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ABSTRACT

Strained nanomechanical resonators have recently
achieved quality factors of 1 billion through the phenome-
non of dissipation dilution. Remarkably, the potential of
these devices seems unexhausted, exhibiting a scaling law
of roughly one order of magnitude (in Q factor) every three
years. This paper reviews advances which led to this point,
including phononic crystal “soft-clamping,” strain engi-
neering, and a trend towards centimeter-scale devices with
extreme aspect ratios. Recent trends include investigation
of strained crystalline thin films, fractal-patterned supports,
and machine-learning-optimized supports. New possibili-
ties emerging from these advances range from cavity free
quantum optomechanics to ultra-sensitive accelerometry.
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INTRODUCTION

Recent years have seen the emergence of a new class
of ultra-high-Q nanomechanical resonators fashioned out
of strained thin films [1-3]. The physical principle behind
their performance is dissipation dilution, an effect whereby
an elastic body is subjected to a conservative stress field,
increasing its stiffness without adding loss [17]. The ability
to achieve extreme dimensions and stresses at the na-
noscale has enabled dilution factors (the ratio of final to
initial Q) in excess of 10°, yielding Q factors as high as
10° for devices made of amorphous glass (in particular,
SizN,, for which the intrinsic loss tangent is Qg ~ 10™%)
[2,3]. Here we review advances that have led to this point,
and highlight a trend, shown in Fig. 1, which suggests the
Q factor of strained nanomechanical resonators will con-
tinue to improve. We begin with a historical example that
illustrates the importance of mode-shape on the dilution
factor and conclude with a brief overview of applications.

HISTORICAL EXAMPLE (STRING)

The history of dissipation dilution traces its roots to the
gravitational wave community, where it was used to ex-
plain the anelastic behavior of thin wires used to suspend
kg test masses [16]. It is useful to consider this example as
it illustrates the basic concept of dissipation dilution and its
dependence on resonator geometry. Towards this end, con-
sider a beam of cross-sectional area (area moment) 4 (1),
length L, and elastic modulus Ey(1 + iQg1) subject to ten-
sile stress 0 = mg/A due to mass loading (Fig. 2). The ra-
tio of work done by the beam against conservative (tensile)
and frictional (elastic) stress yields the dilution factor
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Figure 1: Q factor of strained nanomechanical resonators versus
time. #1-10 correspond to [4-13]; #11-13 to [1-3]; #14 to [14].

where u,; is the mode shape of the tensioned beam,
1 ! 2
Wy (up) = 5 [ Ao ()ug (x)*dx (2)
is the work done against gravity due to elongation, and
1 " 2
Wg (ua) = EEI I(x)ua (x)?dx 3)

is the work against internal stress due to mode curvature.
A key aspect of dissipation dilution is its mode-shape
dependence, which depends on boundary conditions and
tensile stress. For a doubly clamped rectangular beam of
width w, thickness h and uniform stress g, it can be shown
that W, < who /L and that Wy has separate components

due to mode curvature at the clamps WE(C) o« wh?\oE [L?
and antinodes WE(a) o« wh3E/L*, respectively, yielding
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where n is the mode index and A = (h/L)\/E/(120) is a
factor that parameterizes the distance LA from the clamps
over which mode curvature exceeds that of a sinusoid [2].

While specific to a uniform rectangular beam, Eqs. 1-
4 reveal several key features of dissipation dilution that
have informed recent developments in the field:

1. D, is higher for high aspect ratio (L/h) devices, moti-
vating the use of long, thin strings and membranes.

2. The mode curvature at the clamps plays a critical role
in determining the scaling of D, with resonator fre-
quency f~+/a/L , scaling as Q~f ~* for normal beams
and Q~f 2 if the beam is “soft-clamped”.

3. Localizing motion in regions of high stress (so-called
“strain-engineering”) can yield higher Dy,.



Figure 2: Mechanical resonator gallery. A: Toy model of dissipation dilution. B: Commercial (Norcada) 0.5 mm x 0.5 mm Si3;N,
membrane [43]. C: Array of twenty-five 7 mm Si;N, nanobeams [2]. D: 5 mm x 5 mm Si3N, trampoline [28]. E: Strain-engineered
nanostring [2]. F: Soft-clamped membrane [41]. G: Clamp-tapered beam [24]. H: Binary tree beam resonator [3].

Access to extreme aspect ratios, high stress, and precise
dimensions have allowed the above features to be exploited
powerfully in nanomechanical resonators, particularly
strings and membranes released from silicon nitride, a
common semiconductor stressor film. Below we explore
four examples that contribute to the trend shown in Fig. 1.

Silicon nitride membranes, strings, & trampolines
Silicon nitride is a common nanomechanics material
synonymous with dissipation dilution because of its depos-
ited tensile stress. Specifically, when deposited by LPCVD
on Si (at ~1000 K), stoichiometric SizN, (E~300 GPa) re-
laxes to a tensile stress of o~1 GPa due to thermal mis-
match. Common film thicknesses range from ~10 nm for
capping layers to ~ 100 nm for optical waveguides. A
combination of lithography and wet etching has been used
to release strings and membranes with transverse dimen-
sions varying from several microns to centimeters, ena-
bling dissipation dilution factors as high as D,~10*.
Early studies of dissipation dilution in nanomechanical
resonators employed both “low-stress” (PECVD, ¢~0.1
GPa) and “high-stress” (LPCVD o~1 GPa) SiN mem-
branes and strings with L ~ 1 mm dimensions and h~50-
300 nm thickness [5-11]. A meta-study by Villanueva and
Schmid [18] found that for a wide set of experiments em-
ploying similar devices, the model given by Eq. 1 is valid
and implies that the internal loss coefficient of SiN films is
dominated by surface loss, scaling at room temperature as

Qodin(h [nm]) = (70 h)™1 + (3 x 10%)~?

Eq. 5 explains the trend prior to 2014 in Fig. 1, in which
progressively larger uniform strings and membranes were
developed. For these “hard-clamped” resonators, the pre-
dominant loss mechanism is curvature at the clamps
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yielding a thickness-independent quality factor of
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1 GPa

QHESN = DECQysin ~ 10 Tmom

More recently, string-like “trampoline” resonators with
L ~ 10 mm dimensions have been developed, yielding
quality factors as high as 108 when appropriately tailored
to minimize curvature loss at the clamps [12,14,27,28].

Soft-clamped phononic crystal membranes
Phononic crystals (PnC) were first employed to com-
bat recoil losses in millimeter-scale SiN membrane resona-
tors, whose fundamental mode is notoriously sensitive to
how the device chip is mounted [10]. While this strategy
involves patterning a PnC into the chip, a more ingenious
strategy is to pattern a PnC into the membrane around a
central defect, creating a localized mode whose amplitude
decays exponentially towards the clamps [1]. In addition to
mitigating recoil losses, an ideal “*soft-clamped” mode ex-
periences quadratically enhanced dissipation dilution
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yielding a surface-loss-dominated quality factor of
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Notably, L/n here refers to the defect size, which must be



n ~ 10 times smaller than the membrane to approximate
perfect soft clamping. Also, soft-clamped modes are less
susceptible to surface loss, manifesting in the inverse pro-
portionality Q¢ ~ h~1, Using photolithography to achieve
precise dimensional control over a large surface area, soft-
clamped membranes with L/n ~ 100 um defects and thick-
ness as small as h ~ 20 nm have been developed, yielding
Q factors as high as 200 million at room temperature [1,19]
and 1 billion at cryogenic temperatures [20]. These devices
have been used in a series of groundbreaking quantum op-
tomechanics experiments, including feedback cooling to
the ground state and displacement measurement beyond the
standard quantum limit [20]-[24].

Strain-engineered phononic crystal nanobeams

The strain profile e(x) = Eo(x) of a beam can be tai-
lored by changing its area A(x) (due to conservation of ten-
sion, T = a(x)A(x)). This effect renormalizes the mode-
shape u(x) and can enhance dissipation dilution when
€(x) is co-localized with regions of high curvature u," (x).
For example, by tapering the width of a uniform rectangu-
lar beam as it approaches the clamps (see Fig. 2C), the
quality factor of its fundamental flexural mode can be in-
creased by as much as \/€yie1a/€p = /Oyie1a/00 (=
2.5 for high stress SizN,) [24]. Similar effects have been
reported for trampoline resonators [27,29], with the coun-
ter-intuitive finding that filleted tethers can enhance the Q
factor relative to straight tethers [29].

While the effect of strain-engineering is only moder-
ate in the case of high prestress, its combination with soft-
clamping has yielded some of the highest  nanomechani-
cal resonators to date. Intuitively, the idea is to co-localize
€ within the defect, yielding enhancement of the soft-
clamped @ by as much as as 0yje1q/0o. Ghadimi et. al. [2]
implemented this strategy by patterning a PnC into a ta-
pered rectangular beam (importantly, the unit cell must be
tailored to fix the PnC bandgap). Appliedto L =7 mm, h =
20 nm thick beams with a defect length of L ~ 100 um
(Fig. 2A), QO factors of up to 800 million were recorded at
room temperature (for f = 1.3 MHz). To date this is the
highest Q reported for a room temperature mechanical res-
onator of any size or frequency, despite the defect mode
possessing an effective mass of several picograms.

Hierarchal (binary tree) resonators

A disadvantage of PnC-based soft-clamped resonators
is that the defect mode is of high order (n > 1), leading to
intermodulation noise [41] and requiring relatively large
resonator dimensions compared to uniform structures with
the same mode frequency. Recently a new type of soft-
clamped resonator has been proposed which allows the fun-
damental mode (n = 1) to be soft-clamped, based on hier-
archical (fractal-like) micropatterning [25].

An example of a two-branch (binary tree) hierarchal
resonator is shown in Fig. 2D. The basic concept emerges
from the fact that by splitting a tensile-stressed string into
two symmetric branches, its mode gradient u'(x) is re-
duced by a factor of cos 8, where 6 is the branching angle.
By creating a binary tree shape through cascaded branch-
ing, the fundamental mode of the full structure can thus be

soft clamped [3, 25], substantially improving the quality
factor over devices of similar dimensions.

Initial demonstrations of binary tree resonators have
yielded room temperature Q factors approaching 1 billion
for transverse dimensions L~ 1 mm, rivaling the perfor-
mance of PnC soft-clamped membranes and strings with
10-fold larger dimensions. For example, a device similar to
that in Fig. 2D, approximately 2 mm long and 20 nm thick,
exhibited a fundamental Q factor of 800 million at room
temperature and 1.1 billion at 6 K [3]. Comparable perfor-
mance was achieved with by branching the tethers of a L~2
mm trampoline resonator. Intriguingly, a similar strategy
was realized by topology optimization of membranes [14].

APPLICATIONS

Development of ultra-high-Q nanomechanical resona-
tors has largely been driven by two pursuits: force sensing,
in which the ratio of quality factor to mass m regulates the
magnitude of the thermal force noise [15],

Foq, = y/8mkgTmf/Q

and quantum experiments [30], in which the quality factor
dictates the magnitude of the thermal decoherence rate

and the zero-point displacement spectral density (the dis-
placement sensitivity required to operate at the SQL)

hQ

X2e = mnf)?

To highlight the potential of UHQ nanomechanics, it
is interesting to consider defect modes of the strain-engi-
neered 1D PnC in Figure 2A (m ~ pg, Q ~ 10°, f~ MHz),
which at room temperature have a thermal force sensitivity
of Fy, ~ aN/v/Hz, a decoherence rate of T}y, /2 ~ 10 kHz,
and a zero-point displacement spectral density of xzp ~
pm/v/Hz [2]. The force sensitivity rivals that of typical
atomic force microscope (AFM) cantilevers operating at
He-4 temperatures (<10 K) and acoustic frequencies
(f ~1 kHz), suggesting applications like high-speed mag-
netic resonance force imaging, which is currently being
pursued with PnC membranes [26]. The decoherence rate
is two orders of magnitude smaller than the mechanical fre-
quency, implying that if the defect mode were prepared in
its ground state, it would undergo 100 coherent oscilla-
tions, sufficient for consideration as a quantum memory.
Finally, owing to its large zero-point motion, the ground
state should be accessible by measurement-based feedback
with a readout sensitivity xzp /\/n_th ~ 1 fm/+/Hz , where
Ny, = kgT/hf is the thermal phonon application [30]. This
sensitivity is well within reach of cavity-enhanced optical
interferometers and is in principle accessible with a Mi-
chelson interferometer with milliwatts of probe power [29].
Recognition of these opportunities has spurred a new gen-
eration of quantum optomechanics experiments focusing



Figure 3: A mass-loaded trampoline for acceleration sensing.

on measurement-based control [19,30] and room tempera-
ture operation [27,31], as well as proposals for “cavity-
free” quantum optomechanics based on single-pass optical
readout techniques [29,42].

OUTLOOK

This paper has briefly reviewed the state of the art in
high Q strained nanomechanics, highlighting techniques
such as soft-clamping and strain-engineering which have
recently produced megahertz frequency nanomechanical
resonators with room temperature quality factors as high as
10°. Looking forward, the trend in Fig. 1 suggests that
higher quality factors are achievable. PnC and hierarchal
based soft-clamping are still in their infancy, for example,
and improved designs are emerging based on a combina-
tion of physical intuition, numerical modeling [44,45], and
machine-learning based optimization [14].

Another route to higher O is new materials. Si;N,, like
most amorphous glasses, has bulk intrinsic Q, ~ 10* for
temperatures between 1-300 K. By contrast, crystalline
films can have intrinsic quality factors of Q, > 10° below
10 K, and can be epitaxially grown with tunable stress due
to lattice mismatch. Strained nanomechanical resonators
made of InGaP [32], GaAs [33], and SiC [34] are being
pursued, with a focus on understanding interface defects
which increase loss and constrain aspect ratios (and in an-
ticipation of quantum technology based on strain-coupled
electronic defects [35]). A particularly promising material
is strained silicon-on-insulator, which is commercially
available and compatible with silicon nanophotonics. Pre-
liminary results have shown Q ~ 10° for Si PnC nanos-
trings at 10 K, on par with the best Si;N, [36].

Finally, while the contemporary history of UHQ nano-
mechanics dovetails with the pursuit of high Q/m factors
for contact force sensing, an alternative approach is to
mass-load a nanomechanical resonator, thereby realizing a
high Q X mtest mass for inertial force sensing. Mass-
loaded membranes and trampolines under development for
optomechanical accelerometry can have thermal sensitivi-
ties of ay, = Fy,/m ~ ng,/VHz with bandwidths of f =
10 kHz [37]; however, these devices have yet to be studied
with a systematic dissipation dilution approach. Realizing
UHQ mass-loaded nanomechanical resonators (c.f. Fig. 3)
would give access to an array of fundamental weak forces
ranging from non-Newtonian gravity [38], to spontaneous
waveform collapse [39], to ultralight dark matter [40].
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