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Summary
We present a certainty equivalence-based adaptive boundary control scheme
with a regulation-triggered batch least-squares identifier, for a heterodirec-
tional transport partial differential equation-ordinary differential equation
(PDE-ODE) system where the transport speeds of both transport PDEs are
unknown. We use a nominal controller which is fed piecewise-constant param-
eter estimates from an event-triggered parameter update law that applies a
least-squares estimator to data “batches” collected over time intervals between
the triggers. A parameter update is triggered by an observed growth in the norm
of the PDE state. The proposed triggering-based adaptive control guarantees: (1)
the absence of a Zeno phenomenon; (2) parameter estimates are convergent to
the true values in finite time (from most initial conditions); (3) exponential reg-
ulation of the plant states to zero. The effectiveness of the proposed design is
verified by a numerical example.
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1 INTRODUCTION

1.1 Control of coupled transport PDEs

Systems of transport partial differential equations (PDEs) appear in many physical models, including road traffic,1-4 water
level dynamics,5-7 and flow of fluids in transmission lines.8,9 In the past 10 years, many authors have contributed to bound-
ary control of the coupled transport PDEs. The basic boundary stabilization problem of 2× 2 coupled linear transport
PDEs by backstepping was addressed in References 10,11, which was further extended to boundary control of an n+ 1
system in Reference 12. For a more general coupled transport PDE system, where the number of PDEs in either direction
is arbitrary, a boundary stabilization law was first designed by backstepping in Reference 13. Boundary control of cou-
pled transport PDEs connected with ordinary differential equations (ODEs) at the uncontrolled boundary was studied in
References 14-17.

Through the Riemann transformations, wave PDEs can be converted to 2× 2 hyperbolic PDEs.18-21 Therefore, in
addition to the applications to the traffic and water-level dynamics, the boundary control design for coupled first-order
hyperbolic PDEs has also been applied to wave PDE-modeled dynamics, such as oil drilling,19 cable elevators,22 and
deep-sea construction vessels.23
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1.2 Adaptive control of PDEs

Based on approximated reduced-order models, learning-based state estimation and stabilization for PDEs with param-
eter uncertainties are presented in References 24,25, respectively. For fully model-based adaptive control26 of PDEs
without model approximation, three traditional schemes are the Lyapunov design, the passivity-based design, and the
swapping design,27 which were initially developed for ODEs in Reference 28. Using the three design methods, adap-
tive control designs were proposed for parabolic PDEs in References 29-31. For adaptive control of hyperbolic PDEs,
many results, based on the three conventional methods, have been introduced in References 19,32-43. An adaptive
control application to congested traffic is shown in Reference 2. As in all conventional adaptive control, the adaptive
control designs achieve only asymptotic convergence of the plant states, without being guaranteed to identify exactly the
true parameters.

Recently, a new adaptive scheme, using a regulation-triggered batch least-squares identifier (BaLSI), was introduced
in References 44,45, which has at least two significant advantages over the traditional adaptive approaches: guaranteeing
exponential regulation of the states to zero, as well as finite-time convergence of the estimates to the true values. An appli-
cation of BaLSI to a two-link manipulator, which is modeled by a highly nonlinear system and subject to four parametric
uncertainties, is shown in Reference 46. Regarding PDEs, this method has been successfully applied in adaptive control
of a parabolic PDE where the unknown parameters are the reaction coefficient and the high-frequency gain.47 Using the
least-squares identifier updated in a sequence of times with fixed intervals, the backstepping adaptive boundary control
design of a first-order hyperbolic PDE where the transport speed is allowed to be unknown, was first proposed in Refer-
ence 48, and extended to the case with a spatially varying coefficient in Reference 49. Extending the result in Reference
50 with removing the restriction of nonzero initial conditions of PDEs, in this paper we develop a BaLSI-based backstep-
ping adaptive boundary controller for a heterodirectional transport PDE-ODE system, where both of the two transport
speeds are unknown.

1.3 Contributions

• In this paper, we design an adaptive certainty-equivalence controller with regulation-triggered batch least-squares
identification for a coupled hyperbolic PDE-ODE system where the unknown parameters are transport speeds. It would
be appropriate to regard this paper as the hyperbolic equivalent of the paper47 for a parabolic PDE, where the unknown
parameters are the reaction coefficient and the high-frequency gain.

• Compared with previous adaptive control results for coupled transport PDEs,32-35 where the transport speeds or trans-
port delays are required to be known, and only the asymptotic convergence to zero of the plant states is achieved, our
design deals with unknown transport speeds (only bounds being known) with finite-time exact estimations (from most
initial conditions), and achieves exponential regulation of the plant states to zero. To permit the transport speeds to be
unknown, we require the full PDE state to be measured (as might be feasible in congested traffic applications on fully
instrumented freeways).

• As compared to References 48,49 which deal with adaptive control of a first-order hyperbolic PDE with an uncertain
in-domain source parameter and an uncertain transport speed, where the parameter identifiers were employed with
updates at a sequence of times separated by fixed intervals, we design here an adaptive controller for a heterodirectional
first-order hyperbolic PDE-ODE system, where both of the two transport speeds are unknown, and the identifier is
updated at a sequence of nonequidistant times, which are determined by an event trigger that is activated based on the
progress of the regulation of the plant’s PDE and ODE states.

1.4 Organization

The problem formulation is shown in Section 2. The nominal control design is presented in Section 3. The design of
the regulation-triggered adaptive controller is proposed in Section 4. The main results, including the parameter con-
vergence, the exclusion of the zeno phenomenon, and exponential regulation of the states, are proved in Section 5.
The effectiveness of the proposed design is illustrated with simulation in Section 6. The conclusion, are given in
Section 7.
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1.5 Notation

We adopt the following notation.

• The symbol Z+ denotes the set of all nonnegative integers and R+ ∶= [0,+∞).
• Let U ⊆ Rn be a set with non-empty interior and let Ω ⊆ R be a set. By C0(U; Ω), we denote the class of continuous

mappings on U, which take values in Ω.
• We use the notation N for the set {1, 2, … }, that is, the natural numbers without 0.
• For an I ⊆ R+, the space C0(I; L2(0, 1)) is the space of continuous mappings I ∋ t →u[t]∈L2(0, 1).
• Let u ∶ R+ × [0, 1] → R be given. We use the notation u[t] to denote the profile of u at certain t ≥ 0, that is,

(u[t])(x)=u(x, t), for all x ∈ [0, 1].

2 PROBLEM FORMULATION

In this paper we consider the class of plants

𝜁̇(t) = (a − q1bc)𝜁(t) + b(q2 + q1p)w(0, t), t ≥ 0, (1)

zt(x, t) = −q1zx(x, t), x ∈ [0, 1], t ≥ 0, (2)

wt(x, t) = q2wx(x, t), x ∈ [0, 1], t ≥ 0, (3)

z(0, t) = c𝜁(t) − pw(0, t), t ≥ 0, (4)

w(1, t) = c
q2

U(t) +
q1

q2
z(1, t), t ≥ 0 (5)

with initial conditions w(x, 0)=w0(x) for x ∈ [0, 1), z(x, 0)= z0(x) for x ∈ (0, 1], 𝜁(0) = 𝜁0, where 𝜁(t) is a scalar ODE state
and scalar z(x, t), w(x, t) are PDE states. The boundary condition (5) contains the control input U(t). The class of (1)–(4)
is motivated by a wave PDE converted to Riemann variables. It is through such a transformation process that possibly
unmotivated–looking coefficients a− q1bc and b(q2 + q1p) in (1) arise.

It is the parameters q1 and q2, which appear both as transport speeds and in the ODE (1) and the boundary condition
(5) that we consider unknown. The speed q2 is arbitrary and, of course, positive. The constants a, b, c, p are arbitrary and
positive as well. The constant c is arbitrary and nonzero.

To make the problem as nontrivial as we can within this class, we only consider the case where the ODE (1) is unstable,
with a− q1bc> 0, that is, the case where the unknown propagation speed q1 satisfies

0 < q1 <
a
bc
. (6)

The unknown transport speeds q1, q2 are assumed to have known upper bounds q1 > 0, q2 > 0 and lower bounds
q

1
> 0, q

2
> 0, respectively. The bounds q

2
, q2 are arbitrary, in addition to satisfying the obvious relation q

2
< q2.

For the bounds q
1
, q1, the following two assumptions are made.

Assumption 1. The upper bound q1 satisfies

q1 <
a
bc
. (7)

In addition to being consistent with the instability assumption (6), namely, 0 < q1 ≤ q1 < a∕(bc), Assumption 1 is also
used in the forthcoming design condition (12) where the control gain 𝜅 is chosen in accordance with the known bounds
on the unknown parameters.
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Assumption 2. The difference between the upper and lower bounds q
1
≤ q1 is smaller than the following unknown

constant,

q1 − q
1
<

√
q2q1rb

2ra
, (8)

where ra, rb are positive unknown constants, upper and lower bounded, respectively, as

rb <
m

2c2
0q1

, (9)

ra >
2
q2

(
q1rbp2 +

(q1p + q2)2b2

2m

)
, (10)

the unknown constant m in the bounds (9) and (10) is defined as

m = −a + q1bc − b𝜅 > 0, (11)

and the constant 𝜅 appearing in (11), and to be used later in control design, is chosen to satisfy

𝜅 < min
⎧⎪⎨⎪⎩
(a − q

1
bc)

[
q2 + (q1 − q

1
)
(

cb(q2+q1p)
a−q1bc

+ p
)]

−q
2
b

, q
1
c − a

b

⎫⎪⎬⎪⎭ . (12)

The purpose of Assumption 2, that is, (8) will become evident in Section 3, with the purpose of (8) becoming evi-
dent specifically in inequality (28), whose role is in estimating the exponential decay rate under nominal feedback. This
assumption is not required in the BaLSI design and the exact parameter estimation. It is used in the stability analysis by
the Lyapunov method in Section 5. If there is no unknown parameter staying with the proximal reflection term z(1, t) in
(5), Assumption 2, that is, (8), is not required.

Assumption 2 is difficult to verify a priori for two reasons. First, because the unknown q1 and q2 appear in (8), (9), (10),
(11). Second, because q1 − q

1
appears both on the left of (8) and on the right of (12). But Assumption 2 can unquestionably

be satisfied for sufficiently small q1 − q
1
. Unfortunately, very small q1 − q

1
essentially means that the transport speed q1

is known.
Let us now recap that q2, which appears in the actuated w-PDE in (3), and is the transport speed in the direction

downstream from the input, is arbitrary (positive), whereas the unactuated z-PDE in (2) may have to be nearly perfectly
known.

The parameters q1, q2 appear in both the PDE as well as the ODE. The structure of the plant and the conditions
of the plant parameters come, at least in principle, and as we already indicated above, from writing a wave PDE-ODE
coupled model in Riemann coordinates. If the wave PDE’s Young modulus were unknown, the transformation into the
Riemann variables would contain such an unknown quality, which would render z(x, t) and w(x, t) unmeasurable. We
proceed with an adaptive design for the class of systems (2), (3) with the expectation that applications do exist in which
the transformation step into (2), (3) is not needed and (z, w) are measurable.

If the original plant were a wave PDE, the ODE (1) would be driven by the wave PDE’s boundary state of Neumann
type, multiplied by a coefficient associated with the wave PDE’s propagation velocity, while the opposite boundary of the
wave PDE would be actuated using Neumann actuation with a coefficient associated with the wave PDE’s propagation
velocity as well. One physical model of this type system is an oil well drilling model,51 where

a = ca

IB
, b = Id

2IB
, q1 = q2 =

√
GJ
Id
, c = 2

Id
, p = 1, c = 2,

with Id being the moment of inertia per unit of length, G the shear modulus, J the geometrical moment of inertia of the
drill pipe, ca the anti-damping coefficient at the bit due to the stick-slip instability, and IB the moment of inertia of the
Bottom Hole Assembly.
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3 NOMINAL CONTROL DESIGN

We introduce the following backstepping transformation

𝛼(x, t) = z(x, t), (13)

𝛽(x, t) = w(x, t) − ∫
x

0
𝜙(x, y)w(y, t)dy − 𝜆(x)𝜁(t), (14)

where

𝜆(x; q1, q2) =
𝜅

q1p + q2
e

1
q2
(a−q1bc)x

, (15)

𝜙(x, y; q1, q2) =
𝜅

q2
e

1
q2
(a−q1bc)(x−y)b, (16)

and 𝜅 is a design parameter, first mentioned in Assumption 2, and to be chosen according to (12).
Writing q1, q2 after “; ” in 𝜆(x; q1, q2) and 𝜙(x, y; q1, q2) emphasizes the fact that 𝜙(x, y), 𝜆(x) depend on the unknown

parameters q1, q2.
By applying the backstepping transformations (13), (14), the plants (1)–(5) is converted to the target system

𝜁̇(t) = −m𝜁(t) + b(q1p + q2)𝛽(0, t), (17)

𝛼(0, t) = c0𝜁(t) − p𝛽(0, t), (18)

𝛼t(x, t) = −q1𝛼x(x, t), (19)

𝛽t(x, t) = q2𝛽x(x, t), (20)

𝛽(1, t) = 0, (21)

where

c0 = c − p𝜆(0; q1, q2). (22)

The control input U(t) is chosen as

U(t) = −1
c
[q1z(1, t) − q2 ∫

1

0
𝜙(1, y; q1, q2)w(y, t)dy − q2𝜆(1; q1, q2)𝜁(t)], (23)

to ensure (21).
Define

Ω(t) = ||z[t]||2 + ||w[t]||2 + 𝜁(t)2, (24)

and a vector 𝜃 containing the two unknown parameters as

𝜃 = (q1, q2)T . (25)

Through Lyapunov analysis for the target system (17)–(21), and applying the invertibility of the backstepping
transformation, the estimate

Ω(t) ≤ Υ𝜃Ω(0)e−𝜆1t, t ≥ 0, (26)
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is obtained, where the decay rate 𝜆1 is

𝜆1 = min{1
2
(q1bc − a − b𝜅), 𝛿q2, 𝛿q1}, (27)

with the analysis parameter 𝛿 > 0 selected as

𝛿 ≤ ln

(
1

q1 − q
1

√
q2q1rb

2ra

)
, (28)

in order to meet the needs of the Lyapunov analysis, which will become evident in Section 5. For the right-hand side of
(28) to be positive, we need

1
(q1 − q

1
)

√
q2q1rb

2ra
> 1. (29)

This is ensured by Assumption 2. To recap, 𝛿 in (28) is only an analysis parameter, which influences the decay
rate in (26).

The overshoot coefficient Υ𝜃 obtained in (26), through the straightforward and omitted Lyapunov analysis, is

Υ𝜃 =
𝜉2𝜉4

𝜉1𝜉3
, (30)

where the positive constants 𝜉1, 𝜉2, 𝜉3, 𝜉4 are

𝜉1 = min
{1

2
ra,

1
2

rbe−𝛿, 1
2

}
, (31)

𝜉2 = max
{1

2
rae𝛿, 1

2
rb,

1
2

}
, (32)

𝜉3 = 1

max
{

3 + 3𝜅2b2

q2
2 ||m||2, 3𝜅2

(q2+q1p)2
||m||2 + 1

} , (33)

𝜉4 = max
{

3 + 3𝜅2b2

q22 ||n||2, 3𝜅2

(q2 + q1p)2 ||n||2 + 1
}
, (34)

with

m(x) = e
a−q1bc+b𝜅

q2
x
, n(x) = e

1
q2
(a−q1bc)x

, (35)

and with the positive constants ra, rb required in Assumption 2 to satisfy (10), (9).
The relations (30)–(35), (9), (10), (28) will be used in the proofs of the main results in Section 5.
We refer to the controller U(t) in (23) as the nominal feedback, which requires the knowledge of the values of the

parameters q1, q2. The adaptive scheme working with the nominal feedback (23) and guaranteeing exponential regulation
is presented in the next section.

4 REGULATION-TRIGGERED ADAPTIVE CONTROL

The regulation-triggered adaptive control includes a certainty-equivalence controller and a least-squares identifier which
is updated at a sequence of time instants.
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4.1 The certainty-equivalence controller

The control action in the interval between two consecutive events is the result of replacing the unknown parameters q1, q2
in the nominal control law (23) by their estimates q̂1, q̂2 at the beginning of the interval, with the estimates q̂1, q̂2 kept
constant during the interval. In other words, the adaptive version of (23) is given by

U(t) = −1
c
[q̂1(𝜏i)z(1, t) − q̂2(𝜏i)∫

1

0
𝜙(1, y; 𝜃̂(𝜏i))w(y, t)dy − q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i))𝜁(t)], t ∈ [𝜏i, 𝜏i+1), i ∈ Z+, (36)

𝜃̂(t) = (q̂1(t), q̂2(t))T = (q̂(𝜏i), q̂2(𝜏i))T = 𝜃̂(𝜏i), t ∈ [𝜏i, 𝜏i+1), i ∈ Z+, (37)

where {𝜏i ≥ 0}∞i=0 is the sequence of time instants, which, along with the estimates 𝜃̂(𝜏i), is defined next.

4.2 The event-trigger

The sequence of time instants {𝜏i ≥ 0}∞i=0 is chosen to satisfy

𝜏i+1 = min{𝜏i + T, ri}, i ∈ Z+, (38)

with 𝜏0 = 0. The constant T > 0 is a design parameter with the purpose to avoid a low update frequency and, more impor-
tantly, ri > 𝜏i is a time instant determined by an event trigger which is designed next. The trigger was introduced in
Reference 47 and is based on the progress of the regulation of the states.

The event trigger sets ri > 𝜏i to be the smallest value of time t > 𝜏i for which

Ω(t) = Υ𝜃̂(𝜏i)(1 + a)Ω(𝜏i), (39)

for Ω(𝜏i) ≠ 0, where Υ𝜃̂(𝜏i) ≥ 1 is the coefficient defined by (30) with q1, q2 replaced by q̂1, q̂2, the design parameter a is
positive, andΩ is defined by (24) with the solutions of (1)–(5) under (36). In simple terms, the parameter estimate update is
triggered if the plant norm has grown by a certain factor, specially, by Υ𝜃̂(𝜏i)(1 + a). Since Υ𝜃̂(𝜏i) is the overshoot coefficient
already associated with the system transient in accordance with the estimate (26), the real net growth factor that triggers
the update is 1 + a for any a > 0 chosen by the user.

If a time t > 𝜏i satisfying (39) does not exist, we set ri =+∞. For the case that Ω(𝜏i) = 0, we set ri ∶= 𝜏i + T. Therefore,
the event trigger ri is built as

ri ∶ = inf{t > 𝜏i ∶ Ω(t) = Υ𝜃̂(𝜏i)(1 + a)Ω(𝜏i)}, Ω(𝜏i) ≠ 0, (40)

ri ∶ = 𝜏i + T, Ω(𝜏i) = 0. (41)

The following lemma shows that the event-trigger is well-defined and produces an increasing sequence of events.

Lemma 1. The event-trigger (38 ), (40 ), (41 ) is well defined, that is, 𝜏i+1 > 𝜏i, for all i∈Z+.

Proof. If Ω(𝜏i) = 0, it follows from (38), (41) that 𝜏i+1 = 𝜏i + T. If Ω(𝜏i) ≠ 0 and ri defined in (40) is less than 𝜏i + T, the
dwell time 𝜏i+1 − 𝜏i is greater than zero becauseΩ(𝜏i+1) = Υ𝜃̂(𝜏i)(1 + a)Ω(𝜏i) > Ω(𝜏i) andΩ(t) defined in (24) is a continuous
function on t ∈ [𝜏i, 𝜏i+1]. If ri ≥ 𝜏i + T or ri is infinite, it follows from (38) that 𝜏i+1 = 𝜏i + T. ▪

The above lemma allows us to define the solution on the interval [0, limi→∞(𝜏i)).

4.3 Least-squares identifier

The least-squares identifier activated by the trigger defined by (38)–(41) is designed in this subsection. The design
idea of the identifier follows from Reference 47. According to the considered dynamic model, by applying integration,
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formulating a cost function, using Fermat’s theorem, a matrix equation is constructed, with an unknown vector of plant
parameters, and with the equation’s coefficients being the plant states over a time interval. The parameter estimation is
then treated as a convex optimization problem with linear equality constraints.

By virtue of (1)–(5), we get for 𝜏 > 0 and n= 1, 2, … that

d
d𝜏

(
∫

1

0
cos(x𝜋n)z(x, 𝜏)dx + ∫

1

0
cos(x𝜋n)w(x, 𝜏)dx + 1

b
𝜁(𝜏)

)
= −q1(−1)nz(1, 𝜏) + q1z(0, 𝜏) − q1𝜋n∫

1

0
sin(x𝜋n)z(x, 𝜏)dx

+ q2(−1)nw(1, 𝜏) − q2w(0, 𝜏) + q2𝜋n∫
1

0
sin(x𝜋n)w(x, 𝜏)dx

+ a
b
𝜁(𝜏) + (q2w(0, 𝜏) − q1z(0, 𝜏))

= −q1𝜋n∫
1

0
sin(x𝜋n)z(x, 𝜏)dx + q2𝜋n∫

1

0
sin(x𝜋n)w(x, 𝜏)dx + (−1)ncU(𝜏) + a

b
𝜁(𝜏), (42)

where (4) was inserted into (1) to replace q1bc𝜁(t) and to yield

d
d𝜏
𝜁(𝜏) = a𝜁(𝜏) + b(q2w(0, 𝜏) − q1z(0, 𝜏)). (43)

Integrating (42) from 𝜇i+1 to t, yields

fn(t, 𝜇i+1) = q1gn,1(t, 𝜇i+1) + q2gn,2(t, 𝜇i+1), (44)

where

fn(t, 𝜇i+1) =
(
∫

1

0
cos(x𝜋n)z(x, t)dx + ∫

1

0
cos(x𝜋n)w(x, t)dx + 1

b
𝜁(t)

)
−
(
∫

1

0
cos(x𝜋n)z(x, 𝜇i+1)dx + ∫

1

0
cos(x𝜋n)w(x, 𝜇i+1)dx + 1

b
𝜁(𝜇i+1)

)
− ∫

t

𝜇i+1

(
(−1)ncU(𝜏) + a

b
𝜁(𝜏)

)
d𝜏,

gn,1(t, 𝜇i+1) = −∫
t

𝜇i+1

𝜋n∫
1

0
sin(x𝜋n)z(x, 𝜏)dxd𝜏, (45)

gn,2(t, 𝜇i+1) = ∫
t

𝜇i+1

𝜋n∫
1

0
sin(x𝜋n)w(x, 𝜏)dxd𝜏, (46)

for n= 1, 2, … . The time 𝜇i+1 introduced in Reference 44 is

𝜇i+1 ∶= min{𝜏f ∶ f ∈ {0, … , i}, 𝜏f ≥ 𝜏i+1 − ÑT}, (47)

where the positive integer Ñ ≥ 1 is a design parameter. In practice, a larger Ñ can reduce the effect of measurement noise
on the precision of estimation, with a cost of larger computation.44

Equation (44) is written as

fn(t, 𝜇i+1) = 𝜂n(t, 𝜇i+1)𝜃, (48)

where

𝜂n(t, 𝜇i+1) = [gn,1(t, 𝜇i+1), gn,2(t, 𝜇i+1)], (49)
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and 𝜃 is defined in (25). Define the function hi,n ∶ R2 → R+ by the formula

hi,n(𝓁) = ∫
𝜏i+1

𝜇i+1

(fn(t, 𝜇i+1) − 𝜂n(t, 𝜇i+1)𝓁)2dt, (50)

for n= 1, 2, … , 𝓁 = [𝓁1,𝓁2]T , i∈Z+.
According to (48), the function hi, n(𝓁) (50) has a global minimum hi,n(𝜃) = 0. We get from Fermat’s theorem (vanishing

gradient at extrema) that the following equations hold for every i∈Z+ and n= 1, 2, … :

Hn,1(𝜇i+1, 𝜏i+1) = q1Qn,1(𝜇i+1, 𝜏i+1) + q2Qn,2(𝜇i+1, 𝜏i+1), (51)

Hn,2(𝜇i+1, 𝜏i+1) = q1Qn,2(𝜇i+1, 𝜏i+1) + q2Qn,3(𝜇i+1, 𝜏i+1), (52)

where

Hn,1(𝜇i+1, 𝜏i+1) = ∫
𝜏i+1

𝜇i+1

gn,1(t, 𝜇i+1)fn(t, 𝜇i+1)dt, (53)

Hn,2(𝜇i+1, 𝜏i+1) = ∫
𝜏i+1

𝜇i+1

gn,2(t, 𝜇i+1)fn(t, 𝜇i+1)dt, (54)

Qn,1(𝜇i+1, 𝜏i+1) = ∫
𝜏i+1

𝜇i+1

gn,1(t, 𝜇i+1)2dt, (55)

Qn,2(𝜇i+1, 𝜏i+1) = ∫
𝜏i+1

𝜇i+1

gn,1(t, 𝜇i+1)gn,2(t, 𝜇i+1)dt, (56)

Qn,3(𝜇i+1, 𝜏i+1) = ∫
𝜏i+1

𝜇i+1

gn,2(t, 𝜇i+1)2dt. (57)

Indeed, (51), (52) are obtained by differentiating the functions hi, n(𝓁) defined by (50) with respect to 𝓁1,𝓁2, respec-
tively, and evaluating the derivatives at the position of the global minimum (𝓁1,𝓁2)= (q1, q2). Equations (51) and (52) are
organized as

Zn(𝜇i+1, 𝜏i+1) = Gn(𝜇i+1, 𝜏i+1)𝜃, (58)

where

Zn(𝜇i+1, 𝜏i+1) = [Hn,1(𝜇i+1, 𝜏i+1),Hn,2(𝜇i+1, 𝜏i+1)]T , (59)

Gn(𝜇i+1, 𝜏i+1) =

[
Qn,1(𝜇i+1, 𝜏i+1) Qn,2(𝜇i+1, 𝜏i+1)
Qn,2(𝜇i+1, 𝜏i+1) Qn,3(𝜇i+1, 𝜏i+1)

]
. (60)

The parameter update law is defined as

𝜃̂(𝜏i+1) = argmin{|𝓁 − 𝜃̂(𝜏i)|2 ∶ 𝓁 ∈ Θ, Zn(𝜇i+1, 𝜏i+1) = Gn(𝜇i+1, 𝜏i+1)𝓁, n = 1, 2, …}, (61)

where Θ = {𝓁 ∈ R2 ∶ q
1
≤ 𝓁1 ≤ q1, q2

≤ 𝓁2 ≤ q2}. The estimates are updated at 𝜏i+1, that is, 𝜃̂(𝜏i+1) = (q̂1(𝜏i+1), q̂2(𝜏i+1) )T ,
using the plant states over the time interval [𝜇i+1, 𝜏i+1], where the length of the data acquisition can be adjusted by Ñ in
(47). The initial values of the estimates q̂1(0), q̂2(0) are chosen as q̂1(0) = q

1
, q̂2(0) = q

2
, making q̂1(𝜏i) ≤ q1 and q̂2(𝜏i) ≤ q2,

which will be seen more clearly later. If a more robust identifer with respect to random measurement noise is required,
the identifer can be designed in a double integral form as in Reference 44.

For the solution notion, according to definition A.5 in Reference 52, we give the following weak solution definition.
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Definition 1. Consider the system

t + Λ(x)x + M(x) = 0, t ∈ [0,∞), x ∈ [0,L], (62)

(+(t, 0)
−(t,L)

)
= K

(
R+(t,L)
R−(t, 0)

)
+

(
N+

N−

)
X + ∫

L

0

(
F+(x)
F−(x)

)
dx (63)

dX
dt

= E++(t,L) + E−+(t, 0) + E0X , X ∈ R
p, (64)

(0, x) = 0(x),X(0) = X0, (65)

where  ∶ [0,+∞) × [0,L] → Rn,M ∶ [0,L] → n,n(R), the symbol n,n(R), as usual, denotes the set of n×n real
matrices, F+ ∶ [0,L] → m,n(R), F− ∶ [0,L] → n−m,n(R), and Λ(x) ≜ diag{Λ+(x),Λ−(x)} such that

Λ+(x) ≜ diag{𝜆1(x), … , 𝜆m(x)}, (66)

Λ−(x) ≜ −diag{𝜆m+1(x), … , 𝜆n(x)}, (67)

with 𝜆i(x) > 0,∀x ∈ [0,L], and where

K ≜
(

K00 K01

K10 K11

)
,K00 ∈ m,m(R),K01 ∈ m,n−m(R), (68)

K10 ∈ n−m,m(R), K11 ∈ Mn−m,n−m(R), (69)

N+ ∈ R
m×p, N− ∈ R

(n−m)×p, (70)

E+ ∈ R
p×m, E− ∈ R

p×(n−m), E0 ∈ R
p×p. (71)

A solution : (0,+∞) × (0,L) → Rn,X ∶ (0,∞) → Rp of the system (62)–(65) is a map  ∈ C0([0,+∞);L2(0, 1);Rn),
X ∈ C0([0,+∞);Rp) satisfying (65) such that, for every T > 0, every𝜓 ∈ C1([0,T] × [0,L];Rn), and every 𝜂 ∈ C1([0,T];Rp)
satisfying (

𝜓+(t,L)
𝜓−(t, 0)

)
=

(
Λ+(L)−1KT

00Λ
+(0) Λ+(L)−1KT

10Λ
−(L)

Λ−(0)−1KT
01Λ

+(0) Λ−(0)−1KT
11Λ

−(L)

)
(72)

×

(
𝜓+(t, 0)
𝜓−(t,L)

)
+

(
Λ+(L)E+T

Λ+(0)E−T

)
𝜂,

we have

∫
L

0
𝜓(T, x)T(T, x)dx − ∫

L

0
𝜓(0, x)T0(x) + 𝜂T(T)X(T) − 𝜂T(0)X(0)

= ∫
T

0 ∫
L

0
[𝜓T

t + 𝜓T
x Λ + 𝜓T(Λx − M) + 𝜓−T(t,L)Λ−(L)F− + 𝜓+T(t, 0)Λ+(0)F+]dxdt

+ ∫
T

0
[𝜂T

t + 𝜂TE0 + 𝜓−T(t,L)Λ−(L)N− + 𝜓+T(t, 0)Λ+(0)N+]Xdt. (73)

Proposition 1. For every (z0,w0)T ∈ L2((0, 1);R2), 𝜁0 ∈ R and 𝜃̂0 ∈ Θ, the initial boundary value problem (1)–(5) with
(36), (37), (38), (40), (41), (47), (61) and initial conditions w[0]=w0, z[0]= z0, 𝜁(0) = 𝜁0, 𝜃̂(0) = 𝜃̂0, has a unique (weak)
solution ((z,w)T , 𝜁) ∈ C0([0, limk→∞(𝜏k));L2(0, 1);R2) × C0([0, limk→∞(𝜏k));R).

Proof. The proof is shown in Appendix A. ▪
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The flow chart of the mechanism of the regulation-triggered adaptive controller is shown in Figure 1, and some system
properties are given in the following lemmas. In the rest of this paper, when we say that z[t], w[t] are equal to zero
for x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1], or not identically zero on the same domain, we mean “except possibly for finitely many
discontinuities of the functions w[t], z[t].” These discontinuities are isolated curves in the rectangle [0, 1] × [𝜇i+1, 𝜏i+1].

Lemma 2. The sufficient and necessary condition of Qn,1(𝜇i+1, 𝜏i+1) = 0 (or Qn,3(𝜇i+1, 𝜏i+1) = 0) for n= 1, 2, … is z[t]= 0
(or w[t]= 0) on t ∈ [𝜇i+1, 𝜏i+1].

Proof. Necessity: If Qn,1(𝜇i+1, 𝜏i+1) = 0 for n= 1, 2, … , then the definition (55) in conjunction with continuity of
gn,1(t, 𝜇i+1) for t ∈ [𝜇i+1, 𝜏i+1] (a consequence of definition (45) and the fact that z ∈ C0([𝜇i+1, 𝜏i+1];L2(0, 1))) implies

gn,1(t, 𝜇i+1) = 0, t ∈ [𝜇i+1, 𝜏i+1]. (74)

According to the definition (45) and continuity of the mapping 𝜏 → ∫ 1
0 sin(x𝜋n)z[𝜏]dx (a consequence of the fact that

z ∈ C0([𝜇i+1, 𝜏i+1];L2(0, 1)), (74) implies

∫
1

0
sin(x𝜋n)z(x, 𝜏)dx = 0, 𝜏 ∈ [𝜇i+1, 𝜏i+1], (75)

for n= 1, 2, … . Since the set {
√

2 sin(n𝜋x) ∶ n = 1, 2, …} is an orthonormal basis of L2(0, 1), we have z[t]= 0 for t ∈
[𝜇i+1, 𝜏i+1].

Similarly, if Qn,3(𝜇i+1, 𝜏i+1) = 0 for n= 1, 2, … , then w[t]= 0 on t ∈ [𝜇i+1, 𝜏i+1], recalling the definitions (57), (46), and
the fact that w ∈ C0([𝜇i+1, 𝜏i+1];L2(0, 1)), and the set {

√
2 sin(n𝜋x) ∶ n = 1, 2, …} being an orthonormal basis of L2(0, 1).

Sufficiency: If z[t]= 0 on t ∈ [𝜇i+1, 𝜏i+1] (or w[t]= 0 on t ∈ [𝜇i+1, 𝜏i+1]), then Qn,1(𝜇i+1, 𝜏i+1) = 0 (or Qn,3(𝜇i+1, 𝜏i+1) = 0)
for n= 1, 2, … is obtained directly, according to (45), (55) and (46), (57).

The proof of Lemma 2 is complete. ▪

Lemma 3. For the adaptive estimates defined by (61) based on the data in the interval t ∈ [𝜇i+1, 𝜏i+1], the following
statements hold:

F I G U R E 1 The adaptive certainty-equivalence control scheme
with regulation-triggered batch least-squares identification
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(1) If z[t] is not identically zero and w[t] is identically zero on t ∈ [𝜇i+1, 𝜏i+1], then q̂1(𝜏i+1) = q1, q̂2(𝜏i+1) = q̂2(𝜏i);
(2) If w[t] is not identically zero and z[t] is identically zero on t ∈ [𝜇i+1, 𝜏i+1], then q̂1(𝜏i+1) = q̂1(𝜏i), q̂2(𝜏i+1) = q2;
(3) If w[t], z[t] are identically zero on t ∈ [𝜇i+1, 𝜏i+1], then q̂1(𝜏i+1) = q̂1(𝜏i), q̂2(𝜏i+1) = q̂2(𝜏i);
(4) If both w[t] and z[t] are not identically zero on t ∈ [𝜇i+1, 𝜏i+1], then q̂1(𝜏i+1) = q1, q̂2(𝜏i+1) = q2.
Moreover, if q̂1(𝜏i) = q1 (or q̂2(𝜏i) = q2) for certain i∈Z+, then q̂1(t) = q1 (or q̂2(t) = q2) for all t ∈ [𝜏i, limk→∞(𝜏k)).

Proof. Define the following set

Si ∶= {𝓁 ∈ Θ ∶ Zn(𝜇i+1, 𝜏i+1) = Gn(𝜇i+1, 𝜏i+1)𝓁, n = 1, 2, …}. (76)

If Si is a singleton then it is nothing else but the least-squares estimate of the unknown vector of parameters (q1, q2)
on the interval [𝜇i+1, 𝜏i+1].

(1) Because z[t] is not identically zero and w[t] is identically zero on t ∈ [𝜇i+1, 𝜏i+1], there exists n ∈ N such that
Qn,1(𝜇i+1, 𝜏i+1) ≠ 0 recalling Lemma 2. Define the index set I to be the set of all n ∈ N with Qn,1(𝜇i+1, 𝜏i+1) ≠ 0. According to
(46) and w[t] being identically zero on t ∈ [𝜇i+1, 𝜏i+1], we know that gn,2(t, 𝜇i+1) = 0 on t ∈ [𝜇i+1, 𝜏i+1] for n= 1, 2, … . It fol-
lows that Qn,2(𝜇i+1, 𝜏i+1) = 0, Qn,3(𝜇i+1, 𝜏i+1) = 0, Hn,2(𝜇i+1, 𝜏i+1) = 0 for n= 1, 2, … recalling (56), (57), and (54). Then (76)
implies Si = {(𝓁1,𝓁2) ∈ Θ ∶ 𝓁1 = Hn,1(𝜇i+1,𝜏i+1)

Qn,1(𝜇i+1,𝜏i+1)
,n ∈ I} recalling (59), (60). Because (q1, q2)∈ Si according to (58), it follows

that Si = {(q1,𝓁2) ∈ Θ ∶ q
2
≤ 𝓁2 ≤ q2}. Therefore (61) shows that q̂1(𝜏i+1) = q1 and q̂2(𝜏i+1) = q̂2(𝜏i).

(2) The proof of (2) is very similar to the proof of 1), and thus it is omitted.
(3) Because w[t], z[t] are identically zero on t ∈ [𝜇i+1, 𝜏i+1], then Qn,1(𝜇i+1, 𝜏i+1) = 0, Qn,2(𝜇i+1, 𝜏i+1) = 0,

Qn,3(𝜇i+1, 𝜏i+1) = 0, Hn,1(𝜇i+1, 𝜏i+1) = 0, Hn,2(𝜇i+1, 𝜏i+1) = 0 for n= 1, 2, … according to (45), (46), (53)–(57). It follows that
Si = Θ, and then (61) shows that q̂1(𝜏i+1) = q̂1(𝜏i), q̂2(𝜏i+1) = q̂2(𝜏i).

(4) Because w[t] (or z[t]) are not identically zero on t ∈ [𝜇i+1, 𝜏i+1], there exists n ∈ N such that Qn,3(𝜇i+1, 𝜏i+1) ≠ 0 (or
Qn,1(𝜇i+1, 𝜏i+1) ≠ 0) recalling Lemma 2. Define the index set I1 to be the set of all n ∈ N with Qn,1(𝜇i+1, 𝜏i+1) ≠ 0 and define
the index set I2 to be the set of all n ∈ N with Qn,3(𝜇i+1, 𝜏i+1) ≠ 0. Denote the elements in I1 as n1 ∈ N and those in I2 as
n2 ∈ N, that is, Qn1,1(𝜇i+1, 𝜏i+1) ≠ 0, Qn2,3(𝜇i+1, 𝜏i+1) ≠ 0.

From (76), recalling (59)–(60), we obtain

Si ⊆ Sai ∶= {(𝓁1,𝓁2) ∈ Θ ∶ 𝓁1 =
Hn1,1(𝜇i+1, 𝜏i+1)
Qn1,1(𝜇i+1, 𝜏i+1)

− 𝓁2
Qn1,2(𝜇i+1, 𝜏i+1)
Qn1,1(𝜇i+1, 𝜏i+1)

,n1 ∈ I1}, (77)

Si ⊆ Sbi ∶= {(𝓁1,𝓁2) ∈ Θ ∶ 𝓁2 =
Hn2,2(𝜇i+1, 𝜏i+1)
Qn2,3(𝜇i+1, 𝜏i+1)

− 𝓁1
Qn2,2(𝜇i+1, 𝜏i+1)
Qn2,3(𝜇i+1, 𝜏i+1)

,n2 ∈ I2}. (78)

We next prove by contradiction that Si = {(q1, q2)}. Suppose that on the contrary Si ≠ {(q1, q2)}, that is, Si defined by (76)
is not a singleton, which implies the sets Sai, Sbi defined by (77), (78) are not singletons (because either of Sai, Sbi being a
singleton implies that Si is a singleton). It follows that there exist constants 𝜆 ∈ R, 𝜆1 ∈ R such that

Qn1,2(𝜇i+1, 𝜏i+1)
Qn1,1(𝜇i+1, 𝜏i+1)

= 𝜆1, n1 ∈ I1, (79)

Qn2,2(𝜇i+1, 𝜏i+1)
Qn2,3(𝜇i+1, 𝜏i+1)

= 𝜆, n2 ∈ I2, (80)

because if there were two different indices k1, k2 ∈ I2 with Qk1 ,2(𝜇i+1,𝜏i+1)
Qk1 ,3(𝜇i+1,𝜏i+1)

≠ Qk2 ,2(𝜇i+1,𝜏i+1)
Qk2 ,3(𝜇i+1,𝜏i+1)

, then the set Sbi defined by (78) would

be a singleton, and the same would be the case with Sai defined by (77) if there were two different indices k1, k2 ∈ I1 with
Qk1 ,2

(𝜇i+1,𝜏i+1)

Qk1 ,1
(𝜇i+1,𝜏i+1)

≠ Qk2 ,2
(𝜇i+1,𝜏i+1)

Qk2 ,1
(𝜇i+1,𝜏i+1)

.

Moreover, since Si is not a singleton, definition (76) implies

Qn,2(𝜇i+1, 𝜏i+1)2 = Qn,1(𝜇i+1, 𝜏i+1)Qn,3(𝜇i+1, 𝜏i+1), (81)
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for all n∈ I1 ∪ I2 ((81) naturally holds for n∉ I1 ∪ I2 if ∁N{I1 ∪ I2} ≠ ∅, because both sides of (81) are zero) by recall-
ing (60) (because if (81) does not hold , it follows from (60) that there exists n∈ I1 ∪ I2 such that det(Gn(𝜇i+1, 𝜏i+1)) ≠ 0,
which implies Si defined by (76) is a singleton: a contradiction). According to (81), (55)–(57), and the fact that the
Cauchy–Schwarz inequality holds as equality only when two functions are linearly dependent, we obtain the existence
of constants 𝜆̂n1 ∈ R, 𝜆̌n2 ∈ R such that

gn1,2(t, 𝜇i+1) = 𝜆̂n1 gn1,1(t, 𝜇i+1), n1 ∈ I1, (82)

gn2,1(t, 𝜇i+1) = 𝜆̌n2 gn2,2(t, 𝜇i+1), n2 ∈ I2, (83)

for t ∈ [𝜇i+1, 𝜏i+1] (notice that gn1,1(t, 𝜇i+1) and gn2,2(t, 𝜇i+1) are not identically zero on t ∈ [𝜇i+1, ti+1] because of
Qn1,1(𝜇i+1, 𝜏i+1) ≠ 0 and Qn2,3(𝜇i+1, 𝜏i+1) ≠ 0). Recalling (79), (80), we obtain from (55)–(57) and (82), (83) that

gn1,2(t, 𝜇i+1) = 𝜆1gn1,1(t, 𝜇i+1), n1 ∈ I1, (84)

gn2,1(t, 𝜇i+1) = 𝜆gn2,2(t, 𝜇i+1), n2 ∈ I2, (85)

for t ∈ [𝜇i+1, 𝜏i+1]. Equations (84) and (85) holding is a necessary condition of the hypothesis that Si is not a singleton.
The remaining proof of Case 4 is divided into the following three Claims.

Claim 1. If Si is not a singleton, then 𝜆 ≠ 0, 𝜆1 ≠ 0 and 𝜆 = 1
𝜆1

in (84) and (85).

Proof. The proof is shown in Appendix B. ▪

Claim 2. Equations (84) and (85) (𝜆 ≠ 0, 𝜆1 ≠ 0 and 𝜆 = 1
𝜆1

) hold if and only if z[t] + 𝜆w[t] = 0 (𝜆 ≠ 0) for t ∈ [𝜇i+1, 𝜏i+1].

Proof. The proof is shown in Appendix C. ▪

Claim 3. The function z[t] + 𝜆w[t] (𝜆 ≠ 0) is not identically zero for t ∈ [𝜇i+1, 𝜏i+1].

Proof. The proof is shown in Appendix D. ▪

Recalling Claims 1–3, we know that (84) and (85), which is a necessary condition of the hypothesis below (78) that
Si not be a singleton, does not hold. Consequently, Si is a singleton, that is, Si = {(q1, q2)}. Therefore (61) shows that
q̂1(𝜏i+1) = q1, q̂2(𝜏i+1) = q2. The proof of Case 4 is complete.

If q̂1(𝜏i) = q1 (or q̂2(𝜏i) = q2) for certain i∈Z+, recalling (61) and the analysis in the above four cases, we have
that q̂1(ti+1) = q1 (or q̂2(ti+1) = q2). Repeating the above process, we then have that q̂1(t) = q1 (or q̂2(t) = q2) for all
t ∈ [𝜏i, limk→∞(𝜏k)).

The proof of Lemma 3 is complete. ▪

5 MAIN RESULTS

Theorem 1. With arbitrary initial data (z0,w0)T ∈ L2((0, 1);R2), 𝜁0 ∈ R, and 𝜃̂0 = (q
1
, q

2
)T, for the plant (1)–(5) under the

adaptive certainty-equivalence boundary controller (36) where the regulation-triggered BaLSI is defined by (37), (61) with
(38), (40), (41), (47), the closed-loop system satisfies the following properties:

(1) The Zeno phenomenon does not occur, that is,

lim
i→∞

𝜏i = +∞, (86)

and the closed-loop system is well-posed.
(2) If the finite time convergence of parameter estimates to the true values does not occur, Ω(t) reaches zero in finite time

1
q1

, that is, Ω(t) ≡ 0 on t ∈ [ 1
q1
,∞).
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(3) If the parameter estimates converge to the true values in finite time, there exist positive constants M𝜃,𝜃̂(0), 𝜆1 such that

Ω(t) ≤ M𝜃,𝜃̂(0)Ω(0)e
−𝜆1t, t ≥ 0, (87)

where Ω(t) is given in (24), and M𝜃,𝜃̂(0) is a family of constants parameterized by positive constants q1, q2, q̂1(0), q̂2(0). The
decay rate 𝜆1 is the same as the nominal control result in (26).

Proof. First, we propose the following claim about the sufficient and necessary condition of the finite time convergence
of parameter estimates to the true values.

Claim 4. When q̂1(0) ≠ q1 (or q̂2(0) ≠ q2), the estimate q̂1(t) (or q̂2(t)) reaches the actual value q1 (or q2) in finite time if
and only if z[t] (or w[t]) is not identically zero on t = [0, limi→∞(𝜏i)).

Proof. The proof is shown in Appendix E. ▪

(1) Now we prove the first of the three portions of the theorem. First, if the estimates q̂1(t), q̂2(t) reach the true values
in finite time 𝜏𝜀, we have that 𝜏j = 𝜏𝜀 + (j − 𝜀)T, j∈Z+, j>𝜀. The proof of this is shown next. We prove by induction that
𝜏i+1 = 𝜏i + T for i≥ 𝜀. Let i≥ 𝜀 be an integer. Notice that (23) holds for all t ∈ [𝜏i, 𝜏i+1). Assume that Ω(𝜏i) ≠ 0. By virtue of
(26) and since (23) holds, we have

Ω(t) ≤ Υ𝜃̂(𝜏i)Ω(𝜏i), (88)

for all t ∈ [𝜏i, 𝜏i+1). It follows that

Ω(t) ≤ Υ𝜃̂(𝜏i)Ω(𝜏i) < Υ𝜃̂(𝜏i)(1 + a)Ω(𝜏i), (89)

for t ∈ [𝜏i, 𝜏i+1) where a is positive. Therefore, we get from (38), (40) that 𝜏i+1 = 𝜏i + T for i≥ 𝜀. The same conclusion
follows from (38) and (41) if Ω(𝜏i) = 0. Therefore, limi→∞(𝜏i) = +∞.

If the finite time convergence of the parameter estimates to the true values is not achieved, the proof is divided into
the three cases.

Case 1: We suppose that the estimate q̂2(t) does not reach q2 in finite time but q̂1(t) does reach q1 in finite time. The fact
that q̂2(t) does not reach q2 in finite time implies w[t]≡ 0 on t ∈ [0, limi→∞(𝜏i)) according to Claim 4, and q̂2(t) = q̂2(0) ≠ q2
on t ∈ [0, limi→∞(𝜏i)) according to Lemma 3. The fact that q̂1(t) reaches q1 in finite time implies q̃1(t) ≡ 0 after a certain 𝜏f .

Inserting (36) into (5), we obtain

q2w(1, t) = q̂2(0)∫
1

0
𝜙(1, y; q̂1(t), q̂2(0))w(y, t)dy + q̂2(0)𝜆(1; q̂1(t), q̂2(0))𝜁(t) + q̃1(t)z(1, t). (90)

Considering w[t]≡ 0 and q̃1(t) ≡ 0 on t ∈ [𝜏f , limi→∞(𝜏i)), we obtain from (90) that 𝜁(t) ≡ 0 on t ∈ [𝜏f , limi→∞(𝜏i))
because of q̂2(0) ≠ 0 and 𝜆(1; q̂1(t), q̂2(0)) ≠ 0. Recalling (1), considering w[t]≡ 0 on t ∈ [0, limi→∞(𝜏i)) and 𝜁(t) ≡ 0 on
t ∈ [𝜏f , limi→∞(𝜏i)), it further follows that 𝜁(0) = 0, that is, 𝜁(t) ≡ 0 on t ∈ [0, limi→∞(𝜏i)), which means that z(0, t)≡ 0 on
t ∈ [0, limi→∞(𝜏i)). It follows that Ω(t) defined in (24) is nonincreasing on t ∈ [0, 1

q1
]. Therefore, we have that limi→∞(𝜏i) >

1
q1

according to the definition of triggering times (38), (40), (41). By virtue of (2), (4) and z(0,t)≡ 0 on t ∈ [0, limi→∞(𝜏i)),
we have that z[t]≡ 0 for t ∈ [ 1

q1
, limi→∞(𝜏i)). If z[t] is identically zero on t ∈ [0, 1

q1
], then q̂1(0) = q1 (because z[t]≡ 0 on

t ∈ [0, limi→∞(𝜏i)), and q̂1(t) reaches q1 in finite time only when the initial estimate is the true value according to Claim 4).
If z[t] is not identically zero in t ∈ [0, 1

q1
), it implies that the initial condition z(x, 0) is not identically zero for x ∈ (0, 1],

moreover, that 𝜏f must be less than 1
q1

and the function z(x, 0) is not identically zero on the interval (0, 1 − q1𝜏f ] for x (oth-
erwise w[t] is not identically zero according to (90): a contradiction). The state z(x, t) propagates from its initial condition
z(x, 0), which is possibly not identically zero only on (0, 1 − q1𝜏f ], toward the boundary x = 1 and finally vanishes not lat-
ter than t = 1

q1
(z(1, t)= 0 for t ∈ [0, 𝜏f ) and the nonzero values of z(1, t) on t ∈ [𝜏f ,

1
q1
] are eliminated by q̃1(t) = 0 in (90)).

Together with w[t]≡ 0, 𝜁(t) ≡ 0 on t ∈ [0, limi→∞(𝜏i)), we conclude that Ω(t) is nonincreasing in t ∈ [0, 1
q1
], and Ω(t) ≡ 0

for t ∈ [ 1
q1
, limi→∞(𝜏i)). Therefore, 𝜏j = jT, j∈Z+, according to the definition of triggering times (38), (40), (41).
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Case 2: We suppose that the estimate q̂1(t) does not reach q1 in finite time but q̂2(t) does reach q2 in finite time.
The fact that q̂1(t) does not reach q1 in finite time implies that z(x, t)≡ 0 on t ∈ [0, limi→∞(𝜏i)) according to Claim 4, and
q̂1(t) = q̂1(0) ≠ q1 on t ∈ [0, limi→∞(𝜏i)) according to Lemma 3. Recalling (36), then (1)–(5) become

𝜁(t) = e[(a−q1bc)+b(q2+q1p) c
p
]t
𝜁(0), (91)

wt(x, t) = q2wx(x, t), (92)

w(0, t) = c
p
𝜁(t), (93)

w(1, t) =
q̂2(t)

q2

[
∫

1

0
𝜙(1, y; q̂1(0), q̂2(t))w(y, t)dy + 𝜆(1; q̂1(0), q̂2(t))𝜁(t)

]
, (94)

t ∈ [0, limi→∞(𝜏i)). If 𝜁(0) = 0, then z[t],w[t], 𝜁(t) are identically zero on t ∈ [0, limi→∞(𝜏i)) according to (91)–(93). Next, we
discuss the case of 𝜁(0) ≠ 0. Considering z[t]≡ 0 on t ∈ [0, limi→∞(𝜏i)), the dynamics for w[t], 𝜁(t) given as (91)–(94), and
the definition of triggering times (38), (40), (41), we have that limi→∞(𝜏i) > 1

q2
. The equation w(0, t) = c

p
𝜁(t) (93) holding

for t ∈ [0, limi→∞(𝜏i)) requires the initial condition of w to be w(x, 0) = c
p

e[(a−q1bc)+b(q2+q1p) c
p
] 1

q2
x
𝜁(0), for ensuring that (93)

holds on t ∈ [0, 1
q2
], and w(1, t) to be

w(1, t) = c
p

e[(a−q1bc)+b(q2+q1p) c
p
] 1

q2 𝜁(t), t ∈ [0, lim
i→∞

(𝜏i)), (95)

for ensuring that (93) holds on t ∈ [ 1
q2
, limi→∞(𝜏i)).

Comparing (95), where w(1, t) is a continuous function by virtue of (91), with (94) which includes possible discon-
tinuities in q̂2, the necessary condition for the Equation (93) to hold on t ∈ [0, limi→∞(𝜏i)) is that w(1, t) is a continuous
function. In other words, there is no discontinuity in Case 2. Considering the state of the w-PDE in (92) propagates from
x = 1 to x = 0 with the propagation speed q2, by representing the function w(y, t) as the future value of 𝜁(t), using the
expression for 𝜁(t) given by (91), then the relation (94) is written as

w(1, t) =
q̂2(t)

q2

[
∫

1

0
𝜙(1, y; q̂1(0), q̂2(t))

c
p

e[(a−q1bc)+b(q2+q1p) c
p
] 1

q2
ydy

+ 𝜆(1; q̂1(0), q̂2(t))
]
𝜁(t), t ≥ 0. (96)

Comparing (95) and (96), applying (15), (16), the necessary condition of w(0, t) = c
p
𝜁(t) (93) always holds on t ∈

[ 1
q2
, limi→∞(𝜏i)) (when 𝜁(0) ≠ 0), is

1
q2

[
∫

1

0

c𝜅b
p

e
1

q̂2(t)
(a−q̂1(0)bc)(1−y)e[(a−q1bc)+b(q2+q1p) c

p
] 1

q2
ydy

+
q̂2(t)𝜅

q̂1(0)p + q̂2(t)
e

1
q̂2 (t)

(a−q̂1(0)bc)
]
≡ c

p
e[(a−q1bc)+b(q2+q1p) c

p
] 1

q2 , (97)

on t ∈ [0, limi→∞(𝜏i)). The right-hand side of (97) is constant while the left-hand side of (97) includes q̂2(t), whose potential
values are q2, q̂2(0) because of Lemma 3. If the left-hand side of (97) is varying with q̂2(t), then (97) does not hold. If the
left-hand side of (97) is kept constant with q̂2(t) = q2 and q̂2(t) = q̂2(0) (such as q̂2(0) = q2), since, as we mentioned above,
there is no discontinuity in Case 2, (97) holds only when the design parameter 𝜅 is equal to 𝜅∗, where

𝜅∗ =
cq2

p
e[(a−q1bc)+b(q2+q1p) c

p
] 1

q2

÷

(
∫

1

0

bc
p

e
1

q2
(a−q̂1(0)bc)(1−y)e[(a−q1bc)+b(q2+q1p) c

p
] 1

q2
ydy +

q2e
1

q2
(a−q̂1(0)bc)

q̂1(0)p + q2

)
, (98)
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where the symbol ÷ denotes division. The constant 𝜅∗ is positive because b> 0, c> 0, p> 0, q1 > 0, q2 > 0, q̂1(0) > 0.
The positivity of 𝜅 = 𝜅∗ contradicts 𝜅 < 0. Therefore, Case 2 would happen only when 𝜁(0) = 0, where Ω(t) ≡ 0 on
t ∈ [0, limi→∞(𝜏i)). Therefore, 𝜏j = jT, j∈Z+.

Case 3. If neither of q̂1(t), q̂2(t) reach q1, q2, it follows that z[t],w[t], 𝜁(t) are identically zero on t ∈ [0, limi→∞(𝜏i)), that
is, Ω(t) ≡ 0 on t ∈ [0, limi→∞(𝜏i)), according to Claim 4 and (4). Therefore, 𝜏j = jT, j∈Z+ according to (38) and (41).

By virtue of the results in the above discussions, we have that limi→∞(𝜏i) = +∞. The well-posedness of the closed-loop
system is then obtained by recalling Proposition 1 and limi→∞(𝜏i) = +∞. This completes the proof of portion (1) of the
theorem. The fact that limi→∞(𝜏i) = +∞ allows that the solution is defined on R+.

(2) Now we prove the second of the three portions of the theorem. Recalling the results in the discussions in Cases 1–3
in the proof of portion (1), and limi→∞(𝜏i) = +∞, we conclude that Ω(t) reaches zero not latter than 1

q1
, that is, Ω(t) ≡ 0 on

t ∈ [ 1
q1
,∞), when the finite time convergence of the parameter estimates to the true values is not achieved. Thus, portion

(2) of the theorem is obtained.
(3) Finally, we prove the last of the three portions of the theorem, that is, establishing the exponential regulation result

when estimates (q̂1(t), q̂2(t)) reach the true values (q1, q2) in finite time 𝜏𝜀, that is, when

q̂1(t) = q1, q̂2(t) = q2, t ≥ 𝜏𝜀. (99)

Define a Lyapunov function

V(t) = 1
2

ra ∫
1

0
e𝛿x𝛽(x, t)2dx + 1

2
rb ∫

1

0
e−𝛿x𝛼(x, t)2dx + 1

2
𝜁(t)2, t ≥ 0, (100)

where the positive constants ra, rb, 𝛿 are constrained through the inequalities (10), (9), (28). Denoting

Ω1(t) = ||𝛼[t]||2 + ||𝛽[t]||2 + 𝜁(t)2,

we obtain

𝜉1Ω1(t) ≤ V(t) ≤ 𝜉2Ω1(t), t ≥ 0, (101)

where the positive constants 𝜉1, 𝜉2 are shown in (31) and (32).
Define the errors between the gains in the nominal control law (23) and those in the certainty-equivalence controller

(36), caused by the parameter estimate errors, as

q̃1(t) = q1 − q̂1(t), (102)

R̃1(y, t) = q2𝜙(1, y; q1, q2) − q̂2(t)𝜙(1, y; q̂1(t), q̂2(t)), (103)

R̃2(t) = q2𝜆(1; q1, q2) − q̂2(t)𝜆(1; q̂1(t), q̂2(t)), (104)

where 𝜙(1, y; q̂1(t), q̂2(t)), 𝜆(1; q̂1(t), q̂2(t)) are the results of replacing q1, q2 with q̂1(t), q̂2(t) in 𝜙(1, y; q1, q2) and 𝜆(1; q1, q2).
Because of (99), q̃1(t), R̃1(⋅, t), R̃2(t) are zero for t ≥ 𝜏𝜀.

Applying the adaptive control law (36), recalling (23), the boundary condition (21) in the target system (17)–(21)
becomes

𝛽(1, t) = 1
q2

[q̃1(t)z(1, t) − ∫
1

0
R̃1(y, t)w(y, t)dy − R̃2(t)𝜁(t)]. (105)

Applying the Cauchy–Schwarz inequality into the backstepping transformation (13), (14) and its inverse

z(x, t) = 𝛼(x, t), (106)

w(x, t) =𝛽(x, t) − ∫
x

0

𝜅b
q2

e
m
q2
(x−y)

𝛽(y, t)dy − 𝜅

(q2 + q1p)
e

m
q2

x
𝜁(t), (107)
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we have that Ω1(t) is bounded by

𝜉3Ω(t) ≤ Ω1(t) ≤ 𝜉4Ω(t), t ≥ 0, (108)

where the positive constants 𝜉3, 𝜉4 are defined by (33)–(35).
Taking the derivative of (100) along (17)–(21), (105), applying Young’s inequality and the Cauchy–Schwarz inequality,

we get

V̇(t) ≤ −
(1

2
m − q1rbc2

0

)
𝜁(t)2 − (

q2ra

2
− q1rbp2 −

(q1p + q2)2b2

2m
)𝛽(0, t)2

− 1
2

ra𝛿q2 ∫
1

0
e𝛿x𝛽(x, t)2dx − 1

2
rb𝛿q1 ∫

1

0
e−𝛿x𝛼(x, t)2dx

− 1
2

q1rbe−𝛿𝛼(1, t)2 + 1
2

q2rae𝛿𝛽(1, t)2, (109)

for t ≥ 0. Recalling (9) and (10), then (109) becomes

V̇(t) ≤ −𝜆1V(t) + 1
2

q2rae𝛿𝛽(1, t)2, (110)

for t ≥ 0, where the positive constant 𝜆1 is shown in (27). Multiplying both sides of (110) by e𝜆1t, yields

d(V(t)e𝜆1t)
dt

≤ 1
2

e𝜆1tq2rae𝛿𝛽(1, t)2, t ≥ 0, (111)

and then, integrating from 𝜏𝜀 to t, we obtain

V(t)e𝜆1t − V(𝜏𝜀)e𝜆1𝜏𝜀 ≤ ∫
t

𝜏𝜀

1
2

e𝜆1𝜍q2rae𝛿𝛽(1, 𝜍)2d𝜍, t ≥ 𝜏𝜀. (112)

Recalling (105) and the fact that q̃1(t), R̃1(t), R̃2(t) are identically zero for t ≥ 𝜏𝜀, we get 𝛽(1, t) ≡ 0 for t ≥ 𝜏𝜀 according
to (105). Therefore, the term ∫ t

𝜏𝜀

1
2

e𝜆1𝜍q2rae𝛿𝛽(1, 𝜍)2d𝜍 in (112) is zero. Multiplying both sides of (112) by e−𝜆1t, yields

V(t) ≤ V(𝜏𝜀)e−𝜆1(t−𝜏𝜀), t ≥ 𝜏𝜀. (113)

Recalling (101), we get

Ω1(t) ≤ 𝜉2

𝜉1
Ω1(𝜏𝜀)e−𝜆1(t−𝜏𝜀), t ≥ 𝜏𝜀.

Recalling (108), we further have that

Ω(t) ≤ Υ𝜃Ω(𝜏𝜀)e−𝜆1(t−𝜏𝜀), t ≥ 𝜏𝜀, (114)

where the overshoot coefficient Υ𝜃 is shown in (30).
If 𝜏𝜀 = 0, we obtain directly from (114) that Ω(t) ≤ Υ𝜃Ω(0)e−𝜆1t, t ≥ 0. Next, we conduct analysis for t ∈ [0, 𝜏𝜀] when

𝜏𝜀 ≠ 0. Recalling (13), (105), (109), (110), we obtain

V̇(t) ≤ −𝜆1V(t) −
(

1
2

q1rbe−𝛿 − 1
q2

rae𝛿(q1 − q
1
)2
)
𝛼(1, t)2 + 9rae𝛿

2q2

[
∫

1

0
R̃1(y, t)2w(y, t)2dy + R̃2(t)2𝜁(t)2

]
, (115)

for t ∈ [0, 𝜏𝜀]. Recalling (28), which makes the coefficient in the parentheses in front of 𝛼(1, t)2 positive, and recalling
R̃1(y, t), R̃2(t), defined by (103)–(104), where q̂1(t) is equal to either q̂1(0) or q1 and q̂2(t) is equal to either q̂2(0) or q2 in
t ∈ [0, 𝜏𝜀] according to Lemma 3, as well as applying (107) and the Cauchy–Schwarz inequality, we obtain from (115) that
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V̇(t) ≤ −𝜆1V(t) + Q(q̂1(0), q̂2(0), q1, q2)V(t), t ∈ [0, 𝜏𝜀], (116)

where the positive constant Q(q̂1(0), q̂2(0), q1, q2), obtained by bounding the last line of (115), is a family of constants
parameterized by positive constants q1, q2, q̂1(0), q̂2(0).

If 𝜆1 < Q(q̂1(0), q̂2(0), q1, q2), defining a positive constant

𝜆2(q̂1(0), q̂2(0), q1, q2) = Q(q̂1(0), q̂2(0), q1, q2) − 𝜆1, (117)

multiplying both sides of (116) by e−𝜆2(q̂1(0),q̂2(0),q1,q2)t, we obtain

V̇(t)e−𝜆2(q̂1(0),q̂2(0),q1,q2)t − 𝜆2(q̂1(0), q̂2(0), q1, q2)V(t)e−𝜆2(q̂1(0),q̂2(0),q1,q2)t ≤ 0, (118)

for t ∈ [0, 𝜏𝜀], that is,

d(V(t)e−𝜆2(q̂1(0),q̂2(0),q1,q2)t)
dt

≤ 0, (119)

for t ∈ [0, 𝜏𝜀]. Then, integrating from 0 to t, yields

V(t) ≤ V(0)e𝜆2(q̂1(0),q̂2(0),q1,q2)t, t ∈ [0, 𝜏𝜀]. (120)

Recalling (101), (108), we get

Ω(t) ≤ Υ𝜃Ω(0)e𝜆2(q̂1(0),q̂2(0),q1,q2)t, t ∈ [0, 𝜏𝜀]. (121)

If 𝜆1 ≥ Q(q1(0), q2(0), q1, q2), by defining a positive constant

𝜆3(q̂1(0), q̂2(0), q1, q2) = 𝜆1 − Q(q̂1(0), q̂2(0), q1, q2), (122)

we obtain from (116) that

Ω(t) ≤ Υ𝜃Ω(0)e−𝜆3(q̂1(0),q̂2(0),q1,q2)t, t ∈ [0, 𝜏𝜀]. (123)

Comparing (121) and (123), we obtain

Ω(𝜏𝜀) ≤ Υ𝜃e𝜆2(q̂1(0),q̂2(0),q1,q2)𝜏𝜀Ω(0), t ∈ [0, 𝜏𝜀]. (124)

Let us now recap that Assumption 2, that is, (8), is only used to ensure the existence of a positive 𝛿 satisfying
(28), which enables going from (115) to (116), with the purpose to arrive at (124). In plain words, Assumption 2
is only used in the Lyapunov analysis when the estimate q̂1(t) has not reached the true value q1, in order to
ensure (124).

Recalling (114), we conclude that

Ω(t) ≤ Υ2
𝜃
e𝜆2(q̂1(0),q̂2(0),q1,q2)𝜏𝜀e𝜆1𝜏𝜀Ω(0)e−𝜆1t, t ≥ 0. (125)

Claim 5. If 𝜃̂(t) reaches 𝜃 at 𝜏𝜀, then 𝜏𝜀 ≤ max{ 1
q2

+ T, 2T}.

Proof. The proof is shown in Appendix F. ▪

Applying Claim 5, (125) is written as

Ω(t) ≤ Υ2
𝜃
e𝜆2(q̂1(0),q̂2(0),q1,q2)max{ 1

q2
+T,2T}e𝜆1 max{ 1

q2
+T,2T}Ω(0)e−𝜆1t, (126)
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for t ≥ 0. Denoting

M𝜃,𝜃̂(0) = Υ2
𝜃
e𝜆2(q̂1(0),q̂2(0),q1,q2)max{ 1

q2
+T,2T}e𝜆1 max{ 1

q2
+T,2T}

,

we obtain (87). This completes the proof of portion (3) of the theorem.
With the proof of Theorem 1 completed, we thank the reader for sticking with us for the nearly six-page ride and

commend the reader’s stamina. ▪

6 SIMULATION

The simulation is conducted for the plant (1)–(5) with the model parameters taken as

a = 13, b = 1, c = 2, p = 0.5, (127)

c = 1, q1 = 4, q2 = 6, (128)

where q1, q2 are treated as unknown, with the known bounds

q1 = 6, q
1
= 2, q2 = 7, q

2
= 3. (129)

The initial values for the test are chosen as

z(x, 0) = cos
(
𝜋x + 𝜋

4

)
+ x3, (130)

w(x, 0) = sin
(

1.5𝜋x + 𝜋

3

)
+ x2, (131)

𝜁(0) = 1
c

z(0, 0) +
p
c

w(0, 0). (132)

The finite difference method is adopted to conduct the simulation with the time and space steps of 0.0001 and 0.01,
respectively.

For the regulation-triggered batch least-squares identifier defined by (37), (38), (40), (41), (47), (61), we choose
n= 1, 2, … , 7 and

a = 0.8, Ñ = 1, T = 8, (133)

and take the initial values of the estimates as q̂1(0) = q
1

q̂2(0) = q
2
, namely, we start the parameter estimates from their

lower bounds. Using the given bounds in (129) to determine the gain 𝜅 in the controller (36) by (12), a control gain
satisfying 𝜅 < −267 is needed. For 𝜅 = −320, recalling the model parameters in (127) and (128), we obtain rb < 0.079,
ra > 0.06 according to (9), (10), which indicates that q1 − q

1
needs to be smaller than 4.01 according to Assumption 2

(satisfied by the known bounds of q1 given in (129)). The source of the high gain 𝜅 is the first term of (12) which is used
in Claim 3 to exclude some rare and extreme situations (w(x, t)=M and z(x, t) = −𝜆M for x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1] where
M, 𝜆 are nonzero constants) affecting the exact parameter estimation. In the simulation, we find the high gain is actually
not needed (the aforementioned extreme situations do not happen) and 𝜅 = −6 derived from the second term in (12) is
perfectly sufficient to achieve a satisfactory result. According to the initial values of the estimates q̂1(0) q̂2(0), we get a
large initial value Υ𝜃̂(0) by (30)–(35), (9), (10), which is a conservative value obtained by the stability analysis in Section 5.
In this simulation, guided by reason rather than by a highly conservative estimate, we adopt a smaller initial value as
Υ𝜃̂(0) = 5.5, which prevents the activation of the identifer from being extremely late (particularly relative to T).

From Figure 2, we observe that the estimates q̂1, q̂2 reach the exact values of the unknown parameters q1 = 4, q2 = 6 at
t = 0.13 s, in just one trigger. In Figure 3, the nominal control input applied at the boundary x = 1 goes through the PDE
domain and reaches the boundary x = 0, starting to regulate the ODE state 𝜁(t) at t = 1

q2
≈ 0.17s. As shown in Figure 2,

the estimates reach the true values and update the certainty-equivalence controller at t = 0.13s. Then it takes 1/q2 ≈ 0.17s
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F I G U R E 2 Parameter estimates q̂1(t), q̂2(t)

F I G U R E 3 The evolution of |𝜁(t)| under the nominal control (23)
and the proposed adaptive regulation-triggered control (36)

for the updated control signal to travel to the ODE, that is, the updated control signal starts to properly regulate the ODE
state 𝜁(t), as intended by the nominal controller, at t = 0.3s. For the remaining time, as shown in Figure 3, the performance
of the proposed adaptive controller coincides with the nominal feedback, and |𝜁(t)| converges to zero. Similar results are
observed in Figure 4 which shows the evolution of Ω(t)

1
2 defined by (24), under the nominal control and the proposed

adaptive regulation-triggered control. Figures 5 and 6 show the PDE states z(x, t), w(x, t) are regulated to zero under the
proposed adaptive regulation-triggered controller. The adaptive regulation-triggered control law and the nominal control
law are shown in Figure 7.

At the end of this section, and this paper, let us reiterate that, as announced at the beginning of this paper, that
the BaLSI identifier has ensured the perfect identification of the unknown parameters in finite time and enabled the

F I G U R E 4 The evolution of Ω(t)
1
2 under the nominal control (23)

and the proposed adaptive regulation-triggered control (36)

F I G U R E 5 The evolution of w(x, t) under the proposed adaptive
regulation-triggered control (36)
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F I G U R E 6 The evolution of z(x, t) under the proposed adaptive
regulation-triggered control (36)

F I G U R E 7 The control signals of the nominal control (23) and
the proposed adaptive regulation-triggered control (36)

regulation-triggered adaptive backstepping controller to achieve exponential regulation, with a decay rate matching the
rate corresponding to the case of known parameters.

7 CONCLUSIONS

In this paper, we have proposed an adaptive boundary control scheme for a heterodirectional transport PDE-ODE system
where both transport speeds are unknown. It is a certainty equivalence-based adaptive boundary control scheme using a
batch least-squares identifier updated at a sequence of times, which are determined by an event trigger designed based on
the progress of the regulation of the states. We have proved that the proposed triggering-based adaptive control guarantees:
(1) the absence of a Zeno phenomenon; (2) parameter estimates are convergent to the true values in finite time (from
most initial conditions); (3) exponential regulation of the plant states. The effectiveness of the proposed design is verified
by a numerical example.

In future work, the state-feedback control design will be extended to the output-feedback type to meet the require-
ments of more engineering applications. While the present work considered model-based adaptive control of a string-ODE
cascade, one could also bring to bear, in certain applications, the extremum seeking control algorithms in the presence of
wave PDE dynamics, introduced in Reference 53. One application would be deep-sea cable-actuated source seeking, with
a sensor, deprived of position awareness due to the undersea environment, hung on a cable, moved through the cable from
the sea surface using a surface vessel, and tasked with being located as close as possible to a signal source. The algorithm
in Reference 53 is applicable to such a source-seeking scenario and would, in addition to finding the signal source, sta-
bilize the motion of the cable. The deeper the signal source, that is, the longer the cable, the easier the problem would
become from the perspective of the surface vessel (the high natural frequency of the long cable would not necessitate
rapid motion of the vessel), but the lengthier memory would be required in the PDE-compensating extremum seeking
algorithm in Reference 53. Additionally, oil drilling penetration maximization, through the drill-string PDE dynamics,
could be pursued in a model-free adaptive fashion as in Reference 54.
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APPENDIX A. THE PROOF OF PROPOSITION 1

Inserting (36) into (5), the closed-loop system is

𝜁̇(t) = (a − q1bc)𝜁(t) + b(q2 + q1p)w(0, t), (A1)

zt(x, t) = −q1zx(x, t), (A2)

wt(x, t) = q2wx(x, t), (A3)

z(0, t) = c𝜁(t) − pw(0, t), (A4)

w(1, t) = 1
q2

q̂2(𝜏i)∫
1

0
𝜙(1, y; 𝜃̂(𝜏i))w(y, t)dy + 1

q2
q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i))𝜁(t) +

q1 − q̂1(𝜏i)
q2

z(1, t), (A5)

for t ∈ [𝜏i, 𝜏i+1), x ∈ [0, 1], i∈Z+, where 𝜃̂(𝜏i) = (q̂1(𝜏i), q̂2(𝜏i))T is constant and defined by (37), (38), (40), (41), (47), (61).
With the purpose of decoupling the ODE and the PDEs, we introduce two transformations. The first one is the following
Volterra transformation:

z(x, t) = z(x, t) − ∫
x

0
𝜙(x − y)z(y, t)dy − 𝜑(x)𝜁(t), (A6)

where the functions 𝜑 and 𝜙 satisfy

q1𝜑
′(x) +

(
(a − q1bc) + b

p
(q2 + q1p)c

)
𝜑(x) = 0, (A7)

𝜑(0) = c, (A8)

𝜙(x) = 1
q1p

𝜑(x)b(q2 + q1p). (A9)

Through the transformation (A6), (A16), the system (A1)–(A5) is converted to

𝜁̇(t) = (a − q1bc)𝜁(t) + b(q2 + q1p)w(0, t), (A10)

zt(x, t) = −q1zx(x, t), (A11)

wt(x, t) = q2wx(x, t), (A12)

z(0, t) = −pw(0, t), (A13)

w(1, t) =
q1 − q̂1(𝜏i)

q2
z(1, t) + 1

q2
q̂2(𝜏i)∫

1

0
𝜙(1, y; 𝜃̂(𝜏i))w(y, t)dy −

q1 − q̂1(𝜏i)
q2 ∫

1

0
𝜓(1 − y)z(y, t)dy,

+
[

1
q2

q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)) −
q1 − q̂1(𝜏i)

q2
𝛾(1)

]
𝜁(t), (A14)

for t ∈ [𝜏i, 𝜏i+1), x ∈ [0, 1]. The conditions (A7)–(A9) of the functions 𝜑 and 𝜙 in the transformation (A6), (A16) are
obtained through matching (A1)–(A5) and (A10)–(A14), as follows. Inserting (A6) into (A11), using (A1), (A2), (A4), we
obtain

zt(x, t) + q1zx(x, t) = zt(x, t) + q1 ∫
x

0
𝜙(x − y)zx(y, t)dy − 𝜑(x)(a − q1bc)𝜁(t)

− 𝜑(x)b(q2 + q1p)w(0, t) + q1zx(x, t) − q1𝜙(0)z(x, t)
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− ∫
x

0
q1𝜙

′
(x − y)z(y, t)dy − q1𝜑

′(x)𝜁(t)

= q1𝜙(0)z(x, t) − q1𝜙(x)z(0, t) − q1𝜙(0)z(x, t) − q1𝜑
′(x)𝜁(t)

− 𝜑(x)(a − q1bc)𝜁(t) − 1
p
𝜑(x)b(q2 + q1p)c𝜁(t) + 1

p
𝜑(x)b(q2 + q1p)z(0, t)

=
[

1
p
𝜑(x)b(q2 + q1p) − q1𝜙(x)

]
z(0, t) − [𝜑(x)(a − q1bc) + 1

p
𝜑(x)b(q2 + q1p)c + q1𝜑

′(x)]𝜁(t) = 0.

(A15)

For (A15) to hold, we obtain the conditions (A7), (A9). Matching (A4) and (A13), we get the condition (A8). Because
𝜙 is a continuous function, we have that the inverse transformation

z(x, t) = z(x, t) − ∫
x

0
𝜓(x − y)z(y, t)dy − 𝛾(x)𝜁(t), (A16)

exists (see, e.g., chapter 9.9 in Reference 55), where the well-posedness of 𝜓 , 𝛾 is ensured by the well-posedness of
(A7)–(A9).

Applying the second transformation

𝜒(t) = 𝜁(t) − ∫
1

0
K1i(x)z(x, t)dx − ∫

1

0
K2i(x)w(x, t)dx, (A17)

for t ∈ [𝜏i, 𝜏i+1), i∈Z+, where the functions K1i, K2i satisfy the following well-posed first-order ODEs:

[(a − q1bc) + K2i(1)((q1 − q̂1(𝜏i))𝛾(1) − q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))]K1i(x) − q1K1i
′(x) = −K2i(1)(q1 − q̂1(𝜏i))𝜓(1 − x), (A18)

[(a − q1bc) + K2i(1)((q1 − q̂1(𝜏i))𝛾(1) − q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))]K2i(x) + q2K2i
′(x) = K2i(1)q̂2(𝜏i)𝜙(1, x; 𝜃̂(𝜏i)), (A19)

K1i(1)q1 = K2i(1)(q1 − q̂1(𝜏i)), (A20)

K2i(0)q2 = −b(q2 + q1p) − pK1i(0)q1, (A21)

the system (A10)–(A14) is transformed to

𝜒̇(t) = Ai𝜒(t), (A22)

zt(x, t) = −q1zx(x, t), (A23)

wt(x, t) = q2wx(x, t), (A24)

z(0, t) = −pw(0, t), (A25)

w(1, t) =
q1 − q̂1(𝜏i)

q2
z(1, t) + ∫

1

0
D1i(x)w(x, t)dx + ∫

1

0
D2i(x)z(x, t)dx + D3i𝜒(t), (A26)

for t ∈ [𝜏i, 𝜏i+1), x ∈ [0, 1], where

Ai = a − q1bc + K2i(1)(q1 − q̂1(𝜏i))𝛾(1) − K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)),

D1i(x) =
1
q2

q̂2(𝜏i)𝜙(1, x; 𝜃̂(𝜏i)) +
(

1
q2

q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)) −
q1 − q̂1(𝜏i)

q2
𝛾(1)

)
K1i(x),

D2i(x) = −
q1 − q̂1(𝜏i)

q2
𝜓(1 − x) +

(
1
q2

q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)) −
q1 − q̂1(𝜏i)

q2
𝛾(1)

)
K2i(x),

D3i =
1
q2

q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)) −
q1 − q̂1(𝜏i)

q2
𝛾(1).
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The conditions (A18)–(A21) of K1i(x), K2i(x) are defined by matching (A10)–(A14) and (A22)–(A26), as follows.
Inserting (A17) into (A22), using (A10)–(A14), we obtain that

𝜒̇(t) − Ai𝜒(t)

= 𝜒̇(t) − (a − q1bc)𝜒(t) − (K2i(1)(q1 − q̂1(𝜏i))𝛾(1) − K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))𝜒(t)

= 𝜁̇ (t) − ∫
1

0
K1i(x)zt(x, t)dx − ∫

1

0
K2i(x)wt(x, t)dx

− (a − q1bc)𝜁(t) + (a − q1bc)∫
1

0
K1i(x)z(x, t)dx

+ (a − q1bc)∫
1

0
K2i(x)w(x, t)dx − (K2i(1)(q1 − q̂1(𝜏i))𝛾(1) − K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))𝜒(t)

= b(q2 + q1p)w(0, t) + q1 ∫
1

0
K1i(x)zx(x, t)dx

− q2 ∫
1

0
K2i(x)wx(x, t)dx + (a − q1bc)∫

1

0
K1i(x)z(x, t)dx

+ (a − q1bc)∫
1

0
K2i(x)w(x, t)dx − (K2i(1)(q1 − q̂1(𝜏i))𝛾(1) − K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))𝜒(t)

= b(q2 + q1p)w(0, t) + K1i(1)q1z(1, t) − K1i(0)q1z(0, t) − ∫
1

0
q1K1i

′(x)z(x, t)dx

− K2i(1)q2w(1, t) + K2i(0)q2w(0, t) + ∫
1

0
q2K2i

′(x)w(x, t)dx

+ (a − q1bc)∫
1

0
K1i(x)z(x, t)dx + (a − q1bc)∫

1

0
K2i(x)w(x, t)dx

− (K2i(1)(q1 − q̂1(𝜏i))𝛾(1) − K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))𝜒(t)

= −K2i(1)q2[
1
q2

q̂2(𝜏i)∫
1

0
𝜙(1, y; 𝜃̂(𝜏i))w(y, t)dy +

(
1
q2

q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)) −
q1 − q̂1(𝜏i)

q2
𝛾(1)

)
𝜁(t)

+
q1 − q̂1(𝜏i)

q2
z(1, t) −

q1 − q̂1(𝜏i)
q2 ∫

1

0
𝜓(1 − y)z(y, t)dy] + K1i(1)q1z(1, t)

+ (K2i(0)q2 + b(q2 + q1p) + pK1i(0)q1)w(0, t)

+ ∫
1

0
(q2K2i

′(x) + (a − q1bc)K2i(x))w(x, t)dx + ∫
1

0
((a − q1bc)K1i(x) − q1K1i

′(x))z(x, t)dx

− (K2i(1)(q1 − q̂1(𝜏i))𝛾(1) − K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))𝜒(t)
= (K1i(1)q1 − K2i(1)(q1 − q̂1(𝜏i)))z(1, t) + (K2i(0)q2 + b(q2 + q1p) + pK1i(0)q1)w(0, t)

+ ∫
1

0
[q2K2i

′(x) + (a − q1bc)K2i(x) − K2i(1)q̂2(𝜏i)𝜙(1, x; 𝜃̂(𝜏i)) + (K2i(1)(q1 − q̂1(𝜏i))𝛾(1)

− K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))K2i(x)]w(x, t)dx + ∫
1

0
[(a − q1bc)K1i(x) − q1K1i

′(x)

+ K2i(1)(q1 − q̂1(𝜏i))𝜓(1 − x) + (K2i(1)(q1 − q̂1(𝜏i))𝛾(1)

− K2i(1)q̂2(𝜏i)𝜆(1; 𝜃̂(𝜏i)))K1i(x)]z(x, t)dx = 0. (A27)

For (A27) to hold, the conditions (A18)–(A21) are obtained.
The equation set (A23)–(A26), where 𝜒(t) is a well-defined external signal generated by (A22), has an analogous

structure with (5), (6) in Reference 56. According to the result in the part 1) in appendix of Reference 56, we have
that the system (A22)–(A26) has a unique solution on t ∈ [𝜏i, 𝜏i+1) for all (w[𝜏i], z[𝜏i])T ∈ L2((0, 1);R2), 𝜒(𝜏i) ∈ R. By
virtue of the transformations (A17), (A16), we obtain that, for given (w[𝜏i], z[𝜏i])T ∈ L2((0, 1);R2), 𝜁(𝜏i) ∈ R, the sys-
tem (A1)–(A5) has a unique solution for t ∈ [𝜏i, 𝜏i+1). Recalling the definition of the weak solution in Definition 1,
we obtain that for every (z[𝜏i],w[𝜏i])T ∈ L2((0, 1);R2), 𝜁(𝜏i) ∈ R and 𝜃̂(𝜏i) ∈ Θ, there exists a unique (weak) solution
((z,w)T , 𝜁) ∈ C0([𝜏i, 𝜏i+1];L2(0, 1);R2) × C0([𝜏i, 𝜏i+1];R) to the system (1)–(5) with (36), (37), (38), (40), (41), (47), (61).
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For every (z0,w0)T ∈ L2((0, 1);R2), 𝜁0 ∈ R and 𝜃̂0 ∈ Θ, through iterative constructions between successive triggering
times, the proposition is thus obtained.

APPENDIX B. PROOF OF CLAIM 1

If 𝜆 = 0, it means that Qn2,2(𝜇i+1, 𝜏i+1) = 0 by recalling (85) and (56), and then 𝓁2 =
Hn2 ,2(𝜇i+1,𝜏i+1)
Qn2 ,3(𝜇i+1,𝜏i+1)

in (78). Together with (77),
we get

Si =
{(Hn1,1(𝜇i+1, 𝜏i+1)

Qn1,1(𝜇i+1, 𝜏i+1)
−

Hn2,2(𝜇i+1, 𝜏i+1)
Qn2,3(𝜇i+1, 𝜏i+1)

Qn1,2(𝜇i+1, 𝜏i+1)
Qn1,1(𝜇i+1, 𝜏i+1)

,
Hn2,2(𝜇i+1, 𝜏i+1)
Qn2,3(𝜇i+1, 𝜏i+1)

)}
, (B1)

is a singleton: a contradiction. Similarly, if 𝜆1 = 0, it means that Qn1,2(𝜇i+1, 𝜏i+1) = 0 by recalling (84), (56), and then 𝓁1 =
Hn1 ,1(𝜇i+1,𝜏i+1)
Qn1 ,1(𝜇i+1,𝜏i+1)

in (77). Together with (78), we get

Si =
{(Hn1,1(𝜇i+1, 𝜏i+1)

Qn1,1(𝜇i+1, 𝜏i+1)
,

Hn2,2(𝜇i+1, 𝜏i+1)
Qn2,3(𝜇i+1, 𝜏i+1)

−
Hn1,1(𝜇i+1, 𝜏i+1)
Qn1,1(𝜇i+1, 𝜏i+1)

Qn2,2(𝜇i+1, 𝜏i+1)
Qn2,3(𝜇i+1, 𝜏i+1)

)}
, (B2)

is a singleton: a contradiction. Therefore, 𝜆 ≠ 0, 𝜆1 ≠ 0.
According to (45) and (46) and 𝜆 ≠ 0, 𝜆1 ≠ 0, we obtain from (84) and (85) that

∫
t

𝜇i+1

𝜋n1 ∫
1

0
sin(x𝜋n1)z(x, 𝜏)dxd𝜏 = − 1

𝜆1
∫

t

𝜇i+1

𝜋n1 ∫
1

0
sin(x𝜋n1)w(x, 𝜏)dxd𝜏, n1 ∈ I1, (B3)

∫
t

𝜇i+1

𝜋n2 ∫
1

0
sin(x𝜋n2)z(x, 𝜏)dxd𝜏 = −𝜆∫

t

𝜇i+1

𝜋n2 ∫
1

0
sin(x𝜋n2)w(x, 𝜏)dxd𝜏, n2 ∈ I2, (B4)

for t ∈ [𝜇i+1, 𝜏i+1]. According to the continuity of the mappings 𝜏 → ∫ 1
0 sin(x𝜋n)z[𝜏]dx and 𝜏 → ∫ 1

0 sin(x𝜋n)w[𝜏]dx, n ∈ N

(a consequence of the fact that z ∈ C0([𝜇i+1, 𝜏i+1]; L2(0, 1)) and w ∈ C0([𝜇i+1, 𝜏i+1];L2(0, 1)), (B3) and (B4) imply

∫
1

0
sin(x𝜋n1)(z(x, 𝜏) +

1
𝜆1

w(x, 𝜏))dx = 0, n1 ∈ I1, (B5)

∫
1

0
sin(x𝜋n2)(z(x, 𝜏) + 𝜆w(x, 𝜏))dx = 0, n2 ∈ I2, (B6)

for 𝜏 ∈ [𝜇i+1, 𝜏i+1]. We then prove I1 = I2 in (B5), (B6). If I2 includes elements not belonging to I1, there exists n2 ∈ I2
with n2 ∉ I1 such that ∫ 1

0 sin(x𝜋n2)z(x, 𝜏)dx = 0 on 𝜏 ∈ [𝜇i+1, 𝜏i+1] due to the fact that Qn,1(𝜇i+1, 𝜏i+1) = 0 for n∉ I1 with
recalling (55) and (45), and then

∫
1

0
sin(x𝜋n2)(z(x, 𝜏) + 𝜆w(x, 𝜏))dx = ∫

1

0
sin(x𝜋n2)𝜆w(x, 𝜏)dx, (B7)

which is not identically zero on 𝜏 ∈ [𝜇i+1, 𝜏i+1] because of Qn2,3(𝜇i+1, 𝜏i+1) ≠ 0 together with (57) and (46) and 𝜆 ≠ 0. This
contradicts (B6). Similarly, if I1 includes elements not belonging to I2, there exists n1 ∈ I1 with n1 ∉ I2 such that

∫
1

0
sin(x𝜋n1)(z(x, 𝜏) +

1
𝜆1

w(x, 𝜏))dx = ∫
1

0
sin(x𝜋n1)z(x, 𝜏)dx, (B8)

which is not identically zero on 𝜏 ∈ [𝜇i+1, 𝜏i+1] because of Qn1,1(𝜇i+1, 𝜏i+1) ≠ 0 together with (55) and (45), where
∫ 1

0 sin(x𝜋n1) 1
𝜆1

w(x, 𝜏)dx = 0 on 𝜏 ∈ [𝜇i+1, 𝜏i+1] is due to the fact that Qn,3(𝜇i+1, 𝜏i+1) = 0 for n∉ I2 with recalling (57) and
(46). This contradicts (B5). Therefore, we conclude I1 = I2 in (B5) and (B6).
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We then prove 𝜆 = 1
𝜆1

by contradiction. If 𝜆 − 1
𝜆1

≠ 0, recalling I1 = I2 and (B6), then we obtain

∫
1

0
sin(x𝜋n1)(z(x, 𝜏) +

1
𝜆1

w(x, 𝜏))dx = ∫
1

0
sin(x𝜋n1)(z(x, 𝜏) + ( 1

𝜆1
− 𝜆 + 𝜆)w(x, 𝜏))dx

= ∫
1

0
sin(x𝜋n2)(z(x, 𝜏) + 𝜆w(x, 𝜏))dx + ∫

1

0
sin(x𝜋n2)(

1
𝜆1

− 𝜆)w(x, 𝜏)dx

=

(
1
𝜆1

− 𝜆

)
∫

1

0
sin(x𝜋n2)w(x, 𝜏)dx, (B9)

which is not identically zero for 𝜏 ∈ [𝜇i+1, 𝜏i+1] because of Qn2,3(𝜇i+1, 𝜏i+1) ≠ 0 with (57), (46), which contradicts (B5).
Therefore 𝜆 − 1

𝜆1
= 0. Claim 1 is proven.

APPENDIX C. PROOF OF CLAIM 2

According to (45), (46), the equations (84), (85) (𝜆 ≠ 0, 𝜆1 ≠ 0 and 𝜆 = 1
𝜆1

) are equivalent to

∫
1

0
sin(x𝜋n)(z(x, 𝜏) + 𝜆w(x, 𝜏))dx = 0, n ∈ I2 ∪ I1. (C1)

If N = I2 ∪ I1, it means that (C1) holds for all n ∈ N. If I2 ∪ I1 ⊂ N, recalling the definitions of I1, I2, we know that
∫ 1

0 sin(x𝜋n)z(x, 𝜏)dx = ∫ 1
0 sin(x𝜋n)w(x, 𝜏)dx = 0 for n ∈ ∁N{I1 ∪ I2} on 𝜏 ∈ [𝜇i+1, 𝜏i+1], and thus (C1) is equivalent to

∫
1

0
sin(x𝜋n)(z(x, 𝜏) + 𝜆w(x, 𝜏))dx = 0, n = 1, 2, … (C2)

on 𝜏 ∈ [𝜇i+1, 𝜏i+1]. Since the set {
√

2 sin(n𝜋x) ∶ n = 1, 2, …} is an orthonormal basis of L2(0, 1), if (C2) holds, it follows
that z(x, t) + 𝜆w(x, t) = 0 for t ∈ [𝜇i+1, 𝜏i+1].

If z(x, t) + 𝜆w(x, t) = 0 for t ∈ [𝜇i+1, 𝜏i+1], then (C2), and (84), (85) (𝜆 ≠ 0, 𝜆1 ≠ 0 and 𝜆 = 1
𝜆1

), naturally hold. Claim 2
is proven.

APPENDIX D. PROOF OF CLAIM 3

The necessary condition for the equation z(x, t) + 𝜆w(x, t) = 0
(
𝜆 ≠ 0

)
to hold on x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1] is that

z(x, t), w(x, t) are kept constant on x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1] excluding finitely many possible points of discontinuity,
that is, w(x, t)=M and z(x, t) = −𝜆M on x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1] excluding finitely many possible points of disconti-
nuity, where M is a nonzero constant (because z[t], w[t] are not identically zero on t ∈ [𝜇i+1, 𝜏i+1]). We prove this by
contradiction next.

Taking a spatial interval [x1, x2] ∈ [0, 1] with x2 − x1 ≤ (q1 + q2)(𝜏i+1 − 𝜇i+1) (the position of the interval [x1, x2] is
arbitrary on [0, 1], and (x1, 𝜇i+1), (x2, 𝜇i+1) are not points of discontinuity of the functions w(x, t), z(x, t)), suppose that
there exist xa, xb (without loss of generality we assume xa < xb) in the interval [x1, x2] with w(xa, 𝜇i+1) ≠ w(xb, 𝜇i+1),
where (xa, 𝜇i+1), (xb, 𝜇i+1) are not points of discontinuity of the functions w(x, t), z(x, t). Also we know that z(xa, 𝜇i+1) =
−𝜆w(xa, 𝜇i+1) according to z(x, t) + 𝜆w(x, t) = 0 always holding on x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1]. Because the state of the w-PDE
propagates from x = 1 to x = 0, and the state of the z-PDE propagates from x = 0 to x = 1, with the respective propagation
speeds q1, q2, according to the statement in p. 60 in Reference 52, which indicates that the system (2), (3) is equivalent to
a pair of scalar delay equations even if the solutions are not differentiable and even not continuous with respect to t and
x, we get the following relationships:

w(xb − s1q2, 𝜇i+1 + s1) = w(xb, 𝜇i+1), (D1)
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z(xa + s1q1, 𝜇i+1 + s1) = z(xa, 𝜇i+1), (D2)

for s1 ∈ [0,min{ xb
q2
,

1−xa
q1

}], where (xb − s1q2, 𝜇i+1 + s1), (xa + s1q1, 𝜇i+1 + s1) are not the points of discontinuity because
(xb, 𝜇i+1), (xa, 𝜇i+1) are not the points of discontinuity. There exists a s1 = xb−xa

q1+q2
such that xb − s1q2 = xa + s1q1 = xc, and then

we obtain

w(xc, tc) = w(xb, 𝜇i+1), z(xc, tc) = z(xa, 𝜇i+1), (D3)

where xc =
q1xb+q2xa

q1+q2
∈ (xa, xb), tc = 𝜇i+1 +

xb−xa
q1+q2

∈ (𝜇i+1, 𝜏i+1] recalling xb − xa ≤ x2 − x1 ≤ (q1 + q2)(𝜏i+1 − 𝜇i+1). Because

z(xa, 𝜇i+1) = −𝜆w(xa, 𝜇i+1) ≠ −𝜆w(xb, 𝜇i+1),

recalling 𝜆 ≠ 0 and the hypothesis that w(xa, 𝜇i+1) ≠ w(xb, 𝜇i+1), using (D3), we have

z(xc, tc) ≠ −𝜆w(xc, tc),

with xc ∈ [0, 1], tc ∈ (𝜇i+1, 𝜏i+1]: a contradiction. Therefore, the hypothesis that there exist xa, xb in the interval [x1, x2]
such that w(xa, 𝜇i+1) ≠ w(xb, 𝜇i+1) ((xa, 𝜇i+1), (xb, 𝜇i+1) are not points of discontinuity) does not hold, and we then conclude
w(x, 𝜇i+1), z(x, 𝜇i+1) are kept constant on x ∈ [x1, x2] excluding finitely many possible points of discontinuity. Because the
position of the interval [x1, x2] is arbitrary on [0, 1] (with (x1, 𝜇i+1), (x2, 𝜇i+1) are not points of discontinuity of the functions
w(x, t), z(x, t)), and then we have that w(x, 𝜇i+1), z(x, 𝜇i+1) are kept constant for x ∈ [0, 1] excluding finitely many possible
points of discontinuity. Taking a time increment s with 0 < s ≤ 1

2 max{q1,q2}
, we have

w(x, 𝜇i+1 + s) = w(x + q2s, 𝜇i+1) = w(x, 𝜇i+1),

for x ∈ [0, 1
2
], with excluding the points of discontinuity of the functions w(x, t), z(x, t) along x ∈ [0, 1], t = 𝜇i+1, where

s ∈ (0, 1
2 max{q1,q2}

] ensures x + q2s∈ (0, 1]. Also we get that

z(x, 𝜇i+1 + s) = z(x − q1s, 𝜇i+1) = z(x, 𝜇i+1),

for x ∈ [ 1
2
, 1], with excluding the points of discontinuity of the functions w(x, t), z(x, t) along x ∈ [0, 1], t = 𝜇i+1, where

s ∈ (0, 1
2 max{q1,q2}

] ensures x − q1s∈ [0, 1). Recalling that z(x, t) + 𝜆w(x, t) = 0 always holds on x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1],
we have that z, w are kept constant in x ∈ [0, 1], t ∈ [𝜇i+1, 𝜇i+1 + 1

2 max{q1,q2}
] excluding finitely many possible points of

discontinuity. If 𝜇i+1 + 1
2 max{q1,q2}

≥ 𝜏i+1, we directly obtain the necessary condition for z(x, t) + 𝜆w(x, t) = 0 to hold on

x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1] mentioned at the beginning of the proof of Claim 3. If 𝜇i+1 + 1
2 max{q1,q2}

< 𝜏i+1, repeatedly tak-
ing the time increments s and conducting the above process for k times, based on the fact that w, z are kept constant for
x ∈ [0, 1] at the beginning of each time increment, with excluding finitely many possible points of discontinuity, until
𝜇i+1 + k

2 max{q1,q2}
≥ 𝜏i+1, we also obtain the necessary condition for z(x, t) + 𝜆w(x, t) = 0 to hold on x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1]

mentioned at the beginning of the proof, namely, that z(x, t), w(x, t) are kept constant on x ∈ [0, 1], t ∈ [𝜇i+1, 𝜏i+1],
excluding finitely many possible points of discontinuity, that is,

w(x, t) = M, z(x, t) = −𝜆M, (x, t) ∈ ([0, 1] × [𝜇i+1, 𝜏i+1]) ⧵ Id, (D4)

where Id denotes a set of finitely many possible points of discontinuity of the functions w(x, t), z(x, t) in x ∈ [0, 1], t ∈
[𝜇i+1, 𝜏i+1], and where M is a nonzero constant (because z[t], w[t] are not identically zero on t ∈ [𝜇i+1, 𝜏i+1]).

The situation that w(x, t)=M and z(x, t) = −𝜆M for (x, t) ∈ ([0, 1] × [𝜇i+1, 𝜏i+1]) ⧵ Id, means 𝜁(t) = (−𝜆+p)
c

M on t ∈
[𝜇i+1, 𝜏i+1] according to (4), excluding finitely many possible points of discontinuity on t ∈ [𝜇i+1, 𝜏i+1]. Recalling (1), it
then must be that (a − q1bc) (−𝜆+p)

c
+ b(q2 + q1p) = 0. It follows that

𝜆 =
cb(q2 + q1p)
(a − q1bc)

+ p > 0, (D5)
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because the constants c, b, q1, q2, p and a− q1bc are positive. Inserting the control input (36) into the right boundary
condition (5), recalling (15), (16) and 𝜁(t) = (−𝜆+p)

c
M, a necessary condition of w(x, t)=M and z(x, t) = −𝜆M for (x, t) ∈

([0, 1] × [𝜇i+1, 𝜏i+1]) ⧵ Id, is that the following equation holds

[q2 + (q1 − q̂1(𝜏i))𝜆]M = 𝜅[q̂2(𝜏i)∫
1

0

b
q̂2(𝜏i)

e
1

q̂2 (𝜏i)
(a−q̂1(𝜏i)bc)(1−y)dy

+
q̂2(𝜏i)(−𝜆 + p)

c(q̂1(𝜏i)p + q̂2(𝜏i))
e

1
q̂2 (𝜏i)

(a−q̂1(𝜏i)bc)]M, (D6)

that is,

q2 + (q1 − q̂1(𝜏i))
(

cb(q2 + q1p)
a − q1bc

+ p
)

= −𝜅

[
q̂2(𝜏i)b

(
1 − e

1
q̂2(𝜏i)

(a−q̂1(𝜏i)bc)

a − q̂1(𝜏i)bc
+ e

1
q̂2 (𝜏i)

(a−q̂1(𝜏i)bc)

q̂1(𝜏i)p + q̂2(𝜏i)
(q2 + q1p)
(a − q1bc)

)]
, (D7)

because of M ≠ 0. Recalling q̂1(0) = q
1

and q̂2(0) = q
2
, we have 0 < q

1
≤ q̂1(𝜏i) ≤ q1, 0 < q

2
≤ q̂2(𝜏i) ≤ q2 (the consequence

of (61) and the fact that 𝜃 ∈ Si defined by (76)), which implies (q2+q1p)
(a−q1bc)

≥ (q̂2(𝜏i)+q̂1(𝜏i)p)
(a−q̂1(𝜏i)bc)

. We thus have

1 − e
1

q̂2(𝜏i)
(a−q̂1(𝜏i)bc)

a − q̂1(𝜏i)bc
+ e

1
q̂2(𝜏i)

(a−q̂1(𝜏i)bc)

q̂1(𝜏i)p + q̂2(𝜏i)
(q2 + q1p)
(a − q1bc)

≥ 1 − e
1

q̂2 (𝜏i)
(a−q̂1(𝜏i)bc)

a − q̂1(𝜏i)bc
+ e

1
q̂2(𝜏i)

(a−q̂1(𝜏i)bc)

q̂1(𝜏i)p + q̂2(𝜏i)
(q̂2(𝜏i) + q̂1(𝜏i)p)
(a − q̂1(𝜏i)bc)

≥ 1
a − q̂1(𝜏i)bc

> 0. (D8)

Therefore, recalling the constants c, b, q1, q2, p, a− q1bc and q̂1(𝜏i), q̂2(𝜏i) are positive, the right-hand side of (D7) is
greater than zero because of 𝜅 < 0 and (D8), and the left-hand side of (D7) is also greater than zero because of q̂1(𝜏i) ≤ q1.
The necessary condition of w(x, t)=M and z(x, t) = −𝜆M for (x, t) ∈ ([0, 1] × [𝜇i+1, 𝜏i+1]) ⧵ Id with M ≠ 0 becomes that the
design parameter 𝜅 is equal to 𝜅 defined as

𝜅 = −
(

q2 + (q1 − q̂1(𝜏i))
(

cb(q2 + q1p)
a − q1bc

+ p
))

÷

[
q̂2(𝜏i)b

(
1 − e

1
q̂2(𝜏i)

(a−q̂1(𝜏i)bc)

a − q̂1(𝜏i)bc
+ e

1
q̂2(𝜏i)

(a−q̂1(𝜏i)bc)

q̂1(𝜏i)p + q̂2(𝜏i)
(q2 + q1p)
(a − q1bc)

)]
< 0. (D9)

According to (D8) and q̂1(𝜏i) ≥ q
1
, q̂2(𝜏i) ≥ q

2
, we know that 𝜅 defined by (D9) is in the following range

(a − q
1
bc)[q2 + (q1 − q

1
)( cb(q2+q1p)

a−q1bc
+ p)]

−q
2
b

≤ 𝜅 ≤ 0. (D10)

Recalling the first term in (12), we know that 𝜅 ≠ 𝜅. We thus conclude that w(x, t)=M and z(x, t) = −𝜆M with M ≠ 0
on (x, t) ∈ ([0, 1] × [𝜇i+1, 𝜏i+1]) ⧵ Id does not hold. Claim 3 is proven.

APPENDIX E. PROOF OF CLAIM 4

We first prove sufficiency. If z[t] (or w[t]) are not identically zero for t = [0, limi→∞(𝜏i)), there exists an interval [𝜇i+1, 𝜏i+1]
on which z[t] (or w[t]) are not identically zero. It follows that q̂1(𝜏i+1) = q1 (or q̂2(𝜏i+1) = q2) recalling Lemma 3.



WANG and KRSTIC 1543

Next, we prove necessity. When q̂1(0) ≠ q1 (or q̂2(0) ≠ q2), if the estimate reaches the true value at an instant 𝜏i+1,
that is, q̂1(𝜏i+1) = q1 (or q̂2(𝜏i+1) = q2), it follows there exists n ∈ N such that Qn,1(𝜇i+1, 𝜏i+1) ≠ 0 (or Qn,3(𝜇i+1, 𝜏i+1) ≠ 0).
(This is true because, if Qn,1(𝜇i+1, 𝜏i+1) = 0 (or Qn,3(𝜇i+1, 𝜏i+1) = 0) for all n ∈ N, it would also be true that gn,1(t, 𝜇i+1) =
0 (or gn,2(t, 𝜇i+1) = 0) for all n ∈ N on t ∈ [𝜇i+1, 𝜏i+1], according to (55) and (57). It follows that Qn,2(𝜇i+1, 𝜏i+1) = 0,
Hn,1(𝜇i+1, 𝜏i+1) = 0 (or Qn,2(𝜇i+1, 𝜏i+1) = 0, Hn,2(𝜇i+1, 𝜏i+1) =0) for all n ∈ N according to (53)–(57). Consequently, we have
from (61) that q̂1(𝜏i+1) = q̂1(𝜏i) ≠ q1 (or q̂2(𝜏i+1) = q̂2(𝜏i) ≠ q2) by recalling (59)–(60)). We then conclude that z[t] (or
w[t]) are not identically zero on t ∈ [𝜇i+1, 𝜏i+1] according to Lemma 2. That is, z[t] (or w[t]) are not identically zero on
t = [0, limi→∞(𝜏i)).

The proof of Claim 4 is complete.

APPENDIX F. PROOF OF CLAIM 4

We prove this claim by estimating the largest convergence time of parameter estimates 𝜏𝜀 in various situations of initial
conditions z[0],w[0], 𝜁(0). Inserting (36) into (5), we get

q2w(1, t) = q̂2(t)∫
1

0
𝜙(1, y; 𝜃̂(t))w(y, t)dy + q̂2(t)𝜆(1; 𝜃̂(t))𝜁(t) + q̃1(t)z(1, t). (F1)

Case 1: z[0] ≠ 0,w[0] = 0, 𝜁(0) = 0. According to Lemma 3, we have q̂1(𝜏1) = q1 and q̃1(t) ≡ 0 for t ≥ 𝜏1. If w[t]≡ 0
on t ∈ [0, 𝜏1], then w[t] and 𝜁(t) are identically zero on t ≥ 0 according to (1), (3) and (F1) with q̃1(t) ≡ 0 for t ≥ 𝜏1. If
q̂2(0) ≠ q2, it follows that q̂2(t) cannot reach the true value q2 according to Claim 4 with property 1: a contradiction with
the fact that q̂2(t) would reach q2 in finite time. Thus w[t] is not identically zero on t ∈ [0, 𝜏1] if q̂2(0) ≠ q2. It follows that
q̂2(t) can reach q2 not later than 𝜏1 according to Lemma 3. It is obtained from (38) that the dwell time is less than or equal
to T. Therefore 𝜏𝜀 ≤ T.

Case 2: w[0] ≠ 0, z[0] = 0, 𝜁(0) = 0. The maximum time taken by the nonzero values of w[0] propagate to x = 0 and
enter z(0, t) is 1

q2
. Therefore, the estimate q̂1(t) would reach the true value q1 not later than 𝜏f = min{𝜏f ∶ f ∈ Z+, 𝜏f >

1
q2
}

according to Lemma 3. Because of w[0]≠ 0, we have q̂2(𝜏1) = q2. It follows that 𝜏𝜀 ≤ 1
q2

+ T because the dwell time is less
than or equal to T.

Case 3: 𝜁(0) ≠ 0, z[0] = 0,w[0] = 0. According to (F1) and (4), we know that w[t], z[t] are not identically zero on t ∈
[0, 𝜏1], which implies that the estimates 𝜃̂(t) reach the true values 𝜃 not later than 𝜏1 according to Lemma 3. Therefore
𝜏𝜀 ≤ 𝜏1 ≤ T.

Case 4: 𝜁(0) ≠ 0,w[0] ≠ 0, z[0] = 0. The necessary condition of the fact that z[t] is identically zero (i.e., w(0, t) = c
p
𝜁(t)

always holds) for t ∈ [0, 𝜏f ] where 𝜏f = min{𝜏f ∶ f ∈ Z+, 𝜏f >
1
q2
} is 𝜅 > 0, according to the analysis in Case 2 in the proof

of the portion 1 of the theorem. Recalling 𝜅 < 0 in (12), we know that z[t] is not identically zero on t ∈ [0, 𝜏f ], which
implies that the estimate q̂1(t) reaches the true value q1 not later than 𝜏f according to Lemma 3. Because of w[0]≠ 0, we
have that q̂2(𝜏1) = q2. Therefore 𝜏𝜀 ≤ 1

q2
+ T.

Case 5: 𝜁(0) ≠ 0, z[0] ≠ 0,w[0] = 0. According to Lemma 3, we have that q̂1(𝜏1) = q1 and q̃1(t) ≡ 0 for t ≥ 𝜏1. If w[t]≡ 0
on t ∈ [0, 𝜏2], it follows from (1) that 𝜁(t) = e(a−q1bc)t𝜁(0) is not identically zero on t ∈ [𝜏1, 𝜏2]. It is obtained from (F1) that
w(1, t) is not identically zero on t ∈ [𝜏1, 𝜏2]: a contradiction. Therefore, w[t] are not identically zero on t ∈ [0, 𝜏2], which
implies that the estimate q̂2(t) reaches the true value q2 not later than 𝜏2 according to Lemma 3. Therefore, we have that
𝜏𝜀 ≤ 𝜏2 ≤ 2T.

Case 6: 𝜁(0) = 0, z[0] ≠ 0,w[0] ≠ 0 and Case 7: 𝜁(0) ≠ 0, z[0] ≠ 0,w[0] ≠ 0. According to Lemma 3, we have that 𝜏𝜀 ≤
𝜏1 ≤ T.

Case 8: z[0] = 0,w[0] = 0, 𝜁(0) = 0. According to the plant (1)–(5) with the control input (36), we know that
z[t],w[t], 𝜁(t) are identically zero for t ≥ 0. The estimates reach the true values in finite time only when q̂1(0) = q1, q̂2(0) =
q2, that is, 𝜏𝜀 = 0.

In summary, we have proved for all eight cases that 𝜏𝜀 ≤ max{ 1
q2

+ T, 2T}. This completes the proof of Claim 5.


