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Abstract. We investigate the amount of primordial information that can be reconstructed
from spectroscopic galaxy surveys, as well as what sets the noise in reconstruction at low
wavenumbers, by studying a simplified universe in which galaxies are the Zeldovich displaced
Lagrangian peaks in the linear density field. For some of this study, we further take an
intuitive linearized limit in which reconstruction is a convex problem but where the solution
is also a solution to the full nonlinear problem, a limit that bounds the effectiveness of
reconstruction. The linearized reconstruction results in similar cross correlation coefficients
with the linear input field as our full nonlinear algorithm. The linearized reconstruction
also produces similar cross correlation coefficients to those of reconstruction attempts on
cosmological N-body simulations, which suggests that existing reconstruction algorithms are
extracting most of the accessible information. Our approach helps explain why reconstruction
algorithms accurately reproduce the initial conditions up to some characteristic wavenumber,
at which point there is a quick transition to almost no correlation. This transition is set by
the number of constraints on reconstruction (the number of galaxies in the survey) and not
by where shot noise surpasses the clustering signal, as is traditionally thought. We further
show that on linear scales a mode can be reconstructed with precision well below the shot
noise expectation if the galaxy Lagrangian displacements can be sufficiently constrained. We
provide idealized examples of nonlinear reconstruction where shot noise can be outperformed.
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1 Introduction

As we push within sight of mining the remaining cosmological information from the cosmic
microwave background, there has been an increasing theoretical emphasis on understand-
ing the late-time growth of cosmic structure as probed by galaxy redshift surveys e.g. [1–13].
While we appear to have sufficient perturbative control to wavenumbers of k ≈ 0.15 h Mpc−1

at z ∼ 0.5 to obtain unbiased cosmological constraints (e.g., [8, 14, 15], although see [16]),
it is unsettled whether galaxy surveys can extract useful constraints to higher wavenum-
bers. Furthermore, at low wavenumbers it is unclear whether existing methods achieve the
minimum possible error.

The traditional approach to deriving cosmological bounds from large-scale structure
measurements compares lower order statistics (such as the power spectrum and, perhaps, the
bispectrum) measured from observational datasets with perturbation theory e.g. [3, 14, 17],
large cosmological simulations e.g. [18–20], or quicker methods that take hybrid approaches
e.g. [21–24]. One disadvantage of limiting the analysis to lower order statistics is that informa-
tion becomes progressively entangled in higher order correlations with increasing wavenum-
ber. This entanglement has led to efforts that attempt to reconstruct the linear density field
by in essence running the equations in reverse [1, 4, 25]. Such reconstruction methods have
been applied to baryon acoustic oscillation (BAO) measurements in order to sharpen these
features [26, 27], and they are anticipated to markedly improve the constraining power of
future BAO surveys [28].

Inspired by this success at reconstructing the BAO, a more recent focus has been on
understanding the limits for how much primordial information can be extracted (rather than
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focus solely on sharpening the BAO). One class of studies use perturbative bias expansions [9,
13, 29–31] and, an even more ambitious class attempts to compare fully nonlinear theories
to data [2, 5, 6, 10–12]. The simplest (albeit computationally intractable) formulation of
the latter class would run simulations with all possible random initial condition fields, find
the best match to the observations and, then, take the power spectrum of that simulation’s
density field to constrain the cosmology. In practice, various optimizations have been devised
such as assuming the displacement is a potential field and that the tracers were initially
homogeneous [8, 32], improving MCMC algorithms so that the expensive posterior evaluations
are more likely to be accepted [6, 32], using machine learning algorithms to extrapolate from a
more-easily-simulated coarse density grid to something more akin to a halo field [11], evolving
forward the density field with less expensive techniques than full simulations [6, 12, 29] and
using methods that find some local posterior maximum and assuming/arguing that the biases
from this being a local maximum are correctable [10, 12]. The efficacy of reconstruction
tends to be similar regardless of methodology: at low redshifts, reconstruction of the initial
conditions is effective to wavenumbers of k ≈ 0.5 Mpc−1 given a dense enough galaxy survey,
potentially extending the wavenumber reach over perturbative methods by a factor of a
few [6, 8, 12, 32].

We will henceforth refer to these fully nonlinear efforts as “reconstruction,” even though
the name was first coined in the context of spectroscopic galaxy surveys for reversing nonlin-
ear evolution specifically in the BAO [28]. We further specialize to the class of reconstruction
algorithms that start with a halo/galaxy field rather than the exploratory studies that recon-
structed from a full 3D grid of the nonlinear density field. There is a significant difference
between these two, as the former version of reconstruction is a highly under-constrained
problem — there are many more modes that shape the galaxy field than there are observed
galaxies. This aspect shapes the characteristics of the reconstructions presented here. (The
best algorithms applied to the full density field are able to reconstruct wavenumbers that
are 2 − 3× higher to k ∼ 1 Mpc−1 [33]. The limit of full density field algorithms is likely set
instead by where information is erased by nonlinear evolution, such as shell crossings.)

Nonlinear galaxy reconstruction algorithms generically find that they are able to recon-
struct the large-scale modes in a manner that appears to be roughly limited by shot noise at
low wavenumbers. Above some wavenumber, their efficacy falls off a cliff, with studies finding
that over a factor of ∼ 2 in wavenumber the reconstructed field goes from highly correlated
to uncorrelated with the input field [11, 34]. We aim to understand the principles that shape
this seemingly generic behavior. Another unresolved issue is whether shot noise sets the floor
for how well low wavenumber modes in the galaxy field can be reconstructed. This issue is
of high import for detecting the large-scale signatures of primordial non-gaussianity [35] and
neutrino mass [36]. Studies have shown that galaxy surveys, when weighting by halo mass,
can have effective noises that are substantially smaller than the naive number-weighting shot
noise estimate, but with a character that is still shot noise-like [14, 37, 38]. However, there
is no understanding beyond that derived from brute-force numerics of the degree to which
shot noise can be avoided. We present results that suggest that at low wavenumbers it may
be possible to evade shot noise by a larger factor than has yet been achieved.

Density field reconstruction addresses perhaps the deepest conceptual issue in large-
scale structure — the ultimate limit for reconstructing primordial information from a galaxy
survey. Because the methods for reconstructing the density field are so complex and com-
putational expensive, they have not afforded a conceptual understanding of what sets this
limit, even in a simplified setting that ignores the additional complexities of redshift space
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distortions and baryonic physics. We also ignore these complicating factors here. We at-
tempt to make traction by understanding reconstruction in a toy universe in which galaxies
of halo mass M reside at the peaks of a Gaussian random linear density field, with the con-
dition that these peaks exceed the collapse threshold for a spherical system when the field is
smoothed on the Lagrangian mass scale M . These peaks are then displaced with linear order
Lagrangian perturbation theory (the Zeldovich approximation). This setup is motivated by
the successes of (1) excursion set theory in explaining the halo mass function e.g. [39, 40] and
(2) of Lagrangian perturbation theory [4, 41, 42]. We highlight the visualizations in [4], which
show that the Zeldovich approximation fares excellently at describing particle displacements,
erring primarily on virialized scales.

This paper is set up as follows. Section 2 discusses the scales involved in reconstruction,
highlighting a curious coincidence that further motivates this work. Section 3 presents the toy
problem that we aim to solve, as well as a linear simplification. Section 4 studies in detail the
linear model, a setup that has bearing on understanding the limits of reconstruction. Lastly,
section 5 considers our full nonlinear model.

Throughout we adopt the discrete Fourier convention in a cubic volume V that is com-
mon in cosmology with inverse transform given by F (x) = V −1∑

∀k F̃ (k) exp[−ikx], where
the k cover a 3D grid with spacing 2π/V 1/3, the sum runs over both positive and negative
values of each component of the wavevector, and the tilde denotes the Fourier dual. All
of our calculations consider z = 0.5 and, unless otherwise specified, are in the concordance
ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7, ns = 0.96, σ8 = 0.8, and Ωb = 0.045.

2 Characteristic wavenumbers that shape reconstruction

We are aware of several characteristic wavenumbers that may affect our ability to extract
the linear modes from spectroscopic galaxy observations. Curiously, in our universe they all
fall within a factor of a few of one another at low redshifts and for motivated galaxy number
densities. The first is the nonlinear wavenumber kNL, although it enters the least frequently
in this paper’s discussion. We define it as the solution to

∆L(k)2 ≡ k3

2π2
D(z)2PL,0(k) = 1. (2.1)

Here PL,0 is the z = 0 power spectrum of the linear matter overdensity, and D(z) is the
linear growth factor normalized to a present value of unity (such that the linear power at
any redshift is PL = D(z)2PL,0). Solving for this scale in the concordance ΛCDM cosmology
yields kNL = 0.2 Mpc−1 at z = 0.2 and kNL = 0.5 Mpc−1 at z = 1.0. The nonlinear
wavenumber crudely bounds where perturbation theory is applicable.1 Around kNL, we can
approximate the dimensionless linear matter overdensity power spectrum as

∆L(k)2 =

(
k

kNL

)3−neff

, (2.2)

where neff is an effective power-law index. For our concordance ΛCDM cosmological model,
neff ≈ 2 at k ∼ 0.1 − 1 Mpc−1, wavenumbers where reconstruction can be effective.

1Formally, the density variance — which defines our nonlinear scale — is not the only parameter that
shapes nonlinearity in large-scale structure in the perturbative limit. The linear displacement contributed by
large and small scales relative to the wavenumber in question are additional ordering parameters e.g. [44].
The latter nonlinear parameter does enter into our discussion, setting the characteristic wavenumber kdisp

(eq. (2.7)).
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In addition to the nonlinear wavenumber, there is the wavenumber where the shot noise
power is equal to the linear clustering power:

b2
LD(z)2PL,0(kS) = n̄−1

power law︷ ︸︸ ︷
−−−−→ kS =

(
2π2b2

Ln̄k
neff−3
NL

)1/neff

, (2.3)

ΛCDM︷ ︸︸ ︷
−−−−→ kS ≈ 0.4 Mpc−1

(
b2

LD
2n̄−3

)0.5
, (2.4)

where n̄−3 = n̄/[10−3Mpc−3], n̄ is the galaxy number density, and bL is the galaxy linear
bias.

Additionally, there is another characteristic wavenumber that is not mentioned in dis-
cussions of reconstruction but that we argue is relevant — the “constraints wavenumber”,
kC . We define kC as the wavenumber where the number of modes with smaller wavenumbers
is equal to the number of constraints, which in the large-volume limit is solved by:

N n̄V =
V k3

C

2π2
−−−−→ kC = 0.4

(N
4

)1/3

n
1/3
−3 . (2.5)

We will motivate N ≈ 3 constraints per galaxy, owing to the three positions for each galaxy,
and sometimes N ≈ 4 when the galaxies’ halo masses can be precisely estimated. In a picture
where reconstruction is able to constrain large-scale modes before small-scale ones, kC should
bound the wavenumbers that can be reconstructed.

Another characteristic wavenumber is set by the Lagrangian size of halos, which approx-
imates the maximum wavenumber that influences halo formation. We define this wavenumber
to be

kM = 3R−1
H = 1.7 Mpc−1

(
M

1012M�

)−1/3

, (2.6)

where M is the halo mass and RH ≡ [3M/(4πρm)]1/3. At kM , the Fourier dual of a real-space
tophat window function with unit support is equal to ≈ 1/3.

Lastly, there is the scale where the displacement from wavenumbers greater than kdisp is
larger than the halo Lagrangian radius, RH. We estimate this wavenumber by using that the
aligned pairwise variance of the Zeldovich Approximation displacement that is contributed
by modes with wavenumbers greater than k,

σΨ(k)2 =

∫ ∞

k

dk′

6π2
PL(k′), (2.7)

and then solving σΨ(kdisp) = RH for kdisp. We will show that to the extent that this wavenum-
ber is much smaller than the previous characteristic wavenumbers, the modes that determine
the position of a halo may be reconstructed well enough to make the nonlinear reconstruction
problem approximately convex (§ 5).

It is notable that in the concordance cosmology all of these characteristic wavenumbers
are within a factor of several of one another. Figure 1 shows these wavenumbers as a function
of the minimum halo mass surveyed, assuming 100% completeness so that all halos above the
specified mass are included in the survey weighted by number density. The left panel is for
z = 0.5, and the right for z = 2. Intriguingly, the constraints scale kC and the shot noise scale
kS are nearly the same at all halo masses. This similarity is a coincidence of our cosmology, as
these characteristic wavenumbers would scale differently with M in cosmologies with different
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Let us assume a survey with cubic volume V with a list of galaxies (i.e. overdensity
peaks) with positions xj and masses Mj for j ∈ [0, N). The condition for peak heights
reduces reconstruction to N constraint equations:

V −1
∑

∀k

δ̃ke
−ik·[xj−ψ(qj |δ̃k′ )]WMj (k) = δc(Mj) for j ∈ [0, N), (3.1)

where qj is the Lagrangian position of the jth halo and WM (k) is a window function that
approximates the Lagrangian size of the halo (which hosts the ‘observed’ galaxy), here taken
to be a tophat in real space, and ψ is the Zeldovich approximation displacement vector that
is given by3

ψ(qj |δ̃k) = −iV −1
∑

∀k

k

k2
δ̃ke

−ik·qj . (3.2)

We want to use the constraints given in eq. (3.1) (plus possibly additional constraints dis-
cussed shortly) to reconstruct the linear theory modes δ̃k. As emphasized in § 2, if we take
the maximum wavenumber that contributes to the formation of halos for masses typical of
modern spectroscopic galaxy surveys (the wavenumber “cutoff” in WM ), this is a highly
under-constrained problem with (infinitely) many solutions. We aim to select a solution that
is as close as possible to the input density field.

One difficulty with the above setup is that ψ is a function of the Lagrangian coordinate
of each halo qj , which is not an observable. One can avoid this difficulty by substituting in
the Taylor expansion ψ(q) = ψ(x) − (ψ(x) · ∇)ψ(x) + . . . or by some other optimization
technique. However, we instead make the simplifying assumption that the displacement
evaluated at the Lagrangian position of a galaxy can be calculated from ψ and the final
position of the galaxy xj . We expect that the uncertainty in this mapping will not be what
sets the efficacy of reconstruction.4

With this simplification, it is useful to instead formulate our equations in Lagrangian
space. The master set of equations we are considering becomes

V −1
∑

∀k

δ̃ke
−ik·[qj−∆ψ(qj |δ̃k′ )]WMj (k) = δc(Mj) for j ∈ [0, N), (3.3)

where ∆ψ ≡ ψ−ψTRUTH. Here ψTRUTH is the true displacement computed from the input
δ̃k — i.e. the field we aim to reconstruct. One might worry that now we have written the
problem in terms of some unobservable quantities (qj , ψTRUTH), rather than our observables
(xj ,Mj). However, this is a sleight of hand as qj = xj − ψTRUTH(qj), noting also the
simplification in the previous paragraph.

We can identify linear equations that, if satisfied, also solve eq. (3.3), namely for j ∈
[0, N):

δc(Mj) − V −1
∑

∀k

δ̃ke
−ik·qjWMj (k) = 0; (3.4)

ψ(qj |δ̃k) −ψTRUTH(qj) = 0. (3.5)

3It might be more realistic to also include the halo window function WM (k) in the integral in eq. (3.2) for
ψ, as modes with wavelengths smaller than the halo scale do not contribute significantly to its displacement.
However, we find that none of our results are appreciably changed if we include this factor. One could also
add to the displacement vector an effective term ∝ kδ̃k owing to small-scale dynamics [3, 47], but we suspect
it also will have limited effect.

4Our results appear insensitive to ∼ 2 Mpc errors in the displacement that would occur from the laziest
(zeroth order) approximation ψ(qj) ≈ ψ(xj).
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These are the conditions that the density smoothed on the scale WMj adds up to the collapse
threshold δc(Mj) at the Lagrangian position qj and that the displacement is the true dis-
placement. They embody more information than an observer is able to access as they require
knowledge of the qj and hence ψTRUTH(qj). Solutions to these conditions are not the only
solutions to our nonlinear equations (eq. (3.3)), but solutions to these linear equations clearly
would be preferred ones. Despite this linear system of equations also being extremely under-
constrained (as these 4N equations should be far fewer than the total number of modes),
these equations’ linearity in δ̃k means that one can always find a solution, whereas gradi-
ent descent-like methods for solving the nonlinear equations may easily get stuck in local
minima (§ 5).

“Reconstruction” from the linear eq.s 3.4 and 3.5 will be more successful than ef-
forts starting with the nonlinear master equation (eq. (3.1)) as these equations require
ψTRUTH(qj), which a lowly cosmologist doing reconstruction would have no way of knowing
exactly. Therefore, “reconstruction” using these linear constraint equations bounds the ef-
fectiveness of reconstruction. We later obtain solutions to our nonlinear equations that come
close to saturating the bounds placed by solving the linear equations. Furthermore, we show
that other reconstruction algorithms that have been applied to the density field in N-body
simulations [11, 34] come close to saturating these bounds.

One might worry that our idealized setup does not capture all the information used by
nonlinear reconstruction algorithms, which are trying to model the full halo distribution. For
example, the setup outlined so far does not account for halos forming at density peaks in
Lagrangian space:

− iV −1
∑

∀k

kδ̃ke
−ik·[qj−∆ψ(qj |δ̃k′ )]WMj (k) = 0 for j ∈ [0, N). (3.6)

Additionally, there may be other constraints on the shape of the surrounding Lagrangian
overdensity, like

− V −1
∑

∀k

k2δ̃ke
−ik·[qj−∆ψ(qj |δ̃k′ )]WMj (k) = −`−2

j δc(Mj) for j ∈ [0, N), (3.7)

such that, for example, if the characteristic size is `j � Rj ≡ (3M/4π)1/3 the halo is likely
quickly growing in mass. Because the δ̃k in these additional constraint equations are weighted
by powers of k, they are less important for constraining the low wavenumber modes that can
be reconstructed accurately. Indeed, we demonstrate in § 3.2 that adding the three peak
constraints per galaxy, eq. (3.6), results in a modest improvement in the reconstructed field.
Lastly, if our galaxy survey is complete for halos above a given mass, then there should be
constraints enforcing that there are not other peaks on this mass scale. However, in practice
the solutions we find tend not to include many additional peaks, and so this condition is
more or less satisfied naturally.

3.1 Conditioning to select a solution and solving (the linearized toy problem)

Our under-constrained system of equations can be cast as a least squares optimization prob-
lem. Specializing first to the linear set of conditions, which require godlike knowledge of
ψTRUTH(qj), we search for the global minimum of some or all of the terms in the following
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loss function:

L =
N∑

j=0

[
Lagrangian overdensity (L)︷ ︸︸ ︷(

δc(Mj) − V −1
∑

∀k

δ̃ke
−ik·qjWMj (k)

)2

+

displacements (D)︷ ︸︸ ︷
`−2

D

(
ψ(qj |δ̃k) −ψTRUTH(qj)

)2

+ `2P

(
V −1

∑

∀k

kδ̃ke
−ik·qjWMj (k)

)2

︸ ︷︷ ︸
peaks (P)

]
+ C(δ̃k)︸ ︷︷ ︸

regularization

. (3.8)

We later consider the nonlinear case in a very similar setup. This problem has infinitely
many minima with L = 0 if C = 0, since the number of modes that shape the density field is
much greater than the number of constraint equations (7N if we include all three conditions
in eq. (3.8)). The regularizer C has to supplement with sufficiently many conditions to
constrain the system. Furthermore, C has to be the square of an expression linear in δ̃k to
retain the desirable property of L being positive and solvable with linear algebra (this choice
is called Tikhonov regularization; [48]). Fortuitously, the Gaussian mode-amplitude prior
that reconstruction algorithms employ e.g. [10] fall exactly in this category, generalizing in
our noiseless case to the Ridge Regression regularization condition of

C(δ̃k) = σ2
∑

∀k

|δk|2
PL(k)V

, (3.9)

which is a special case of Tikhonov regularization. While previous reconstruction algorithms
are phrased in terms of maximizing a posterior rather than a ‘noiseless’ loss function, the
loss function is analogous to the logarithm of the posterior when divided by 2σ2. The
reconstruction “noise” in our case (and that we argue holds for posterior reconstruction
algorithms) is not shaped significantly by the “error” parameter σ, but rather by how modes
project onto the set of several times N well-constrained quantities. Modes that are not
constrained are set to zero by this regularization. Indeed, we show later that our solution
to linear equations depends negligibly on choice of σ once σ2 . 0.1, which can be recast in
terms of the error on e.g. the displacements for modes to be constrained at a cosmologically
interesting level. Finally, the regularization does assume a cosmology to calculate the linear
power spectrum, PL(k) (and we use here the PL(k) of our background cosmology), but our
results are relatively insensitive to this assumption for reasons that will be discussed.

One issue with using the Gaussian regularization (eq. (3.9)) is that when a mode is not
well constrained, the solution that minimizes L is δ̃k = 0. Thus, the global minimum will be
a biased solution that favors lower power in less constrained pixels. This is not a surprise and
is analogous to the down-weighting of noisy pixels in optimal map making (Weiner filtering).
We have also investigated a Tikhonov regularization condition that preferences a particular
random phase field with power spectrum given by the input (and with the same [V PL(k)]−1

weighting as above). This alternative setup retains the property of linearity, but conditions
to a non-Gaussian field. We find that the wavenumbers that can be reconstructed are not
significantly changed in this alternative regularization scheme.

In addition to the regularization condition, we need to choose some physically motivated
values for the scales that appear in L, namely `D and `P, as these will weight the equations
in different manners. We take `D = `P = 10 Mpc for our fiducial values as motivated
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in footnote 5.5 We have decrease/increased `D and `P by a factor of 5 and find that the
cross correlation coefficient of our solution with the truth is negligibly altered. This lack of
dependence we think owes to the under-constrained nature of problem: there are solutions
that satisfy all our constraints perfectly in the limit that the regularizer normalization σ → 1
(§ 4.2). When we turn to the nonlinear problem in § 5, `D and `P no longer are relevant.

3.2 A numerical realization of a simplified universe

We now design a realization of the universe that embodies our toy picture of a critical
overdensity threshold in Lagrangian space plus its Zeldovich approximation displacement.
We further desire the spectrum of halo masses to match the halo mass function found in N-
body simulations. To achieve the latter, we implement a model that is motivated by extended
Press-Schechter theory [39], except that it also attempts to capture halo discreteness. This
algorithm is most analogous to the ‘peak patch’ scheme for generating a galaxy field of [46, 49].

To create the linear matter overdensity field, we generate a Gaussian random field with
power spectrum PL(k) in a cube of volume V with N3

s discrete samples on a grid. We then
smooth the overdensity field on different scales with a tophat in real space specified by its
enclosed Lagrangian mass M , starting with the largest mass scale and moving to smaller
and smaller masses. For the field filtered at each smoothing scale δM , we identify all the
peaks that satisfy δM (z) > δc, where δc = 1.7 as motivated by calculations in spherical
collapse [50]. Starting with the highest peak, we mark off a spherical Lagrangian region
of mass M ; all cells that fall within this region can no longer be used as the center of a
halo. We further associate the jth peak with a halo specified by its Lagrangian position qj

and mass Mj . The density field is then smoothed over a smaller scale, and the process is
repeated, heeding the prior exclusions. The algorithm results in a list of ‘halo’ positions,
masses, and peak overdensities. To generate the real space position of a halo xj , we then
displace the peak with its Zeldovich approximation displacement, ψTRUTH(qj), where we
remind the reader that ‘TRUTH’ indicates the displacement is calculated with the linear
overdensity field generated by this algorithm rather than the reconstructed linear field.

Figure 2 shows the mass function that results from this algorithm. The thick black curve
is the fit to the mass function in cosmological N-body simulations of Jenkins et al. [43]. For
the highest resolution calculations shown, our model does well at latching onto the Jenkins
mass function, with a small overshoot at the largest masses. At the ‘fiducial’ resolution

5We can weakly motivate values by expanding eq. (3.10) in ∆ψ such that

V −1
∑

∀k

δ̃ke−ik·qj WMj
(k)
[
1 − ik · ∆ψ −

1

2
(k · ∆ψ)2 + . . .

]
= δc(Mj) for j ∈ [0, N), (3.10)

In the square brackets, the different terms bear semblance to the Lagrangian overdensity, the peak condition,
and the peak shape condition. Defining δ̂c(q, Mj) ≡ V −1

∑
∀k

δ̃ke−ik·qWMj
(k) and `j describes the jth peak’s

radius of curvature (eq. (3.7)), then

(
δ̂c(qj , Mj) − δc(Mj)

)
+ ∆ψ · ∇q δ̂c(q, Mj)

∣∣∣
qj

−
δc(Mj)

6`j
2

∆ψ
2 + . . . = 0 for j ∈ [0, N), (3.11)

assuming that the peak curvature and displacement are uncorrelated to deduce the last term. eq. (3.11) is
somewhat analogous to our loss function (L) but where the terms related to the Lagrangian density, peaks
and displacements have physically motivated coefficients rather than the parameters `D and `P. First, we
anticipate that the curvature radius at peak, `j , is likely somewhat larger than the Lagrangian halo size or
RH ∼ 3 Mpc for halos in the mass range we consider. For simplicity, and because of the factor of 6 in
the denominator, we set `D = 10 Mpc. We seldom consider the peaks constraint, nor does equation (3.11)
motivate a clear choice for `P.
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displacement-only solution (given by the corresponding dashed curves) as expected. Yu et al.
(2017) considered three redshifts and found little dependence with redshift. A lack of redshift
dependence trivially results for our linear reconstruction, as only the halo mass function has
redshift dependence in the linear equations and the halo mass function is of little importance
for the displacement constraints used for this comparison. Shell crossing, which erases infor-
mation in a redshift-dependent manner [12] and is not captured in our linear model, is one
effect that could impart a redshift dependence. The lack of redshift dependence in Yu et al.
suggests shell crossing may not be a principal limitation.

Next, let us consider the reconstruction in Modi et al. (2018) for their fiducial specifica-
tions of Mmin = 5×1012M� and n̄ = 3×10−4Mpc−3. Modi et al. (2018) used a neural network
to extrapolate a low resolution N-body simulation gridded in 4.5 Mpc cells onto a finer grid.
We find that our displacement-only solution agrees well with their result, whereas adding the
Lagrangian overdensity constraint results in our r having a tail to higher wavenumbers that
outperforms the r in Modi et al. (compare the black solid curve with the black dotted curve).
As their 4.5 Mpc cells are two times larger than the Lagrangian radius at their minimum halo
mass, this lower resolution may make the reconstruction of Modi et al. (2018) less sensitive
to the constraints owing to halo peak shapes and, hence, their results better approximated
by our displacement-only reconstruction. Indeed, some calculations that follow suggest that
this should be the case.

Both the Yu et al. (2017) and Modi et al. (2018) nonlinear reconstructions do not
reproduce the small error found by our linear reconstruction at the lowest wavenumbers.
The low-k reconstruction error of Yu et al. (Modi et al.) is more or less consistent with being
limited by shot noise for number-density (mass-density) weighting. Our linear reconstructions
are able to produce errors well below the shot noise floor at the lowest wavenumbers, a feature
we discuss in § 4.2.

4.2 (In)sensitivity to regularization parameter σ and sub-shot errors

All of our reconstruction calculations presented so far adopt σ = 0.01 for the regularization
parameter (cf. eq. (3.8)). Larger values of σ will increasingly tilt the convex loss function in
our linearized problem. The more poorly a mode is constrained by the galaxy field constraint
equations, the more sensitive it should be to the choice of σ. However, figure 7 shows that
values of σ ∼ 1 are required to have a substantial effect on the cross correlation coefficient.
This independence suggests that the modes that are constrained by the galaxy constraints
are typically constrained at the level var[δ̃k] ∼ V PL(k) or better.

This σ independence may seem puzzling, as there are wavenumbers where modes appear
to be poorly constrained with r(k) � 1, yet they are insensitive to even the highest σ shown.
Indeed, some modes that are reconstructed quite poorly with r ∼ 0.1 are the least sensitive to
σ! What reconciles this apparent contradiction is that ≈ 4N parameters are well constrained
in our reconstructions using the displacement and Lagrangian overdensity constraints (L+D),
but these parameters are not necessarily the Fourier modes. Unconstrained parameters are
projected to zero by the regression. The projection of the Fourier modes onto the constrained
eigen-basis shapes the value of the cross correlation coefficient.

To understand this mathematically, we can recast our least squares problem in terms
of matrix algebra, writing our loss function as

L =
∑

C

||ACχ̃− bC ||22 + σ2||χ̃||22, (4.2)
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conditions:

[AL]lm =

√
PL(km)

V
e−ikm·ql , (4.4)

[AD,j ]lm = −i`−1
D

√
PL(km)

V

km,j

k2
m

e−ikm·ql , (4.5)

where we have ignored factors of WMl
(k) as this simplification aids subsequent expressions

(and halo exclusion results in a similar effect), and the columns include all wavevectors. The
factors of PL(k) in the above matrices arise from the definition of AC , chosen in order for our
mode parameters to be normalized as χ̃ ≡ δ̃k/

√
V PL(k) such that our regularizer simplifies

to the form in eq. (4.2). To understand the size of the singular values Σii, we first calculate

ALA
†
L =




ξL(RH,0) ξL(q0 − q1) ξL(q0 − q2) . . . ξL(q0 − qN−1)
ξL(q1 − q0) ξL(RH,1) ξL(q1 − q2) . . . ξL(q1 − qN−1)

. . . . . . . . . . . . . . .
ξL(qN−1 − q0) ξL(qN−1 − q1) ξL(qN−1 − q2) . . . ξL(RH,N−1)


 , (4.6)

where ξL(r) ≡ 〈δ(x)δ(x + r)〉 = V −1∑
∀k PL(k)e−ik·r is the linear correlation function,

and we have approximated the effect of the window functions that we dropped previously
by evaluating the diagonal at RH,j , indicating the Lagrangian radius of the jth halo. The

eigenvalues ofALA
†
L are equal to the Σ2

ii, the square of the singular values ofAL. The form of

ALA
†
L given in eq. (4.6) suggests a well conditioned matrix with Σ2

ii ∼ ξL(RH,0) ∼ 1: two rows

in ALA
†
L will be most similar when halos are separated by the minimum Lagrangian-space

separation our algorithm allows, max[RH,i, RH,j ], but we still expect ξL to be appreciably
different at this minimum separation scale such that the eigenvalue from the eigenvector
that principally arises from the subtraction of the two most-similar rows are still likely to
be greater than a few tenths. For modes shaped by the Lagrangian overdensity constraint,
this explains why σ ∼ 1 demarcates where the normalization of the regularization condition
starts to substantially affect the solution.

Now, if we repeat and compute AD,jA
†
D,j , the same expression as eq. (4.6) holds but

with ξL → `−2
D 〈ψj(x)ψj(x+r)〉 = `−2

D V −1∑
∀k k

2
jk

−4PL(k)e−ik·r, i.e the correlation function
of displacements along the j direction measured in units of `D = 10 Mpc. We note that
the average displacement is of the order of 10 Mpc such that again the diagonal values of
AD,jA

†
D,j are approximately unity. The matrix AD,jA

†
D,j is not as well conditioned as ALA

†
L

because displacements are more correlated between galaxy positions. The dependence of our
reconstructions on σ shown in figure 7 suggests that the smallest singular values of Σii ≈ 0.1,
but with many values around Σii ∼ 1 and with the lowest wavenumbers projecting onto the
singular vectors that have the largest Σii.

Thus, reconstruction measures nearly as many numbers as constraints once σ2 . 0.1.
This statement can be related to errors on, for example, the displacements — when they are
constrained to a few Mpc (as our singular values in this case are in units of 10 Mpc), 3N
numbers are measured. Indeed, figure 8 examines the reconstructed field that results when
adding an uncorrelated Gaussian error to each halo’s displacement, an action which has a
similar effect on r as varying σ. However, the XN well-constrained right-singular vectors are
not necessarily the Fourier modes we desire to measure. Indeed, the right singular vectors
for the Lagrangian overdensity problem do not appear to project well onto Fourier modes
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this assumption and further assuming that shot noise dominates these modes (justified in
concordance cosmology because kS ≈ kC ; § 2), we can use eq. (4.8) to estimate the cross
correlation coefficient

r(ks) =
∏

∀|km|>kC

cos[θkskm ] =


1 − 1

2

∑

∀|km|>kC

θ2
kskm

+ . . .


 , (4.9)

or

1 − r(ks)2 ≈
∑

∀|km|>kC

θ2
kskm

≈ k2
s

n̄PL(ks)

∫ ∞

kC

d3k

(2π)3

PL(k)

k2
, (4.10)

using that modes are pixelated with (∆k)3 = (2π)3/V . If we roughly expect 1 − r2 from
the three displacement conditions to be reduced by a factor of three relative to the single
component estimate given by eq. (4.10), which results in the low-wavenumber estimate of

1 − r(k)2 ≈ 2000Mpc5 × k2

PL(k)

σΨ(kC)2

2 Mpc2

(
10−3Mpc−3

n̄

)
[Mixing Noise Limit], (4.11)

where σΨ(kC)2 is defined by eq. (2.7), and σΨ(kC)2 = 2 Mpc2 for kC = 0.5Mpc−1 in ΛCDM.
The rightmost panel in figure 7 shows that this expression for the reconstruction noise,
which we term ‘mixing noise’, captures the r we find at low k in the low σ limit in which the
solution is not affected by the normalization of the regularizer. Additionally, we will show
in § 4.3 that the mixing noise limit formula applies even in cosmologies where PL is very
different.

Finally, while the limiting sensitivity given by eq. (4.11) becomes independent of the
regularization condition normalization, σ, once σ . 0.3, our regularization condition does
shape our results as it determines the weighting via χ̃j = δ̃kj

/
√
V PL. This weighting is

responsible for the factors of PL in eq. (4.10). If we more generally use χ̃j = δ̃kj
/
√
VW(k)

then eq. (4.10) would instead become

1 − r(ki)
2 ≈ n̄−1 k2

i

W(ki)

∫ ∞

kC

d3k

(2π)3

W(kj)

k2
j

, (4.12)

with the caveat that our approximations become less good as W(k) is made to be more
strongly increasing with k than

√
V PL. While W(k) = PL(k) may be the most natural

weighting, eq. (4.12) suggests that one could design W(k) to result in even much smaller
error bars by increasing its tilt towards the infrared. The reason why there is no free lunch
is that the matrix AD,jA

†
D,j becomes more poorly conditioned the more red-sensitive that

W(k) becomes, amplifying modeling errors.

4.3 Altering the cosmology

Figure 9 shows how the linear reconstruction fares for different spectral tilts of the primordial
matter overdensity power spectrum, changing the effective spectral index by ±1, but in a
manner that the density variance in a tophat sphere with mass 1011M� is the same (such that
the n(> M) and bL are approximately matched for galactic halos for these three cosmologies).
We compare these cosmologies with n̄ = 10−3Mpc−3 by randomly sampling halos with mass
above 1012M�, which requires sampling 100% of halos in the reddest tilt, half in the fiducial,
and a quarter in the bluest tilt cosmology.
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(see § 3). Beyond this simplification, the inputs for solving the nonlinear model are the
‘observables’, xj and Mj for j ∈ [0, N). As in previous sections, we apply this formalism to
our toy realization of the universe described in § 3.2.

This nonlinear loss function allows us to comment on what δ̃k are likely to fall near the
convex subspace that encompasses the true solution. The wavenumbers k that contribute to∑

∀k δ̃ke
−ik·qjWMj (k) are generally larger than those that contribute to ψ(qj |δ̃k′) and smaller

than ∼ R−1
H , where RH is the Lagrangian size of the halo. Once ψ(qj |δ̃k) is estimated with

accuracy RH, the exponential factor e−ik·qj is no longer very sensitive to the mode amplitudes
(allowing one to expand the part of the argument that still depends on ψ) and, to the extent
ψ(qj |δ̃k′) arises from smaller wavenumber modes than

∑
∀k δ̃ke

−ik·qjWMj (k), the problem
becomes convex. In the relevant limit where lower wavenumbers are reconstructed best, the
wavenumbers that need to be accurately reconstructed to estimate ψ(qj |δ̃k) to within RH

are k < kdisp (§ 2). Figure 1 shows that kdisp ≈ 0.3 Mpc−1 for a survey consisting of all halos
with M > 5 × 1012M�. This kdisp is not much larger than the wavenumbers at which the
galaxy field correlates well with the input field and, thus, a reconstruction algorithm can be
initialized with these modes close to their correct values. This argument helps explain the
seemingly convex behavior of reconstruction in the literature in which even gradient descent-
like algorithms do not seem to get stuck in minima that are far from the input field.11

However, if the halo overdensities owe to modes that are entirely distinct from those that
contribute to the displacements, reconstruction could ‘draw’ a halo anywhere and, therefore,
would not be able to constrain the halo displacements. Thus, the intermediate modes that
contribute to both ψ and ψ(qj |δ̃k′) must play a key role.

To illustrate these points, we now present reconstructions in our simplified nonlinear
problem. Because the loss function is not likely to be convex far from the true solution, the
reconstruction is likely to be more successful if it starts from a point that is as good a guess
as possible for the evolved field. We consider three starting points:

zero: δ̃(k) = 0. For this distant starting point, the L-BFGS algorithm gets trapped relatively
far away from the minimum found by the linear algorithm presented in the previous
section.

realistic: The strategy for this case is to guess a field that is somewhat close to the input
overdensity field using quantities that are observationally accessible. Starting with an
overdensity field with

δ̃(0)(k) = δ̃mw
g (k)/bg for k < 0.2 Mpc−1

and δ̃(0)(k) = 0 otherwise. Here δ̃mw
g is the mass-weighted galaxy field.12 Next, we take

the halo field and from the position of halos displace backwards to get the Lagrangian
position, with the displacements calculated from δ̃(0)(k), and place a compensated

11Of course, for modes well described by linear theory, one expects the reconstruction problem should be
trivially convex in the region considered for the δ̃k; we are referring to the more nonlinear modes.

12The galaxy bias bg is estimated as b̂g = N
−1
k

∑
|k|<kmax

δ̃mw
g δ̃∗

TRUTH/(δ̃TRUTHδ̃∗
TRUTH), where δ̃TRUTH is

the input density field. This bias estimate uses the Nk lowest modes in the simulation that satisfy k < kmax =
4π/V 1/3. Using the input to calculate the bias is not something an observation would have access to, but a
realistic survey would have a much larger volume than our 200 Mpc box to measure the bias.
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overdensity profile at q
(0)
j = xj −ψ(qj |δ̃(0)

k ) given by

Wc
Mj

(q, qj , δ(qj)) = 2
[
δc(Mj) − δ(q

(0)
j )
]

exp


−

(q − q(0)
j )2

2RH(Mj)




1 −

√
π

2

|q − q(0)
j |

2RH(Mj)


 ,

(5.2)
where δc(Mj) is the overdensity that defines our halo (eq. (3.1)) and δ(q) is the matter
overdensity field. The spatial integral over Wc

Mj
is zero,13 and this fact also means that

these profiles do not alter the power at low enough k. Thus, the matter overdensity
input field for the L-BFGS algorithm is given by δ(N) where

δ(n)(q) = δ(0)(q) +
n∑

j=0

Wc
Mj

(q, q
(0)
j , δ(j)(q)), (5.3)

and we organize the placement such that the Mj that are summed are in decreasing
order. For M = 5 × 1012M� (1 × 1012M�), the value of L for this input δ̃k is reduced
by a factor of 3(2) over the zero initialization with δ̃k = 0.

idealized: We use the identical scheme as (2) except with δ̃(0) = δ̃TRUTH for k < 0.2 Mpc−1

and δ̃(0)(k) = 0 otherwise (i.e. we start with the correct solution at low wavenumbers).
This idealized starting point results in a similar initial value for L to the realistic
algorithm.

All of the results presented in this section use σ = 0.01; we find a similar dependence on σ
as in our linear reconstructions.

Figure 12 shows images of the reconstruction for the realistic and idealized algorithms
(middle and right panels respectively), alongside the reconstruction for the linear algorithm
considered in the previous section (left panel). The reconstructed field appears similar be-
tween the linear algorithm and the idealized one. The realistic algorithm captures many of
the gross features of the two other reconstructions. However, there are noticeable failures
in the realistic algorithm where halos’ true point of origination (as indicated by the orange
line) is not close to any density peak, suggesting that the displacement is being significantly
misestimated. Furthermore, the realistic algorithm’s large-scale underdense regions are not
as well captured as in the linear and idealized algorithms.

These similarities and differences between the reconstructions are also reflected in the
cross correlation coefficients with the input linear overdensity field, which are shown in the
left panel in figure 13. The zero algorithm does not achieve cross correlation coefficients
much greater than 0.8, and it even fails to reconstruct the density modes at all in the lowest
wavenumber bin. (Still, the zero algorithm is able to move a long way from its trivial starting
point.) The realistic algorithm reconstructs to nearly the same maximum wavenumber as
the linear one, but undershoots the precision of the linear algorithm at lower wavenumbers.
A similar undershoot relative to our linear solutions was seen in the r reported in others’
nonlinear reconstructions [11, 34] and is attributed to shot noise. We also show the realistic
algorithm, where we have reduced the displacements by a factor of two and four, which makes
the problem more convex. The reconstruction for these cases is somewhat improved. The
idealized algorithm, which unrealistically starts with the input field at k < 0.2 Mpc−1 but
where the starting point at higher wavenumbers is far from the truth, nearly saturates the
bounds set by our linear calculations.

13In practice, our W
c
Mj

only goes out 3.5RH(Mj) from qj as this contains 90% of the support.
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One of the central unanswered questions is whether the shot noise of the galaxy field
limits the low-wavenumber performance of these algorithms or whether the limit achieved
by the linear algorithm is achievable. The righthand panel in figure 13 features the low
wavenumber behavior, showing 1 − r2. Our idealized algorithm is able to nearly match the
performance of the linear algorithm. It is interesting that idealized reconstruction is not
pulled significantly away from the very small errors that are achieved by the linear algorithm
at low wavenumbers, especially since our starting point at k & 0.2Mpc−1 is still fairly distant
from the true solution. However, our realistic algorithm’s solution is not able to achieve as
small errors at low k, having similar noise to the mass-weighted halo field that this algorithm’s
lowest k modes were initialized with. Compare with the black dashed curve, which shows
1−r2 between the input linear overdensity and the mass-weighted halo field. If we artificially
reduce the displacements by a factor of two or four, making the equations we are solving more
convex, r does decrease significantly below the r of the mass-weighted halo field that the
algorithm was initialized with. (This is despite the level of shot noise being larger in these
reduced displacement cases since the field is less clustered.) The standard conception of shot
noise has little to do with the magnitude of displacements and so the reduced noise when we
reduce the displacement normalization to us suggests shot noise is not a fundamental limit
(and this exercise may have some physical relevance, as at high redshifts the displacements
are indeed smaller).14 We suspect that algorithmic improvements for solving the nonlinear
equations may allow one to outperform shot noise in a realistic setting, as there are clear
deficiencies in the reconstructed field of the realistic algorithm.

6 Conclusions

We have considered galaxy reconstruction in a simplified model for structure formation in
which halos are the displaced Lagrangian peaks in the density field, a model that results
in a deterministic nonlinear relation between the input and evolved fields. This controlled
setting allowed us to investigate the ultimate limits of reconstruction, the effects of the
standard Gaussian prior on mode amplitudes, and why gradient descent-like reconstruction
algorithms work at all (as it was not obvious to us why they do not get stuck far from the
true solution). For much of this study, we considered an intuitive linearized limit in which
reconstruction is a convex problem but where the answer is also a solution to our nonlinear
problem — a limit that bounds the effectiveness of reconstruction. Key findings include:

• Existing nonlinear reconstruction algorithms are close to extracting all of the accessible
information. This argument rest on the tenet that our model of displaced Lagrangian
peaks captures the essential information. We can then ‘linearize’ this model to make
the problem convex (resulting in linear equations specifying that the modes at halo
positions sum to an overdensity of 1.7 and to the Zeldovich displacements) and find
the global solutions that would clearly be the best solution an algorithm applied to our
full nonlinear model could hope to find. Despite the linearized model using information
beyond what any observer can access, specifically the true displacements at the positions
of the galaxies, we showed that the linearized solutions produce similar cross correlation
coefficients to those of nonlinear reconstruction algorithms applied to cosmological N-
body simulations [11, 34, particularly when we restrict to just the constraints from
displacements] as well as to the best solutions we obtain for our full nonlinear problem.

14We also find that if the less constrained singular vectors are dampened by choosing σ ∼ 1, the improvement
in r at low wavenumbers is similar to decreasing the displacements by a factor of 2.
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• Galaxy displacements generally drive the efficacy of reconstruction rather than other
properties (such as the height of peaks that collapse to form halos). This result supports
why the displacement reconstruction of [34] appears to be as successful as other algo-
rithms. Additional properties beyond displacements — which are weighted to higher
wavenumbers where the problem is more under-constrained — contribute an r < 0.5
tail to high wavenumbers in many of the mock surveys we investigated. Extracting
cosmological constraints from this tail may be challenging.

• The displacements constrain ≈ 3N independent numbers at a cosmologically interest-
ing level for a regularization that mimics the Gaussian prior used by reconstruction
algorithms, where N is the number of galaxies (and an analogous conclusion applies
to the N Lagrangian overdensity conditions). While it might seem that our setup of
≈ 3N equations drives this result, it did not have to be the case that the problem was
sufficiently well conditioned to result in 3N cosmologically meaningful constraints. We
showed that the conditioning was such that most of these 3N numbers could be recon-
structed with reasonable errors on the displacements, errors that could be achieved with
our realistic nonlinear reconstruction algorithm. The effectiveness of how a particular
mode is reconstructed depends on whether it projects onto the set of well-constrained
eigenvectors. For displacements, these well-constrained eigenvectors are roughly ap-
proximated by the 3N lowest wavenumber Fourier modes and, thus, the scale that sets
the rather abrupt transition from where the cross correlation coefficient goes from one
to zero is well approximated by where the number of constraints is equal to the number
of modes. This constraint-counting wavenumber we showed is strikingly similar to the
wavenumber where shot noise begins to dominate the power in the concordance cos-
mology across both redshift and halo mass threshold, possibly explaining why others
had attributed this transition to shot noise.

• We found that if galaxy displacements can be sufficiently well constrained, the 1 − r2

of the input field with the reconstructed field falls below the shot noise expectation at
low wavenumbers. For the standard Gaussian prior on mode amplitudes, the limiting
standard deviation is a factor of ∼ (k/[1 Mpc−1])2 smaller than the naive shot noise
expectation. This result was derived with a model where the displacements are Zel-
dovich and phrased in terms of the error on the displacement, a displacement which a
reconstruction algorithm would have to model. We could only reproduce this behavior
when solving our full nonlinear problem when starting in an unphysical manner where
we initialized the least squares solver with the input overdensity field at low wavenum-
bers. If we instead initiated the reconstruction in a more realistic way that uses the
galaxy field as our starting point, a precision similar to the standard shot noise limit
resulted. However, visually this reconstructed field has obvious failures, indicating to
us that improvements may be possible.

• Our nonlinear setup provides intuition into why reconstruction is successful: the dis-
placements from scales where the galaxy field does not correlate well with the linear
overdensity field tend to be comparable or smaller than the Lagrangian halo size —
with “smaller than” being the direction where reconstruction becomes a convex prob-
lem. As a result of this convexity, our nonlinear reconstruction was almost able to
saturate the bounds set from our linear reconstruction from a starting point that is far
from the true nonlinear field.
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We hope to analyze our toy nonlinear problem in future work, especially to better under-
stand the sensitivity limit at low wavenumbers. Understanding the effect of redshift space
distortions and of modeling imperfections owing to astrophysics in our simplified setup are
directions that may also merit study.

The jury is still out as to whether fully nonlinear reconstruction algorithms can be ap-
plied in a controlled manner to large-scale structure data. As a point of optimism, we note
that the situation was similar for the perturbation theory of large-scale structure until re-
cently, when theories were developed to the point where they could be applied to SDSS/BOSS
galaxy power spectrum measurements [52, 53]. However, perturbation theory is under better
control than the ungainly methods used by nonlinear reconstruction algorithms. One won-
ders if there is some reduction of the problem that allows more control, an example being the
simpler-to-understand displacement reconstruction of [34]. It would be a shame if analyses of
spectroscopic galaxy surveys were limited to low order statistics on perturbative scales — we
understand the dynamics of structure formation on scales well beyond where the perturbative
solutions are applicable.

Another unresolved issue regards what limits the precision of reconstruction at low
wavenumbers. The finding in much the literature is that it is something shot noise-like. Shot
noise sets the limit when one Fourier transforms a gridded halo field, but even there it is miti-
gated to the extent halos trace the comic mass distribution [14, 37, 38]. However, in the setup
of the problem discussed here (where there is a deterministic model that relates the input to
a final field), it is far from apparent how shot noise should manifest in the reconstructed field.
In the limit where one can sufficiently constrain the displacement of each galaxy, we showed
that the error could be orders of magnitude smaller than the traditional shot estimate at low
wavenumbers and in a manner that is not white noise-like. Yet, we did not resolve whether
galaxy reconstruction could achieve these errors in a realistic setting. A significant reduction
over shot noise would enable better constraints on primordial non-Gaussianity and neutrino
masses and so we think that pursing a more fundamental understanding is worthwhile.
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