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Abstract. We present a framework for learning Granger causality networks for multivariate categorical time
series based on the mixture transition distribution (MTD) model. Traditionally, MTD is plagued
by a nonconvex objective, nonidentifiability, and the presence of local optima. To circumvent these
problems, we recast inference in the MTD as a convex problem. The new formulation facilitates the
application of MTD to high-dimensional multivariate time series. As a baseline, we also formulate a
multinomial logistic transition distribution (mLTD) model. While it is a straightforward extension of
autoregressive Bernoulli generalized linear models, it has not been previously applied to the analysis
of multivariate categorical time series. We establish identifiability conditions of the MTD model
and compare them to those for mLTD. We further devise novel and efficient optimization algorithms
for MTD based on our proposed convex formulation and compare the MTD and mLTD in both
simulated and real data experiments. Finally, we establish consistency of the convex MTD in high
dimensions. Our approach simultaneously provides a comparison of methods for network inference
in categorical time series and opens the door to modern, regularized inference with the MTD model.
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1. Introduction. Granger causality [16] is a popular framework for assessing the relation-
ships between time series and has been widely applied in econometrics, neuroscience, and
genomics, amongst other fields. Given two time series = and y, the idea is to use the tem-
poral structure of the data to assess whether the past values of one, say x, are predictive of
future values of the other, y, beyond what the past of y can predict alone; if so, x is said
to Granger cause y. Recently, the focus has shifted to inferring Granger causality networks
from multivariate time series data, with the goal of uncovering a sparse set of Granger causal
relationships amongst the individual univariate time series. Building on the typical autore-
gressive framework for assessing Granger causality, the majority of approaches for inferring
Granger causal networks have focused on real-valued Gaussian time series using the vector
autoregressive (VAR) model with sparsity inducing penalties [18, 42]. More recently, this
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approach has been extended to non-Gaussian data such as multivariate point processes using
sparse Hawkes processes [48], count data using autoregressive Poisson generalized linear mod-
els [17], or even time series with heavy tails using VAR models with elliptical errors [36]. In
contrast, inferring networks for multivariate categorical time series under this paradigm has
received less attention.

Multivariate categorical time series arise naturally in many domains. For example, we
might have health states from various indicators for a patient over time, voting records for
a set of politicians, action labels for players on a team, social behaviors for kids in a school,
or musical notes in an orchestrated piece. There are also many datasets that can be viewed
as binary multivariate time series based on the presence or absence of an action for some set
of entities. Furthermore, in some applications, collections of continuous-valued time series
are each quantized into a small set of discrete values, like the weather data from multiple
stations [11], wind data [39], stock returns [32], or sales volume for a collection of products [9].
Our work develops both interpretable and computationally efficient methodology for Granger
causality network estimation in such cases using sparse penalties [18, 42]. Existing approaches
to modeling categorical series do not scale to higher-dimensional series and also lack Granger
causal interpretability, hampering their ability to estimate large Granger causality networks.
We first discuss the specific drawbacks of existing approaches and then introduce the contri-
butions of our proposed framework.

The mixture transition distribution (MTD) model [4, 39], originally proposed for par-
simonious modeling of higher-order Markov chains, can provide an approach to modeling
multivariate categorical time series [9, 32, 49]. The MTD model reduces each categorical
interaction to a standard single-dimensional Markov transition probability table. While allur-
ing due to its elegant construction and intuitive interpretation, widespread use of the MTD
model has been limited by a nonconvex objective with many local optima, a large number of
parameter constraints, and unknown identifiability conditions [32, 49, 3]. For these reasons,
the few applications of the MTD model to multivariate time series have looked at a maximum
of three or four time series. To bypass the limitations of MTD, autoregressive generalized
linear models have been advocated for categorical time series. In particular, autoregressive
generalized linear binomial models are often used for the special case of two categories per
series [17, 2]. While their multinomial-output extension to a larger number of states per series
has not been widely adopted, they have been applied to the univariate time series case [23].

We refer to the autoregressive multinomial generalized linear model (GLM) as the multino-
mial logistic transition distribution (mLTD) model. The mLTD model uses a logistic function
to bypass parameter constraints, results in a convex objective, and has well-known identifi-
ability conditions. However, these advantages of mLTD come at the cost of reduced inter-
pretability, mainly because the transition distribution in mLTD depends nonlinearly on the
model parameters. Recently, a constrained autoregressive probit model that improves inter-
pretability has been proposed [32]. However, the probit model is nonconvex and inference
is computationally intensive, limiting applications to higher-dimensional series. As such, one
is still torn between a computational and an interpretability tradeoff. Methods for learning
Granger causality networks among general time series based on transfer entropy or directed
information have been proposed. In particular, the empirical estimator [37] and the context
tree weighting estimator [22] for directed information are specifically applicable to categorical
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time series. However, consistency guarantees of these estimators are derived under the pairwise
(groupwise) Markov assumption, and implementing these algorithms can be computationally
intensive.

We address these issues by going back to the interpretable MTD framework and showing
how one can improve its computational drawbacks. In particular, we recast inference in the
MTD model as a convex problem through a novel reparameterization. We further develop a
regularized estimation framework for identifying Granger causality for multivariate categorical
time series. We also establish, for the first time, conditions for identifiability in the MTD model
and compare the identifiability conditions for MTD and mLTD models. We find that while
the identifiability conditions for the MTD model are given by a nonconvex set, we may easily
enforce the constraints using our convex reparameterization by augmenting the likelihood
with appropriate convex penalties. We then develop efficient projected gradient and Frank—
Wolfe algorithms for optimizing the penalized convex MTD objective. Our projected gradient
algorithm depends on a Dykstra splitting method for projection onto the constraint sets of
the MTD model. This computational approach for MTD enables this model to be applied to
large, modern datasets for the first time. Importantly, the computational insights we provide
carry over to the suite of other applications of MTD models, such as higher-order Markov
chains, beyond the multivariate categorical time series which are the focus herein.

As a comparison benchmark we also develop a penalized mLTD model for Granger causal-
ity in multivariate Markov chains. While straightforward, the application of the penalized
mLTD framework to multivariate categorical time series with more than two categories is
new. We compare MTD and mLTD methods under multiple simulation conditions and use
the MTD method to uncover Granger causality structure in both music [27] and iEEG brain
recording [28] datasets. Finally, we also establish, for the first time, consistency of the convex
MTD in high dimensions, which facilitates future theoretical developments in this area.

2. Categorical time series and Granger causality.

2.1. Granger causality. Let xy = (z14,...,24) € X denote a d-dimensional categorical
random variable indexed by time where X' = (&} x Xy x -+ x Xy), with &; denoting the
set of possible values of x;;. Let m; = |X;| be the cardinality of set Xj, i.e., the number
of categories that series ¢ may take. A length T multivariate categorical time series is the
sequence X = {x1,...,Z¢, ..., T7}.

An order k£ multivariate Markov chain models the transition probability between the cat-
egories at lagged times t — 1,...,¢t — k and those at time t using a transition probability
distribution:

(2.1) p(xe|lxi—1,...) =p(@e|Ti—1,. .., 2—k) .

Due to the complexity of fully parameterizing this transition distribution, it is common to
simplify the model and assume that the categories at time ¢ are conditionally independent of
one another given the past realizations:

d

(2.2) p(x|Te—1, .. Tg) = Hp (itxe—1, .., Te—k) -
i=1
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For simplicity, we assume k = 1 but stress that the models, algorithms, and results
naturally generalize to higher orders of k. By the decomposition assumption (2.2), the problem
of estimation and inference can be divided into independent subproblems over each series i.
Using this decomposition, we define Granger noncausality for two categorical time series z;
and z; as follows.

Definition 2.1. Time series x; is not Granger causal for time series x; if and only if for
all t,

P (TitlTr—1)s - Tj(e—1)s - - -5 Tage—1))
=P (Tatl w11y, - TG0 -1 TGy - 1) - -5 Ta-1)) -

Definition 2.1 states that x; is not Granger causal for time series x;; if the probability that
it is in any state at time ¢ is conditionally independent of the value of z;;_;) at time ¢ — 1
given the values of all other series zy;_1), k # 4, j, at time ¢ — 1. Definition 2.1 is natural since
it implies that if z;; does not Granger cause x;t, then knowing z;;_1) does not help predict the
future state of series i, x;;. For real-valued data, classical definitions of Granger noncausality
generally state that the conditional mean, in homoskedastic models, or conditional variance,
in heteroskedastic models, of z;; do not depend on the past values ;;_1). Thus, Definition
2.1 is a generalization of the classical case to multivariate categorical data, where notions like
conditional mean and variance are less applicable. The same definition has been considered
before, for example, in [13].

2.2. Tensor representation for categorical time series. Each individual conditional dis-
tribution in (2.2) can be represented as a conditional probability tensor P* with d + 1 modes
of dimension m; x my X - -+ X my. Each entry of the tensor is given by

(2'3) P;Lcitvxl(t—l)w”vxd(t—l) =D (xit‘xl(t—l)’ T xd(t—1)> :
Definition 2.1 may be stated equivalently using the language of tensors: z; does not Granger
cause x; if all subtensors along the mode associated with z; are equal. Specifically,

.. _pi

7
Limg,lima,. 2 —1)=my,....1img*

(2.4)

i
Limg, Lima,..,x e —1)=1,...,1:imyq

This subtensor view of Granger noncausality in categorical time series is displayed graphically
in Figure 1.

The tensor interpretation suggests a naive penalized likelihood method for Granger non-
causality selection in categorical time series: perform penalized maximum likelihood estima-
tion of the conditional probability tensor with a penalty that enforces equality among the
subtensors of each mode. While we have explored the above approach in low dimensions, e.g.,
for d < 5, memory and, in turn, computational requirements for storing the complete proba-
bility tensor become infeasible for even moderate dimensions since P? has m; X mq X «++ X My
entries. Other authors have modeled the conditional probability distribution of Markov chains
using a Bayesian nonparametric higher-order singular value decomposition [41] that adaptively
shrinks the number of parameters needed to represent the high-dimensional tensor. We take
an alternative approach and, instead, in sections 2.3 and 2.4, present tensor parameteriza-
tions where the number of parameters needed to represent the full conditional probability
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Figure 1. Illustration of Granger noncausality in an example with d = 2 and m1 = mo = 3. Since the
tensor represents conditional probabilities, the columns of the front face of the tensor, the vertical x1¢-axis, must
sum to one. Here, x2 is not Granger causal for x1 since each slice of the conditional probability tensor along
the xo mode is equal.

tensor grows linearly with d. We establish Granger noncausality conditions and associated
penalized likelihood methods for estimation under these parameterizations in sections 3 and
4, respectively.

In specifying our models, and throughout the remainder of the paper, we focus on a single
conditional of x;; given x;—1 in (2.2). For notational simplicity, we drop the ¢ index.

2.3. The MTD model. The MTD model as in [39] provides an elegant and intuitive
parameterization of a high-order Markov chain. Here, we extend this model to the case of
multiple time series and model the multivariate Markov transition as a convex combination
of pairwise transition probabilities. The MTD model is given by

d

(2.5) P (ZitlT1=1)s - - - » Tage—1)) = Yopo (it) + Z’Yjpj (zitlzj-1)) »

j=1
where pg is a probability vector, p;(.|-) is a pairwise transition probability table between
Tj—1) and x;, and ¥ = (70,71, - - -,7a) is a (d + 1)-dimensional probability distribution such
that 17y = 1 with v > 0,5 =0,...,d. We let the matrix P/ ¢ R™*™ denote the
pairwise transition probability P?;it,xj(t_l) = Dpj (wit\xj(t_l)). Thus, 17PJ = 17 P{k >0,1=
1,....,my, k =1,...,mj. We also let p’ € R™ denote the intercept, where Pgit = po (T4t).
While past formulations of the MTD model neglect the py intercept term, we show below
that the intercept is crucial for model identifiability and, consequently, Granger causality
inference. Finally, we note that the MTD model may be extended by adding interaction terms
for pairwise effects [4], such as pjj, (%t’ﬂfj(t—l), xk(t_l)), though we focus our presentation on
the simple case above.

2.4. The mLTD model. The mLTD model is given by

0 d J
exp (zwit + Z]:l leitﬁ”j(t—l))

y ;
ZZ’EXZ- exp (ng + ijl Z;',xj(t—n)

(2.6) D (%‘t’@h(tq)v e 7xd(t71)) =

)
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Figure 2. Schematic of the MTD factorization of the conditional probability tensor p (m1t|z1<t,1), xg(t,l))
for d = 2 time series and m = 3 categories.

where Z7 € R™*™i and z° € R™i. The probit model in [32] is not a natural fit for inferring
Granger causality networks due both to the nonconvexity of the probit model and the non-
convex constraints imposed on the Z7 matrices. Note that, like the MTD model, the mLTD
model naturally allows adding interaction terms, though we focus again on the simple case
above.

2.5. Comparing MTD and mLTD models. Both MTD and mLTD models represent the
full conditional probability tensor using individual matrices for each x; series, P/ for MTD and
Z7 for mLTD. However, how these matrices are composed and restrictions on their domains
differ substantially between the two models. The MTD model is a convex combination of
pairwise probability tables, whereas mLTD is a nonlinear function of the unrestricted Z7s.
MTD may thus be thought of as a linear tensor factorization method for conditional probability
tensors, where the tensor is created by summing probability table slices along each dimension.
This interpretation of MTD is displayed graphically in Figure 2.

3. Convexity, identifiability, and Granger causality. In this section, we first introduce a
novel reparameterization of the MTD model that renders the log-likelihood of the MTD model
convex. The convex formulation alone opens up an array of possibilities for the MTD frame-
work beyond our multivariate categorical time series focus, eliminating the primary barriers to
adoption of this model, i.e., nonconvexity and associated computationally demanding inference
procedures. The proposed change of variables also allows us to derive both novel identifiability
conditions for the MTD model and Granger causality restrictions that hold for both MTD
and mLTD models. The nonidentifiability of the MTD model was first pointed out in [26],
but no explicit conditions or general framework for identifiability were given. We show that
while the identifiability conditions for MTD are nonconvex, they may be enforced implicitly
by adding an appropriate convex penalty to the convex log-likelihood objective. The proofs
of all results are given in the accompanying supplementary materials (MTD _supplement.pdf
[local/web 10.0MB]).
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3.1. Convex MTD. The maximum likelihood estimator for the MTD model under the
(7, P) parameterization is defined by the following nonconvex optimization problem:

T d
minimize — lo opY. + Pl
(31) Py tzl g | 7 Tit J;’Y] TitTj(t—1)

subject to 17P/ =17, PI >0Vj, 1Ty=1,v>0.

The log-likelihood surface is highly nonconvex, following from the multiplication of v; and
P/ in the log term. It also contains many local optima due to the general nonidentifiability.
Indeed, the set of equivalent models forms a nonconvex region in the (v, P) parameterization
(i.e., the convex combination of equivalent models is not necessarily another equivalent model).
This limitation may lead to many nonconvex shaped ridges and sets of equal probability.

Fortunately, the optimization problem in (3.1) may be recast as a convex program using
the reparameterization Z7 = fyij and z° = ~p°. Using this reparameterization, we can
rewrite the factorization of the conditional probability tensor for MTD in (2.5) as

d
(3-2) p(@itlrrgys - vae) =20, + D Ll -
J=1

The full optimization problem for maximum log-likelihood including constraints then becomes

T

d
ce L 0 J
m1nz1mlze Z log Ly + Z Zzit%‘(H)
(3.3) 7 t=1 j=1

subject to 1727 = ’yle, Z/>0Vj, 1Ty=1,y>0.

Problem (3.3) is convex since the objective function is a linear function composed with a log
function and only involves linear equality and inequality constraints [6].

The Z’ reparameterization in (3.2) also provides clear intuition for why the MTD model
may not be identifiable. Since the probability function is a linear sum of Z’s, one may move
probability mass around, taking mass from some Z7 and moving to some ZF, k # j or z°,
while keeping the conditional probability tensor constant. These sets of equivalent MTD

parameterizations have the following appealing property.

Proposition 3.1. The set of MTD parameters, Z, that yield the same factorized conditional
distribution p (xit|x(t_1)) forms a convex set.

Taken together, the convex reparameterization and Proposition 3.1 imply that the convex
function given in (3.3) has no local optima and that the globally optimal solution to problem
(3.3) is given by a convex set of equivalent MTD models.

3.2. Identifiability.

3.2.1. Identifiability for the MTD model. The reparameterization of the MTD model
in terms of Z7s, instead of v; and P/, combined with the introduction of an intercept term,
allows us to explicitly characterize identifiability conditions for the MTD model.
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MTD

mLTD

Figure 3. Schematic displaying the identifiability conditions for the MTD model (top) and the mLTD model
(bottom) for an example with d = 3 and m1 = ma = ms = 3. Identifiability for MTD requires a zero entry in
each row of Z°, while for mLTD the first column and last row must all be zero. In MTD, the columns of each
77 must also sum to the same value and must sum to one across all Z7.

Theorem 3.2. Fvery MTD distribution has a unique parameterization where the minimal
element in each row of PJ (and thus Z7) is zero for all j.

The intuition for this result is simple: any excess probability mass on a row of each
Z7 may be pushed onto the same row of the intercept term z° without changing the full
conditional probability. This operation may be done until the smallest element in each row
is zero, but no more, without violating the positivity constraints of the pairwise transitions.
The identifiability condition in Theorem 3.2 also offers an interpretation of the parameters in
the MTD model. Specifically, the element Z,, denotes the additive increase in probability
that x;; is in state m given that x;;_1) is in state n. Furthermore, the v; parameters now
represent the total amount of probability mass in the full conditional distribution explained
by categorical variable x;, providing an interpretable notion of dependence in categorical
time series. The mLTD model, however, does not readily suggest a simple and interpretable
notion of dependence from the Z’ matrix due to the nonlinearity of the link function. The
identifiability conditions are displayed pictorially in Figure 3.

Unfortunately, the necessary constraint set for identifiability specified in Theorem 3.2 is a
nonconvex set since the locations of the zero elements in each row of Z7 are unknown. Naively,
one could search over all possible locations for the zero element in each row of each Z7; however,
this quickly becomes infeasible as both m and d grow. Instead, we add a penalty term Q(Z),
or prior, that biases the solution towards the uniqueness constraints. This regularization also
aids convergence of optimization since the maximum likelihood solution without identifiability
constraints is not unique. Letting

T p
(3.4) Lyrp(Z) == log [z, +> Z}ns0 | -
t=1 j=1

the regularized estimation problem is given by
minimize Lyrp(Z) + AQ(Z)

(3.5) Zy : .
subject to 1727 = ;1T ZI >0Vj, 1Ty=1,v>0.
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Theorem 3.3. For any A > 0 and Q(Z) that does not depend on z° and is increasing with
respect to the absolute value of entries in Z7, the solution to the problem in (3.5) is contained
in the set of identifiable MTD models described in Theorem 3.2.

Intuitively, by penalizing the entries of the Z’ matrices, but not the intercept term, solu-
tions will be biased to having the intercept contain the excess probability mass, rather than
the Z7 matrices. Thus, even with a very small penalty, we constrain the solution space to
the set of identifiable models. Theorem 3.3 characterizes an entire class of regularizers that
enforce the identifiability constraints for MTD. As we explain in section 4.1, a simple choice
for Q(Z) is a regularizer that also selects for Granger causality.

3.2.2. Identifiability for the mLTD model. The nonidentifiability of multinomial logistic
models is also well-known, as is the nonidentifiability of generalized linear models with cate-
gorical covariates. Combining the standard identifiability restrictions for both settings gives
the following result.

Proposition 3.4 (see [1]). Every mLTD has a unique parameterization such that the first
column and last row of Z7 are zero for all j and the last element of z° is zero.

These conditions are displayed pictorially in Figure 3. Under the identifiability constraints
for both MTD and mLTD models, at least one element in each row must be zero. For MTD,
this zero may be in any column, while for mLTD the zero may, without loss of generality, be
placed in the first column of each row. For mLTD, the last row of Z/ must also be zero due
to the logistic output (one category serves as the ‘baseline’); in MTD, instead, each column
of P/ must sum to one.

3.3. Granger causality in MTD and mLTD. Under the Z’ parameterization for MTD
and mLTD specification of (2.6), we have the following simple result for Granger noncausality
conditions.

Proposition 3.5. In both the MTD model of (3.2) and the mLTD model of (2.6), time series
xj is Granger noncausal for time series x; if and only if the columns of Z7 are all equal.
Furthermore, all equivalent MTD model parameterizations give the same Granger causality
conclusions.

Intuitively, if all columns of Z/ are equal, the transition distribution for x;; does not
depend on z(;_1). This result for mLTD and MTD models is analogous to the general Granger
noncausality result for the slices of the conditional probability tensor being constant along the
xj;—1) mode being equal. Based on Proposition 3.5, we might select for Granger noncausality
by penalizing the columns of Z7 to be the same. While this approach is potentially interesting,
a more direct, stable method takes into account the conditions required for identifiability of
the Z7 under both models.

Under the identifiability constraints for both MTD and mLTD given in Theorem 3.2 and
Proposition 3.4, respectively, x; is Granger noncausal for z; if and only if ZJ = 0 (a special
case of all columns being equal). For both MTD and mLTD models, this fact follows from each
row having at least one zero element; for all the columns to be equal, as stated in Proposition
3.5, all elements in each row must also be equal to zero. Taken together, if we enforce the
identifiability constraints, we may uniquely select for Granger noncausality by encouraging
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some Z’ to be zero.

4. Granger causality selection. We now turn to procedures for inferring Granger non-
causality statements from observed multivariate categorical time series. In section 3, we
derived that if Z7 = 0, then x; is Granger noncausal for x; in both MTD and mLTD models.
To perform model selection, we take a penalized likelihood approach and present a set of
penalty terms that encourage Z7 = 0, while maintaining convexity of the overall objective.
The final parameter estimates automatically satisfy the identifiability constraints for MTD.
We also develop an analogous penalized criterion for selecting Granger causality in the mLTD
model.

4.1. Model selection in MTD. We now explore penalties that encourage the Z7 matrices
to be zero. Under the (P7 ;77;) parameterization, this is equivalent to encouraging the ; to be
zero. We first introduce an L penalized problem in terms of the original -; parameterization
and then show how convex relaxations of the Ly norm on +; lead to natural convex penalties
on Z7 . Ideally, we would solve the following penalized Ly problem:

minzignze Lo (Z) + Ayl

4.1 subject to 1727 = 'yle, 77 >0V, 1Ty=1,v>0,

where A > 0 is a regularization parameter and |7yi.q|, is the Lo norm over the weights;
the intercept weight g is not regularized. The Ly penalty simply counts the number of
nonzero y;j, which is equivalent to the number of nonzero Z7. This results in a nonconvex
objective. Instead, we develop alternative convex penalties suited to model selection in MTD.
Importantly, we require that any such penalty, 2(Z), fall in the intersection of two penalty
classes: (1) Q(Z) must be a convex relaxation to the Ly norm in problem (4.1) to promote
sparse solutions, and (2) Q(Z) must satisfy the conditions of Theorem 3.3 to ensure the final
parameter estimates satisfy the MTD identifiability constraints. We propose and compare
two penalties that satisfy these criteria.

Our first proposal is the standard L; relaxation, as in lasso regression, which simply sums
the absolute values of ;. This penalty encourages soft-thresholding, where some estimated -;
are set exactly to zero while others are shrunk relative to the estimates from the unpenalized
objective. Note that due to the nonnegativity constraint, the L; norm on 7.4 is simply given
by 2?21 ;- If 7o were included in the Lo regularization, the L relaxation would fail due to
the v simplex constraints 17y = 1, ¥ > 0 so the L; norm would always be equal to one over
the feasible set [35]. Our addition of an unpenalized intercept to the MTD model allows us to
sidestep this issue and leverage the sparsity promoting properties of the L, penalty for model
selection in MTD. The L; regularized MTD problem is thus given by

minimize Lyrp(Z) + A%, v,
(4.2) Zn @)+ A2 517
subject to 172/ = ~,17, 727 >0Vj, 1Ty=1,v>0.

Equation (4.2) may be rewritten solely in terms of the Z’s by noting that v; = m%_lTZjl.

Defining 27 = (vec (ZI)T ,...,VeC (Zd)T) and assuming, for simplicity of presentation, |X;| =
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m for all 4, we can rewrite the MTD constraints as

(@A) :=0 1T2=m, 2>0,
where
17 —1T£ oT 0
43) a o 17?7 —1m0 |
R 1.2; —ifn

and [, is a d-dimensional identity matrix. This gives the final penalized optimization problem
only in terms of Z7 as

minizmize Lytp(Z) + A E?:l %ITZjl

(4.4)
subject to ([;® A)Z2=0, 172=m,z>0.

Writing the L; penalized problem in this form shows that the L; penalty increases with the
absolute value of the entries in Z7 and does not penalize the intercept; it thus satisfies the
conditions of Theorem 3.3. As a result, the solution to the problem given in (4.4) automatically
satisfies the M'TD identifiability constraints. Furthermore, the solution will lead to Granger
causality estimates since many of the Z’s will be zero due to the L; penalty.

Another natural convex relaxation of the objective in (4.1) is given by a group lasso penalty
on each Z7 [47]. The relaxation is derived by writing the Lo norm as a rank constraint in
terms of Z7, which is then relaxed to a group lasso. Specifically, assume all time series have
the same number of categories, i.e., mj = m for all j. Due to the equality and nonnegativity
constraints,

rvallo = | (17 vee (1) ... 17 vee (1))

0
= rank (QTQ)
— rank(Q).
where
vec (Zl) 0 A 0
0 vec (Z2) ... 0
Q=
0 :
0 vec (Zd)

Thus, we can use the nuclear norm on Q as a convex relaxation of ||y1.q/|,. Furthermore, the
nuclear norm of Q is given by the sum of Frobenius norms of Z7. More specifically, denoting
by || - ||« the nuclear norm and by || - || the Frobenius norm,

d d
QI =) (|27, = > +/tr((Z)T(Z7)).
j=1 Jj=1
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This group lasso penalty gives the final problem
minizmize LMTD(Z) + A Z;‘lzl HZJ HF

(4.5)
subject to (I;® A)2=0, 1Tz2=m,z>0.

Here, we penalize Z7 directly, rather than indirectly via vj. The group lasso penalty drives
all elements of Z7 to zero together, such that the optimal solution sets some Z7 to be all zero.
This effect naturally coincides with our condition of Granger noncausality that all elements
of ZJ = 0. The group lasso penalty also satisfies the conditions of Theorem 3.3 since the
Lo norm is increasing with respect to each element in Z’ and the intercept is not penalized.
Thus, solutions to problem (4.5) automatically enforce the MTD identifiability constraints.

The group lasso penalty tends to favor larger groups [19]. When the time series have
different number of categories, the sizes of the coefficient matrices Z’s are different. In this
case, one can use penalties that scale with the group size, for example, )‘Z;‘izl Nao 1Z7 ||
For simplicity, we focus on the case where all time series have the same number of categories
hereafter and omit the dependence of the penalty on group sizes.

4.2. Model selection in mLTD. To select for Granger causality in the mLTD model, we
add a group lasso penalty to each of the Z/ matrices, similar to (4.5), leading to the following
optimization problem:

T d
C e 0 j
minimize E Z,, + E int-rj(t—l)
t=1 j=1

(4.6) . - ; d
+ log Z exp | z, + Z Zz/wj(t—l) +A Z |2’ HF
2/ €X; j=1 j=1
subject to Z{:m“l =0, Zf;%l:mj =0Vj.

For two categories, m; = 2 for all 4, this problem reduces to sparse logistic regression for
binary time series, which was recently studied theoretically [17]. As in the MTD case, the
group lasso penalty shrinks some Z’ entirely to zero.

5. Optimization. Here, we present fast proximal algorithms for fitting both penalized
MTD and mLTD models. The convex formulation invites new optimization routines for
fitting MTD models since many options exist for solving problems with convex objectives
with linear equality and inequality constraints. In the accompanying supplementary mate-
rials (MTD_supplement.pdf [local/web 10.0MB]), we present alternative MTD solvers based
on Frank-Wolfe [21] and Majorization-Minimization (MM) algorithms [20] and discuss their
trade-offs. Both Frank—Wolfe and MM algorithms for MTD take elegant and simple forms.
Furthermore, the MM algorithm for the nonpenalized convex problem (3.2) is equivalent to
an EM algorithm for the MTD model in the original nonconvex parameterization of problem
(3.1). As a byproduct, this equivalence shows that the Expectation-Maximization (EM) algo-
rithm under the nonconvex parameterization converges to a global optimum. Here, we focus
on proximal algorithms since the MM algorithm for MTD is applicable only to the nonpenal-
ized MTD objective and Frank—Wolfe converges slowly relative to proximal gradient for the
dimensions we consider; see the supplementary materials for more details.
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For the mLTD model, we perform gradient steps with respect to the mLTD likelihood
followed by a proximal step with respect to the group lasso penalty. This leads to a gradient
step of the smooth likelihood followed by separate soft group thresholding [33] on each Z/.

For the MTD model, our proximal algorithm reduces to a projected gradient algorithm
[33]. Projected gradient algorithms take steps along the gradient of the objective and then
project the result onto the feasible region defined by the constraints. Compared to other
MTD optimization methods, our projected gradient algorithm under the Z7 parameterization
is guaranteed to reach the global optima of the MTD log-likelihood. The gradient of the
regularized MTD model with respect to entries in Z7 over the feasible set is given by

T
dL 1 dS)
(5.1) i :Zl . _ i . + A—.
dZ;,x,, e {:mt T (t—1)=7T }Zgit + Zj:l Z‘;itxj(tfl) dZi,x,,

For the L; norm, Q(Z) is not differentiable when an element in any Z’ is zero. For the
Ly group norm, (Z) is not differentiable when every element in at least one Z7 is zero.
However, the MTD constraints enforce that Z7 > 0. Since the point of nondifferentiability for
the Lo norm in our case occurs when elements are identically zero, we modify the constraints
so that Z7 > e for some small ¢ when using the group penalty. This allows us to ignore
nondifferentiability issues and instead take gradient steps directly along the penalized MTD
objective.

Following the notation from the end of section 4.1, let the set C' = {Z|Z > ¢, ([; ® A) Z =
0,172 = m} denote the modified MTD constraints with respect to the Z7 parameterization.
We perform projected gradient descent by taking a step along the regularized MTD gradient
of (5.1) and then project the result onto C. Specifically, the algorithm iterates the following
recursion starting at iteration k£ = 0:

dL
.2 ~k+1 _ ~k
(5 ) z =Pc (2 _5kdi);

where 0y is a step size chosen by line search [33]. For ease of presentation, here we have
written the projected gradient steps in terms of the vectorized variables z, rather than the
Z7 matrices. The Pc(x) operation is the projection of a vector z onto the modified MTD
constraint set C":

minimize||z — z||3
z

subject to z>e€, ([4®A)z=0, 1Tz=m,

with € = 0 for the L; penalty and € > 0 but small for the group lasso penalty. While this is a
standard quadratic program for which we may use the dual method [15] as, e.g., implemented
in the R quadratic programming package quadprog [43], we have found that standard solvers
may scale poorly as the number of time series d becomes large. To mitigate this inefficiency,
here we develop a fast projection algorithm based on Dykstra’s splitting algorithm [7] that
harnesses the particular structure of the constraint set for much faster projection, as described
in section 5.1.
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5.1. Dykstra’s splitting algorithm for projection onto the MTD constraints. The set
C may be written as the intersection of two simpler sets: C' = .5 N B, where S is the simplex
constraint set of the first column of each Z/ matrix and the nonnegativity constraint for all
entries of Z7. Specifically,

m

d
(5.3) S={z er™™)_ 13" N7 =177 >0
§=0 i=1

On the other hand, B = U;l:lBj, where B; is the constraint set that all columns in yAl
sum to the same value:

(5.4) B; = {Z) € R™™|Avec (Z/) = 0},

where the matrix A is given in (4.3). Dykstra’s algorithm alternates between projecting onto
the simplex constraints S and the equal column sums B by iterating the following steps. Let
w? = 2,u” = v¥ = 0. Denote by Pg the projection onto the set S and by Pg the projection

onto the set B. Dykstra’s algorithm amounts to the following iterations starting with { = 0:

yl = Pg (wl —|—ul) ,
+1

U :wl—l—ul—yl,
I _ l l
w —733<y —l—v),
o = o ol — w0l

The Pg projection may be split into a simplex projection for a constraint Z;l:o Z:L Zgl =
1, Zgl > 0 for all 4, j and a nonnegativity constraint an > ( for all 4,5 and n > 1. We perform
the simplex projection in (dm)log(dm) time using the algorithm of [12]; the nonnegativity
projection is simply thresholding elements at zero and is performed in linear time. The Pg
linear projection is performed separately for each Z7:

(5.5) P, (@) = (- (4 (4aT) " A7),

where (I — (A(AAT)_lAT)) may be precomputed so the per-iteration complexity for the full
B projection is dm? since A is an (m — 1) x m? matrix. Importantly, this projection scheme
harnesses the structure of the constraint set by splitting the projections into components that
admit fast and simple low-dimensional projections. The full projection algorithm is given in
Algorithm 5.2.

We compare projection times of the Dykstra algorithm to the active set method of [15]
implemented in the R package quadprog [43]. The Dykstra projection for the MTD con-
straints was implemented in C+4+. Elements of Z/ were drawn independently from a normal
distribution with standard deviation .7 and then projected onto C'. Average runtimes across
10 random realizations for d € (10,20, 30, 40, 50, 60, 70) series and m = 5 categories are dis-
played in Figure 4. The Dykstra algorithm was run until iterates changed by less than 1010,
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Figure 4. (Left) A runtime comparison of the quadprog projection method and the Dykstra projection
method on a range of time series dimensions. (Right) A zoom in of only the compute time of the Dykstra
method.

For each run, the elementwise maximum difference between the Dykstra projection and the
quadprog projection was always on the scale of 10710, Across this range of d, the quadprog
runtime appears to scale quadratically in d, with a total runtime on the scale of seconds for
d > 20. The Dykstra projection method, however, appears to scale near linearly in this range
with runtimes on the order of milliseconds. We also performed experiments with differing
standard deviations for the independent draws of Z7 and observed very similar results.

Algorithm 5.1 Projected gradient algorithm for MTD using Dykstra projections.

Initialize Z(©) V;
k=0
while Z*) not converged do
compute VL (Z(k)) via (5.1)
determine v* by line search [33]
Z*+Y) = Dykstra MTD (Z%®) + +FVL (Z(0))
end while
return Z*)

5.2. Comparing model selection and optimization in MTD and mLTD. Approaches to
model selection in MTD and mLTD models are conceptually similar; both add regularizing
penalties to enforce elements in Z7 to zero. However, these two approaches differ in practice.
We explore the differences in selecting for Granger causality between these two approaches
via extensive simulations in section 7.

Both MTD and mLTD models take gradient steps followed by a proximal operation. In
the mLTD model, this proximal operation is given by soft thresholding on the elements of
Z7. In the MTD optimization, the proximal operation reduces to a projection onto the MTD
constraint set. Importantly, due to the restricted domain of the MTD parameter set, the
normally nonsmooth penalty terms become smooth over the constraint set and we thus include
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them in the gradient step. In mLTD, the soft threshold proximal operation is performed
in linear time while in MTD the projection is performed by iteratively using the Dykstra
algorithm, where each step of the Dykstra algorithm is performed in log-linear time.

Algorithm 5.2 DykstraMTD: Dykstra algorithm for projection onto the MTD constraints.

T
z = ((ZO)T,vec (ZI)T yee.,VEC (Zd)T)
Let S be the ordered indices of z whose elements belong in the first column of some Z7,
j>0orin z°
Let (j) refer to ordered indices of z whose elements belong to Z/ for all j.
Wy = 2
Ug = Vg = 0
=0
while w' not converged do
yfg = Simplex Projection (wfg + pg) via [12]
y< g = Positive Threshold (wl\ g+ ul\ S)
ut = w4 u -y
ko _ ]l l
Yoy = Y0) T Vo)
o

forj=1:dd
wfj) = Pg, (yéj) + véj)) via (5.5)
end for
U+ — g+ g —
Il=1+1
end while
return w'

6. Estimation consistency of MTD model. In this section, we establish an upper bound
for estimation error of MTD parameters under the group lasso penalty. Analogous results can
be obtained for the standard lasso penalty.

We first note that the MTD likelihood is of the same form as a multinomial GLM with
identity link, i.e., with probability modeled as linear combination of covariates. However, the
dependence in the time series and the identity link create additional technicalities in the proof,
and we will use newly developed concentration and entropy results in the dependent sample
setting to overcome these difficulties.

We begin by stating the assumptions. Recall that X = {x1,...,2,..., 27} is a Markov
chain with state space X'. The transition kernel is given by (2.2) and (2.5). As in [34], we
say that X is p-irreducible if there exists a nonzero o-finite measure ¢ on X such that for
all A C X with ¢(A) > 0 and for all z € X, there exists a positive integer n such that
P"(xz; A) > 0. Here, P"(x;-) is the distribution of z, given zy = x. Our first assumption
concerns the nature of the data generating model and is rather mild.

Assumption 1. X is aperiodic and @-irreducible and has a unique stationary distribution
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For ease of presentation, we will write the MTD likelihood as a multinomial model with

identity link. Let I {-} be the indicator function. Define Wiy = (Wy, ..., t’g)T € R™, where
tho = I {zy =1}, and hence Wy, indicates the state of time series i at time t. We define

Wi = (W) T, (W) " e R™, for cach j € {1,....d}, where W}, = (Wil,...,wim)T
and th]k = I{xit = l,xj(t_l) = k:} Hence, W;; indicates both the state of time series ¢ at
time ¢ and the state of time series j at time t — 1. Define a new covariate vector W & Rrmt+dm?
as Wy = (W, W,i,...,W,])T. We note that each component of W can take values only in

{0,1} and denote the possible values of W as W. The MTD model can then be written as
(6.1) p(itlzi—1) = W, B°,

where 0 € R™Hdm* i the coefficient of interest defined in terms of Zs. Specifically, for
a general set of MTD parameters, we let 5y = Z°, 3; = vec(Z’) for j € {1,...,d} and
define § = (BOT , BlT e BdT)T. In other words, the first m components correspond to the
intercept and all subsequent consecutive m? components correspond to a transition matrix.
The superscript 0 denotes the true parameter value.

Denote the group lasso penalty by Q(5) = Z?Zl 1Bl = Z?Zl |Z7 ||, where the intercept
is left unpenalized. The MTD optimization problem can be written as

T
(6.2) minimizeg {—7{ ; log(W,' 8) + )\Q(B)}
d
(6.3) subject to (Iy ® A)Br.q =0, m1' By + Z 1'8; =m, B>0.
j=1

Let R, and R be the empirical and conditional expected negative log-likelihood risks, respec-
tively,

T T
1 1
(6.4) RAﬂ%:-T;;bngBL R@):—T;;EP%G%WmAhl,
where A; is the o-algebra generated by x1,...,2:. Furthermore, let S denote the active set

of 8% ie., S={j:j>0, ﬁ? # 0}, and S¢ denote its complement in {1,...,d}. We define
QF(B) = X jes 185l and Q7(B) = 3 c s [1B[l1- With this formulation, we are now ready to
state the next assumptions.

Assumption 2. For all W € W such that WTB° £ 0, WTB% > ¢(T,d) for some function c
that only depends on T and d. Moreover, we assume that

0O, 03
(6.5) c%?@ 1@@;gguzd”
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Assumption 3. Define a seminorm 7(-) as 7(f) = \/,BTEW[WtWtT]ﬂ. For a stretching
factor L > 1, define

-1
66)  Ta(L.5:m) = (min{r(9) 8 € Bl + 273 = L () < 1)
(6.7) ¢*(L, S, 7) =T %(L, S, 7)|S],

where B is the set of all B that can be written as a scaled difference between two vectors that
satisfy the MTD model constraints and identifiability constraints. We assume that for some
L>1, $*(L,S,7) > c1 for some constant c;.

Assumption 2 states that the transition probabilities are either 0 or bounded away from
0 by some quantity that only depends on the sample size and dimension. We further assume
that this quantity is larger than the estimation error, which we will derive later. It ensures
that when the parameter estimates are close to the true value, the likelihoods are also close.
This in general may not be the case, as log(-) is unbounded when its argument approaches
0 and is not Lipschitz-continuous. Assumption 3 is a compatibility condition, often used in
establishing estimation consistency of lasso-type estimators [8]. It is slightly weaker than
the restricted eigenvalue condition which is also commonly used. Intuitively, this assumption
requires that inactive groups are not too correlated with the active ones. The requirement
that 8 € B constrains the inherent collinearity among the covariates.

Due to the Markovian structure, the design (Wt):{:1 has to be treated as random, yet the
compatibility constant is defined using population quantities. Hence, we need to show that
the sample version of compatibility constant converges to its population counterpart defined
in Assumption 3. To this end, we use concentration results for Markov chains developed in
[34] based on spectral methods.

A key quantity for the concentration results is the pseudospectral gap of the chain [34].
We restate the relevant definitions here for completeness. Let L?(7) be the Hilbert space of
complex valued measurable functions on X that are square integrable with respect to w. We
equip L?(r) with the inner product (f,g). = [ fg*dr. Define a linear operator P on L?(r)
as (Pf)(z) = Ep(,.y(f), which is induced from the transition kernel P. The spectrum of a
chain is defined as

(6.8) So={AeC:(\I—P) " does not exist as a bounded linear operator on L*(m)} .

If P is a self-adjoint operator, the spectral gap is defined as

(6.9) B {1 —sup{A: A€ Sy, A # 1} if eigenvalue 1 has multiplicity 1,

0 otherwise.

The self-adjointness of P corresponds to the reversibility of the Markov chain with transition
kernel P. In general, the chain specified by the MTD model may not be reversible. In this
case, define the time reversal of P as the transition kernel

P(y,z)

(6.10) P (z,y) = WW(Q)'

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/30/21 to 97.113.99.163. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

CONVEX MTD FOR CATEGORICAL GRANGER CAUSALITY 101

Then, the induced linear operator P* is the adjoint of P on L?(7). Note that when the chain
is indeed reversible, we have P* = P. Finally, the pseudospectral gap of P is defined as

(6.11) Tps = max {7((P*)'P¥) /1]

where ((P*)*P*) denotes the spectral gap of the self-adjoint operator (P*)¥P*. See sec-
tion 3.1 in [34] for additional discussion on the pseudospectral gap. We make the following
assumption on the pseudospectral gap.

Assumption 4. The pseudospectral gap ~yps satisfies |S|\/log(d)/Typs = o(1).

This assumption requires that as d grows, the pseudospectral gap of the chain does not
approach 0 too fast. For a uniformly ergodic chain, the pseudospectral gap is closely related to
its mixing time, and this assumption requires that the mixing time does not grow too large.
If ~yps is lower bounded by some constant, Assumption 4 reduces to an assumption on the
dimension and sparsity relative to the sample size. Methods have been proposed to estimate
the pseudospectral gap [44], which can be used to assess the validity of this assumption
empirically.

We are now ready to state our main theorem on the estimation error of the MTD model.

Theorem 6.1 (estimation error). Let 0 < § < 1. Suppose that there exists Mpyax > 0 and
Ae such that for all 0 < M < Mpax,

(6.12) sup |[(Ra(B) = R(B)) — (Ra(8°) — R(B%))| < AeM
B:1180— B8 I +B—80) <M

and

B2 (1 +0)%S]  _

(6.13) 02¢*(1/(1 = 6),8,7) ~

Take X\ > 8\¢/6. Then, under Assumptions 1 and 4, for sufficiently large T, we have that

e S

Furthermore, under Assumption 3, the right-hand side is upper bounded by C()A|S|, where
C(9) is a constant depending on ¢.

This theorem states that the estimation error defined in terms of €(-) is closely related to
Ae- The next lemma quantifies the magnitude of A..

Lemma 6.2. Under Assumptions 2 and 3, we can take \e and Mpyax to satisfy (6.12) and
(6.13), and

1 log(d)log?(T)

Nl e — 9
(6.15) A= | T T

Mpax = O(c(T, d)).

Combining Theorem 6.1 and Lemma 6.2, we have the following corollary.
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Corollary 6.3. Under Assumptions 1-4, we have that

S| [log(d)log*(T)
e(T,d) T

(6.16) 180 — B3Il + Q3 — 8°) = O,

If the minimal nonzero transition probability is large enough so that 1/¢(T,d) = O(1), we

get a convergence rate of Op(\S RV, M). Compared with the classical results on the

estimation error of lasso (see, for example, [5]), we have an extra log(7") term. This is due
to a concentration result in the dependent data setting [40]. Investigating whether this log
factor can be removed would be an interesting question for future research.

Based on the estimation error bound, one can consider a thresholded version of the MTD
estimator to achieve variable selection consistency. The thresholding step helps eliminate
false positives, without the stringent irrepresentable condition, which is required for variable

selection consistency of the lasso [30]. Specifically, we can use a threshold of ¢ w

for some appropriately chosen ¢;. If we additionally assume that the minimal signal strength is
of order larger than the estimation error bound, we can achieve variable selection consistency
asymptotically.

7. Experiments. We study the performance of our approaches to Granger causality detec-
tion in categorical time series. First, we compare penalized mLTD and MTD methods across
multiple simulated data scenarios in section 7.1. In section 7.2, we apply our penalized MTD
method to detect Granger causal connectivity between musical elements in a music dataset of
Bach chorales and in section 7.3 between iEEG sensors during seizures in an awake canine.

7.1. Simulated data. We perform a set of simulation experiments to compare the MTD
and mLTD model selection methods. Specifically, we compare the MTD group lasso, Li-
MTD, and mLTD group lasso methods on simulated categorical time series generated from a
sparse MTD model, a sparse mLTD model, and a sparse latent vector autoregressive (VAR)
model with quantized outputs. In the sparse VAR setting, we also compare the three proposed
methods to a penalized VAR fit using the ordinal categorical variables. For all experiments, we
consider time series of lengths T € (200, 400, 800, 1600), d € (15,25), and number of categories
m € (2,3,4,5,6). We first explain the details of each simulation condition and then discuss
the results.

Sparse MTD. For the MTD model, we randomly generate parameters by v;; ~

Zij Pij
iy zudi’
where ¢; ~ Dirichlet(a) and z;; ~ Binomial(d). We let 6 = .15, o = 5. Columns of P* are
generated according to Pllj ~ Dirichlet(y) with v = .7. (Note that here we have added
a superscript ¢ to P to specifically indicate the j to ¢ interaction, whereas previously we
dropped the i index for notational simplicity by assuming we were just looking at the series
i term.) To ensure that the columns are not close to identical in P¥ (which would imply
Granger noncausality), P% is sampled until the average total variation norm between the
columns is greater than some tolerance p. This ensures that noncausality occurs only when
P are zero, and not due to equal columns in the simulation. For our simulations, we set
p = .3. A lower value of p makes it more difficult to learn the Granger causality graph since
some true interactions might be extremely weak.
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Figure 5. AUC for data generated by a sparse MTD process. Boxplots over 20 simulation runs.

Sparse mLTD. For the mLTD model, the nonzero Z* parameters are generated by Z;f€ ~
2ijN (0,0%), where z;; ~ Binomial(§) with ¢ = .15.

Sparse latent VAR. To examine data generated from neither of the models considered, we
simulate data from a continuous time series y; € R? according to a sparse VAR(1):

(7.1) yr = Ayi—1 + €,

where ¢, ~ N (0,U2Id). The sparse matrix A is generated by first sampling entries B;; ~
N (0,0124) and then setting A;; = Bjjz;j, where z;; ~ Binomial(d) with 6 = .15. We then
quantize each dimension, y;;, into m categories to create a categorical time series x;. For
example, when m = 3, z;; = 1 if y; is in the (0,.33) quantile of {y;1,...,y:r}, and so forth.
Results. For all methods—MTD L;, MTD group lasso, and mLTD group lasso—we
compute the true positive rate and false positive rate over a grid of A values and trace out
the receiver operating characteristic (ROC) curve. We then compute the area under the ROC
curve. The results are displayed as boxplots across 20 simulation runs in Figures 5, 6, and 7 for
the categorical time series generated by MTD, mLTD, and latent VAR, respectively. We note
that the mLTD group lasso model performs best when the data are generated from an mLTD,
and likewise the MTD L; and MTD group lasso perform better when the data are generated
from an MTD. As pointed out in [19], when the groups are homogeneous in the sense that
most coefficients in the active group are nonzero, group lasso tends to perform well. This is
the case in the MTD model as the coefficients in nonzero P¥ are generated from a Dirichlet
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Figure 6. AUC for data generated by a sparse mLTD process. Boxplots over 20 simulation runs.

distribution. However, this principle is less applicable when the data are generated from
an mLTD model, as we have model misspecification. MTD with either group lasso or lasso
penalty tries to find the best MTD approximation to the true data generating mechanism.
Interestingly, for data generated from mLTD, we see improved performance as a function of
the number of categories m for all T" and d settings, while for MTD performance starts high,
dips, and goes back up with increasing m. This is probably due to the simulation conditions,
as in both MTD and mLTD models Granger causality can be quantified as the difference
between the columns of Z“”. When there are more categories, there is higher probability
under our simulation conditions that there will be some columns with large deviation from
other columns in Z%. This leads to improved Granger causality detection when it exists.
Furthermore, we notice that in general the performances of all three methods are better when
the data are generated from an mLTD model compared to an MTD model. This is again
related to the simulation conditions. In the MTD model, the columns of Z¥ are generated
from a Dirichlet distribution with values constrained between 0 and 1, and the differences
among columns are in general smaller than those in the mLTD model where the coefficients
are generated using a normal distribution. Thus the connections among time series in the
sense of Granger causality are weaker in the MTD model than in the mLTD model. The
difference in the signal strengths is illustrated in Figure SM3 in the supplementary materials.

In the latent VAR simulation, the MTD L; and the mLTD methods have comparable
performance, and both outperform the MTD group lasso approach. However, under model
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Figure 7. AUC for data generated by a sparse latent VAR process. Boxplots over 20 simulation runs.

misspecification, the relative performance of these methods might depend on how well they
approximate the true data generating mechanism. There is also evidence of worsened perfor-
mance for all three methods as the quantization of the latent VAR processes becomes finer and
the number of categories increases. This might be due to the increased extent of model mis-
specification. We additionally compare the proposed methods to a sparse VAR fit, where we
use the ordinal categorical variables directly. We observe that when the number of categories
is small, our proposed methods perform similarly to the sparse VAR approach, as not much
information is lost by ignoring the order. However, as the number of categories increases, the
sparse VAR approach performs better by taking the order into account.

As expected, across all simulation conditions and estimation methods increasing the sam-
ple size T leads to improved performance while increasing the dimension d worsens perfor-
mance.

We additionally present the median ROC curves in the accompanying supplementary ma-
terials (MTD _supplement.pdf [local/web 10.0MB]), along with points on the ROC curves cho-
sen by cross-validation and the Bayesian information criterion (BIC). In general, our numerical
experiments indicate that the values of the tuning parameter selected by cross-validation tend
to overselect edges, which has been observed in previous studies [29]. This highlights the
importance of the thresholding step to reduce false positives. In contrast, the BIC tends to
give a large tuning parameter and results in an overly sparse graph when the sample size is
small compared to the dimension; however, its performance improves considerably with large
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& =g—9

Figure 8. The Granger causality graph for the Bach Choral Harmony dataset using the penalized MTD
method. The harmony notes are displayed around the edge in a circle corresponding to the circle of fifths.
Orange links display directed interactions between the harmony notes, while green links display interactions to
and from the bass, chord, and meter variables.

sample sizes.

7.2. Music data analysis. We analyze Granger causality connections in the Bach Choral
Harmony dataset available from the UCI Machine Learning Repository [27] (https://archive.
ics.uci.edu/ml/datasets/Bach+Chorales). This dataset, which has been used previously [38,
14], consists of 60 chorales for a total of 5665 time steps. At each time step, 15 unique discrete
events are recorded. There are 12 harmony notes, {C, C#,D,F#,D#,E, F, G, G#, A, A#, B},
that take values either ‘on’ (played) or ‘off’ (not played), i.e., xj € {0,1} for j € {1,...,12}.
There is a meter category taking values in {1,...,5}, where lower numbers indicate less
accented events and higher numbers higher accented events. There is also the ‘pitch class of
the base note’, taking 12 different values and a chord category. We group all chords that occur
less than 200 times into one group, giving a total of 12 chord categories.

We apply the sparse MTD model for Granger causality selection. As the sample size is
relatively small compared to the number of time series and number of categories per series, we
choose the tuning parameter A by five-fold cross-validation over a grid of A values. However,
since cross-validation tends to overselect Granger causality relationships, we threshold the ~
weights at .01. The estimated resulting Granger causality graph is plotted in Figure 8. To
aide in the presentation of our structural analysis below, we bold all edges with ~ weight
magnitudes greater than .06.

The harmony notes in the graph are displayed in a circle corresponding to the circle of
fifths; the circle of fifths is a sequence of pitches where the next pitch in the circle is found
seven semitones higher or lower, and it is a common way of displaying and understanding
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relationships between pitches in western classical music. Plotting the graph in this way shows
substantially higher connections with respect to sequences on this circle. For example, moving
both clockwise and counterclockwise around the circle of fifths we see strong connections
between adjacent pitches, and in some cases strong connections between pitches that are two
hops away on the circle of fifths. Strong connections to pitches far away on the circle of fifths
are much rarer. Together, the results suggest that in these chorales there is strong dependence
in time between pitches moving in both the clockwise and the counterclockwise directions on
the circle of fifths.

We also note that the chord category has very strong outgoing connections, implying it
has a strong Granger causality relationship with all harmony pitches. This result is intuitive,
as it implies that there is strong dependence between what chord is played at time step t and
what harmony notes are played at time step ¢t + 1. The bass pitch is also influenced by chord
and tends to both influence and be influenced by most harmony pitches. Finally, we note that
the meter category has much fewer and weaker incoming and outgoing connections, capturing
the intuitive notion that the level of accentuation of certain notes does not really relate to
what notes are played.

As mentioned in section 3.2.1, the MTD model is much more appropriate than the mLTD
model for this type of exploratory Granger causality analysis: The ~ weights intuitively de-
scribe the amount of probability mass that is accounted for in the conditional probability
table, giving an intuitive notion of dependence between categorical variables. In the mLTD
model, in contrast, there is not as an intuitive interpretation of link strength between two
categorical variables due to the nonlinearity of the softmax function. For this reason, it is not
clear how to define the strength of interaction and dependence given a set of estimated Z¥ pa-

rameters. We still attempted to draw such a comparison. We chose to use the normalized Lo
12|

VM /T

However, this metric does not have a direct interpretation with respect to the conditional

probability tensor. Due to these interpretational difficulties, we present the results of the
mLTD Bach analysis in the accompanying supplementary materials (MTD _supplement.pdf
[local/web 10.0MB]). We note here that the final graph shows some of the structure of the
MTD analysis: strong connections between chord and the harmony notes, and some strong
connections between notes on the circle of fifths. However, in general, the resulting graph is
much less sparse and interpretable than the MTD graph.

norm of each Z% matrix, as a measure of connection strength in the mLTD model.

7.3. Functional connectivity in canine iEEG. We analyze functional connectivity among
intracranial electroencephalogram (iIEEG) sensors during seizures in an awake canine [10].
The data was collected from a single canine undergoing seizures and is available from http:
//www.ieeg.org. Recent time series segmentation of iIEEG data around seizure events has
shown that different discrete dynamic states are active before, during, and after a seizure
onset [45, 10]. We analyze Granger causal connectivity between the iEEG recording channels
at the level of these discrete dynamic states, providing a Granger causal analysis at a more
abstract level. Specifically, we segment the continuous measurements into nominal categorical
states using a Markov switching autoregressive model. This analysis illustrates which channel’s
dynamic states are predictive of another channel’s states.

Each of 18 iEEG recordings from a single dog contains d = 16 channels and 7" = 20000
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(d) Seizure 4 (e) Seizure 5 (f) Seizure 6

Figure 9. Granger causality graphs estimated from a sparse MTD model across six different seizure events
for canine iEEG data.

time points corresponding to a 2 minute window around a seizure event. The time series
for each channel was segmented into a categorical time series with m = 5 states using a
Markov switching autoregressive model of multiple time series [46, 45]. See the supplementary
materials for details on the segmentation model and procedure.

We separately apply our sparse MTD model to the resulting iEEG multivariate categorical
time series from 18 different seizure events. For each seizure, the hyperparameter A was varied
over 800 values sampled uniformly between 0.01 and 100000. As the sample size is large, the
final model was selected by the BIC. The resulting estimated graphs for six representative
seizure events are shown in Figure 9. For aided interpretability, only edges that contribute
more than 1% of the total conditional probability tensor are displayed. In Figure 10, we
display two graphs that summarize Granger causality across all 18 seizures. In the first, we
compute the average edge weight across all seizures and threshold the final graph at 0.5%.
In the second, for each edge we display the number of times that edge is included across all
seizures.

The graphs in Figures 9 and 10 indicate persistent shared structure across seizures. The
four nodes in the same row represent a strip of four electrodes that were placed along the
anterior-posterior direction. There were two parallel strips of four electrodes on each hemi-
sphere. Most connections appear horizontally across the sensor locations, corresponding to
anterior-posterior connections among regions within the same strip, which should be close
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Figure 10. (Left) Graph weighted by the average across 18 seizures. (Right) Graph weighted and colored
by the number of edge inclusions across 18 seizures.

both spatially and functionally. The few vertical connections are between adjacent rows,
which represent connections between strips next to each other. Some groups of edges, like
1—-9,14 513,13 >14,3 - 7,7— 3,4 - 8,8 - 4,12 — 16,16 — 12 and others, appear in
at least 15 of the seizure graphs, showing the persistence in some Granger causal connectivity
across different seizure events. Future work aims to assess the clinical significance of these
findings. But, at a high level, we have identified that autoregressive states, which capture the
frequency content in individual channel signals, are correlated across time in a structured and
sparse manner during seizure events.

8. Discussion. We have proposed a novel convex framework for the MTD model, as well
as two penalized estimation strategies that simultaneously promote sparsity in Granger causal-
ity estimation and constrain the solution to an identifiable space. We have also introduced
the mLTD model as a baseline for multivariate categorical time series that, although straight-
forward, has not been explored in the literature. Novel identifiability conditions for the MTD
model have been derived and compared to those for the mLTD model. Finally, we have devel-
oped both projected gradient and Frank—Wolfe algorithms for the MTD model that harness
the new convex formulation. For the projected gradient optimization, we also developed a
Dykstra projection method to quickly project onto the MTD constraint set, allowing the MTD
model to scale to much higher dimensions. Our experiments demonstrate the utility of both
the MTD and the mLTD models for inferring Granger causality networks from categorical
time series, even under model misspecification.

We have assumed k& = 1 for simplicity, but the proposed methods generalize to the case
where k > 1. As for VAR processes, a general higher-order Markov chain can be rewritten as a
first-order chain. Specifically, for a d-dimensional Markov chain x; = (x4, ..., x4 ) of order k >
1, we can define a dk-dimensional vector y; = (yi¢, ..., Ykt), Where yjy = x4—j forj =1,... k.
The random vector y; is a first-order Markov chain, and we only need to model the transition
probability of yi;|y:—1 since the transitions for the other components are deterministic. We
can then apply the proposed first-order MTD and mLTD models and develop algorithms and
performance guarantees in a similar fashion. However, in this case, Granger noncausality
between x; and x; corresponds to a group of k matrices being 0 simultaneously and the group
lasso penalty should be used for Granger causality selection. As in the case of k = 1, such a
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generalization assumes that there is no interaction between different components of x;, but it
also assumes no interaction between different lags. An alternative generalization that allows
interaction between time lags is to consider a pairwise transition tensor Zﬂjfit,xj(t_l),...,xj(t_k) for
both the MTD and the mLTD models, but here the number of parameters grows exponentially
in k instead of linearly.

There are a number of potential directions for future work. The consistency of high-
dimensional autoregressive GLMs with univariate natural parameters for each series has re-
cently been established [17]. With less stringent parametric assumptions, the MTD model
offers a more flexible framework than autoregressive GLMs. To handle this additional flexi-
bility, we need additional assumptions on the Gram matrix and the spectral properties of the
process when deriving an upper bound for the estimation error. We also have an extra log(7")
factor in the upper bound compared to the results for lasso-type estimators in the independent
data setting. This log factor also appears in [17]. Whether it can be removed or not would
be an interesting question for future research. Further theoretical comparison between mLTD
and MTD is also important. For example, to what extent may an mLTD distribution be
represented by an MTD one, and vice versa; or, to what extent are both models consistent for
Granger causality estimation under model misspecification? Our simulation results suggest
that both methods perform well under model misspecification but more general theoretical
results are certainly needed. Our sparse MTD framework also presents a simple approach
to sparsity estimation under simplex constraints. As mentioned in section 4.1, typically L
penalties are avoided under simplex constraints since the sum is constrained to equal one.
Many authors have proposed a variety of nonconvex sparsity regularizers that demand more
involved optimization routines [35]. Inspired by our work with MTD, a simple solution is to
leave some of the important coefficients known to be in the model unpenalized, e.g., treasury
bonds in a sparse portfolio optimization [25] or large background clusters in sparse clustering
and density estimation [24, 35].

It would also be interesting to explore other regularized MTD objectives, such as the
nuclear norm on Z’ when the number of categories per time series is large. This penalty
would select for sparse dependencies while simultaneously sharing information about transi-
tions within each Z7. While we have considered sparsity in 7, in other applications including
categorical time series with large state-spaces, such as language modeling, the entries within
each Z7 might be sparse. Comparing the projected gradient and Frank-Wolfe algorithms
in these sparse, large state-space settings would be interesting. Another possible extension
includes the hierarchical group lasso over lags for higher-order Markov chains [31] to auto-
matically obtain the order of the Markov chain. Overall, the methods presented herein open
many new opportunities for analyzing multivariate categorical time series both in practice and
theoretically.
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