
IEEE SIGNAL PROCESSING LETTERS, VOL. 28, 2021 937
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Abstract—Human voices can be used to authenticate the iden-
tity of the speaker, but the automatic speaker verification (ASV)
systems are vulnerable to voice spoofing attacks, such as imper-
sonation, replay, text-to-speech, and voice conversion. Recently,
researchers developed anti-spoofing techniques to improve the re-
liability of ASV systems against spoofing attacks. However, most
methods encounter difficulties in detecting unknown attacks in
practical use, which often have different statistical distributions
from known attacks. Especially, the fast development of synthetic
voice spoofing algorithms is generating increasingly powerful at-
tacks, putting the ASV systems at risk of unseen attacks. In this
work, we propose an anti-spoofing system to detect unknown syn-
thetic voice spoofing attacks (i.e., text-to-speech or voice conver-
sion) using one-class learning. The key idea is to compact the bona
fide speech representation and inject an angular margin to separate
the spoofing attacks in the embedding space. Without resorting to
any data augmentation methods, our proposed system achieves an
equal error rate (EER) of 2.19% on the evaluation set of ASVspoof
2019 Challenge logical access scenario, outperforming all existing
single systems (i.e., those without model ensemble).

Index Terms—Anti-spoofing, one-class classification, feature
learning, generalization ability, speaker verification.

I. INTRODUCTION

S
PEAKER verification plays an essential role in biometric

authentication; it uses acoustics features to verify whether

a given utterance is from the target person [1]. However, ASV

systems can be fooled by spoofing attacks, such as impersonation

(mimics or twins), replay (pre-recorded audio), text-to-speech

(converting text to spoken words), and voice conversion (con-

verting speech from source speaker to target speaker) [2], [3].

Among them, synthetic voice attacks (including text-to-speech

(TTS) and voice conversion (VC)) are posing increasingly more

threats to speaker verification systems due to the fast develop-

ment of speech synthesis techniques [4], [5].

To improve the spoofing-robustness of speaker verification

systems, stand-alone anti-spoofing modules are developed to
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detect spoofing attacks. The ASVspoof challenge series [3],

[6], [7] has been providing datasets and metrics for anti-spoofing

speaker verification research.

In this paper, we focus on anti-spoofing synthetic speech

attacks, i.e., discriminating bona fide speech from those gen-

erated by TTS and VC algorithms. Traditional methods pay

much attention to feature engineering, where good performance

has been shown with hand-crafted features such as Cochlear

Filter Cepstral Coefficients Instantaneous Frequency (CFC-

CIF) [8], Linear Frequency Cepstral Coefficients (LFCC) [9],

and Constant-Q Cepstral Coefficients (CQCC) [10]. As for the

back-end classifier, Gaussian Mixture Model (GMM) is used in

traditional methods [8]–[12]. Zhang et al. [13] investigated deep

learning models for anti-spoofing and proved that combinations

of Convolutional Neural Networks (CNNs) and Recurrent Neu-

ral Networks (RNNs) can improve system robustness. Monteiro

et al. [14] proposed to adopt the deep residual network (ResNet)

with temporal pooling. Chen et al. [15] proposed a system

which employs the ResNet with large margin cosine loss and

applied frequency mask augmentation. Gomez-Alanis et al. [16]

adapted a light convolutional gated RNN architecture to improve

the long-term dependency for spoofing attacks detection. Wu

et al. [17] proposed a feature genuinization based light CNN

system that outperforms other single systems for detection of

synthetic attacks. Aravind et al. [18] explored transfer learning

approach with a ResNet architecture. To further improve the

performance, researchers introduced model fusion based on

sub-band modeling [19] and different features [20]–[22] at the

cost of increased model complexity.

While much progress has been made, existing methods gener-

ally suffer from generalization to unseen spoofing attacks in the

test stage [2], [4]. We argue that this is because most methods

formulate the problem as binary classification of bona fide and

synthetic speech, which intrinsically assumes the same or similar

distributions between training and test data for both classes.

While this assumption is reasonable for the bona fide class

given a big training set with diverse speakers, it is hardly true

for the fake class. Due to the development of speech synthesis

techniques, the synthetic spoofing attacks in the training set may

never be able to catch up with the expansion of the distribution

of spoofing attacks in practice.

This distribution mismatch between training and test for the

fake class actually makes the problem a good fit for one-class

classification. In the one-class classification setup [23], there is

a target class that does not have this distribution mismatch prob-

lem, while for the non-target class(es), samples in the training set

are either absent or statistically unrepresentative. The key idea

of one-class classification methods is to capture the target class
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distribution and set a tight classification boundary around it, so

that all non-target data would be placed outside the boundary.

Recently, the one-class learning idea has been success-

fully introduced into image forgery detection [24]–[26]. For

voice spoofing detection, Alegre et al. [27] employed a one-

class support vector machine (OC-SVM) trained only on bona

fide speech to classify local binary patterns of speech cep-

strograms, showing the potential of one-class classification ap-

proach. It did not make use of any information from spoofing

attacks. Villalba et al. [28] proposed to fit OC-SVM with DNN

extracted speech embeddings of the bona fide class for the

ASVspoof 2015 Challenge. Although the method uses OC-SVM

to learn a compact boundary for the bona fide class, the em-

bedding space is still learned through binary classification. In

other words, the embedding space for drawing the classification

boundary may not benefit one-class classification.

In this paper, we formulate the speaker verification anti-

spoofing problem as one-class feature learning to improve the

generalization ability. The target class refers to bona fide speech

and the non-target class refers to spoofing attacks. We propose

a loss function called one-class softmax (OC-Softmax) to learn

a feature space in which the bona fide speech embeddings have

a compact boundary while spoofing data are kept away from

the bona fide data by a certain margin. Our proposed method,

without resorting to any data augmentation, outperforms all

existing single systems (those without ensemble learning) on

the ASVspoof 2019 LA dataset, and ranks between the second

and third places among all participating systems.

II. METHOD

Typically, for deep learning-based voice spoofing detection

models, the speech features are fed into a neural network to

calculate an embedding vector for the input utterance. The

objective of training this model is to learn an embedding space

in which the bona fide voices and spoofing voices can be well

discriminated. The embedding would be further used for scoring

the confidence of whether the utterance belongs to bona fide

speech or not. To the best of our knowledge, all the previous

voice spoofing detection systems learn speech embedding using

a binary classification loss function. As discussed in Section I,

this may limit the generalization ability to unknown attacks

as spoofing algorithms evolve. In this section, we first briefly

introduce and analyze the widely used binary classification loss

functions, then propose our one-class learning loss function for

voice spoofing detection.

A. Preliminary: Binary Classification Loss Functions

The original Softmax loss for binary classification can be

formulated as
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where xi ∈ R
D and yi ∈ {0, 1} are the embedding vector and

label of the i-th sample respectively, w0,w1 ∈ R
D are the

Fig. 1. Illustration of the original Softmax and AM-Softmax for binary classi-
fication, and our proposed OC-Softmax for one-class learning. (The embeddings
and the weight vectors shown are non-normalized).

weight vectors of the two classes, and N is the number of

samples in a mini-batch.

AM-Softmax [29] improves upon this by introducing an

angular margin to make the embedding distributions of both

classes more compact, around the weight difference vector’s

two directions:
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where α is a scale factor, m is the margin for cosine similarity,

and ŵ, x̂ are normalized w and x respectively.

B. Proposed Loss Function for One-Class Learning

According to the formulae of Softmax and AM-Softmax in

(1) and (2), for both loss functions, the embedding vectors of the

target and non-target class tend to converge around two opposite

directions, i.e., w0 −w1 and w1 −w0, respectively. This is

shown in Fig. 1(a), (b). For AM-Softmax, the embeddings of

both target and non-target class are imposed with an identical

compactness margin m. The larger m is, the more compact the

embeddings will be.

In voice spoofing detection, it is reasonable to train a compact

embedding space for bona fide speech. However, if we also

train a compact embedding space for the spoofing attacks, it

may overfit known attacks. To address this issue, we propose to

introduce two different margins for better compacting the bona

fide speech and isolating the spoofing attacks. The proposed loss

function One-class Softmax (OC-Softmax) is denoted as

LOCS =
1

N

N
∑

i=1

log
(

1 + eα(myi
−ŵ0x̂i)(−1)yi

)

. (3)

Note that only one weight vector w0 is used in this loss

function. The w0 refers to the optimization direction of the

target class embeddings. The w0 and x are also normalized

as in AM-Softmax. Two margins (m0,m1 ∈ [−1, 1],m0 > m1)

are introduced here for bona fide speech and spoofing attacks

respectively, to bound the angle between w0 and xi, which

is denoted by θi. When yi = 0, m0 is used to force θi to be

smaller than arccosm0, whereas when yi = 1, m1 is used to

force θi to be larger than arccosm1. As shown in Fig. 1 (c), a

small arccosm0 can make the target class concentrate around
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TABLE I
SUMMARY OF THE ASVSPOOF 2019 LA DATASET

the weight vector w0, whereas a relatively large arccosm1 can

push the non-target data to be apart from w0.

III. EXPERIMENTS

A. Dataset

The ASVspoof 2019 challenge provides a standard

database [30] for anti-spoofing. The LA subset of the provided

dataset includes bona fide speech and different kinds of TTS

and VC spoofing attacks. Training and development sets share

the same 6 attacks (A01-A06), consisting of 4 TTS and 2 VC

algorithms. In the evaluation set, there are 11 unknown at-

tacks (A07-A15, A17, A18) including combinations of different

TTS and VC attacks. The evaluation set also includes two attacks

(A16, A19) which use the same algorithms as two of the attacks

(A04, A06) in the training set but trained with different data.

Details can be found in Table I.

B. Evaluation Metrics

To evaluate the performance of the anti-spoofing system,

we take note of the output score of the anti-spoofing system. The

output of the anti-spoofing system is called a countermeasure

(CM) score, and it indicates the similarity of the given utterance

with bona fide speech. For systems trained with Softmax or

AM-Softmax, the output CM score is the cosine similarity be-

tween the speech embeddingxi and the weight vectorw0 −w1.

For our proposed system with OC-Softmax, the CM score is

the cosine similarity of xi and w0. Equal Error Rate (EER)

is calculated by setting a threshold on the CM decision score

such that the false alarm rate is equal to the miss rate. The

lower the EER is, the better the anti-spoofing system is at

detecting spoofing attacks. The tandem detection cost function

(t-DCF) [31] is a new evaluation metric adopted in the ASVspoof

2019 challenge. While EER only evaluates the performance of

the anti-spoofing system, the t-DCF assesses the influence of

anti-spoofing systems on the reliability of an ASV system. The

ASV system is fixed to compare different anti-spoofing systems.

The lower the t-DCF is, the better reliability of ASV is achieved.

C. Training Details

We extract 60-dimensional LFCCs from the utterances with

the MATLAB implementation provided by the ASVspoof 2019

Challenge organizers.1 The frame size is 20 ms and the hop size

is 10 ms. To form batches, we set 750 frames as the fixed length

and use repeat padding for short trials, and we randomly choose

a consecutive piece of frames and discard the rest for long trials.

We adopt the network architecture adapted from [14]. The

architecture is based on deep residual network ResNet-18 [32],

1[Online]. Available: https://www.asvspoof.org

TABLE II
RESULTS ON THE DEVELOPMENT AND EVALUATION SETS OF THE ASVSPOOF

2019 LA SCENARIO USING LOSS FUNCTIONS IN SECTION II

TABLE III
EER (%) PERFORMANCE COMPARISON OF LOSS FUNCTIONS ON INDIVIDUAL

ATTACKS OF THE EVALUATION SET (ALL UNSEEN FROM DEVELOPMENT) OF

THE ASVSPOOF 2019 LA SCENARIO. (* MEANS THE INDIVIDUAL EER IS

STATISTICALLY SIGNIFICANTLY DIFFERENT FROM OC-SOFTMAX, WITH A 99%
CONFIDENCE INTERVAL)

where the global average pooling layer is replaced by attentive

temporal pooling. The architecture takes the extracted LFCC

features as input and outputs the confidence score to indicate

the classification result. We use the intermediate output before

the last fully connected layer as the embedding for the speech

utterances, where 256 is the embedding dimension. For the

hyper-parameters in the loss functions, we set α = 20 and m =
0.9 for AM-Softmax; we set α = 20, m0 = 0.9 and m1 = 0.2
for the proposed OC-Softmax.

We implement our model with PyTorch.2 We use Adam

optimizer with the β1 parameter set to 0.9 and the β2 parameter

set to 0.999 to update the weights in the ResNet model. We use

Stochastic Gradient Descent (SGD) optimizer for the parameters

in the loss functions. The batch size is set to 64. The learning rate

is initially set to 0.0003 with 50% decay for every 10 epochs.

We trained the network for 100 epochs on a single NVIDIA

GTX 1080 Ti GPU. Then we select the model with the lowest

validation EER for evaluation.

D. Results

1) Evaluation of Proposed Loss Function: To demonstrate

the effectiveness of the one-class learning method, we com-

pared our proposed OC-Softmax with the conventional binary

classification loss functions, under the setting of the same input

features and models. The performance of the system trained

with different loss functions is compared in Table II on both

the development and evaluation sets of ASVspoof 2019 LA

scenario. We also compare the performance on individual unseen

attacks in the evaluation set in Table III.

2[Online]. Available: https://github.com/yzyouzhang/AIR-ASVspoof
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Fig. 2. Feature embedding visualization of our proposed loss. Red: Bona fide
Speech; Blue: Spoofing Attacks except A17. Green: A17 attack. Highlighted
part are the unknown attacks with different distributions.

The three losses perform similarly on the development set,

showing that they have good discrimination ability to detect

known attacks. For the evaluation set, where all the attacks are

not included in the development set, our one-class learning with

the proposed OC-Softmax surpasses the binary classification

losses (Softmax and AM-Softmax). The relative improvement

on EER is up to 33%. As for individual attacks, our system

with OC-Softmax achieves universally good performance over

all but A17 attacks, showing the efficacy of one-class learning

to detect unknown attacks. A17 is the most difficult attack in the

evaluation set [3], but our proposed system shows a significant

improvement. We conduct a statistical significance test based

on [33], and in Table III we mark the individual EERs that show

significant difference on Softmax and AM-Softmax, comparing

with OC-Softmax.

Moreover, the dimension-reduced embedding visualization is

shown in Figure 2. The same t-distributed Stochastic Neighbor

Embedding (t-SNE) and Principle Component Analysis (PCA)

projections are applied to development and evaluation datasets

of ASVspoof 2019 LA scenario. In other words, the visualiza-

tions of the two sets use the same coordinating systems. The

t-SNE subfigures show that the bona fide speech has the same

distribution in both sets while unknown attacks in the evaluation

set show different distributions from the known attacks in the

development set. This suggests that the bona fide class is well

characterized by the instances in the training data, but the

spoofing attacks in the training data cannot form a statistical

representation of the unknown attacks, hereby verifies our prob-

lem formulation in Section I. Nevertheless, the unknown attacks

that appear in the top cluster (highlighted) and especially the

A17 attack (green) on the top right subfigure are successfully

separated from the bona fide speech cluster, showing a good

generalization ability of our system.

We further verify the one-class idea with PCA visualization of

the learned embedding. In the bottom left subfigure, the embed-

dings of the bona fide speech are compact, and an angular margin

is injected between bona fide and spoofing attacks, thanks to

the linearity of PCA, verifying our assumption in Figure 1 (c).

TABLE IV
PERFORMANCE COMPARISON WITH EXISTING SINGLE SYSTEMS ON THE

EVALUATION SET OF THE ASVSPOOF 2019 LA SCENARIO

The bottom right figure shows that when encountering unknown

spoofing attacks, the angle is still maintained, and the embed-

dings for the unknown attacks are still mapped to the angularly

separate space. This shows the effectiveness of our proposed

OC-Softmax loss.

2) Comparison With Other Systems: To demonstrate the su-

periority of our proposed method, we compared our system with

other existing single systems (no model fusion) without data

augmentation in Table IV and also with the leaderboard of the

ASVspoof 2019 Challenge for LA scenario [3].

For all methods in Table IV with a reference, we obtained

their results from their papers. Some of them participated in the

ASVspoof 2019 LA challenge and reported better results with

model ensembles and data augmentation, but we only compare

with their single system version without data augmentation. It is

noted that “ResNet + OC-SVM” was adapted from [28], which is

the only existing one-class classification method; We replaced

their DNN with our ResNet and run the experiments on the

ASVspoof 2019 LA dataset for a fair comparison. It can be seen

that our proposed system significantly outperforms all of the

other single systems.

In fact, on the leader board of the ASVspoof 2019 Challenge

for LA scenario [3], our system would rank between the second

(EER 1.86%) [21] and the third (EER 2.64%) [22] among all

the systems, even though the top three methods all used model

fusion.

IV. CONCLUSION

In this work, we proposed a voice spoofing detection system

based on one-class learning to enhance the robustness of the

model against unknown spoofing attacks. The proposed system

aims to learn a speech embedding space in which bona fide

speech has a compact distribution while spoofing attacks reside

outside by an angular margin. Experiments showed that the pro-

posed loss outperforms the original Softmax and AM-Softmax

that formulate anti-spoofing as a conventional binary classifica-

tion problem. The proposed system also outperforms all existing

single systems (no model fusion) without data augmentation of

the ASVspoof 2019 Challenge LA scenario, and ranks between

the second and the third among all participating systems. For

future work, we would like to extend our method to detecting

other multimedia forgeries.
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