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Abstract
Naïve extensions of uni-variate prediction techniques lead to an unwelcome increase
in the cost of multi-variate model learning and significant deteriorations in the model
performance. In this paper, we first argue that (a) one can learn a more accurate
forecasting model by leveraging temporal alignments among variates to quantify the
importance of the recorded variates with respect to a target variate. We further argue
that, (b) for this purposewe need to quantify temporal correlation, not in terms of series
similarity, but in terms of temporal alignments of key “events” impacting these series.
Finally, we argue that (c) while learning a temporal model using recurrence based
techniques (such as RNN and LSTM—even when leveraging attention strategies) is
difficult and costly, we can achieve better performance by coupling simpler CNNs
with an adaptive variate selection strategy. Relying on these arguments, we propose
a Selego framework (Selego is a word of latin origin meaning “selection”) for variate
selection and experimentally evaluate the performance of the proposed approach on
various forecasting models, such as LSTM, RNN, and CNN, for different top-X%
variates and different forecasting time in the future (lead) on multiple real-world
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datasets. Experiments show that the proposed framework can offer significant (90 −
98%) drops in the number of recorded variates that are needed to train predictive
models, while simultaneously boosting accuracy.

Keywords Forecasting · Recurrent and convolutional networks · Variate selection

1 Introduction

The problem of time series forecasting involves learning a function f that can map
the observations from the past (t1, t2, . . . , t − 1) to the present (t) or the future. The
problem involves a set of recorded variates X ∈ X1, X2, . . . , XT that drive a set of
target variates, Y. In practice, the forecasts are often imprecise due to various reasons
and the function f is often learned with an error, ε. The ultimate goal of forecasting
model learning task, therefore, is to minimize this error. To do so, various statistical
and deep models have been proposed. Statistical forecasting models for time series,
primarily SVR (Drucker et al. 1997) andARIMA (Box et al. 2015), have helped reduce
the forecasting error in various real-world applications, however, with the increase in
the number of variates of the time series, SVR and ARIMA have fallen short in their
ability to learn. Neural network-based techniques, such as recurrent neural networks
(RNNs) (Rumelhart and Hinton 1986) demonstrated that the short-comings of SVR
andARIMAcan be overcome by exploring deep features1 and their evolution overtime
by relying on the (t − 1)th state of the network to learn the t th state. Unfortunately,
RNNs have proven ineffective on long time series due to catastrophic forgetting. Long-
Short Term-Memory networks (LSTM) (Hochreiter andSchmidhuber 1997) have been
relatively successful in their ability to remember and model time series, yet they also
suffer from model complexity and are susceptible to noise.

1.1 Key observations

Unfortunately, naïve extensions of uni-variate forecasting techniques to multi-variate
data lead to both increases in the cost of training these models and, more importantly,
deterioration in the model performance, as not all variates may contribute equally to
the forecasting performance. In this paper,

– we first observe that one can learn amore accurate forecastingmodel by leveraging
temporal correlations among variates to quantify the importance of the recorded
variates with respect to a target variate and using these correlations to help reduce
the number of variates needed to train a model (Fig. 1);

– we further observe that traditional time series similarity/distance functions, such
as DTW, are fundamentally ill-suited for this purpose as recorded variates relevant
for a particular task do not necessarily look similar to each other (Fig. 2); instead,

1 While the terms “variate” and “feature” are often used interchangeably, in this paper, we make a clear
distinction: A “variate” is an input time series describing a time-varying property of the system being
observed, whereas a “feature” is a temporal pattern extracted from a given time series and can be used to
characterize that series.
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(a) (b)

Fig. 1 Sample results:CNN based building 1-hour energy consumption prediction results a using all 513
variates (100%) versus b using only the top-10 (2%) variates (see Sect. 3 for details): both models benefit
from variate selection

Fig. 2 Dumper and flow sensors that have aligned but dis-similar temporal structures; note that in these
scenarios, the two temporal structures would be judged to be very different from each other under common
distance (such as DTW) or similarity (such as Pearson’s correlation) functions

the relationship between two series needs to be quantified based on temporal align-
ments of the “key events” (or local patterns) identified on these series irrespective
of how these key events themselves look;

– we finally observe that, while trying to learn a temporal model for a multi-variate
time series using recurrence based techniques (such as RNNand LSTM) is difficult
and costly (even when they are leveraging attention strategies), we can achieve
better performance by coupling simpler CNN based models with an adaptive
variate selection strategy that captures the temporal evolution of the pairwise
relationships among the variates.

1.2 Our contribution: the Selego framework

Relying on these observations, in this paper, we propose a Selego framework for
variate selection: traditional variate selection mechanisms either require a one-to-one
alignment of data points or rely heavily on series similarity. Selego ranks variates
based on the co-occurrence of key temporal features/events to select variates that have
high impact on forecasting of a target variable.

Figure 3 provides an overview of the steps (and substeps) of the Selego framework.
As we see here, Selego performs feature extraction from the series and uses these
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Fig. 3 A schematic overview of the Selego framework

features to support variate selection. In the final step, the predictive model is trained
on these reduced subset of variates. The key result of this paper is that the models
can be very accurate if they are trained on a small properly selected fraction of the
original variates – the accuracies of such models can in fact be better than significantly
over models trained on full data set, even when attention based techniques are used to
perform in-neural-network feature weighing.

We experimentally validate the key contributions of Selego in Sect. 3 and observe
that Selego is able to identify impactful recorded variates for the target variate, and
apply to various domains such as, building energy optimization (Bianco et al. 2009),
fuel consumption (Goodwin et al. 2004), stock price prediction (Qin et al. 2017), and
brain signals(Fernandez-Fraga and Aceves-Fernandez 2018). Experiments show that
the proposed framework can offer significant (90−98%) drop in the number of variates
that are needed to train predictive models, while also boosting model accuracies.

1.3 Related works

1.3.1 Time series modeling

The increase in diversity and complexity of recorded data led to the need to differenti-
ate relevant aspects of the data from those aspects that are irrelevant. For conventional,
tabular data, decomposition based latent feature extraction and dynamic topic mod-
eling techniques (Tucker 1966; Pearson 1901; Blei and Lafferty 2006), have been
the long standing go-to method for dimensionality reduction. However, time-agnostic
reduction techniques are not generally suited for the task of forecasting.

In this context, deep networks, such as RNNs and LSTMs, have proven particularly
successful through the use of combinations of linear and non-linear operations (Clevert
et al. 2016). RNNs’ success is often limited to the length of the time series as it suffers
from the problem of catastrophic forgetting (Bahdanau et al. 2015). Long-short Term
Memory (LSTM) NNs were proposed as a solution to the RNNs’ shortcoming which
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introduced a cell state in addition to the hidden state to remember the past patterns
(Hochreiter and Schmidhuber 1997). While LSTM has shown success, such as in
speech translation, voice recognition, and video processing (LSTM-CNN), it is still
vulnerable to learning noisy models in the presence of large number of input features
which can deteriorate the model performance. (He et al. 2016) has shown that after a
certain depth and width the performance of the deep network degrades.

1.3.2 Variate selection

Generally speaking, there are two approaches for reducing the dimensionality of a
multi-variate time series: (a) (latent) feature selection and (b) variate-selection. A
potential solution to feature selection is the use of attention mechanisms employed at
hidden layers in the network (Bahdanau et al. 2015; Qin et al. 2017;Wang et al. 2017),
aimed to help determine and focus on the subset of important input features during
network training. However, the success of attention mechanisms heavily relies on the
design of the network architecture. Search for high-performing network architecture
in itself is a complex process (Bergstra and Bengio 2012; Zoph and Le 2017; Garg
and Candan 2019). Additionally, works such as Garg and Candan (2021a, b) proposed
to leverage multi-scale feature withing the network itself, to learn informative deep
representation of the time series.

As further discussed in Sect. 2.7.2, the variate selection approach often relies on the
creation of a variate-variate alignment graph on which node ranking techniques, such
as KNN, PR, and PPR (Tong et al. 2006), are used for ranking the variates. (Roffo
et al. 2015), for example, in Inf-FS creates a variate-variate relationship matrix that
maximizes the separation between the variates and then uses a random-walk based
technique for selecting a diverse set of variates. When creating a variate-variate align-
ment graph, it may be often necessary to compare sequences against a target sequence
based on their underlying patterns. For systems where observations are binary, Mul-
tivariate Hawkes Process (MHP) based analysis techniques have been proposed to
discover the underlying temporal dependencies (Linderman and Adams 2014; Yuan
et al. 2019). These dependencies can be used to select variates when systems can be
described as point processes, but are not applicable when the variates do not corre-
spond to point process time series. Euclidean distance and, more generally L p−norm
measures, were among the first used to determine the similarity between two numeric
time series. Euclidean distance and others, such as cosine and correlation similarity
(Salton andMcGill 1983; Shatkay andZdonik 1996), assume a strict synchrony among
time series and are not suitable when two time series can have different speeds or are
shifted in time. FRESH (Christ et al. 2018) avoids this problem by extracting global
temporal features of a given series, but this fails to account for the specific patterns or
co-occurrence of events across series when they are being compared. Dynamic time
warping (DTW) is a widely used technique to find an optimal alignment between two
given sequences under certain restrictions(Sakoe and Chiba 1978; Chen and Ng 2004;
Keogh and Ratanamahatana 2005). Yet, as we see in this paper, since DTW relies on
global time series similarity, rather than accounting for the distribution of significant
local patterns in the series, it may not perform well in applications where forecasting
must rely on dissimilar patterns across series. Symbolic aggregated approximation
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(SAX) (Lin et al. 2002), in contrast, creates a symbolic vector representation for each
variate, where each symbol corresponds to a local pattern in the input series and where
the vector representation accounts for each and every pattern in the series of a given
length. (Garg and Candan 2019) demonstrated that salient localized features extracted
before training a NN-based model, which have been largely ignored by many works
in the domain, can improve accuracy by highlighting key insights in the data. In this
paper, we build upon a similar idea and propose a variate selection mechanism to
help improve the forecasting accuracy (reduce error) by intelligently quantifying the
inter-variate relationships as a function of salient local temporal features extracted
from individual variates.

2 Selego: robust variate selection for time series forecasting

In this section, we present the Selego framework which leverages salient localized
temporal events to select subset of variates from a multi-variate time series.

2.1 Uni- andmulti-variate time series

A uni-variate time series (UVTS) is a sequence of ordered pairs of observations
and time at which observations were recorded for a given attribute (variate), T =
[(v1, t1) , (v2, t2) , . . . , (vT , tT )] . While in general the temporal separation between
two consecutive timestamps can be non-periodic, in this paper we assume that times-
tamps recorded in a UVTS are periodic in nature. We denote the prefix of T until
time t as T [t], whereas we denote the value of T at time t as T (t). A multi-variate
time series (MVTS), T, is a set of uni-variate time series, s.t. T = {T1, T 2, . . . , T K }
where, K is the number of variates, T ∈ R

K×T , and T i ∈ R
1×T .

2.2 Time series forecasting problem

Time series forecasting involves learning a function f that can map historical obser-
vations at time 1, 2, . . . , t to the future observations at time t + l; we refer to the value
of l as the “lead time”. The problem involves a set of source variates X ⊆ T that drive
a set of target variates, Y ⊆ T; i.e. f : X[t] → Y(t+l).

2.3 NN-based forecastingmodels

While Selegohas wide applicability, in this paper, we explore its use within the context
of neural-network (NN) based forecasting models:

Convolutional neural models (CNNs): Modern neural networks leverage depth and
width of their models to learn complex patterns in the data in the form of deep features
(Szegedy et al. 2015). CNN achieves this by repeatedly applying convolution opera-
tions (complemented with non-linear activation functions and pooling operations that
scale the data) to identify multi-scale patterns of different complexities. In the case
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of a time series prediction problem, where the goal is to discover a function of the
form f : X[t] → Y(t+l) the model training would be carried out by providing as input
prefixes, X[t], of the input series up to time t and as output the values, Y(t+l), at time
t + l of the target series.

Recurrent neural models (RNNs and LSTMs): CNN lack the ability to memorize
temporal patterns over time. To counter this, recurrent networks (RNN) introduced
a memorization block in form of a recurrent connection to remember the pattern at
time t − 1 to help inform the network at time t (Rumelhart and Hinton 1986). More
specifically, thanks to repeated convolution and pooling operations, in CNNs, each
time instant is informed by the entire temporal length of the series (with weights
reflecting temporal neighborhood), whereas in recurrent models the learning process
proceeds one timestamp at a time, while leveraging hidden state from the previous
timestamp. LSTM (Hochreiter and Schmidhuber 1997) extends RNNswith the ability
to forget and has been shown to be more effective than the conventional feed-forward
neural networks and recurrent neural networks.

Attention mechanisms: One difficulty with neural network based inference is that a
large number of model parameters need to be learned from data. This is especially
problematic for sparse and noisy data sets where it is difficult to learn these model
parameters for accurate inference. Recent research (Bahdanau et al. 2015; Qin et al.
2017) has shown that attention mechanisms, which help the neural network to focus
on different aspects of the data at different stages of inference, have the potential to
alleviate this difficulty to some degree. The challenge with such attentionmechanisms,
however, is that the attention model itself needs to be constructed carefully from data
to ensure that the model is able to learn to focus on the most relevant patterns, without
ignoring patterns critical for inference.

This motivates the need for careful variate selection: as we have seen in Fig. 1 (and
as we experimentally validate in Sect. 3), variate selection can boost the predictive
model accuracies. Yet, as we also see in Fig. 2, the subset of the variates that help
predict a time series do not necessarily look like the target series. Instead, the subset
of the variates to be used must present evidence of impact from events that drive the
shape of the target series.

2.4 Robust localized temporal patterns/features

Localized patterns (a notable example being SIFT(Lowe 2004)) have been shown to
be effective for image retrieval and object detection applications, as well as neural
network hyper-parameter search (Garg and Candan 2019). (Candan et al. 2012) has
proposed a SIFT-like approach, called SDTW, to detect significant temporal events
on time series, and has shown that localized temporal patterns can be used to speed
up expensive time series operations, such as DTW computations. Both SIFT (for
images) and SDTW (for time series), however, extract and rely on feature descriptors
for object comparisons. In this paper, however, we propose a Selego framework which
extracts and uses robust features for computing variate alignments purely based on
temporal alignment, without considering feature descriptors – in fact, that one should
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Fig. 4 Generating DoG for a single variate (y = 1) taken from a multi-variate time series. The length of
the input time series is T

ignore pattern similarities that can be measured by comparing feature descriptors, but
considering temporal alignments among key events is one of the major differentiators
of Selego from the prior work. Here, we describe the localized feature extraction
process (consisting of “scale-space generation” and “extrema detection” steps) used
by Selego to identify “robust localized temporal patterns” in the individual variates.

2.4.1 Temporal scale-space generation

Temporal features of interest can be of different lengths. Based on the argument that
the interesting events will be maximally different from the overall pattern in their
local neighborhoods, Selego searches for those points that have largest variations with
respect to both time and scale. Therefore, the first step of the process is to create a
scale-space consisting of multiple smoothed versions of a given series – each resulting
series is then subtracted from the series in the adjacent temporal scale to obtain what
we refer to as the difference-of-Gaussian (DoG) series. Intuitively, the smoothing
process can be seen as generating a multi-scale representation of the given series
and thus the differences between smoothed versions of a given series correspond
to differences between the same series at different scales. Let T v represent a uni-
variate time series, s.t. T v ∈ T[v, ∗], and T (t,σ )

v represents the smoothed version of
T v through convolution with the Gaussian function along the temporal dimension:

G (t, σ ) = 1√
2πσ

e
−t2

2σ2 such that T (t,σ )
v = G (t, σ ) ∗ T v. Gaussian smoothing is used

to create a multi-scale representation of a given series, T v: As shown in Fig. 4, the
scale space is created by first applying an initial smoothing with parameter σ0 and then
adding L layers of smoothing, where the sth smoothing layer is Gaussian smoothed
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Fig. 5 A candidate feature point, F , (black) and its neighbors in adjacent scales “s + 1” (red) and “s − 1”
(yellow) and in time “t − 1” (blue) and “t + 1” (green) (Color figure online)

at level κs × σ0, where κ is a constant multiplicative factor). Intuitively, repeated
application of Gaussian smoothing at multiple-layers enables details to disappear.
Consequently, while extrema of DoG correspond to fine grain details in lower layers,
they correspond to large patterns in higher layers. As shown in the figure, for efficiency
purposes, we organize the scales into octaves with increasingly shorter lengths by sub-
sampling the series when the amount of smoothing applied on the series is such that the
series length can be halved without loss of details. Once the scale space is constructed,
the search for features is performed by comparing the immediate neighbors. As shown
in Fig. 4, to support this search, we simultaneously create a Difference-of Gaussian
(DoG) representation, D(t,σ )

v = T (t,κσ )
v − T (t,σ )

v , of the input series, T v . The overall
process has computational complexity of O(LWT), where L = L is the number of
scales created,W is the length of the Gaussian window used for time series smoothing,
and T = T , is the length of the time series.

2.4.2 Extrema detection

In this step, we search for points of interest, 〈t, s〉 across multiple scales of the given
time series, v, by searching over multiple scales and locations of the given series (here
s denotes the corresponding scale), with overall computational complexity of O(LT).
The search of local extrema (features) is performed by comparing the immediate
neighbors (see Fig. 5) along both time and scale in the Difference-of Gaussian (DoG)
representation, D(t,σ )

v , of the input series created in the previous step. This enables the
algorithm to prune features that are similar to their local neighborhood both in scale
and time and, thus, highlight regions of the time series that are distinct from their
local neighborhood. More specifically, a pair 〈t, s〉 on variate v, is an extremum if it is
maximum or minimum across its eight neighbors – three per each neighboring scales
(s − 1 and s + 1) and two temporal neighbors of t (i.e. t − 1 and t + 1):

extrema

⎛
⎜⎝

Dt−1,κs+1σ
v Dt,κs+1σ

v Dt+1,κs+1σ
v

Dt−1,κsσ
v Dt,κsσ

v Dt+1,κsσ
v

Dt−1,κs−1σ
v Dt,κs−1σ

v Dt+1,κs−1σ
v

⎞
⎟⎠ . (1)

In other words, 〈t, s〉 is designated as an extremum if it is greater than �% of the
maximum of its 8 scale-time neighbors in DoG (D).

Note that each identified feature has an associated temporal feature scope, defined
by the temporal scale (s) in which it is located. Since under Gaussian smoothing three
standard deviation would cover ∼ 99.73% of the original temporal points that have
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Fig. 6 The temporal alignment between two features depends on degree of overlap between their scope: in
this example, the feature F on Series #1 (highlighted in green) is better aligned with feature FA than with
feature FB on Series #2 (Color figure online)

contributed to the feature, the radius of the feature is set to 3σ : each key temporal
feature, F , can be written as triple, 〈v, t, s〉 and would cover a time interval on variate
v, s.t. t_scope(〈v, t, s〉) = [t − 3κsσ0, t + 3κsσ0)].

2.5 Measuring feature alignment

Once these key features are extracted, the Selego framework relies on the co-
occurrence of salient temporal features to quantify the degree of temporal alignment
among variates (Fig. 6). Therefore, we first propose a feature alignmentmeasure, inter-
val alignment, that measures the temporal overlap (feature co-occurrence) between the
features on different variates in the same multi-variate time series. Let F1〈v1, t1, s1〉
and F2〈v2, t2, s2〉, be two features; the interval alignment (IA) between two features
is defined as follows:

IA(F1,F2) =
{
overlap(F1,F2), overlap(F1,F2) ≥ 0

0, otherwise
(2)

where overlap(F1,F2) = min(tend,1, tend,2) − max(tstart,1, tstart,2). Here, tstart,i
and tend,i represents the start and end time of the feature, Fi , respectively.

It is important to note that the magnitude of IA is likely to be larger for feature
pairs that are identified in higher scales, since the overlap() function measures the
absolute (not relative) amount of overlap between two feature intervals and since the
features at larger octaves/scales have larger scopes. This choice reflects the fact that a
large overlap between two features with large scopes is a clearer evidence of temporal
alignment between the corresponding variates. Note that this overlap based feature
alignment measure relies on a weak assumption that there will be some degree of
temporal co-location among events across series that are related or impact each other.
As we see in Sect. 3, this assumption led to high model accuracy in the data sets we
have considered. However, in applications where related events can have significant
temporal lag, it is possible to replace this definition with an alternative that measure
alignment of two series based on their their temporal distance, instead of temporal
overlap. This flexibility in the definition if alignment is one of the advantages of the
Selego framework.
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2.6 Measuring variate alignment

Given two variates, T i and T j , of a multi-variate time series, T, and the features sets,
Fi = {Fi,1,Fi,2, . . . ,Fi,|Fi |} and F j = {F j,1,F j,2, . . . ,F j,|F j |} respectively, we
define the temporal alignment of variate T i against variate T j as follows:

TA(T i |T j ) =
∑|Fi |

m=1 maxn∈(1,...,|F j |) IA(Fi,m,F j,n)

|Fi | . (3)

Given this, we then define the variate alignment (VA) between the two variates
as VA(T i , T j ) = TA(T i |T j ) + TA(T j |T i ), with computational complexity of
O(|Fi |.|F j |) – note that this is a worst case complexity and in practice only pairs of
features that temporally overlap need the be considered, making the complexity closer
to O(|Fi | + |F j |) in practice. It is also important to note that, while this measure
seeks maximal temporal alignment between features of the variates T i and T j , this
does not imply that the time series will actually be similar – this is because, the variate
alignment function,VA, and its various components do not consider how the individual
features/patterns look; instead, they focus only on whether the features/patterns are
temporally aligned or not.

2.7 Top-k variate selection

Let T be, as described in Sect. 2.1, a multi-variate time series, s.t. T = {T1, T 2, . . . ,

T K }, where K is the number of variates. As formulated in Sect. 2.2, let the task be
to learn a function f : X[t] → Y(t+l) to forecast, with lead time l, a set of target
variates,Y ⊆ T using a set of source variatesX ⊆ T. To help select the top-k variates
in X to be used for training a predictive model, Selego considers (but not necessarily
fully creates) a lead-l variate alignment graph, GX,Y,l(V , E, wl).

2.7.1 Lead-l variate alignment graph

As formalized in Sect. 2.2, our goal is to design a model for predicting event with
l units of lead time. To achieve this, we construct a lead-l variate alignment graph,
GX,Y,l(V , E, wl), which is a weighted graph where

– V = X∪Y and E = EXX ∪ EYY ∪ EXY , where EXX = {〈Tn, Tm〉 | Tn, Tm ∈
X}, EYY = {〈Tn, Tm〉 | Tn, Tm ∈ Y}, EXY = {〈Tn, Tm〉 | Tn ∈ X, Tm ∈
Y},

– for all 〈Tn, Tm〉 ∈ EXX ∪ EYY , the edge weight is computed as wl(〈Tn, Tm〉) =
VA(Tn, Tm), and

– for all 〈Tn, Tm〉 ∈ EXY , the edge weight is computed as wl(〈Tn, Tm〉) =
VA(T {l}

n , T 〈l〉
m ); here T 〈l〉 = [(vl+1, t1) , (vl+2, t2) , . . . , (vT , tT−l)] is the l-step

back-shifted version of T , whereas T {l} = [
(v1, t1) , (v2, t2) , . . . , (vT−l , tT−l)

]
is the l-step shortened version of T .

Above, EXX are the edges among the source variates, EYY are the edges among the
target variates, and EXY are the edges from the source to target variates. Intuitively, the
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weight wl(〈Tn, Tm〉) for an edge crossing the source and target variates represents
the temporal alignment among series where the target variates are shifted l steps
backwards (this enables us to compare source and target series with l-step lag). Note
that, the graph GX,Y,l(V , E, wl) represents lead-l alignments between O(‖X ∪ Y‖2)
variate pairs. As we see below, however, in practice, we do not need to enumerate the
entire variate alignment graph.

2.7.2 Variate selection

Given the lead-l variate alignment graph,GX,Y,l(V , E, wl), the k source variates, X̂, to
be used for training can be selected using various node selection strategies, including
random walk based techniques, such as Personalized PageRank (Tong et al. 2006), a
commonly used node ranking scheme which ranks the nodes in a graph with respect
to a given seed node set (the target nodes Y in this case) through a random walk
that emphasizes those nodes that are quickly reachable from the seed nodes over a
large number of paths. (Roffo et al. 2015) proposed an inf-FS method to generate a
variate-variate relationship matrix that maximizes the separation between the variates,
followed by a random-walk over the variates to rank each variate based on their over-
all importance to the multi-variate time series. In order to prevent the specific graph
centrality measure from clouding the results and to assess the general applicability of
the variate selection approach to multi-variate time series forecasting, in the experi-
ments reported in Sect. 3, as default, we use a much simpler (and cheaper) k-nearest
neighbor strategy, where we only consider the edge set, EXY , between source/target
pairs and rank the target variates inX according to their average edge weights towards
the source variates in Y to select the top-k target variates, X̂. Experiments show that
this alone is a highly effective strategy in variate selection.

2.8 Lead-lmodel training

Once the top-k subset, X̂, of source variates are selected, to learn a function f :
X[t] → Y(t+l) which forecasts with lead time l, we train a model (CNN, RNN, or
LSTM) of the target variables, Y, using only the selected source variables, X̂. More
specifically, the training process seeks the function fl : X̂

{l}
[t] → Y

〈l〉
(t), where Y

〈l〉

is the l-step back-shifted version of the target variates2 in Y and X̂
{l} is the l-step

shortened version of the k source variates in X̂. The specific training processes used
in our experimental evaluations are detailed in Sect. 3.3.

3 Experiments

In this section, we experimentally evaluate the validity of the key arguments presented
in Sect. 1.2 and assess the effectiveness of the Selego framework against alternative

2 Without loss of generality, in the experiments reported in Sect. 3, we consider target sets each with a
single variate (i.e., |Y| = 1).
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Table 1 Overview of multi-variate time series datasets

Datasets NASDAQ EEG (O1, O2) FC BE

# of Variates 81 80 (=5× 16) 157 390

# of Timestamps 210 19 212 24

Lead (l) 1, 5, 10, 50 1, 5, 10 1, 5, 10, 50 1, 5, 10

Top % Variates 10, 50, 90, 100 10, 50, 90, 100 5, 10, 50, 90, 100 2, 10, 50, 90, 100

Time Unit 1 minute 5 seconds 1 minute 1 hour

variate selection strategies, for various data sets and forecasting models3. We imple-
mented Selego in Python environment (3.5.2) using Keras Deep Learning Library
(2.2.4-tf) with TensorFlow Backend (1.14.0) (Abadi et al. 2016). All models were
trained on an Intel Xeon E5-2670 2.3 GHz Quad-Core Processor with 32GB RAM
equipped with Nvidia Tesla P100 GPU with 16 GiB GDDR5 RAM with CUDA-10.0
and cuDNN v7.6.44. The variate selection processes were executed on MATLAB
R2018b U5 (9.5.0.1178774) on MacOS 10.14.6 with 2.9Hz Intel Core i5 equipped
with NVIDIA GeForce GT 750M 1GB graphics card.

3.1 Datasets

Aswe summarize in Table 1, to evaluate the application of the proposed Selego frame-
work, we consider four real-world datasets from a variety of domains:

NASDAQ (S&P and APPL): (Qin et al. 2017), comprises of prominent NASDAQ
stocks; stock prices and index are recorded for 105 days from July 26, 2016 to Dec
22, 2016. We explore two targets for this dataset, the S&P Index and APPL.

EEG-BCI: (Fernandez-Fraga and Aceves-Fernandez 2018) records brain signals,
using the BCI System, for 30 subjects while they are performing visual activities.

There are 16 EEG sensors placed on the subjects. The time domain signal from
each sensor is transformed into 5 frequency bands, leading into a total of 80 variates.
Among these, we consider the observed responses from the left and right occipital
lobes (O1,O2) of the subjects as to 10 (= 2 × 5) target variates.

Fuel Consumption (FC): This is a proprietary dataset, comprising of ∼ 500 variates
for various flights averaging for 3.5 hours from takeoff to landing. Here, we forecast
the fuel consumption for the flights using ∼ 157 (non-categorical) variates that are
not directly measuring aspects of fuel consumption.

Building Energy (BE): This is a proprietary dataset with 512 variates recording
various indoor (e.g. heating, cooling, airflow) and outdoor sensor readings for 30
consecutive days at a resolutions of 1 hour. For this data set, we consider 390 non-
categorical variates and select as the target variable the overall power consumption.

3 Our source codes and the public data sets used in these experiments are available .
4 Results presented in this paper were obtained using NSF testbed: “Chameleon: A Large-Scale Re-
configurable Experimental Environment for Cloud Research”
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3.2 Alternative feature and variate selectionmethods

In addition to Selego, we consider the following feature selection strategies:

DTW (Berndt and Clifford 1994) is a widely-used elastic distance measure which
accounts for differences in speed of patterns across two time series. Top-k variates
are selected by inversely sorting the variates based on their DTW distances to the
target variate. Note that, unlike Selego(which emphasizes temporal alignments of key
events), DTW gives precedence to variates that have similar shapes.
PCA, compares variates in a latent space: we first create a variate-variate co-variance
matrix, C , which is then decomposed into C = USUT using PCA (Pearson 1901)
based decomposition. Here,U is a factor matrix, where the rows correspond to source
and target variates and columns correspond to latent basis vectors. The top k variates
are selected by computing the dot product of the rows of U corresponding to source
variates with the row corresponding to the target variate.
Inf-FS (Roffo et al. 2015) is a feature selection strategy which ranks input variates
based on a random-walk on their transition graph representing the inverse (Spearman)
correlation between the variates.
FRESH (Christ et al. 2018) is a state of the art global temporal feature extraction
technique, commonly used for regression tasks. The authors provide a tsfresh package,
which we use to extract global features from each variate. We, then rank the input
variates with respect to the target variate by measuring the closeness of variate’s
features with the target’s features using Euclidean distance5.
SAX (Lin et al. 2002)
We also considered the symbolic aggregated approximation (SAX) features pro-

posed in (Lin et al. 2002).
We create a symbolic vector representation for each variate, we then rank the input

variates with respect to target variate by computing the closeness of two SAX features
in MINDIST (Lin et al. 2002)

We considered different configurations of SAX (window size {3, 16, 24, 32} and
dictionary size {7, 10} to create a symbolic vector representation for each variate.

The reported results are the best pair of window and dictionary sizes for each dataset
based on the highest average DCG score amongst all the possible pairs.

Given the above feature selection strategies, we consider three variate selection
methods:KNN (default) wherewe rank all variates based on their temporal alignments
to target series; PPR where we also take into account the topology of the resulting
variate alignment graph through personalized pagerank (with 85% emphasis given
on graph topology and 15% emphasis on the target series) (Tong et al. 2006); and
PR where the target is ignored and the variates are selected solely based on variate
centrality as computed by pagerank. Note that the Inf-FS method (Roffo et al. 2015),
by design, relies on a PR based for variate selection.

5 Since the components of the FRESH feature vector are of potentially of very different scales, each
component has been re-scaled to between 0 and 1 to prevent large valued components from having undue
bias in the final ranking.
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3.3 Neural network basedmodels

As described in Sect. 2.3, variate selection can be used within the context of various
neural-network (NN) based models. In this section, we consider CNN, RNN, and
LSTM-based models (both attentioned and without attention) RNN and LSTM relies
on recurrence to model temporal patterns. CNN does not rely on recurrence, but aims
to capture multi-scale patterns by relying multiple layers of convolution and polling
operations. Consequently, RNN and LSTM are used as (relatively complex) models
that are time aware; whereas (1D) CNN is used as a (relatively simple) non-recurrent
model. The hyper-parameters of the NN models have been empirically selected as
reported below:

Recurrent neural models: We consider two widely-used recurrent models, LSTM
(Hochreiter and Schmidhuber 1997) and RNN (Rumelhart and Hinton 1986). As the
default model architecture, we consider a model with 1 hidden layer with 200 compu-
tational units (LSTM, RNN) – the hidden activations were “tanh” and “hard sigmoid”
for RNN and LSTM respectively. ‘Linear‘” activation was used as output activation
for all models. Models were trained for 200 epochs with batch size of 1, using mean
absolute error (“mae”) and “RMSProp” as model loss and optimizer6.

Convolutional neural models: In addition to recurrent models, we also consider
convolutional kernels as simple (non-sequential) model. In particular, CNN sees the
entire temporal length at any given instance opposed to recurrent models where only
one time instance (in sequence) is available at a time. To ensure fair comparison against
LSTM and RNN experiments, we considered a CNN model with 1 hidden layer with
200 computational units, with linear activation function. The model was trained for
200 epochs with batch size of 1, using “mae” and “RMSProp” as model loss and
optimizer.
Attentioned models (Bahdanau et al. 2015): We also considered attentioned versions
of the CNN, RNN, and LSTM models. In particular, we applied the (Bahdanau et al.
2015) encoder-decoder based attention module, which used encoder to map an input
sequence (T1 . . . T T ) to a sequence of continuous representation Z = (Z1 . . . ZT )

and decoder generates an output sequence Ŷ = (Ŷ
1
. . . Ŷ

T
) one element at a time, i.e.

applying fine-grain attention.

3.4 Data normalization

In the experiments, we considered three alternative normalization strategies:

– No normalization: In this case, we use the input time series as is.
– Min-Max normalization: In this case, each uni-variate time series is indepen-
dently scaled such that the minimum value is equal to 0.0 and the maximum value
is equal to 100.0.

– Z-normalization: In this case, we use the well-known Z-normalization strat-
egy (Mueen and Keogh 2016) to normalize each uni-variate time series.

6 We report the best model performance across 200 epochs.
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Note that the variate selection and theNN-basedmodel training stepsdonot necessarily
need to rely on the same normalization strategy.

3.5 Experiment parameters

To assess the variate selection strategies in different settings, we explored various top-
X%of variates selections and different temporal “lead” conditions.We varied the ratio
of the selected source variates from 2% to 100% of variates in the data set (excluding
the target variable) to demonstrate how Selego performs with different numbers of
variates – note that k = 
num_variates × (X/100)�. We trained forecasting models
for varying leads from l = 1 to l = 50. To extract the key patterns using Selego,
we set σ0 to 0.5, the maximum number of scales to 9, and κ to 3

√
2 – this leads local

features of sizes 3 = (6× 0.5) time units to 24 = (6× ((
3
√
2)9 × 0.5)) time units for

computing variate alignments. These numbers have been selected to make sure that
the lengths of the extracted features are compatible with the lengths of all data sets
considered. We use 70% of the available samples for training, 10% for validation, and
20% for testing.

3.6 Evaluationmetrics

We measure accuracy using mean absolute error (MAE): MAE(Y true,Y pred) =
1
T

∑T
t=1

∣∣∣Y true[t]−Y pred [t]
∣∣∣; here, Y true and Y pred are the true and predicted values

of the target variable and T is the length of the time series. Note that, if the data is
normalized, we bring the data back to the original value range before computing the
MAE. We use the resulting MAE values in two different ways:

– For comparing the accuracy performance for a given approach under various prob-
lem settings, we compute and report the average MAE for all testing instances for
each configuration.

– For comparing the alternative variate selection strategies we compute and report
DCGavg,S(D) = 1

l × ∑
l DCGS(D, l), where S is a variate selection strat-

egy, D is a data set, l is the forecasting lead, and DCGS(D, l) is defined as
DCGS(D, l) = ∑

i=1..|S|
rank_count(D,S,l,i)

log2(i+1) . Here rank_count(D, S, l, i) is the
number of problem configurations (model, number of variates etc.) in which
the variate selection strategy provides the i th best (i.e., lowest) MAE among all
available strategies. Intuitively, the higher the DCGavg,S(D) value is, the better
performing is the variate selection strategy S for data set D.

3.7 Results and discussions

As we discussed in Sect. 3.4, the variate selection and the NN-based model training
steps do not necessarily need to rely on the same normalization strategy. Therefore,
before investigating the impact of variate selection strategies on forecasting accuracies,
in Table 2, we first consider the impact of data normalization on model accuracy when
novariate selection is applied.Aswe see in the table, theZ-normalization strategy leads
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Table 2 Average MAE scores under different normalization strategies (w/o variate selection, lead-1 pre-
diction): Z-normalization leads to the best overall accuracy across NN-models and data set (note that the
normalization has been applied during both feature extraction for variate alignment and model training)

to the best overall accuracy accross NN-models and data sets (even for the building
energy data where min-max normalization provides better result, the difference is
relatively minor). Therefore, in the rest of this section, we will train NN-models on
Z-normalized data by default (although variate selection process may be applied on
three considered normalization strategies).

3.7.1 Impact of variate selection on forecasting accuracy

In Table 3, we present average MAE values for different degrees of variate selection,
learning models, data normalization strategies, and forecasting leads (the MAE scores
included in this table are averages of MAEs for the six variate selection strategies).
From this table, we see that CNN with tight variate selection provides the best overall
results: It is interesting to note that, even though it is not often the best option when
considering all 100% of the variates, CNN-based models become highly effective
when we are able to select and focus only the relevant variates through the variate
selection strategy; this confirms our argument that, when coupled with variate selec-
tion, CNNs could be more effective than sequence-aware recurrent networks (such
as RNN and LSTM) that attempt to learn temporal patterns (through recurrence) but
have difficulties in achieving this task in practice.

As expected, when using all 100% variates, attention technique may be used to help
reduce MAE, but its impact on accuracy is limited and in some cases (especially when
aiming forecastingwith large leads) attention can actually reduce accuracy; in contrast,
variate selection is significantly more effective in eliminating noise and unnecessary
data and, thus, consistently provides significantly large reductions in MAE. In the
experiments, the only noticeable exception is for NASDAQ-APPLE data set with lead
times ≥ 5, using LSTM model with very tight (10%) variate selection – but even for
that data set and lead times, RNN and CNN both provide significant accuracy gains
using only 10% selected variates.

3.7.2 Selego versus other variate selection strategies

In Table 4, we present the average DCG scores for the six variate selection algorithms
and three data normalization strategies (for a total of 18 alternatives). The DCG scores
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Table 3 Average MAE values for different degrees of variate selection, learning models, data normaliza-
tion strategies, and forecasting leads (the MAE scores are averages of MAEs for the six variate selection
strategies)

included in the table are averages of DCG values for all data sets and all variate selec-
tion rates reported in Table 1. As we see in this table, under all data normalization
strategies, the proposed Selegovariate selection strategy provides good results, indi-
cating its robustness to the shape of the data – the best overall DCG result is obtained
with Selego under Z-normalized data. In fact, the second best DCG is also provided
by Selego under the original, non-normalized data: since Selegoignores the shapes of
the patterns, but relies only on the co-occurrence/alignment of key events in the time
series, it is inherently robust and does not require normalization to return accurate pre-
dictions. In contrast, variate selection techniques relying on global features (FRESH)
and similarity/distance based measures (DTW, SAX and PCA) perform poorly under
all normalization strategies: in fact the worst 11 configurations (among all 18 config-
urations) are obtained using FRESH, DTW, SAX or PCA. This confirms our argument
that variates that have high predictive power have better temporal alignment of the local
key “events/features” with the target series key events, and do not necessarily look
similar to the target variate. While Inf-FS is somewhat competitive against Selego on
non-normalized data, its best overall DCG value, 6.32, is significantly lower than the
best DCG value, 6.76, achieved by Selego.
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Table 4 Average DCG scores for the six variate selection algorithms and three data normalization strategies
(total 18 alternatives) – the DCG scores are averages of DCG values for all data sets and all six variate
selection rates reported in Table 1

Table 5 Average DCG scores for the six variate selection algorithms under three data normalization strate-
gies for different data sets – the presented DCG scores are averages of DCG values for all variate selection
rates reported in Table 1
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Table 6 Model training times for the Building Energy data set (lead time 5 hours)

Table 7 Inference times for the Building Energy data set (lead time 5 hours)

Table 8 Variate selection times for the Building energy data set (lead time 5 hours)

In Table 5, we take a more detailed look at the DCG scores. In particular, we
present averageDCGscores separately for each normalization strategy.Aswe see here,
when considering Z-normalized data, Selegoprovides the best performance for all data
sets/forecasting tasks considered. When considering non-normalized data, Selegois
superior for 4 out of 6 tasks and for the “Nasdaq Apple” and “Fuel Consumption”,
Inf-FS provides better performance – note, however, Inf-FS performs poorly under
min-max normalization and Z-normalization strategies for this data set. Note that also
when considering min-max non-normalized data, Selegois superior most of the tasks:
SAX is better on NASDAQ and Inf-FS is better on Fuel Consumption, but neither
consistently outperforms Selego. Instead, Selegoproves to be highly robust across data
sets and normalization strategies.

3.7.3 Execution times

In Tables 6 through 8, we see the impact of variate selection on the overall compu-
tational complexity (due to space limitations, here we only include results for the
building energy data set, the results for the other data sets are similar). As we see in
Table 6, as would be expected, variate selection tends to reduce the model training
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Table 9 Averagemin-normalizedMAE scores for the under three data normalization strategies for different
variate ranking strategies (lower the better) – the presented scores are averages of CNN-model accuracies
for all feature selection strategies and data sets, under the tightest variate selection rates

times. The results show that the gains are the most pronounced for the CNN and that
Selego provides the highest training time gains. Interestingly, similarity based variate
selection strategies (DTW and PCA) hurt the training time under LSTM, which indi-
cates that, if not carried out properly, variate selection can negatively impact training
performance.

Table 8, then, presents the execution times for the variate selection process that
preceeds model training. As we see here, except for DTW and FRESH, the variate
selection times are essentially negligible relative to the model training times reported
in Table 6 –DTW takes themost time∼ 112 seconds to compare 389 source variates to
one target variate; i.e, ∼ 0.3 second on average per comparing a pair of variates. This
indicates that Selego based variate selection, not only provides boosts on accuracy,
but achieves this without any penalty on the overall time needed to prepare the data
for model training.

Table 7 shows that the inference times also slightly improve under variate selection
(especially when using Selego, with tight variate budget), but the gains are too slight
to be meaningful in the considered application scenarios – though the gains might
prove to be significant in other contexts.

3.7.4 Variate ranking strategies

As reported earlier, the above results have been obtained under the KNN-based variate
ranking strategy. In Table 9, we also consider alternative PR and PPR-based variate
ranking strategies. As we see in this table, KNN-based ranking (which we consid-
ered as default) under Z-normalization provides the best overall accuracies among
all alternatives. While it does not provide accuracy gains, using the alignment-graph
topology information helps avoid worst case accuracy behaviors, with PPR providing
the highest robustness, with the tightest accuracy range across different normalization
strategies.
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4 Conclusions

In this paper, we introduced Selegoframework for variate selection to support accurate
time series prediction. Selego relies on three key observations: (a) temporal alignments
among variates can be used to quantify the importance of the recorded variates with
respect to a target variate, (b) yet, traditional time series similarity/distance functions,
such as DTW, are fundamentally ill-suited for this purpose. Moreover, (c) when cou-
pled with robust variate selection, even simple CNN-based models can potentially be
more accurate than complex and costly recurrence based techniques (such as RNN
and LSTM). Experiments using LSTM, RNN, and CNN, for different top-X% vari-
ates and different forecasting leads on multiple real-world datasets have shown that
the proposed framework can offer significant (90− 98%) drops in the number of vari-
ates and significantly boost the overall prediction accuracies. Finally, we note that
the version of the Selego described in this paper has two limitations: (a) it defines
temporal alignment of features based on overlap and (b) it trains the neural network
model for a fixed lead time. While we have seen empirically good results under both
assumptions, in future work, we will relax these assumptions.
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ering andLeveraging PlausiblyCausal (p-causal) Relationships toUnderstandComplexDynamic Systems”,
and DOE grant “Securing Grid-interactive Efficient Buildings (GEB) through Cyber Defense and Resilient
System (CYDRES)”. Part of the research was carried out using the Chameleon testbed supported by the
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Appendix—sample series and feature distributions

Figures 7 through 9 provide examples of target variables, the best series aligned based
on feature distributions, along with a sample for poorly aligned series. In order to
better visualize the feature alignments, consecutive series (e.g. the consecutive days
in NASDAQ) have been concatenated and the number of feature layers considered in
these charts have been raised from the number of layers considered in the experiments.
As we see in these figures, temporal alignment of variates does not mean that they
must look similar: instead, alignment only means that the two series show evidence of
being impacted from the same underlying events. In Fig. 9b, for example, we see six
variates that, together, predict the fuel consumption series 9a well. We also see in the
figure that these series used for model training are temporally aligned with the target
series but are not necessarily similar to it.
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(a) (b) (c)

(d)

(e) (f) (g)    

(h) (i) (j)

(k)

Fig. 7 a The target variable NDX (NASDAQ index); b the best 6 series aligned with it (note that alignment
of series do not necessarily imply that the series are globally similar – it only means that they show evidence
of the same underlying events); c a poorly aligned series; d–k temporal distributions (time and length) of
the identified features in these series (here the X-axis denotes the time and the Y-axis identifies the length
of the feature identified at a particular point in time)
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(a)

(b) (c)

(d)

(e) (f) (g)    

(h) (i) (j)

(b) (c)

(k)

Fig. 8 a The target variable AAPL (symbol for the Apple stock); b the best 6 series aligned with it(note
that alignment of series do not necessarily imply that the series are globally similar – it only means that
they show evidence of the same underlying events); c a poorly aligned series; d–k temporal distributions
(time and length) of the identified features in these series (here the X-axis denotes the time and the Y-axis
identifies the length of the feature identified at a particular point in time)
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(a)

(d)

(e) (f) (g)    

(h)

(k)

(i) (j)

(b) (c)

Fig. 9 a The target variable fuel consumption; b the best 6 series aligned with it (note that alignment of
series do not necessarily imply that the series are globally similar—it only means that they show evidence
of the same underlying events); c a poorly aligned series; d–k temporal distributions (time and length) of
the identified features in these series (here the X-axis denotes the time and the Y-axis identifies the length
of the feature identified at a particular point in time)
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