing the exploration/
exploitation trade-off. (3) It has fewer hyper-parameters and
does not need to estimate Q values. Most advanced policy-based
approaches, like A3C and DDPG, estimate Q values as critic to
guide the gradient of the policy during the episode. However,
the convergence of Q values is a severe problem during the train-
ing process, requiring a great effort to optimize the hyper-param-
eters to accurately estimate Q values. Overall, Policy Gradient is
a simple and suitable algorithm for our problem. We next intro-
duce the detail of Policy Gradient algorithm in the following.

Policy Gradient Algorithm: The policy is a mapping between
the action to the specific state, which is usually modeled
with a parameterized function with respect to 0, my(a|s). The
value of the reward function under the policy can be defined as
J(0) = 2251 Xaeamolals;)ri(sj a) = Exg[X2;7i(s) a5)]-
Then, the Policy Gradient algorithm maximizes the
expected total reward by repeatedly estimating the gradient
VJ(0) = Exe)[3 ;1 mjVe Inme(ayls;)].

Neural Networks: Since neural networks can approximate
any continuous differential function, we use the set of parame-
ters of a neural network, i.e., weights and biases, to
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Algorithm 1: RL-Assign Algorithm.

1: Input: Network slice bundle capacity C, network slice requests
A and utility W, learning rate Ir

2: Output: Optimal policy 7y

3: Initialize the policy parameter 0 at random

4: while Not Converged do

5: for network slice requests j = 1, n do

6: Choose action a; by policy 7 with probability 1 — e = 0.9
and random otherwise.

7: Check whether a; is valid by evaluating the remaining capac-

ity C* of the bundle.
8: IF C% > 0 then

9: reward r; = w;
10: else
11: for k=2, ndo
12: Change action to the ky, best action
13: if C% > 0 then
14: reward r; = w;
15: continue
16: else
17: Set the action as a; = 0
18: Feed the episode sy, ay, 71,72, ..., Sy, Gy, Ty, to policy

network and update the policy parameter
0 — O0+1ry 7 r;Velnmg(ayls;)

parameterize the policy my. The design of the neural network
architecture follows the commonly-used policy network, which
inputs the observations and outputs the actions. The neural net-
work is composed of four layers, observation-layerl-layer2-
actions, with fully-connected neurons. We set the number of
neurons in the inner two layers as 64, and use the Rectified Lin-
ear Unit (ReLU) as the activation function.*

Training Process: The training process of policy gradient algo-
rithm consists of both exploration and exploitation through
e-greedy approach. In precise, the learning agent exploits its cur-
rent optimal action for each state with a probability of 1 — € while
executes a random action with a probability of e. While the for-
mer one is the standard exploitation for a learned policy, the later
one helps the agent avoid getting stuck in a local optimum by
exploring random actions to see if they lead to better reward. As
for the optimization process for the parameterized neural net-
work, we adopt the Adam optimizer among the stochastic gradi-
ent descent (SGD) methods since empirical results demonstrate
that Adam works well in practice and compares favorably to
other stochastic optimization methods [36]. The converging con-
dition of the training process is set as the average reward of the
latest 10 episodes no longer increases in consecutive 50 times.
The training process in each episode is summarized in
Algorithm 1.

It is worth mentioning that the RL approach presented
above may be applied to other traffic types, as long as we can
derive the way of calculating the corresponding capacity con-
straint to replace (13). We just need to simply plug the new
constraint into our RL framework.

“As common in nearly all deep learning-based solutions, the design of neu-
ral network is empirical.
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TABLEI
QOS OFFERED IN DIFFERENT NETWORK SLICE BUNDLES

Bundle1l Bundle2 Bundle3 Bundle4 Bundle5
<95%, 10> <90%, 15> <90%, 20> <85%, 25> <80%, 50>

Bundle1l Bundle2 Bundle3 Bundle4 Bundle5
C <95%,1> <95%,5> <90%, 10> <90%, 15> <90%, 20>

Bundle 6 Bundle7 Bundle8 Bundle9 Bundle 10
<85%, 25> <80%, 30> <80%, 35> <75%, 40> <70%, 50>

Note: “N” part is the QoS offered in the network slice bundles
for NORDUnet. “C” part is the QoS of the bundles for
cellular traffic.

N

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of RL-Assign
algorithm over four baselines, namely, First-Fit, Best-Fit, and
MTM, respectively, in two datasets.

A. Experiment Setting

Traffic Dataset: We use two datasets with different scales
for evaluation: (1) The 24 hours real time NORDUnet traffic
statistics (“Max out” traffic data) [37] of 46 flows starting
from 00:00 to 23:59, April 16, 2019; (2) The week-long cellu-
lar traffic [38] generated in a median-size city of China from
August 19, 2012 to August 26, 2012.

Network Slice Bundles (1) NORDUNet Traffic: Assume
that NSP provides 5 network slice bundles, each has 100 Gb/s
capacity. The QoS guaranteed by the network slice bundles
are in the form that p(%) of packets have no longer than
T'(ms) end-to-end delay, denoted as < p,T" >. We listed the
QoS guaranteed by each network slice bundle in Table I. (2)
Cellular traffic: We set 10 network slice bundles to accommo-
date the traffic, each with capacity 100, 100, 70, 50, 50, 40,
50, 30, 30, 30 GB/s respectively. The QoS provided by each
network slice bundle is also listed in Table I.

Network Slice Requests: We take the traffic of each flow in
both datasets as the traffic of one network slice request. There-
fore, in the simulation, we have 46 network slice requests in
NORDUnet and randomly choose 165 network slice requests
in cellular traffic.

The QoS required for each request in NORDUnet/Cellular
is randomly set in a range such that at least one bundle for
NORDUnet/Cellular listed in Table I can accommodate the
network slice request with its required QoS.

Assuming that the traffic arrivals in the slice request j have
mean 1 ; and standard deviation o, we set its utility as &;(u; +
0; + z), where k; is a scaling parameter in [0.8, 1.5] related to
the QoS of the requests and z is a random noise randomly vary-
ing in the range of [0, 10]. The setting of k; reflects that higher
QoS requirement will bring higher utility for NSP while the
mean p; and variance o; reflect larger traffic volume will also
bring higher utility. The introduction of z allows us to observe
the robustness of our algorithm when slice utilities vary.

There are potentially other ways to set the slice utility, e.g.,
uniformly random in a range or all the same. Nevertheless,
while the final test results w.r.t. the total utility of accepted sli-
ces are different with different ways of setting utility, our

Seasonal
orrH
Voo

Residual
orr
N

Fig. 7. Time series decomposition of “Akamai-Cluster-daymax” traffic.
algorithm consistently outperforms the four baseline methods
(Section VI-C). We omit those tests due to space limitation.

B. Pre-Processing

To extract the correlation among the network slice requests,
we use time series analysis tool to decompose the time series
traffics into three additive components: main traffic trend, sea-
sonality which is repeated in a short-term cycle, and residual
which is random variation. The decomposing result is demon-
strated in Fig. 7. We calculate the covariance matrix V' based
on the trend component of traffic in each network slice request.

C. Baseline Algorithms

We set First-Fit algorithm, Best-Fit algorithm, and MTM
algorithm as the baseline algorithms for comparison. Since the
capacity constraints developed in the f-OSA problem can not
be applied in these baseline algorithms, we set the capacity of
each network slice request according to its QoS requirement
and its traffic arrivals per unit time. The traffic arrivals of a
network slice request is a time series sequence with traffic
arrival increments recorded per unit time. We set the capacity
that can only hold p(%) of per unit time traffic arrival incre-
ments. However, such setting of capacity of each request can-
not guarantee the QoS since the queueing delay could go to
infinity. The total utility achieved by the baseline algorithms
under the aforementioned capacity assignment may be higher
than the actual achievable one because of the underestimation
of the required capacity. In other words, we compare the per-
formance of our algorithm with the upper bound performance
of the baseline algorithms.

First-Fit: First-Fit algorithm is to assign the network slice
requests to the first bundle which meets its capacity require-
ment and QoS requirement.

Best-Fit: Best-Fit algorithm is to assign the requests to the
network slice bundle with least remaining capacity under the
consideration of the QoS requirements.

MTM: Branch and bound algorithms are traditional algo-
rithms for multiple knapsack problem [39]. We implement the
most commonly used one, MTM algorithm by Martello and
Toth (1981) [17] in our network slice request assignment
problem. We can formulate the f-OSA problem as a standard
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TABLE 11
UTILITIES AND NUMBERS OF ADMITTED REQUESTS OF THE BASELINES AND
RL-ASSIGN WITH DIFFERENT NETWORK SLICE REQUESTS

First-Fit Best-Fit MTM CIP RL-Assign

NORDUnet Utility 368 476 499 499 571
No. 35 39 35 33 45
Collular Ulity 290 431 NULL NULL 1493

No. 18 24 NULL NULL 87

Note: NULL means the algorithm is unable to solve the
problem due to the scale limitation.

multiple knapsack problem with determined capacity con-
straints. Briefly speaking, MTM algorithm is to use tree-search
technique and lower bound to determine the branches to fol-
low. The detail process is omitted here.

CIP: Constraint integer programming (CIP) is a novel way
to combine constraint programming (CP) and mixed integer
programming (MIP) methodologies [18]. We can formulate
the f~-OSA problem as an integer programming problem. We
then use PySCIPOpt package [40] which is the interface from
Python to CIP solver suite to get the optimal solution.

D. Experiment Result

We evaluate our system under the NORDUnet and Abil-
ene traffic set specifically. For each set of network slice
requests, we use the baseline algorithms as well as our solu-
tion to assign them into the given network slice bundles.
For each algorithm, we repeat the experiments 15 times to
make the results more convincing. The average total utility
achieved when the utilities of the requests are resource
based is demonstrated in Table II. Our system outperforms
all other methods in both sets of requests. In NORDUnet
set, First-Fit algorithm performs worst since it simply puts
the requests according to the given order, Best-Fit algorithm
performs a bit better, while MTM and CIP have better per-
formance than them. MTM and CIP have found the optimal
assignment strategy to get the maximal utility when the
capacity constraints are set by the p% threshold. None of
these algorithms considers the correlation among the net-
work slice requests, which loses the utility brought by
leveraging the multiplexing gain.

To be more specific, the total utility gained by RL-Assign
can be improved by 14.4% and 246.4% while the number of
admitted requests can be enhanced by 15.4% and 262.5% in
NORDUnet and cellular traffic request set, respectively. The
utility enhancement is achieved by the multiplexing gain of
bundling correlated requests, which is 84.8 GB for NORDU-
net request set and 1754.9 GB for cellular traffic request set.
The benefit of multiplexing is much more significant in cellu-
lar traffic request set since peak arrivals in week-long requests
are sharper and vary over time. Note that the utilities of admit-
ted requests are different so that the improvement on the num-
ber of admitted requests does not equal to the improvement on
the overall utility. Moreover, the MTM algorithm and the CIP
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approach fail to handle the Knapsack problem with scale of 10
bundles and 108 requests, which is not practical in real use.
Furthermore, we evaluate the QoS achieved by each network
slice bundle with the assigned network slice requests. The life-
time of the assigned network slice requests in the network slice
bundle is simulated in Network Simulator 3 (NS3) with real
time traffics and specific bundle capacity. The simulation
results show that the end-to-end delay of all the packets admit-
ted to a bundle is lower than their specified worst-case delay.
That is, our algorithm can guarantee the QoS of all requests.

E. Convergence and Time Complexity

To show the learning process of our system, we show one of
the training processes of the RL-Assign system in Fig. 8 (a) &
(b) for two sets of network slice requests respectively. Observed
from the figures, the average total reward per 100 episodes
increases with the process of training. Note that it is natural that
the total reward in every episode fluctuated with the Policy Gra-
dient algorithm due to the adoption of epsilon-greedy approach
and SGD algorithm. It is the process of exploration that will
help improve the policy. The optimal policy is learned when the
algorithm converges. We then choose the actions in the episode
with the highest total rewards during the whole training process
as the assignment decision of our problem.

We now discuss the complexity of our algorithm, which is
vitally important in practical use of the algorithm. Since it is
impossible to get the theoretical analysis of the complexity of
Policy Gradient algorithm, we illustrate the empirical result of
our algorithm by comparing the converged episodes under dif-
ferent number of requests. We randomly select requests
among the cellular traffic set from 40 to 100, and assign them
to bundles with the same QoS configuration in Table I. Since
our algorithm is specific for the case that resources of the bun-
dles are limited, we reduce the capacity of each bundle to 50
Gbit/s. As shown in the Figure 8 (c), the converged episodes
are stable with the increase of requests. We can conclude that
our algorithm is robust and efficient.

In summary, our system is effective, efficient, and scalable,
which can be applied to a system with tens of network slice
bundles and hundreds of network slice requests.

VII. RELATED WORK

In this section, we review the literature on network slice
management and the work applying reinforcement learning on
problems in similar context, but different to our problem.

The majority of prior research about network slicing manage-
ment can be classified into two categories: (1) Network slice
resource planning for given network slice requests; (2) Network
slice request admission control with allocated resource. In
the first category, the literature can be further divided into the
traffic forecasts [21], [41] and flexible resource allocation
approaches [42], [43]. [21] proposes deep learning techniques
with spatiotemporal modeling and prediction in cellular networks
based on big data. Similarly, [41] forecasts the capacity needed
to accommodate future traffic demands with deep learning
architecture, considering the balance between the resource
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(a) Training process for NORDUnet requests

Fig. 8. Training process of RL-Assign and the empirical converge episodes.

over-provisioning and service requirement violations. These
studies demonstrate the importance of modeling and predicting
the pattern of the traffic load which exhibits high spatial and tem-
poral variance. On the other hand, with the assumption that traffic
profiles are given, the work in [43] addresses the problem of plac-
ing and chaining of virtual network functions, and proposes a
flexible resource allocation approach that takes the service
latency into account. Later, [42] extends the work into edge and
core network slice framework. In the second category, network
slice admission control policies are studied to increase the utility
of the NSaaS with limited available resources. The concept of
verticals which can request and lease resources from NSaaS
dynamically is firstly proposed in [44]. Based on this con-
cept, [45] designs an admission control and orchestration optimi-
zation by modelling the slice queuing behavior. [46] finds a Nash
equilibrium for dynamically sharing resources across slices.

Different from the aforementioned work, our work quanti-
fies the multiplexing gain based on the characteristic of traffic
patterns, which can be used in both resource planning and
admission control optimization. We leverage the multiplexing
gain through the concept of “network slice bundle”. Though
some other work also studies multiplexing in network slic-
ing [14], [47], they focus on the dynamical resource allocation
in a network consisting of a pool of resources, e.g., base sta-
tions that are shared by a set of operators to network slices.
They show that higher multiplexing gain can be obtained
when the spatial loads of network slices are more imbalanced
while multiplexing temporal heterogeneous traffic loads has
not been studied.

We tackle our proposed problem with reinforcement learning.
Some pioneer work used reinforcement learning approaches in
solving traditional knapsack problem [34], [48], but those solu-
tions are not applicable in our problem, since our problem has
much more complex constraints. Thus our work differs from
[34], [48] in that we design effective input features and neural
networks to adopt the reinforcement learning approach to our
problem.

VIII. CONCLUSION

In conclusion, we develop a general model for assigning net-
work slice requests into appropriate network slice bundles, so

(b) Training process for cellular traffic requests

(c) Converged episodes with dif-
ferent number of requests

that the total utility of NSaaS service provider can be maximized
as well as the constraint of the QoS of each network slice request
is satisfied. After analyzing the hardness of the problem that
cannot get the polynomial approximation, we propose a rein-
forcement learning approach, RL-Assign, to achieve efficient
multiplexing gain in assigning network slice requests to network
slice bundles with performance guarantee. Extensive trace-driven
simulation shows the superior performance of RL-Assign over
four baseline algorithms: First-Fit, Best- Fit, MTM, and CIP. The
utility of the NSP can be improved by 14.4% and 246.4% while
the number of admitted requests can be enhanced by 15.4% and
265.2% in different request scenarios. These findings provide a
potential mechanism for NSP to efficiently configure the network
slice bundles and assign the network slice requests to bundles
with the maximal utility.
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