
Leveraging Multiplexing Gain in
Network Slice Bundles

Qian Xu , Xiang Yan, Kui Wu , Jianping Wang , Kejie Lu , Senior Member, IEEE, and Weiwei Wu

Abstract—In this paper, we propose strategies and develop
solutions for a network service provider (NSP) to cost-effectively
provision and manage a large number of network slices.
Specifically, we propose a novel framework, namely, network slice
bundling, in which (1) an NSP can allocate resources and create
multiple network slice bundles in advance, (2) a network slice
request can be quickly instantiated in the bundle that supports its
service requirements, and (3) network slices in the same bundle
can share the resources and achieve a multiplexing gain by
leveraging the stochastic behaviors of resource usage. Within this
framework, we focus on a core problem, which is how to leverage
the multiplexing gain to maximize the utility by optimally
assigning multiple network slices to a set of pre-defined bundles.
We formulate an optimization problem and theoretically analyze
the irregularity of constraints and the difficulty of the problem.
We develop a novel reinforcement learning (RL) based slice
assignment solution. Finally, we conduct extensive data-driven
simulation experiments. The numerical results confirm that the
proposed solution can efficiently solve the network slice
assignment problem and achieve significantly higher utility than
the best baseline algorithm.

Index Terms—Multiplexing gain, network slice bundles, quality-
of-service, reinforcement learning.

I. INTRODUCTION

IT is expected that mobile data traffic will increase seven-

fold between 2017 and 2022 with a compound annual

growth rate of 47% [1]. Coupled with booming Internet traffic

are diverse services demanding different quality-of-service

(QoS) requirements: from delay-tolerant content delivery

applications to delay-sensitive real-time cyber-physical sys-

tem (CPS) and virtual/augmented/mixed reality (VR/AR/MR)

applications [2]. To address such a challenge, network slic-

ing [3], [4] has been proposed to facilitate sustainable business

models in future networking markets [5]. With network slic-

ing, a logic network (a.k.a., network slice) can be created

through a set of virtual network functions (VNFs) with suffi-

cient resources to provide performance guarantee on shared

physical infrastructure.

The advantages of network slicing in enabling various serv-

ices of diverse QoS requirements have been widely recognized

by 5 G industries. A joint study conducted by BT and Ericsson

has demonstrated that network slicing in Internet of Things

(IoT) services can bring an overall 150% increased economic

benefit [6]. The efficiency and revenue achieved by network

slicing make it a fundamental block to leverage the potential

of 5 G. Still, there are several challenges to be tackled in order

to achieve network slice as a service in reality.

Firstly, although it is desirable to create each network slice

according to its QoS requirements, it is very difficult to

quickly provision a network slice on-demand because the Net-

work service provider (NSP) must provision and orchestrate

many resources, including networking, computing, and func-

tionality [7]. To address this challenge, a recent IETF draft [7]

recommends a practical provisioning scheme, in which an

NSP can define some network slice templates in advance, and

a network slice tenant can choose the best template that fits its

QoS requirements. Nevertheless, such a scheme may lead to

over-provisioning of resources for each network slice, which

is expensive and not scalable.

Secondly, the QoS guarantee for network slices is still a

major challenge, especially when multiple network slices are

operating using the same infrastructure resources and the traf-

fic of each network slice is fluctuating. To this end, most pre-

vious work proposed adaptive solutions for the dynamic

traffic in a network slice [8]–[10]. However, the reconfigura-

tion of the network slice may lead to instability, service dis-

ruptions, and performance degradation [11].

To efficiently create multiple network slices on-demand, we

propose a novel network slice provisioning model, namely,

network slice bundling.1 In this framework, an NSP can allo-

cate and orchestrate resources in advance, which can help

Manuscript received March 5, 2020; revised August 18, 2020 and October 1,
2020; accepted October 10, 2020. Date of publication October 15, 2020; date
of current version March 17, 2021. The work was supported in part by a grant
from Hong Kong Research Grant Council under GRF project 11216618,
Natural Sciences and Engineering Research Council of Canada (NSERC) under
RGPIN-2018-03896, National Science Foundation under Grant CNS-1730325,
and a grant from ZTE Corporation. Recommended for acceptance by Prof.
Kun Yang (Corresponding author: Jianping Wang.)

Qian Xu is with the Institute of Cyberspace Security and College of Infor-
mation Engineering, Zhejiang University of Technology, Hangzhou 310023,
China (e-mail: qianxu@zjut.edu.cn).

Jianping Wang is with the Department of Computer Science, City University
of Hong Kong, Kowloon, Hong Kong 999077, China (e-mail: jianwang@cityu.
edu.hk).

Xiang Yan is with the Department of Computer Science, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: yxghost@sjtu.edu.cn).

Kui Wu is with the Department of Computer Science, University of Victo-
ria, Victoria, BC V8P 5C2, Canada (e-mail: wkui@uvic.ca).

Kejie Lu is with the Department of Computer Science and Engineering,
University of Puerto Rico at Mayag€uez, Mayag€uez, PR 00680, Puerto
Rico (e-mail: kejie.lu@upr.edu).

Weiwei Wu is with the Department of Computer Science, Southeast Uni-
versity, Nanjing 210000, China (e-mail: weiweiwu@seu.edu.cn).

Digital Object Identifier 10.1109/TNSE.2020.3031347

1Note that the definition of network slice bundle is different from that
in [5] where a bundle is to group a set of vertical services.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021 149

2327-4697 � 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9350-8273
https://orcid.org/0000-0001-9350-8273
https://orcid.org/0000-0001-9350-8273
https://orcid.org/0000-0001-9350-8273
https://orcid.org/0000-0001-9350-8273
https://orcid.org/0000-0002-2069-0032
https://orcid.org/0000-0002-2069-0032
https://orcid.org/0000-0002-2069-0032
https://orcid.org/0000-0002-2069-0032
https://orcid.org/0000-0002-2069-0032
https://orcid.org/0000-0002-9318-1482
https://orcid.org/0000-0002-9318-1482
https://orcid.org/0000-0002-9318-1482
https://orcid.org/0000-0002-9318-1482
https://orcid.org/0000-0002-9318-1482
https://orcid.org/0000-0002-6315-2031
https://orcid.org/0000-0002-6315-2031
https://orcid.org/0000-0002-6315-2031
https://orcid.org/0000-0002-6315-2031
https://orcid.org/0000-0002-6315-2031
https://orcid.org/0000-0001-9172-6955
https://orcid.org/0000-0001-9172-6955
https://orcid.org/0000-0001-9172-6955
https://orcid.org/0000-0001-9172-6955
https://orcid.org/0000-0001-9172-6955
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

NSP to ease the management and orchestration of resources

for network slices. Although a similar idea has been adopted

in the ready-made network slice in [7], our framework is novel

in that each network slice bundle can accommodate multiple

network slices that cover similar areas and have similar QoS

requirements. In this manner, a network slice request can be

assigned to an appropriate bundle that can guarantee its QoS

requirements. Moreover, multiple network slices in the same

bundle can share the resources and thus can further exploit the

multiplexing gain, i.e., given the stochastic nature of traffic

from different network slices, multiplexing makes it possible

for two or more combined network slices to consume less

resources than the summation of resources needed individually.

In this paper, as the first step to validate the proposed bun-

dling framework, we focus on a fundamental issue, i.e., how

to maximize the utility of NSP by optimally assigning multi-

ple network slices to a set of pre-defined bundles. Specifically,

we consider that a network slice request can be assigned to

one of multiple bundles that provide exact or higher QoS guar-

antees than the requirement. We also assume that each net-

work slice is associated with a stochastic model for traffic

arrival in the time domain.2 Moreover, we consider a practical

but tough scenario that the arrival models for any two network

slices are correlated.

Although there are many existing studies on different

aspects of the multiplexing gain in various communication

and networking systems [12]–[14], the multiplexing gain

problem in the context of network slice bundle is unique due

to the following main reasons:

1) A network slice request may be admitted into a bundle

that supports a higher QoS level than needed. Therefore,

the aggregation may upgrade the QoS of some requests

in the bundle, which may result in using more resources

than multiplexing gain. Thus the framework of network

slice bundle, if not managed carefully, would naturally

lead to resource waste.

2) A network slice bundle is pre-configured with allocated

total resources. In this setting, the problem of admitting

a network slice request seems similar to a stochastic

version of multiple knapsack problem, but it has a

unique feature that voids all previous solutions

(Section IV). To be specific, when two network slice

requests, say A and B, are admitted into a bundle, the

total resources needed to guarantee the QoS of both

requests is not simply the resources needed to guarantee

the QoS of A plus the resources needed to guarantee the

QoS of B. The actually needed resources may be

smaller or even larger than the sum, depending on the

statistical profiles of A and B.

3) There is no unified analytical model that can be directly

applied to estimate the total resources when a network

slice bundle accepts two or more network slice requests

with correlated traffic.

To address the above issues, we first formulate a general

optimal slice assignment problem, namely G-OSA, that aims to

maximize the total utility of NSP. Based on the formulation,

we further define an optimization problem, namely, f-OSA,

when the traffic of network slices are characterized by corre-

lated fractional Brownian motion (fBm) models. Next, we

show that f-OSA is an NP-hard combinatorial optimization

problem that has irregular constraints, which are more complex

and cannot be solved with existing combinatorial optimization

algorithms. For instance, existing schemes such as greedy algo-

rithms, local search, simulated annealing, etc. are more adapted

to particular structures of problems, e.g., Euclidean TSPs and

knapsack, and usually need extensive parameter tuning and

domain expertise [15]. Inspired by recent learning-based meth-

ods for solving NP-hard problems [15], [16], we propose a

novel reinforcement learning based approach that can automat-

ically search for good results based on rewards (Section V).

In a short summary, the concept of network slice bundles is

proposed to simplify the management of network slicing. The

utility of NSaaS is maximized by leveraging multiplexing gain

among network slice requests which is highly related to the net-

work slice assignment method. The reinforcement learning

approach is proposed to solve optimization problem. We tackle

these challenges and make the following contributions:

� We formulate an optimization problem for assigning net-

work slice requests into appropriate bundles so that the

total utility of NSP can be maximized. This general model

considers the constraints on QoS of each network slice

request and the capacity of each bundle. In addition, it

presents a general framework, within which a flexible traf-

fic model, fractional Brownian motion (fBm), is adopted

to showcase the calculation of total resources needed for

guaranteeing the QoS of all requests in a bundle.

� We analyze the special difficulty in the fBm-based opti-

mal slice assignment problem that does not allow a poly-

nomial-time approximation solution. We then propose a

reinforcement learning (RL) approach, RL-Assign, that

uses Policy Gradient to tackle this difficulty.

� With extensive trace-driven simulation, we demonstrate

the superior performance of RL-Assign over four base-

lines: First-Fit, Best-Fit,a branch-and-bound method

MTM [17], and a constraint integer programming

approach CIP [18].

The rest of the paper is organized as follows.We introduce the

network slice bundling framework in Section II. We formulate

an optimization problem for assigning network slice requests

into network slice bundles in Section III. The difficulty in the

optimal slice assignment problem is addressed in Section IV,

and reinforcement learning approach, RL-Assign, is presented

in Section V. Section VI shows the performance evaluation. We

discuss related work in Section VII. Section VIII concludes the

paper.

II. A NETWORK SLICE BUNDLING FRAMEWORK

In this section, we first present the background of network

slice provisioning. We then introduce the network slice

2Since the problem is already very complicated, we will investigate the time
domain models in this study.

150 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

bundling framework. Finally, we use an example to demon-

strate the applicability of the framework and the multiplexing

gain within the proposed framework.

A. An Overview of Network Slice Provisioning

To support potential applications with diverse needs, a

network slice must be provisioned with different types of

resources [7]: networking, computing, and functionality. To

provision resources for network slices, IETF [7] states that

network slices can be created as follows:

1) A ready-made network slice is designed by the NSP and

it can be created in advance. A network slice tenant can

select a ready-made network slice that best supports its

requirements.

2) A custom-made network slice is created by the NSP

according to the requirements specified by the tenant.

3) A semi-custom-made network slice is designed by the

NSP in advance but can be tuned according to the ten-

ant’s needs.

B. The Network Slice Bundling Framework

From the previous introduction, we first note that a network

slice needs various resources and thus it can be very compli-

cated to provision a new network slice according to the require-

ments of a tenant. Therefore, to simplify network slice

provisioning, it has been recommended that an NSP can define

the details of multiple network slices in advance, and allow ten-

ants to select the best ones that fit their needs. Such a scheme is

practical because an NSP can design appropriate network slices

based on the analysis of historical network slice requests and

the prediction of demands for future network slices.

Although the aforementioned scheme can quickly instanti-

ate a network slice for a tenant, there are some major issues.

First, from the perspective of a tenant, a pre-defined network

slice may occupy more resources than it needs so the tenant

may pay more to the NSP. Secondly, from the perspective of

the NSP, it is unclear how to optimally utilize the resources to

exploit the potential multiplexing gain. For example, when

one network slice has a high volume of traffic, another net-

work slice may have low traffic volume. In such a case, the

total traffic volume may be much lower than the sum of the

peak traffic volume of these two network slices.

To address the above issues, we can exploit two major

opportunities. First, if an NSP can define network slices in

advance, then there may be multiple tenants who are interested

in creating the same type of network slices. As shown in

Fig. 1, multiple tenants may want to provision network slices

for industrial Internet-of-things (IIoT) that cover the same

industrial park. Secondly, network slices that share common

features, e.g., the same types of resources organized with a

similar workflow, may have some different service require-

ments. For example, in Fig. 1, several network slices for video

services may cover the same road area in a city for different

purposes, e.g., surveillance and autonomous driving, and thus

require different delay guarantees.

Based on the analysis above, we propose a novel network

slice bundling framework. Specifically, in this framework, an

NSP can create multiple network slice bundles in advance,

each of which has sufficient resources to guarantee one type

of service level on a set of functionalities and can accommo-

date multiple network slices. Network slices that use same

type of functionalities can be grouped into the same bundle.

Consequently, when a tenant requests to create a network slice

with certain service requirements, the NSP can choose the

best bundle and quickly instantiate the network slice using the

available resources in the bundle. Finally, during the operation

stage, all network slices that are in the same bundle can share

the resources so that the multiplexing gain can be leveraged to

improve the utility of NSP.

To implement network slice bundling, one key issue to be

solved is to assign network slice requests to its most appropri-

ate network slice bundle so that the utility of NSP is maxi-

mized. In the rest of this paper, we will focus on such a

problem.

C. An Example Case Study

As an example of our framework, Fig. 1 shows that an NSP

has provisioned six network slice bundles: two for the indus-

trial park areas, two for the highway areas, and two for all

areas. Moreover, each bundle is associated with a capacity of

traffic volume, a delay requirement, and a probability to guar-

antee the service level.

Specifically, for the highway areas, the first bundle has a

capacity of 8 Gb/s and can guarantee that 95% of packets have

less than 10 ms end-to-end delay, while the second bundle has

a capacity of 10 Gb/s and can guarantee that 90% of packets

have less than 15 ms end-to-end delay. For such a setting, we

assume that there are 6 network slice requests waiting to be

assigned into these two bundles, and each request has a peak

arrival rate and a delay requirement, as shown in Fig. 2.

To assign these requests to the two bundles, we may have

two na€ıve allocation methods: First-Fit and Best-Fit. Note

that for fair comparison of different methods in the same set-

ting, we do not consider adaptive resource re-allocation

between bundles.

In the First-Fit method, network slice requests are assigned

to the bundle which firstly meets their QoS requirements. We

begin to assign the requests to bundle 1 until it cannot hold

Fig. 1. Network Slice Bundling Framework.

XU et al.: LEVERAGING MULTIPLEXING GAIN IN NETWORK SLICE BUNDLES 151

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

any more requests. Then we assign the requests to bundle 2

until it cannot hold any more requests. The assignment result

is shown in the “First-Fit” part in Fig. 2. As a result, network

slice requests 1 and 2 are allocated to bundle 1, and network

slice requests 4 and 5 are allocated to bundle 2.

In the Best-Fitmethod, network slice requests are assigned to

the bundle of the least available resources which meets their

requirements. This heuristic is aimed at maximizing a bundle’s

resource utilization. As a result, network slice requests 1, 2,

and 5 are allocated to bundle 1, and network slice requests 4

and 6 are allocated to bundle 2.

Using our reinforcement learning (RL) based method devel-

oped in this paper, we obtain the result shown in the “RL Assign”

part of Fig. 2. Obviously, the bundles can host more requests

using our strategy. Though the sum of maximal required capac-

ity of network slice requests exceeds the capacity of the network

slice bundle, the performance of each network slice requests can

still be guaranteed due to the multiplexing gain. Intuitively, the

bursts of traffic arrivals are smoothed out by aggregating nega-

tively correlated traffic patterns, which reduces the total capacity

required to guarantee QoS. In this way, resource utilization is

always high without the cost of dynamic slice resizing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the system model, then for-

mulate the general network slice request assignment problem,

which assigns each network slice request to an appropriate

bundle to maximize the total utility. At last, we present the

model with fractional Brownian motion traffic model to show-

case the resource needed by requests in a bundle.

A. Network Slice Bundle

We assume that NSaaS service provider divides all its avail-

able resources into a set of bundles, where each bundle offers a

set of functionalities and provides a certain amount of resources

to meet a given QoS requirement, including any particular net-

working/computing/functional resources relevant to the func-

tionalities. The consideration for this practical assumption is

that each bundle only handles a set of functionalities, thus,

functionalities can be pre-deployed which can ease the man-

agement overhead of NSP. Moreover, given the resources allo-

cated to each bundle and its offered set of functionalities, the

QoS that each bundle can guarantee can be determined.

The same set of functionalities may be offered in multiple

bundles so that applications requiring the same set of function-

alities but with different QoS requirements can be

accommodated by different bundles. The consideration for

this assumption is to maximize the utility of NSP. Applica-

tions with the same set of functionalities may have different

QoS requirements, e.g., some may be very delay sensitive,

while some are not. If all of them are admitted to one network

slice bundle, the ones with low QoS requirements may enjoy

high QoS guarantee while paying according to their required

QoS, which will reduce the utility of NSP.

Under such network slice bundle creation assumptions,

applications with different sets of functionalities, will be

accommodated to different network slice bundles, while appli-

cations with the same set of functionalities may or may not be

accommodated to the same network service bundle depending

on whether aggregating them into one bundle will improve the

utility of the NSP.

Given a set of network slice bundles and network slice

requests, the general problem of assigning network slice

requests to the appropriate bundles to maximize the utility of

NSP thus can be decomposed to assign network slice requests

with the same set of functionalities to a set of network slice

bundles offering the corresponding set of functionalities inde-

pendently. Therefore, in the rest discussion, we only consider

how to assign a set of network slice requests with the same set

of functionalities to a set of bundles offering the same set of

functionalities.

We use fC1; . . . ; Cmg to denote the capacity of the m bun-

dles, respectively, and use f< p1; T 1 > ; . . . ; < pm; Tm > g
to denote the QoS guaranteed by the m bundles, respectively.

The capacity is the number of packets which can be processed

per second on the network slice bundle, which is pre-deter-

mined by the resources allocated to this bundle. The QoS <
pi; T i > means that pi(%) packets passing through a network

slice from bundle i have less than Ti end-to-end delay.

B. Service Requests

Assume that there are n network slice requests, denoted

as f< A1; p1; T1; w1 > ; . . . ; < An; pn; Tn; wn > }, respec-

tively. Here, Aj denotes the traffic arrivals and < pj; Tj >
the QoS requirement of network slice request j. By accepting

the service request j, the NSP gains a utility wj.

We assume that both the traffic pattern from a network slice

request and the correlation between traffic patterns in different

network slice requests can be estimated [19]. This assumption

is widely accepted in traffic prediction work where the predic-

tion models are based on spatial and temporal patterns captured

from real-world observations [20]–[22]. As shown in Fig. 3,

the real-world traffic arrivals for GEANT-CPS service at Kra-

kow, Poland and Akai-Cluster service at Cambridge US have a

similar pattern and are highly correlated, e.g., due to the time

difference, traffic amount at US area is high when the amount

at Poland area is low. Note that these preliminary analysis

results of daily traffic pattern and pattern diversity indeed exist

among all service requests. Our model fully utilizes the tempo-

ral difference of traffic arrivals of service requests.

We then use these two requests to illustrate the multiplexing

gain of bundling them together. Assume that the QoS

Fig. 2. An example of assigning network slice requests to bundles.

152 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

requirement of GEANT-CPS request is that 95% of packets

have less than 20 ms end-to-end delay while the QoS require-

ment of Akamai-Cluster request is that 90% packets have less

than 30 ms end-to-end delay. The capacity required by each

individual network slice request is shown in Fig. 3 as 10.1

Gbit/s and 3.5 Gbit/s, respectively. As shown in Fig. 4, when

we bundle these two requests in a network slice bundle whose

QoS is set as < 95%; 20ms > ; the required capacity to guar-
antee the performance of the bundled request is 11.1 Gbit/s,

which saves 2.5 Gbit/s capacity for NSP. Obviously, when

traffic of requests are negatively correlated, the multiplexing

gain achieved by bundling requests together increases the util-

ity of NSP while QoS of some requests may be upgraded.

Based on the above assumption of system configuration and

service requests, the problem that an NSP faces is: how to

assign the network slice requests into different bundles such

that the total utility is maximized subject to both capacity and

QoS constraints? We call this problem optimal slice assign-

ment (OSA) problem. In what follows, we first provide a gen-

eral formulation of OSA, and then investigate a detailed

formulation under a general Internet traffic model.

C. The General Form of Optimal Slice Assignment Problem

To meet the QoS constraint, a network slice request can

only be assigned to a bundle which offers higher QoS than

what the request demands. In other words, network slice

request j can only be assigned to the bundle i when pj � pi

and Tj � Ti.

To meet the capacity constraint, the total amount of resources

required by the network slices in a bundle should be below the

capacity of the bundle. For a network slice request j allocated to
bundle i, its allocated capacity is calculated as fðAj; p

i; T iÞ,
which depends on specific traffic pattern and will be discussed

in Section III-D. Since the QoS that a network slice will receive

is at least what is requested or higher than that when it is

assigned to a network slice bundle, the required capacity is natu-

rally increased, i.e., fðAj; p
i; T iÞ � fðAj; pj; TjÞ. In other

words, NSP costs more resources in order to get utilitywj. How-

ever, due to the correlated traffic among different requests, the

capacity required for the bundled requests may be smaller than

the summation of capacities individually required, so-called

multiplexing gain. Let xij be a binary variable which equals 1 if

request j is assigned into bundle i, and equals 0, otherwise. Mul-

tiplexing gain should be a function of the aggregated traffic and

the QoS defined by bundle i. The total multiplexing gain for net-

work slice bundles can be derived as:

Gain ¼
Xn
j¼1

fðAj; pj; TjÞ �
Xm
i¼1

f
Xn
j¼1

Ajxij; p
i; T i

 !
(1)

Only when Gain > 0, the NSP can benefit from multiplex-

ing gain since less amount of resources is consumed to achieve

utility
Pn

j¼1 wj. In addition, minimizing the amount of resour-

ces for assigning requests to bundles equals to maximizing

multiplexing gain since the summation of resources for indi-

vidual request is fixed.

Consider our assumption that network slice bundles are pre-

deployed with determined resources, we formulate the general

form of OSA problem as follows:

Problem 1 (General Optimal Slice Assignment (G-OSA)):

max
Xm
i¼1

Xn
j¼1

wjxij

s.t. fð
Xn
j¼1

Ajxij; p
i; T iÞ � Ci; 8i 2 ½1;m�

xij ¼ 0 if pj � pi; Tj � Ti; 8i2½1;m�; 8j2½1; n�Xm
i¼1

xij � 1; 8j 2 ½1; n�

xij 2 f0; 1g; 8i2½1;m�; 8j2½1; n�

(2)

The constraint fðPn
j¼i Ajxij; p

i; T iÞ � Ci ensures capacity

constraint for each bundle. The constraint pj � pi; Tj � Ti

ensures that the QoS of each network slice request is guaran-

teed, and the last constraint xij 2 f0; 1g ensures that each

request is assigned to at most one bundle.

The object of G-OSA problem is to maximize the utilities of

accepting network slice requests into network slice bundles

with limited resources. The optimal solution is achieved when

the resources required for the bundled requests are the mini-

mum. In other words, the max utility of NSaaS is achieved by

leveraging the multiplexing gain to make full use of resources.

Fig. 3. One-week average out traffic with GEANT-CPS at Krakow, Poland
and Akamai-Cluster at Cambridge, US.

Fig. 4. Multiplexing gain of bundle GEANT-CPS request and Akamai-
Cluster request together.

XU et al.: LEVERAGING MULTIPLEXING GAIN IN NETWORK SLICE BUNDLES 153

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

D. Optimal Slice Assignment With Fractional Brownian

Motion (fBm)

G-OSA is not solvable until the concrete form of function f
is given. To derive f , we need to (a) profile traffic arrivals Aj

and (b) estimate the required capacity based on the traffic

arrivals and the QoS requirement.

1) Traffic Profile: While Poisson traffic has been broadly

used in telecommunication networks, Internet traffic generally

cannot be modelled as Poisson traffic [23]. Due to this consid-

eration, we adopt fractional Brownian Motion (fBm) traffic

model [23], [24], which is considered as a general model of

Internet traffic and can well capture both long-range depen-

dence as well as self-similarity of network traffic [23]–[25].

To make the paper self-contained, we introduce fBm traffic

model as follows.

Definition 1 (fractional Brownian motion (fBm)): Let

Að0; tÞ be the amount of traffic that arrives during the interval

ð0; tÞ. An arrival process fAð0; tÞ : t � 0g is said to be frac-

tional Brownian motion with Hurst parameter H if

1) fAð0; tÞ : t � 0g has stationary increments;

2) 8t � 0, fAð0; tÞ : t � 0g is normally distributed with

mean m and variance s2t2H ;

3) Denote the increments of Að0; tÞ as ZðkÞ ¼ Að0; kþ
1Þ � Að0; kÞ; k � 0. The autocorrelation function of

ZðkÞ, rZðkÞ, satisfies

rZðkÞ ¼
1

2
fjkþ 1j2H þ jk� 1j2H � 2 k2Hg

It has been shown [26] that when H > 1
2 , the incre-

ments of Að0; tÞ are long-range dependent. In the rest of

the paper, we assume that traffic arrivals in each network

slice follow fBm.

2) Capacity Estimation: Due to the stochastic nature of

fBm and the rich dynamics that fBm can model [24]–[26], it is

generally difficult to analyze the delay of a queueing system

with fBm input. To handle the difficulty, we resort to the the-

ory of effective bandwidth [27] to estimate the required capac-

ity for a network slice with fBm traffic.

Effective bandwidth is the theory developed to provide a

measurement of resource usage, taking account of the sta-

tistical characteristics and QoS requirements for diverse

traffic patterns. Combined with the large deviation the-

ory [28], effective bandwidth can be used to approximate

the probability of overflow given the buffer size and

capacity in a finite system [26], [29]. On the other side,

the required capacity can be derived once other factors

have been determined. In particular, effective bandwidth

function can be estimated statistically with real traffic

arrival described in discrete time, where the statistic char-

acteristics like correlation can be considered. While a lot

of research work studied the relationship between service

capacity and traffic process, they usually assume that two

traffic flows are independent. As pointed out in

Section III-B, traffic arrivals from the network slices may

be correlated. As such, their correlation should be

considered since the total capacity is allocated to meet the

QoS of the aggregated traffic.

The effective bandwidth of traffic Að0; tÞ is defined as:
Definition 2: Effective Bandwidth

aAðu; tÞ ¼ 1

ut
logE½euAð0;tÞ� (3)

Denote the rate function of overflow as I. The large devia-

tions rate function I for overflow in a discrete time queue with

capacity C and buffer size B for input process Að0; tÞ can be

calculated as [26]:

I ¼ inf
t�0

sup
u�0

uðBþ CtÞ � utaAðu; tÞ (4)

where the optimal u�, t� in the above equation are referred

to as the critical point of the system. At the critical point,

the traffic flow is regarded as a constant traffic stream of

rate aAðu�; t�Þ equivalently, and I is used to approximate

(i.e., the most likely value) �logP ðoverflowÞ, where

P ðoverflowÞ denotes the probability of overflow [26].

Suppose that the traffic arrivals follow fBm with mean

arrival rate m, variance s2, and Hurst parameter H. The

effective bandwidth of fractional Brownian motion is:

aAðu; tÞ ¼ mþ us2

2
t2H�1: (5)

The critic points of fractional Brownian motion are

t� ¼ B

C � m

H

1�H
(6)

u� ¼ Bþ ðC � mÞt�
s2ðt�Þ2H (7Þ (7)

For simplicity, denote P ðoverflowÞ ¼ p. The capacity C
can be derived as:

C ¼
2H

ffi
2ð1�HÞ2s2ð�logðpÞÞ

q
BH

2H
ffiffiffiffiffiffi
B2
p
ð1�HÞ þ m (8)

With the above equation, we can derive the capacity

required for each network slice request. When multiple

requests with common Hurst parameter3 H are aggregated,

the aggregated traffic also follows fractional Brownian motion

where magg ¼
Pn

j¼1 mj and s2
agg ¼

Pn
j¼1 s

2
j þ 2

P
j 6¼k covjk.

To ensure the QoS, the buffer size of each network slice bun-

dle is approximated as Bi ¼ CiT i. Thus, the first constraint

function in G-OSA, which is to meet the total capacity con-

straint of each bundle and ensures the performance of all

3We ignore the case where traffic arrivals with different Hurst parameters
are aggregated. This omission is reasonable because a network slice is for one
specific service type and the traffic for the same service type is considered to
have similar traffic pattern.

154 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

requests in the bundle, can be formulated as:Xn
j¼i

mjxijþhi
Xn
j¼1

xijs
2
j þ 2

X
j 6¼k

xijxikcovðAj;AkÞ
 ! 1

2H

� Ci

8i 2 ½1;m�
(9)

where hi ¼ 2H
ffi
2ð1�HÞ2ð�logðpiÞÞ
p

BiH

2H
ffiffiffiffiffi
B2
i

p
ð1�HÞ

, determined by the prior

knowledge of the network slice bundle configurations and the

traffic type.

To simplify the above equation, we rewrite it in the vector

form as follows:
xixi

TUU þ hiðxixi
TV xixiÞ

1
2H � Ci (10)

where xixi
T ¼ ½xi1; . . . ; xin�, UU ¼ ½m1; . . . ;mn�T , and V is sym-

metric matrix defined as follows

V ¼
VarðA1Þ � � � covðA1; AnÞ

..

. . .
. ..

.

covðAn;A1Þ � � � VarðAnÞ

2
64

3
75 (11)

3) OSA With Fbm: After we have analyzed the traffic

arrivals and derived the capacity needed to meet QoS, Prob-

lem 1 can be recast in the following more concrete form:

Problem 2: fBm-based Optimal Slice Assignment (f-OSA):

max
Xm
i¼1

Xn
j¼1

wjxij (12Þ

s.t. xixi
TU þ hiðxixi

TV xixiÞ
1
2H � Ci; 8i 2 ½1;m� (13Þ

xij ¼ 0 if pj � pi; Tj � T i; 8i2½1;m�; 8j2½1; n� (14ÞXm
i¼1

xij � 1; 8j 2 ½1; n� (15Þ

xij 2 f0; 1g; 8i 2 ½1;m�; 8j 2 ½1; n� (16Þ

To maximize the utility for NSP, the assignment strategy xx
needs to assign negative-correlated requests in a bundle to save

resources so that more requests can be accommodated, i.e., to

maximize the multiplexing gain through minimizing xixi
TV xixi.

In what follows, we first show the difficulty of solving f-OSA

and then propose a reinforcement learning-based solution.

IV. ON THE HARDNESS OF F-OSA

In this section, we analyze the difficulty in the fBm-based

optimal slice assignment problem developed above in terms

of the irregularity of constraints and the hardness of approxi-

mating in polynomial-time.

A. Irregularity of Constraints

We note that the left hand side of constraints (13) is an

irregular function of UU and V .

It is easy to see that when two network slice requests are

assigned into the same bundle, if the Hurst parameter is 0.5, the

left hand side of (13) is a linear function of UU and V , meaning

that the total resource demand for the two requests is linear to

the resource allocated to each individual request. Nevertheless,

if the Hurst parameter is larger (or smaller) than 0.5, the left

hand side of (13) is a convex (or concave) function of V . Using

two slice requests as an example, Figure 5 illustrates the curva-

ture of the left hand side of (13) with different Hurst parameters

and different variances/covariances. We can conclude that the

constraint (13) is quite irregular (i.e., it could be linear, con-

cave, or convex depending on the Hurst parameter). The total

required resource is highly coupled with the Hurst parameter of

the traffic patterns and the correlation in the traffic from net-

work slices.

B. Hardness of Approximating f-OSA

The easiest form of the f-OSA problem (i.e., the constraint (13)

is linear when Hurst parameter = 0.5) has the similar form with

multiply-constrained (multiple) knapsack problem (MCKP) [30].

f-OSA is constrained by resources and implicitly by traffic corre-

lations, as defined in (13), as well as by QoS, as defined in (14). It

is well known that the 0-1 variant version ofMCKP (for any fixed

m � 2 where m is the number of constraints) is NP-complete

and does not even have a polynomial-time approximation scheme

(PTAS) unless P=NP [31]–[33].

Indeed, the general case of f-OSA is even harder than

MCKP due to the irregular constraints posed by (13), where

the amount of resources required for network slice requests is

determined by an irregular function of their traffic arrivals. As

shown in Section IV-A, such irregularity not only makes a

close-form theoretical analysis hopeless, but also makes accu-

rate approximation extremely hard.

Due to the above difficulties and inspired by the success of

reinforcement learning in solving NP-hard problems and com-

binatorial optimization problem [34], [35], in the next section

we develop a reinforcement learning (RL) based solution for

f-OSA, called RL-Assign. RL-Assign, as we shall show later,

can effectively handle the complexity introduced by traffic

correlation and the irregular resource-traffic constraint func-

tion and obtain much better solutions than other baseline

methods.

Fig. 5. Required capacity under different variances/covariances
with different Hurst parameters (mean arrival rates m1 ¼ 12 and m2 ¼ 12).

XU et al.: LEVERAGING MULTIPLEXING GAIN IN NETWORK SLICE BUNDLES 155

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

V. THE REINFORCEMENT LEARNING APPROACH: RL-ASSIGN

In this section, we first give an overview of our approach

with definitions of the basic elements of reinforcement learn-

ing, and then introduce the details of RL-Assign using Policy

Gradient.

A. Overview of RL-Assign

RL-Assign is designed to work in the reinforcement

learning framework as shown in Fig. 6. The agent is to

make action for each network slice request according to

the observation of the features of the to-be-assigned

requests, the bundles’ states, as well as the features of the

requests already assigned in the bundles. The environment

interacts with the agent to correct bad actions and encour-

age good actions through the reward. The problem solved

by RL-Assign is equivalent to the f-OSA problem, where

the environment corresponds to the constraints, the actions

correspond to the solution x, and the total reward corre-

sponds to the objective function.

Agent: The agent makes a network slicing assignment strat-

egy (also called policy), which inputs the request’s features

and bundles state, and outputs the action that to which bundle

the request is assigned. The mapping function between the

observations to the action, when it is too complicated, is usu-

ally approximated with a neural network. When the agent

explores the possible actions, it gets feedback from the envi-

ronment which measures how good the strategy is. After the

exploitation and exploration, the agent is able to learn a strat-

egy that tries to assign the network slice requests to the bun-

dles to gain the highest utility. That is, the agent works as the

brain to solve the assignment problem.

Observations: The observations are to find the useful and

relevant data from the environment for agent to make deci-

sions. Based on the constraint functions in f-OSA, the state of

the environment is mostly affected by Equation (13), where

the required capacity of the network slice requests cannot

exceed the pre-defined capacity of the network slice bundles.

We can decompose Equation (13) into three parts: (1) the fea-

tures of the to-be-assigned request corresponding to xixi
TU , (2)

the features related with the other requests in the bundle corre-

sponding to xixi
TV xixi, and (3) the feature of the remaining

capacity of the bundle corresponding to �Ci ¼ Ci � xixi
TU �

hiðxixi
TV xixiÞ

1
2H . Equation (13) is the overall constraint for all

requests in each bundle.

For the observations of a to-be-assigned network slice

request, one of the basic features is the mean of the traffic

arrivals of the request, denoted as mj. To help the agent learn

better, we also need variance s2
j , utility wj in the features.

Note that in Equation (13), the variance is included in V .

The next part is the features related to other requests in the

network slice bundle. Intuitively, in order to accommodate

more requests in the bundle, the agent is more likely to assign

the request to the bundle where the sum of the covariances is

smaller. Thus, we set the xixi
TV ½j�; i 2 ½1;m� for the second

part of the observations for request j. The xixi’s, i 2 ½1;m� have
included the actions of the assigned network slice requests.

The last part of the observations is straightforward. It is

the remaining capacity of the bundle. To help the agent

learn more effectively, we use one trick to quickly find out

the remaining capacities. In the aforementioned constraint

functions, the network slice bundle will not be chosen if it

cannot satisfy the QoS requirement for the network slice

request, i.e., xij ¼ 0 if pj � pi; Tj � T i. Instead of modify-

ing the action after it is done by the agent, we can prevent

this case in advance with the remaining capacity of the

bundles set as 0 if it cannot meet the performance require-

ment of the request.

Action: The action for the network slice requests is

made by the agent according to the observations. We use a

sequence of integer number 1; 2; . . . ; m to denote the bun-

dle number and 0 as request rejection. That is, xij ¼ 1 if

and only if aj ¼ i and i 6¼ 0. For a given action, the agent

needs to double check whether the action is valid by eval-

uating the remaining capacity of the assigned network slice

bundle. In practice, each time the agent has an observation,

it provides the probability of choosing each action. It sorts

all the actions in decreasing order with respect to the prob-

abilities, then double check whether the first choice is

valid by evaluating the remaining capacity of the assigned

network slice bundle. If the remaining capacity is not posi-

tive, the action will be changed to the second best action

and be checked again. Such process repeats until any

action is valid or all actions fail, in which case the agent

chooses aj ¼ 0.
Reward: The reward from the environment works as a critic

for the agent. Once the network slice request j is assigned to a

bundle, the step reward rj is set as the utility of admitting this

request. Otherwise, the reward rj is set as 0 (i.e., no utility

gain). The sum of utilities of assigned network slice requests

is denoted as the total reward, which is equal to the objective

function of f-OSA.

Transition: The agent starts the whole process with an

observation OBS1 with respect to the first to-be-assigned

request, i.e., request 1, and takes an action a1 accordingly.

After the agent takes an action aj according to each observa-

tion OBSj, i.e., assigning request j to some specific bundle or

rejecting the request, the observation transits to another obser-

vation OBSjþ1 corresponding to the next to-be-assigned

request jþ 1. In precise, for request jþ 1, Equation (13) is

still decomposed into three parts: (1) the features of request

jþ 1 corresponding to xixi
TU , (2) the features related to other

Fig. 6. Architecture of RL-Assign.

156 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

requests in the bundle corresponding to xixi
TV xixi (remain the

same in OBSjþ1), and (3) the feature of the remaining capac-

ity of the bundle after request j is assigned, corresponding to
�Ci ¼ Ci � xixi

TU � hðxixi
TV xixiÞ

1
2H . Such a process is a Markov

decision process since the next observation can be decided by

only the current observation and the corresponding action.

B. The Details of RL Algorithms

Reinforcement learning problems are generally studied as a

discrete-time Markov decision problem (MDP), defined by

ðS;A;P;RÞ, where S 	 Rn is an n dimensional state space,

A 	 Rm an m action space, P : S
 A
 S ! Rþ a transi-

tional probability function, and R : S
 A ! R a reward

function. The agent receives observation s 2 S from the envi-

ronment, generates action a 2 A by policy pu where u are

parameters of the neural network approximating the policy,

and then interacts with the environment receiving reward r 2
R. The goal of the agent is to study a good policy pu which

can maximize the total reward of the problem.

Following the above framework, each decision that RL-

Assign makes is considered as a step of the whole assignment

problem. Thus, the interaction sequence can be fully described

as s1; a1; r1; s2; a2; r2; . . . ; sn; an; rn, which is referred as one

episode. The common approach to learning the optimal policy

pu can be classified into two categories, (a) value-based

approaches which aim to learn the state-action value and then

to select the optimal actions accordingly, and (b) policy-based

approaches which learn the policy directly.

RL-Assign uses the classical policy-based approach, Policy

Gradient, based on three reasons: (1) Policy Gradient can handle

large-scale problems, where the performance of value-based

approaches become worse as the dimension of action space

increases, since these approaches require more training samples

to estimate the Q-value accurately (this has been validated when

the number of slice bundles is larger than 10). (2) It can learn the

stochastic policy which is useful for balancing the exploration/

exploitation trade-off. (3) It has fewer hyper-parameters and

does not need to estimate Q values. Most advanced policy-based

approaches, like A3C and DDPG, estimate Q values as critic to

guide the gradient of the policy during the episode. However,

the convergence of Q values is a severe problem during the train-

ing process, requiring a great effort to optimize the hyper-param-

eters to accurately estimate Q values. Overall, Policy Gradient is

a simple and suitable algorithm for our problem. We next intro-

duce the detail of Policy Gradient algorithm in the following.

Policy Gradient Algorithm: The policy is a mapping between

the action to the specific state, which is usually modeled

with a parameterized function with respect to u, puðajsÞ. The
value of the reward function under the policy can be defined as

JðuÞ ¼Pn
j¼1
P

a2A puðajsjÞrjðsj; aÞ ¼ EpðuÞ½
P

j rjðsj; ajÞ�.
Then, the Policy Gradient algorithm maximizes the

expected total reward by repeatedly estimating the gradient

rJðuÞ ¼ EpðuÞ½
Pn

j¼1 rjru lnpuðajjsjÞ�.
Neural Networks: Since neural networks can approximate

any continuous differential function, we use the set of parame-

ters of a neural network, i.e., weights and biases, to

parameterize the policy pu. The design of the neural network

architecture follows the commonly-used policy network, which

inputs the observations and outputs the actions. The neural net-

work is composed of four layers, observation-layer1-layer2-

actions, with fully-connected neurons. We set the number of

neurons in the inner two layers as 64, and use the Rectified Lin-

ear Unit (ReLU) as the activation function.4

Training Process: The training process of policy gradient algo-

rithm consists of both exploration and exploitation through

�-greedy approach. In precise, the learning agent exploits its cur-
rent optimal action for each state with a probability of 1� �while
executes a random action with a probability of �. While the for-

mer one is the standard exploitation for a learned policy, the later

one helps the agent avoid getting stuck in a local optimum by

exploring random actions to see if they lead to better reward. As

for the optimization process for the parameterized neural net-

work, we adopt the Adam optimizer among the stochastic gradi-

ent descent (SGD) methods since empirical results demonstrate

that Adam works well in practice and compares favorably to

other stochastic optimization methods [36]. The converging con-

dition of the training process is set as the average reward of the

latest 10 episodes no longer increases in consecutive 50 times.

The training process in each episode is summarized in

Algorithm 1.

It is worth mentioning that the RL approach presented

above may be applied to other traffic types, as long as we can

derive the way of calculating the corresponding capacity con-

straint to replace (13). We just need to simply plug the new

constraint into our RL framework.

Algorithm 1: RL-Assign Algorithm.

1: Input: Network slice bundle capacity C, network slice requests

A and utilityW , learning rate lr
2: Output: Optimal policy pu

3: Initialize the policy parameter u at random

4: while Not Converged do

5: for network slice requests j = 1, n do

6: Choose action aj by policy p with probability 1� � ¼ 0:9
and random otherwise.

7: Check whether aj is valid by evaluating the remaining capac-

ity �Caj of the bundle.

8: IF �Caj > 0 then
9: reward rj ¼ wj

10: else

11: for k=2, n do

12: Change action to the kth best action
13: if �Caj > 0 then
14: reward rj ¼ wj

15: continue

16: else

17: Set the action as aj ¼ 0
18: Feed the episode s1; a1; r1; r2; . . . ; sn; an; rn to policy

network and update the policy parameter

u u þ lr
Pn

j¼1 rjru lnpuðajjsjÞ

4As common in nearly all deep learning-based solutions, the design of neu-
ral network is empirical.

XU et al.: LEVERAGING MULTIPLEXING GAIN IN NETWORK SLICE BUNDLES 157

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of RL-Assign

algorithm over four baselines, namely, First-Fit, Best-Fit, and

MTM, respectively, in two datasets.

A. Experiment Setting

Traffic Dataset: We use two datasets with different scales

for evaluation: (1) The 24 hours real time NORDUnet traffic

statistics (“Max out” traffic data) [37] of 46 flows starting

from 00:00 to 23:59, April 16, 2019; (2) The week-long cellu-

lar traffic [38] generated in a median-size city of China from

August 19, 2012 to August 26, 2012.

Network Slice Bundles (1) NORDUNet Traffic: Assume

that NSP provides 5 network slice bundles, each has 100 Gb/s

capacity. The QoS guaranteed by the network slice bundles

are in the form that pð%Þ of packets have no longer than

T (ms) end-to-end delay, denoted as < p; T > . We listed the

QoS guaranteed by each network slice bundle in Table I. (2)

Cellular traffic: We set 10 network slice bundles to accommo-

date the traffic, each with capacity 100, 100, 70, 50, 50, 40,

50, 30, 30, 30 GB/s respectively. The QoS provided by each

network slice bundle is also listed in Table I.

Network Slice Requests: We take the traffic of each flow in

both datasets as the traffic of one network slice request. There-

fore, in the simulation, we have 46 network slice requests in

NORDUnet and randomly choose 165 network slice requests

in cellular traffic.

The QoS required for each request in NORDUnet/Cellular

is randomly set in a range such that at least one bundle for

NORDUnet/Cellular listed in Table I can accommodate the

network slice request with its required QoS.

Assuming that the traffic arrivals in the slice request j have
mean mj and standard deviation sj, we set its utility as kjðmj þ
sj þ zÞ, where kj is a scaling parameter in ½0:8; 1:5� related to

the QoS of the requests and z is a random noise randomly vary-

ing in the range of ½0; 10�. The setting of kj reflects that higher
QoS requirement will bring higher utility for NSP while the

mean mj and variance sj reflect larger traffic volume will also

bring higher utility. The introduction of z allows us to observe

the robustness of our algorithm when slice utilities vary.

There are potentially other ways to set the slice utility, e.g.,

uniformly random in a range or all the same. Nevertheless,

while the final test results w.r.t. the total utility of accepted sli-

ces are different with different ways of setting utility, our

algorithm consistently outperforms the four baseline methods

(Section VI-C). We omit those tests due to space limitation.

B. Pre-Processing

To extract the correlation among the network slice requests,

we use time series analysis tool to decompose the time series

traffics into three additive components: main traffic trend, sea-

sonality which is repeated in a short-term cycle, and residual

which is random variation. The decomposing result is demon-

strated in Fig. 7. We calculate the covariance matrix V based

on the trend component of traffic in each network slice request.

C. Baseline Algorithms

We set First-Fit algorithm, Best-Fit algorithm, and MTM

algorithm as the baseline algorithms for comparison. Since the

capacity constraints developed in the f-OSA problem can not

be applied in these baseline algorithms, we set the capacity of

each network slice request according to its QoS requirement

and its traffic arrivals per unit time. The traffic arrivals of a

network slice request is a time series sequence with traffic

arrival increments recorded per unit time. We set the capacity

that can only hold pð%Þ of per unit time traffic arrival incre-

ments. However, such setting of capacity of each request can-

not guarantee the QoS since the queueing delay could go to

infinity. The total utility achieved by the baseline algorithms

under the aforementioned capacity assignment may be higher

than the actual achievable one because of the underestimation

of the required capacity. In other words, we compare the per-

formance of our algorithm with the upper bound performance

of the baseline algorithms.

First-Fit: First-Fit algorithm is to assign the network slice

requests to the first bundle which meets its capacity require-

ment and QoS requirement.

Best-Fit: Best-Fit algorithm is to assign the requests to the

network slice bundle with least remaining capacity under the

consideration of the QoS requirements.

MTM: Branch and bound algorithms are traditional algo-

rithms for multiple knapsack problem [39]. We implement the

most commonly used one, MTM algorithm by Martello and

Toth (1981) [17] in our network slice request assignment

problem. We can formulate the f-OSA problem as a standard

TABLE I
QOS OFFERED IN DIFFERENT NETWORK SLICE BUNDLES

Fig. 7. Time series decomposition of “Akamai-Cluster-daymax” traffic.

158 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

multiple knapsack problem with determined capacity con-

straints. Briefly speaking, MTM algorithm is to use tree-search

technique and lower bound to determine the branches to fol-

low. The detail process is omitted here.

CIP: Constraint integer programming (CIP) is a novel way

to combine constraint programming (CP) and mixed integer

programming (MIP) methodologies [18]. We can formulate

the f-OSA problem as an integer programming problem. We

then use PySCIPOpt package [40] which is the interface from

Python to CIP solver suite to get the optimal solution.

D. Experiment Result

We evaluate our system under the NORDUnet and Abil-

ene traffic set specifically. For each set of network slice

requests, we use the baseline algorithms as well as our solu-

tion to assign them into the given network slice bundles.

For each algorithm, we repeat the experiments 15 times to

make the results more convincing. The average total utility

achieved when the utilities of the requests are resource

based is demonstrated in Table II. Our system outperforms

all other methods in both sets of requests. In NORDUnet

set, First-Fit algorithm performs worst since it simply puts

the requests according to the given order, Best-Fit algorithm

performs a bit better, while MTM and CIP have better per-

formance than them. MTM and CIP have found the optimal

assignment strategy to get the maximal utility when the

capacity constraints are set by the p% threshold. None of

these algorithms considers the correlation among the net-

work slice requests, which loses the utility brought by

leveraging the multiplexing gain.

To be more specific, the total utility gained by RL-Assign

can be improved by 14.4% and 246.4% while the number of

admitted requests can be enhanced by 15.4% and 262.5% in

NORDUnet and cellular traffic request set, respectively. The

utility enhancement is achieved by the multiplexing gain of

bundling correlated requests, which is 84.8 GB for NORDU-

net request set and 1754.9 GB for cellular traffic request set.

The benefit of multiplexing is much more significant in cellu-

lar traffic request set since peak arrivals in week-long requests

are sharper and vary over time. Note that the utilities of admit-

ted requests are different so that the improvement on the num-

ber of admitted requests does not equal to the improvement on

the overall utility. Moreover, the MTM algorithm and the CIP

approach fail to handle the Knapsack problem with scale of 10

bundles and 108 requests, which is not practical in real use.

Furthermore, we evaluate the QoS achieved by each network

slice bundle with the assigned network slice requests. The life-

time of the assigned network slice requests in the network slice

bundle is simulated in Network Simulator 3 (NS3) with real

time traffics and specific bundle capacity. The simulation

results show that the end-to-end delay of all the packets admit-

ted to a bundle is lower than their specified worst-case delay.

That is, our algorithm can guarantee the QoS of all requests.

E. Convergence and Time Complexity

To show the learning process of our system, we show one of

the training processes of the RL-Assign system in Fig. 8 (a) &

(b) for two sets of network slice requests respectively. Observed

from the figures, the average total reward per 100 episodes

increases with the process of training. Note that it is natural that

the total reward in every episode fluctuated with the Policy Gra-

dient algorithm due to the adoption of epsilon-greedy approach

and SGD algorithm. It is the process of exploration that will

help improve the policy. The optimal policy is learned when the

algorithm converges. We then choose the actions in the episode

with the highest total rewards during the whole training process

as the assignment decision of our problem.

We now discuss the complexity of our algorithm, which is

vitally important in practical use of the algorithm. Since it is

impossible to get the theoretical analysis of the complexity of

Policy Gradient algorithm, we illustrate the empirical result of

our algorithm by comparing the converged episodes under dif-

ferent number of requests. We randomly select requests

among the cellular traffic set from 40 to 100, and assign them

to bundles with the same QoS configuration in Table I. Since

our algorithm is specific for the case that resources of the bun-

dles are limited, we reduce the capacity of each bundle to 50

Gbit/s. As shown in the Figure 8 (c), the converged episodes

are stable with the increase of requests. We can conclude that

our algorithm is robust and efficient.

In summary, our system is effective, efficient, and scalable,

which can be applied to a system with tens of network slice

bundles and hundreds of network slice requests.

VII. RELATED WORK

In this section, we review the literature on network slice

management and the work applying reinforcement learning on

problems in similar context, but different to our problem.

The majority of prior research about network slicing manage-

ment can be classified into two categories: (1) Network slice

resource planning for given network slice requests; (2) Network

slice request admission control with allocated resource. In

the first category, the literature can be further divided into the

traffic forecasts [21], [41] and flexible resource allocation

approaches [42], [43]. [21] proposes deep learning techniques

with spatiotemporal modeling and prediction in cellular networks

based on big data. Similarly, [41] forecasts the capacity needed

to accommodate future traffic demands with deep learning

architecture, considering the balance between the resource

TABLE II
UTILITIES AND NUMBERS OF ADMITTED REQUESTS OF THE BASELINES AND

RL-ASSIGN WITH DIFFERENT NETWORK SLICE REQUESTS

XU et al.: LEVERAGING MULTIPLEXING GAIN IN NETWORK SLICE BUNDLES 159

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

over-provisioning and service requirement violations. These

studies demonstrate the importance of modeling and predicting

the pattern of the traffic load which exhibits high spatial and tem-

poral variance. On the other hand, with the assumption that traffic

profiles are given, the work in [43] addresses the problem of plac-

ing and chaining of virtual network functions, and proposes a

flexible resource allocation approach that takes the service

latency into account. Later, [42] extends the work into edge and

core network slice framework. In the second category, network

slice admission control policies are studied to increase the utility

of the NSaaS with limited available resources. The concept of

verticals which can request and lease resources from NSaaS

dynamically is firstly proposed in [44]. Based on this con-

cept, [45] designs an admission control and orchestration optimi-

zation by modelling the slice queuing behavior. [46] finds a Nash

equilibrium for dynamically sharing resources across slices.

Different from the aforementioned work, our work quanti-

fies the multiplexing gain based on the characteristic of traffic

patterns, which can be used in both resource planning and

admission control optimization. We leverage the multiplexing

gain through the concept of “network slice bundle”. Though

some other work also studies multiplexing in network slic-

ing [14], [47], they focus on the dynamical resource allocation

in a network consisting of a pool of resources, e.g., base sta-

tions that are shared by a set of operators to network slices.

They show that higher multiplexing gain can be obtained

when the spatial loads of network slices are more imbalanced

while multiplexing temporal heterogeneous traffic loads has

not been studied.

We tackle our proposed problem with reinforcement learning.

Some pioneer work used reinforcement learning approaches in

solving traditional knapsack problem [34], [48], but those solu-

tions are not applicable in our problem, since our problem has

much more complex constraints. Thus our work differs from

[34], [48] in that we design effective input features and neural

networks to adopt the reinforcement learning approach to our

problem.

VIII. CONCLUSION

In conclusion, we develop a general model for assigning net-

work slice requests into appropriate network slice bundles, so

that the total utility of NSaaS service provider can be maximized

as well as the constraint of the QoS of each network slice request

is satisfied. After analyzing the hardness of the problem that

cannot get the polynomial approximation, we propose a rein-

forcement learning approach, RL-Assign, to achieve efficient

multiplexing gain in assigning network slice requests to network

slice bundles with performance guarantee. Extensive trace-driven

simulation shows the superior performance of RL-Assign over

four baseline algorithms: First-Fit, Best- Fit, MTM, and CIP. The

utility of the NSP can be improved by 14.4% and 246.4% while

the number of admitted requests can be enhanced by 15.4% and

265.2% in different request scenarios. These findings provide a

potential mechanism for NSP to efficiently configure the network

slice bundles and assign the network slice requests to bundles

with the maximal utility.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic fore-
cast update, 2017-2022,” Feb. 2019. [Online]. Available: https://www.
cisco.com/c/en/us/solutions/collateral/service-provider/visual-network-
ing-index-vni/white-paper-c11-741490.html

[2] K. Makhijani et al., “Network slicing use cases: Network customization
and differentiated services,” Jun. 2017. [Online]. Available: https://
tools.ietf.org/id/draft-netslices-usecases-00.html

[3] 5GAmericas.org, “Network slicing for 5G networks & services,” Nov.
2016. [Online]. Available: http://www.5gamericas.org/files/1414/8052/
9095/5G_Americas_Network_Slicing_11.21_Final.pdf

[4] H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. M. Leung,
“Network slicing based 5G and future mobile networks: Mobility,
resource management, and challenges,” IEEE Commun. Mag., vol. 55,
no. 8, pp. 138–145, Aug. 2017.

[5] GSMA, “Network slicing: Use case requirements,” Apr. 2018. [Online].
Available: https://www.gsma.com/futurenetworks/wp-content/uploads/
2018/04/NS-Final.pdf

[6] Ericsson. Scalable network opportunities. [Online]. Available: https://
www.ericsson.com/4a45a8/assets/local/digital-services/trending/scal-
able-network/executive_guide_network_slicing.pdf.

[7] IETF. Network slice provision models. [Online]. Available: https://tools.
ietf.org/pdf/draft-homma-slice-provision-models-00.pdf (2019/02/01).

[8] P. Caballero, A. Banchs, G. DeVeciana, andX. Costa-P�erez, “Network slic-
ing games: Enabling customization in multi-tenant mobile networks,”
IEEE/ACMTrans. Netw. (TON), vol. 27, no. 2, pp. 662–675, Apr. 2019.

[9] I. Afolabi, J. Prados, M. Bagaa, T. Taleb, and P. Ameigeiras, “Dynamic
resource provisioning of a scalable e2e network slicing orchestration
system,” IEEE Trans. Mobile Comput., vol. 19, no. 11, pp. 2594–2608,
Nov. 2020.

[10] D. M. Gutierrez-Estevez et al., “Artificial intelligence for elastic man-
agement and orchestration of 5g networks,” IEEE Wireless Commun.,
vol. 26, no. 5, pp. 134–141, Oct. 2019.

Fig. 8. Training process of RL-Assign and the empirical converge episodes.

160 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

[11] K. A. Noghani, A. Kassler, and J. Taheri, “On the cost-optimality trade-
off for service function chain reconfiguration,” 2019, arXiv:1910.01881.

[12] C. Li, A. Burchard, and J. Liebeherr, “A network calculus with effective
bandwidth,” IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1442–1453,
Dec. 2007.

[13] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel, “LTE mobile network
virtualization,” Mobile Netw. Appl., vol. 16, no. 4, pp. 424–432,
Aug. 2011.

[14] J. Zheng, P. Caballero, G. de Veciana, S. J. Baek, and A. Banchs,
“Statistical multiplexing and traffic shaping games for network slicing,”
IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2528–2541, Dec. 2018.

[15] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. Adv. Neural
Inf. Process. Syst., 2018, pp. 539–548.

[16] M. Gasse, D. Ch�etelat, N. Ferroni, L. Charlin, and A. Lodi, “Exact com-
binatorial optimization with graph convolutional neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 15 554–15 566.

[17] S. Martello and P. Toth, “A bound and bound algorithm for the zero-one
multiple knapsack problem,” Discrete Appl. Math., vol. 3, no. 4,
pp. 275–288, Nov. 1981.

[18] T. Achterberg, T. Berthold, T. Koch, and K. Wolter, “Constraint integer
programming: A new approach to integrate cp and mip,” in Proc. Integr.
AI OR Techn. Constraint Program. Combinatorial Optim. Problems.
2008, pp. 6–10.

[19] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan,
“Network traffic classification using correlation information,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 1, pp. 104–117, Jan. 2013.

[20] L. Nie, D. Jiang, S. Yu, and H. Song, “Network traffic prediction based
on deep belief network in wireless mesh backbone networks,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), 2017, pp. 1–5.

[21] J. Wang et al., “Spatiotemporal modeling and prediction in cellular net-
works: A big data enabled deep learning approach,” in Proc. IEEE Int.
Conf. Comput. Commun., May 2017, pp. 1–9.

[22] C. Zhang and P. Patras, “Long-term mobile traffic forecasting using
deep spatio-temporal neural networks,” in Proc. Eighteenth ACM Int.
Symp. Mobile Ad Hoc Netw. Comput.. ACM, 2018, pp. 231–240.

[23] M. Mandjes, Large Deviations Gaussian Queues: Modelling Communi-
cation Networks. Wiley, 2007.

[24] I. Norros, “On the use of fractional Brownian motion in the theory of
connectionless networks,” IEEE J. Sel. Areas Commun., vol. 13, no. 6,
pp. 953–962, Aug. 1995.

[25] K. Park and W. Willinger, “Self-similar network traffic: An overview,”
in Proc. Self-Similar Netw. Traffic Perform. Eval. New York, USA:
John Wiley & Sons, Inc., 2000, pp. 1–38.

[26] P. Rabinovitch, “Statistical estimation of effective bandwidth,” Ph.D.
dissertation, Carleton University, 2000.

[27] F. P. Kelly, “Notes on effective bandwidths,” in Proc. Stochastic Netw.:
Theory Appl., Roy. Stat. Soc. Lecture Notes Series, 4, F. P. Kelly, S. Zach-
ary, and I. Ziedins, Eds. Oxford University Press, 1996, pp. 141–168.

[28] H. Touchette, “A basic introduction to large deviations: Theory, applica-
tions, simulations,” Jun. 2011. [Online]. Available: http://arxiv.org/abs/
1106.4146

[29] C.-S. Chang, Perform. Guarantees Commun. Netw., ser. Telecommunica-
tion Networks and Computer Systems. NewYork, USA: Springer, 2000.

[30] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer,
2004.

[31] D. Zuckerman, “NP-complete problems have a version that’s hard to
approximate,” in Proc. Eighth Annu. Structure Complexity Theory Conf.
Comput. Soc. Press, 1993, pp. 305–312.

[32] G. Gens and E. Levner, “Complexity of approximation algorithms for
combinatorial problems: A survey,” ACM SIGACT News, vol. 12, no. 3,
pp. 52–65, 1980.

[33] B. Korte and R. Schrader, “On the existence of fast approximation
schemes,” in Proc. Nonlinear Program. 4. Academic Press, Jan. 1981,
pp. 415–437.

[34] L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings, “Knapsack
based optimal policies for budgetlimited multiarmed bandits,” in Proc.
26th AAAI Conf. Artif. Intell., Jul. 2012, pp. 1134–1140.

[35] X. Chen and Y. Tian, “Learning to perform local rewriting for combinatorial
optimization,” inProc. Adv. Neural Inf. Process. Syst., 2019, pp. 6278–6289.

[36] S. Ruder, “An overview of gradient descent optimization algorithms,”
Sep. 2016. [Online]. Available: http://arxiv.org/abs/1609.04747

[37] NORDunet, “NORDUnet network statistics,” [Online]. Available: http://
stats.nordu.net/connections.html

[38] C. Xiaming, J. Yaohui, Q. Siwei, H. Weisheng, and J. Kaida,
“Analyzing and modeling spatio-temporal dependence of cellular traffic
at city scale,” in Proc. Commun. IEEE Int. Conf., 2015, pp. 3585–3591.

[39] S. Martello, “Knapsack problems: Algorithms and computer imple-
mentations,” Wiley-Interscience Series Discrete Math. Optim., 1990.

[40] S. Maher, M. Miltenberger, J. P. Pedroso, D. Rehfeldt, R. Schwarz, and
F. Serrano, “PySCIPOpt: Mathematical programming in python with the
SCIP optimization suite,” in Proc. Math. Softw. – ICMS 2016. Springer
International Publishing.

[41] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive network management in sliced 5G networks with
deep learning,” in Proc. IEEE Int. Conf. Comput. Commun., Apr. 2019,
pp. 280–288.

[42] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware VNF
placement for service-customized 5G network slices,” in Proc. IEEE
Int. Conf. Comput. Commun., Apr. 2019, pp. 2449–2457.

[43] A. Alleg, T. Ahmed, M. Mosbah, R. Riggio, and R. Boutaba, “Delay-
aware VNF placement and chaining based on a flexible resource alloca-
tion approach,” in Proc. 13th Int. Conf. Netw. Service Manag., Nov.
2017, pp. 1–7.

[44] K. Samdanis, X. Costa-Perez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5G network slice broker,” IEEE Commun.
Mag., vol. 54, no. 7, pp. 32–39, Jul. 2016.

[45] B. Han, V. Sciancalepore, D. Feng, X. Costa-Perez, and H. D. Schotten,
“A utility-driven multi-queue admission control solution for network
slicing,” in Proc. IEEE Int. Conf. Comput. Commun., Apr. 2019,
pp. 55–63.

[46] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Perez, “Network
slicing games: Enabling customization in multi-tenant networks,” in
Proc. IEEE Int. Conf. Comput. Commun., May 2017, pp. 1–9 .

[47] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Perez, “Multi-ten-
ant radio access network slicing: Statistical multiplexing of spatial
loads,” IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 3044–3058,
Oct. 2017.

[48] O.-C. Granmo, B. J. Oommen, S. A. Myrer, and M. G. Olsen,
“Learning automata-based solutions to the nonlinear fractional knapsack
problem with applications to optimal resource allocation,” IEEE Trans.
Syst., Man Cybern., Part B (Cybern.), vol. 37, no. 1, pp. 166–175,
Feb. 2007.

Qian Xu received the B.S. degree in statistics from
the Huazhong University of Science and Technology,
Wuhan, China, in 2015. She is currently working
toward the Ph.D. degree in computer science with the
City University of Hong Kong, Hong Kong. Her cur-
rent research interests include cloud computing, and
network performance analysis.

Xiang Yan received the B.Sc. degree from Shanghai
Jiao TongUniversity, Shanghai, China,where he is cur-
rently working toward the Ph.D. degree with the
Department of Computer Science. His current research
interests focus on algorithmic game theory and
machine learning, with their applications to internet
economics.

Kui Wu received the B.Sc. and M.Sc. degrees in
computer science from Wuhan University, Wuhan,
China, in 1990 and 1993, respectively, and the Ph.D.
degree in computing science from the University of
Alberta, Edmonton, AB, Canada, in 2002. In 2002,
he joined the Department of Computer Science, Uni-
versity of Victoria, Victoria, BC, Canada, where he
is currently a Professor. His current research interests
include network performance analysis, online social
networks, Internet of Things, and parallel and distrib-
uted algorithms.

XU et al.: LEVERAGING MULTIPLEXING GAIN IN NETWORK SLICE BUNDLES 161

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

Jianping Wang received the B.S. and M.S. degrees in
computer science from Nankai University, Tianjin,
China, in 1996 and 1999, respectively, and the Ph.D.
degree in computer science from The University of
Texas at Dallas, Richardson, TX, USA, in 2003. She is
currently a Professor with the Department of Computer
Science, City University of Hong Kong, Hong Kong.
Her research interests include cloud computing, service
oriented networking, edge computing, and network
performance analysis.

Kejie Lu (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees from the Beijing Univer-
sity of Posts and Telecommunications, Beijing,
China, in 1994 and 1997, respectively, and the
Ph.D. degree in electrical engineering from the
University of Texas at Dallas, Richardson, TX,
USA, in 2003. In July 2005, he joined the Univer-
sity of Puerto Rico at Mayag€uez, Mayag€uez,
Puerto Rico, where he is currently a Professor
with the Department of Computer Science and
Engineering. His research interests include com-

puter and communication networks, cyber-physical system, and network-
based computing.

Weiwei Wu received the Ph.D. degrees from
the City University of Hong Kong (CityU),
Hong Kong and the University of Science and
Technology of China (USTC), Hefei, China, in
2011. He went to Nanyang Technological Univer-
sity (NTU) for Postdoctoral Research. He is cur-
rently a Professor with the School of Computer
Science and Engineering, Southeast University,
Nanjing, China. His research interest covers the
applications of optimization method in wide range
of topics, including combinatorial optimization

and algorithms, game theory, reinforcement learning, multi-agent systems,
cloud computing, and wireless networks.

162 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 1, JANUARY-MARCH 2021

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 28,2021 at 17:05:23 UTC from IEEE Xplore. Restrictions apply.

