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One-Class Learning Towards Synthetic Voice
Spoofing Detection

You Zhang

Abstract—Human voices can be used to authenticate the iden-
tity of the speaker, but the automatic speaker verification (ASV)
systems are vulnerable to voice spoofing attacks, such as imper-
sonation, replay, text-to-speech, and voice conversion. Recently,
researchers developed anti-spoofing techniques to improve the re-
liability of ASV systems against spoofing attacks. However, most
methods encounter difficulties in detecting unknown attacks in
practical use, which often have different statistical distributions
from known attacks. Especially, the fast development of synthetic
voice spoofing algorithms is generating increasingly powerful at-
tacks, putting the ASV systems at risk of unseen attacks. In this
work, we propose an anti-spoofing system to detect unknown syn-
thetic voice spoofing attacks (i.e., text-to-speech or voice conver-
sion) using one-class learning. The key idea is to compact the bona
fide speech representation and inject an angular margin to separate
the spoofing attacks in the embedding space. Without resorting to
any data augmentation methods, our proposed system achieves an
equal error rate (EER) of 2.19 % on the evaluation set of ASVspoof
2019 Challenge logical access scenario, outperforming all existing
single systems (i.e., those without model ensemble).

Index Terms—Anti-spoofing, one-class classification, feature
learning, generalization ability, speaker verification.

1. INTRODUCTION

PEAKER verification plays an essential role in biometric
S authentication; it uses acoustics features to verify whether
a given utterance is from the target person [1]. However, ASV
systems can be fooled by spoofing attacks, such as impersonation
(mimics or twins), replay (pre-recorded audio), text-to-speech
(converting text to spoken words), and voice conversion (con-
verting speech from source speaker to target speaker) [2], [3].
Among them, synthetic voice attacks (including text-to-speech
(TTS) and voice conversion (VC)) are posing increasingly more
threats to speaker verification systems due to the fast develop-
ment of speech synthesis techniques [4], [5].
To improve the spoofing-robustness of speaker verification
systems, stand-alone anti-spoofing modules are developed to
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detect spoofing attacks. The ASVspoof challenge series [3],
[6], [7] has been providing datasets and metrics for anti-spoofing
speaker verification research.

In this paper, we focus on anti-spoofing synthetic speech
attacks, i.e., discriminating bona fide speech from those gen-
erated by TTS and VC algorithms. Traditional methods pay
much attention to feature engineering, where good performance
has been shown with hand-crafted features such as Cochlear
Filter Cepstral Coefficients Instantaneous Frequency (CFC-
CIF) [8], Linear Frequency Cepstral Coefficients (LFCC) [9],
and Constant-Q Cepstral Coefficients (CQCC) [10]. As for the
back-end classifier, Gaussian Mixture Model (GMM) is used in
traditional methods [8]-[12]. Zhang et al. [13] investigated deep
learning models for anti-spoofing and proved that combinations
of Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs) can improve system robustness. Monteiro
et al. [14] proposed to adopt the deep residual network (ResNet)
with temporal pooling. Chen et al. [15] proposed a system
which employs the ResNet with large margin cosine loss and
applied frequency mask augmentation. Gomez-Alanis et al. [16]
adapted a light convolutional gated RNN architecture to improve
the long-term dependency for spoofing attacks detection. Wu
et al. [17] proposed a feature genuinization based light CNN
system that outperforms other single systems for detection of
synthetic attacks. Aravind et al. [18] explored transfer learning
approach with a ResNet architecture. To further improve the
performance, researchers introduced model fusion based on
sub-band modeling [19] and different features [20]—[22] at the
cost of increased model complexity.

While much progress has been made, existing methods gener-
ally suffer from generalization to unseen spoofing attacks in the
test stage [2], [4]. We argue that this is because most methods
formulate the problem as binary classification of bona fide and
synthetic speech, which intrinsically assumes the same or similar
distributions between training and test data for both classes.
While this assumption is reasonable for the bona fide class
given a big training set with diverse speakers, it is hardly true
for the fake class. Due to the development of speech synthesis
techniques, the synthetic spoofing attacks in the training set may
never be able to catch up with the expansion of the distribution
of spoofing attacks in practice.

This distribution mismatch between training and test for the
fake class actually makes the problem a good fit for one-class
classification. In the one-class classification setup [23], there is
a target class that does not have this distribution mismatch prob-
lem, while for the non-target class(es), samples in the training set
are either absent or statistically unrepresentative. The key idea
of one-class classification methods is to capture the target class
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distribution and set a tight classification boundary around it, so
that all non-target data would be placed outside the boundary.

Recently, the one-class learning idea has been success-
fully introduced into image forgery detection [24]-[26]. For
voice spoofing detection, Alegre e al. [27] employed a one-
class support vector machine (OC-SVM) trained only on bona
fide speech to classify local binary patterns of speech cep-
strograms, showing the potential of one-class classification ap-
proach. It did not make use of any information from spoofing
attacks. Villalba et al. [28] proposed to fit OC-SVM with DNN
extracted speech embeddings of the bona fide class for the
ASVspoof 2015 Challenge. Although the method uses OC-SVM
to learn a compact boundary for the bona fide class, the em-
bedding space is still learned through binary classification. In
other words, the embedding space for drawing the classification
boundary may not benefit one-class classification.

In this paper, we formulate the speaker verification anti-
spoofing problem as one-class feature learning to improve the
generalization ability. The target class refers to bona fide speech
and the non-target class refers to spoofing attacks. We propose
a loss function called one-class softmax (OC-Softmax) to learn
a feature space in which the bona fide speech embeddings have
a compact boundary while spoofing data are kept away from
the bona fide data by a certain margin. Our proposed method,
without resorting to any data augmentation, outperforms all
existing single systems (those without ensemble learning) on
the ASVspoof 2019 LA dataset, and ranks between the second
and third places among all participating systems.

II. METHOD

Typically, for deep learning-based voice spoofing detection
models, the speech features are fed into a neural network to
calculate an embedding vector for the input utterance. The
objective of training this model is to learn an embedding space
in which the bona fide voices and spoofing voices can be well
discriminated. The embedding would be further used for scoring
the confidence of whether the utterance belongs to bona fide
speech or not. To the best of our knowledge, all the previous
voice spoofing detection systems learn speech embedding using
a binary classification loss function. As discussed in Section I,
this may limit the generalization ability to unknown attacks
as spoofing algorithms evolve. In this section, we first briefly
introduce and analyze the widely used binary classification loss
functions, then propose our one-class learning loss function for
voice spoofing detection.

A. Preliminary: Binary Classification Loss Functions

The original Softmax loss for binary classification can be
formulated as

N
Z (Heww w%i), (1)

where z; € RP and y; € {0, 1} are the embedding vector and
label of the i-th sample respectively, wo, w; € R” are the
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Fig. 1. TIllustration of the original Softmax and AM-Softmax for binary classi-
fication, and our proposed OC-Softmax for one-class learning. (The embeddings
and the weight vectors shown are non-normalized).

weight vectors of the two classes, and N is the number of
samples in a mini-batch.

AM-Softmax [29] improves upon this by introducing an
angular margin to make the embedding distributions of both
classes more compact, around the weight difference vector’s
two directions:

1 N
Lams = N Z;IOg ea(ﬁ}T

N ~ T N
yiwi—m) _~_eaw1,yiw1

Zlog (1 +€ HL ('wy7—w1 yl) x; ))7 (2)

where « is a scale factor, m is the margin for cosine similarity,
and w, & are normalized w and x respectively.

B. Proposed Loss Function for One-Class Learning

According to the formulae of Softmax and AM-Softmax in
(1) and (2), for both loss functions, the embedding vectors of the
target and non-target class tend to converge around two opposite
directions, i.e., wy — w; and w; — wy, respectively. This is
shown in Fig. 1(a), (b). For AM-Softmax, the embeddings of
both target and non-target class are imposed with an identical
compactness margin m. The larger m is, the more compact the
embeddings will be.

In voice spoofing detection, it is reasonable to train a compact
embedding space for bona fide speech. However, if we also
train a compact embedding space for the spoofing attacks, it
may overfit known attacks. To address this issue, we propose to
introduce two different margins for better compacting the bona
fide speech and isolating the spoofing attacks. The proposed loss
function One-class Softmax (OC-Softmax) is denoted as

N
1 N .
EOCS = N E log (1 + eo‘(myi 7w0mi)(71)y1) . (3)
1=1

Note that only one weight vector wg is used in this loss
function. The wy refers to the optimization direction of the
target class embeddings. The wy and x are also normalized
as in AM-Softmax. Two margins (mg, m; € [—1, 1],mg > mq)
are introduced here for bona fide speech and spoofing attacks
respectively, to bound the angle between wy and x;, which
is denoted by 6;. When y; = 0, my is used to force 6; to be
smaller than arccosmg, whereas when y; = 1, m is used to
force 6; to be larger than arccos m;. As shown in Fig. 1 (c), a
small arccos mg can make the target class concentrate around
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TABLE I
SUMMARY OF THE ASVSPOOF 2019 LA DATASET

Bona fide Spoofed

# utterance | # utterance attacks
Training 2,580 22,800 A0l - AO6
Development 2,548 22,296 A0l - AO6
Evaluation 7,355 63,882 A07 - A19
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RESULTS ON THE DEVELOPMENT AND EVALUATION SETS OF THE ASVSPOOF
2019 LA SCENARIO USING LOSS FUNCTIONS IN SECTION IT

the weight vector wg, whereas a relatively large arccos m can
push the non-target data to be apart from wy.

III. EXPERIMENTS
A. Dataset

The ASVspoof 2019 challenge provides a standard
database [30] for anti-spoofing. The LA subset of the provided
dataset includes bona fide speech and different kinds of TTS
and VC spoofing attacks. Training and development sets share
the same 6 attacks (AO1-A06), consisting of 4 TTS and 2 VC
algorithms. In the evaluation set, there are 11 unknown at-
tacks (A07-A15, A17, A18) including combinations of different
TTS and VC attacks. The evaluation set also includes two attacks
(A16, A19) which use the same algorithms as two of the attacks
(A04, A06) in the training set but trained with different data.
Details can be found in Table I.

B. Evaluation Metrics

To evaluate the performance of the anti-spoofing system,
we take note of the output score of the anti-spoofing system. The
output of the anti-spoofing system is called a countermeasure
(CM) score, and it indicates the similarity of the given utterance
with bona fide speech. For systems trained with Softmax or
AM-Softmax, the output CM score is the cosine similarity be-
tween the speech embedding x; and the weight vector wy — w.
For our proposed system with OC-Softmax, the CM score is
the cosine similarity of x; and wg. Equal Error Rate (EER)
is calculated by setting a threshold on the CM decision score
such that the false alarm rate is equal to the miss rate. The
lower the EER is, the better the anti-spoofing system is at
detecting spoofing attacks. The tandem detection cost function
(t-DCF) [31]is anew evaluation metric adopted in the ASVspoof
2019 challenge. While EER only evaluates the performance of
the anti-spoofing system, the t-DCF assesses the influence of
anti-spoofing systems on the reliability of an ASV system. The
ASV system is fixed to compare different anti-spoofing systems.
The lower the t-DCF is, the better reliability of ASV is achieved.

C. Training Details

We extract 60-dimensional LFCCs from the utterances with
the MATLAB implementation provided by the ASVspoof 2019
Challenge organizers.! The frame size is 20 ms and the hop size
is 10 ms. To form batches, we set 750 frames as the fixed length
and use repeat padding for short trials, and we randomly choose
a consecutive piece of frames and discard the rest for long trials.

We adopt the network architecture adapted from [14]. The
architecture is based on deep residual network ResNet-18 [32],

![Online]. Available: https://www.asvspoof.org

Loss Dev Sgt Eval Sgt
EER (%) min t-DCF EER (%) min t-DCF
Softmax 0.35 0.010 4.69 0.125
AM-Softmax 0.43 0.013 3.26 0.082
OC-Softmax 0.20 0.006 2.19 0.059
TABLE III

EER (%) PERFORMANCE COMPARISON OF LOSS FUNCTIONS ON INDIVIDUAL
ATTACKS OF THE EVALUATION SET (ALL UNSEEN FROM DEVELOPMENT) OF
THE ASVSPOOF 2019 LA SCENARIO. (* MEANS THE INDIVIDUAL EER 1S
STATISTICALLY SIGNIFICANTLY DIFFERENT FROM OC-SOFTMAX, WITH A 99%

CONFIDENCE INTERVAL)

Attacks Softmax AM-Softmax OC-Softmax
A07 0.37* 0.22 0.12
A08 0.01 0.06 0.18
A09 0.02* 0.02* 0.12
Al0 1.18 0.63* 1.14
All 0.37 0.02* 0.12
Al2 0.43 0.53 0.47
Al3 0.69* 0.27 0.22
Al4 4.98* 0.51 0.69
AlS 5.43* 0.69* 1.40
Al6 0.22 0.51 0.33
Al7 23.48* 13.45* 9.22
Al8 0.20* 4.27* 0.90
Al19 1.34* 0.86 0.90

where the global average pooling layer is replaced by attentive
temporal pooling. The architecture takes the extracted LFCC
features as input and outputs the confidence score to indicate
the classification result. We use the intermediate output before
the last fully connected layer as the embedding for the speech
utterances, where 256 is the embedding dimension. For the
hyper-parameters in the loss functions, we set « = 20 and m =
0.9 for AM-Softmax; we set o« = 20, mg = 0.9 and m; = 0.2
for the proposed OC-Softmax.

We implement our model with PyTorch.>? We use Adam
optimizer with the 3; parameter set to 0.9 and the 35 parameter
set to 0.999 to update the weights in the ResNet model. We use
Stochastic Gradient Descent (SGD) optimizer for the parameters
in the loss functions. The batch size is set to 64. The learning rate
is initially set to 0.0003 with 50% decay for every 10 epochs.
We trained the network for 100 epochs on a single NVIDIA
GTX 1080 Ti GPU. Then we select the model with the lowest
validation EER for evaluation.

D. Results

1) Evaluation of Proposed Loss Function: To demonstrate
the effectiveness of the one-class learning method, we com-
pared our proposed OC-Softmax with the conventional binary
classification loss functions, under the setting of the same input
features and models. The performance of the system trained
with different loss functions is compared in Table II on both
the development and evaluation sets of ASVspoof 2019 LA
scenario. We also compare the performance on individual unseen
attacks in the evaluation set in Table III.

2[Online]. Available: https://github.com/yzyouzhang/AIR- ASVspoof
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(c) PCA (Dev)

(d) PCA (Eval)

Fig. 2. Feature embedding visualization of our proposed loss. Red: Bona fide
Speech; Blue: Spoofing Attacks except A17. Green: A17 attack. Highlighted
part are the unknown attacks with different distributions.

The three losses perform similarly on the development set,
showing that they have good discrimination ability to detect
known attacks. For the evaluation set, where all the attacks are
not included in the development set, our one-class learning with
the proposed OC-Softmax surpasses the binary classification
losses (Softmax and AM-Softmax). The relative improvement
on EER is up to 33%. As for individual attacks, our system
with OC-Softmax achieves universally good performance over
all but A17 attacks, showing the efficacy of one-class learning
to detect unknown attacks. A17 is the most difficult attack in the
evaluation set [3], but our proposed system shows a significant
improvement. We conduct a statistical significance test based
on [33], and in Table III we mark the individual EERs that show
significant difference on Softmax and AM-Softmax, comparing
with OC-Softmax.

Moreover, the dimension-reduced embedding visualization is
shown in Figure 2. The same t-distributed Stochastic Neighbor
Embedding (t-SNE) and Principle Component Analysis (PCA)
projections are applied to development and evaluation datasets
of ASVspoof 2019 LA scenario. In other words, the visualiza-
tions of the two sets use the same coordinating systems. The
t-SNE subfigures show that the bona fide speech has the same
distribution in both sets while unknown attacks in the evaluation
set show different distributions from the known attacks in the
development set. This suggests that the bona fide class is well
characterized by the instances in the training data, but the
spoofing attacks in the training data cannot form a statistical
representation of the unknown attacks, hereby verifies our prob-
lem formulation in Section I. Nevertheless, the unknown attacks
that appear in the top cluster (highlighted) and especially the
A17 attack (green) on the top right subfigure are successfully
separated from the bona fide speech cluster, showing a good
generalization ability of our system.

We further verify the one-class idea with PCA visualization of
the learned embedding. In the bottom left subfigure, the embed-
dings of the bona fide speech are compact, and an angular margin
is injected between bona fide and spoofing attacks, thanks to
the linearity of PCA, verifying our assumption in Figure 1 (c).

IEEE SIGNAL PROCESSING LETTERS, VOL. 28, 2021

TABLE IV
PERFORMANCE COMPARISON WITH EXISTING SINGLE SYSTEMS ON THE
EVALUATION SET OF THE ASVSPOOF 2019 LA SCENARIO

System EER (%) min t-DCF
CQCC + GMM [3] 9.57 0.237
LFCC + GMM [3] 8.09 0.212
Chettri et al. [22] 7.66 0.179
Monterio et al. [14] 6.38 0.142

Gomez-Alanis et al. [16] 6.28 -

Aravind et al. [18] 5.32 0.151
Lavrentyeva et al. [21] 4.53 0.103
ResNet + OC-SVM 4.44 0.115
Wu et al. [17] 4.07 0.102
Tak et al. [19] 3.50 0.090
Chen et al. [15] 3.49 0.092
Proposed 2.19 0.059

The bottom right figure shows that when encountering unknown
spoofing attacks, the angle is still maintained, and the embed-
dings for the unknown attacks are still mapped to the angularly
separate space. This shows the effectiveness of our proposed
OC-Softmax loss.

2) Comparison With Other Systems: To demonstrate the su-
periority of our proposed method, we compared our system with
other existing single systems (no model fusion) without data
augmentation in Table IV and also with the leaderboard of the
ASVspoof 2019 Challenge for LA scenario [3].

For all methods in Table IV with a reference, we obtained
their results from their papers. Some of them participated in the
ASVspoof 2019 LA challenge and reported better results with
model ensembles and data augmentation, but we only compare
with their single system version without data augmentation. It is
noted that “ResNet + OC-SVM” was adapted from [28], which is
the only existing one-class classification method; We replaced
their DNN with our ResNet and run the experiments on the
ASVspoof 2019 LA dataset for a fair comparison. It can be seen
that our proposed system significantly outperforms all of the
other single systems.

In fact, on the leader board of the ASVspoof 2019 Challenge
for LA scenario [3], our system would rank between the second
(EER 1.86%) [21] and the third (EER 2.64%) [22] among all
the systems, even though the top three methods all used model
fusion.

IV. CONCLUSION

In this work, we proposed a voice spoofing detection system
based on one-class learning to enhance the robustness of the
model against unknown spoofing attacks. The proposed system
aims to learn a speech embedding space in which bona fide
speech has a compact distribution while spoofing attacks reside
outside by an angular margin. Experiments showed that the pro-
posed loss outperforms the original Softmax and AM-Softmax
that formulate anti-spoofing as a conventional binary classifica-
tion problem. The proposed system also outperforms all existing
single systems (no model fusion) without data augmentation of
the ASVspoof 2019 Challenge LA scenario, and ranks between
the second and the third among all participating systems. For
future work, we would like to extend our method to detecting
other multimedia forgeries.
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