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Abstract—Autonomous robotic surgery has seen significant pro-
gression over the last decade with the aims of reducing surgeon
fatigue, improving procedural consistency, and perhaps one day
take over surgery itself. However, automation has not been applied
to the critical surgical task of controlling tissue and blood vessel
bleeding–known as hemostasis. The task of hemostasis covers a
spectrum of bleeding sources and a range of blood velocity, tra-
jectory, and volume. In an extreme case, an un-controlled blood
vessel fills the surgical field with flowing blood. In this work, we
present the first, automated solution for hemostasis through devel-
opment of a novel probabilistic blood flow detection algorithm and
a trajectory generation technique that guides autonomous suction
tools towards pooling blood. The blood flow detection algorithm is
tested in both simulated scenes and in a real-life trauma scenario
involving a hemorrhage that occurred during thyroidectomy. The
complete solution is tested in a physical lab setting with the da Vinci
Research Kit (dVRK) and a simulated surgical cavity for blood to
flow through. The results show that our automated solution has
accurate detection, a fast reaction time, and effective removal of
the flowing blood. Therefore, the proposed methods are powerful
tools to clearing the surgical field which can be followed by either
a surgeon or future robotic automation developments to close the
vessel rupture.

Index Terms—Medical robots and systems, computer vision for
medical robotics, surgical robotics, laparoscopy.

I. INTRODUCTION

S
INCE the deployment of surgical robotic devices such

as the da Vinci Surgical System, efforts to automate
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Fig. 1. Autonomous blood suction for cases of trauma in surgery. A robotic
suction tool clears the surgical field of flowing blood. The pooling and direction
of flowing blood is detected using a temporal, image-based algorithm. This
informs a robot trajectory for the suction tool to move upstream towards the
source while constrained to stay along the flowing blood.

surgical tasks have become a popular area of research [1]. The

automation of surgery has promised to help reduce surgeon

fatigue and improve the procedural consistency between

surgeries, and perhaps one day take over surgeries itself to

address lack-of-access to timely, life-saving surgery in remote

or under-served communities. Success in realizing surgical

automation has accelerated in recent years, with improvements

in available open-source platforms such as the da Vinci

Research Toolkit (dVRK) [2] and simulators [3], coupled

with significant advances to data-driven controller synthesis.

Successful demonstrations of automated tasks have included

cutting [4], [5], suture needle hand-off [6], suturing [7], [8], and

debridement removal [9]. Recent developments in perception
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for surgical robotics helps bridge these autonomous policies

in ideal scenarios to realistic, deformable and noisy tissue

environments such as the SuPer frameworks [10], [11].

While progress in developing autonomous surgical tasks has

leapt forward, a key area that has been given little attention

are reactive policies to traumatic events, such as hemostasis.

Hemostasis describes a state of the surgical field that is fulfilled

when there is no site of active bleeding and the tissues are unob-

structed by blood. The bleeding can originate from a visible or

macroscopic blood vessel (artery or vein), or from the microvas-

culature and capillary network within tissues. Unlike previously

automated tasks that occur in a more predictable cadence within

a procedure, bleeding can be unpredictable which necessitates

hemostasis maneuvers at any time during any surgery. Surgical

manipulation of any type–suction, grasping, retraction, cutting,

dissection–can immediately cause bleeding. Bleeding can also

occur in a delayed manner, for example if a vessel is not

definitively sealed, it can rupture spontaneously without direct

contact. If surgical automation is ever to be deployed, reactive

policies will be required to handle these traumatic scenarios.

This work specifically addresses the problem of small and

medium vessel ruptures. Overall, there are four distinct stages

in hemostasis of this scenario: (1) clearing the surgical field of

blood; (2) identification of the bleeding source (vessel rupture);

(3) grasping the identified vessel to temporarily stop bleeding;

(4) closing the vessel rupture, usually with an energy device,

clip, or suture. Each stage requires a complex set of manipulation

skills as well as perception algorithms that make it non-trivial

to implement.

In this letter, we describe an automated solution to the first

task, clearing the surgical field, as shown in Fig. 1. This task

involves first recognizing blood in a scene, then tracking blood

flow temporally, and finally prescribing a real-time trajectory

generation strategy that will intelligently control a suction tool

to siphon the blood to efficiently suction it. To this end, we

present the following novel contributions:

1) The first complete automated solution for clearing the

surgical field of flowing blood from a ruptured vessel using

a robotic suction tool,

2) a novel blood flow detection and tracking method by

utilizing temporal visual information,

3) and a trajectory generation technique from blood regions

in the image frame for a surgical suction tool to follow and

clear the surgical field.

The blood flow detection and tracking method is tested within

various simulated scenes as well as a real-life case involving a

vessel rupture during thyroidectomy. The complete solution is

tested in a lab setting with the da Vinci Research Kit (dVRK) [2]

and a simulated surgical cavity for blood to flow through and col-

lect in. The results from the experiments show the effectiveness

of the blood flow tracking and surgical suction tool trajectory

generation developed in this work.

II. RELATED WORKS

Previous work on blood detection largely is from the context

of Wireless Capsule Endoscopy (WCE) where image processing

for detections is used to speed up clinician workflow [12]. The

typical approach to blood detection in WCE is to classify either

on a pixel level or using patch-based methods [13]. The feature

space used for classification is either direct Red, Green, Blue

(RGB) [14] channels or the transformed Hue, Saturation, Value

(HSV) channels [15]. To efficiently process these color spaces,

techniques such as support vector machines [16], chromium

moments combined with binary pattern textures [17], and neu-

ral networks [18], [19] have been demonstrated. While these

methods are robust to small individual lesions, in a surgical

scene there can be stains from previous ruptures and larger

amounts of blood flow that make the problem of blood detection

and, specifically, tracking, a more challenging and complex

problem.

There has been previous research on robots interacting with

liquids in the act of pouring [20]. However, these methods cannot

be applied to a surgical setting since they are limited to specific

objects for pouring and capturing liquids. Schenck and Fox

applied deep neural networks to detect fluids [21] that can be

combined with differential fluid dynamics to reconstruct 3D in-

formation [22]. This detection method however requires labelled

real-world data which are challenging to collect in a surgical

context. Yamaguchi and Atkeson instead used the heuristic of

optical flow to detect moving fluid [23]. The work presented here

also uses optical flow to detect blood flow. However, instead

of the classical method used by Yamaguchi and Atkeson, we

applied a deep learning technique for improved performance of

optical flow estimation in a surgical environment and fused the

detections temporally with a novel temporal filter.
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Fig. 2. The above images are generated by optical flow estimation from an
in-vivo surgical scene. The left image shows the vectors of estimated image
motion from optical flow, and the right image is a normalized heatmap of their
magnitudes. Notice that the magnitude of optical flow detects the regions of
blood flow well, while the orientation gives inconsistent information about the
flow.

III. METHODS

An overview of the proposed algorithms for blood region

estimation and trajectory generation for an autonomous suction

tool on a surgical robot is provided in Algorithm 1. At a high

level, the blood region is estimated by updating a probability

map on the scene, which describes the probability of each pixel

in the image frame being blood or not. From the probability map,

the blood region is extracted. A trajectory is then generated for

the suction tool to follow in order to clear the surgical field from

blood. The trajectory is constrained to stay within the blood

region to maximize the blood removed.

A. Detecting Flowing Blood in Image Frame

Optical flow is chosen to detect flowing blood because it

extracts information about all moving objects in the scene. In

a surgical scene, the main motion comes from surgical tools

and flowing fluids. Another source of motion in robotic surgery

comes from a moving camera, but for robotic surgery the camera

remains stationary when work is being done in a scene and its

position is reset only to change the field of view. We therefore

consider only stationary scenes. To mask instrument motion

from the scene, previously developed methods can be applied

to effectively segment and remove pixels attributed to surgical

tools from image [10], [11], [24].

To estimate optical flow, a pretrained convolutional neural

network (CNN) is used [25]. A deep learning strategy is used

instead of traditional methods such as Lucas-Kanade [26] (used

in previous work in robot pouring [23]) as traditional optical flow

approaches utilize brightness constancy constraint assumption,

and this assumption is not valid in endoscopic procedures due

to irregular lighting. Meanwhile, the proposed architecture by

Teney and Herbert [25] is able to extract motion from learned

features that are invariant to textures, brightness, and contrast,

which is ideal for detecting flowing blood from an endoscope.

Similar to previous work in robot pouring [23], we also found

experimentally that the magnitude of optical flow is a good

signal for detecting fluid motion while the orientation is not. An

example of the processed image is shown in Fig. 2 comparing

the RGB image to the amplitude map for optical flow.

Consider the magnitude of optical flow at pixel p. Let z
p
t be

the random variable describing the detection of blood at pixel

pt at time t. The detection is modelled where blood is detected,

z
p
t = b, if the magnitude of optical flow at pixel pt is greater than

a threshold, γo. The inverse is also set, so no blood is detected,

z
p
t = b, if the magnitude at pixel pt is less than γo. Hence the

probability model for these detections can be simply written as:

P (zpt = b | pt = b) P (zpt = b | pt = b) (1)

which describes an observation model for the hidden state pt ∈
{b, b}.

B. Temporal Filtering for Blood Region Detection

Although the magnitudes of optical flow provide a good

initial estimate for blood detection, they are nevertheless noisy

and require filtering. Therefore, a temporal filter is based on a

Hidden Markov Model (HMM) is proposed to fuse independent

measurements of the pixel labels over time. The HMM tracks

the discrete states for pt using the observation models in (1). Let

the following be a transition probability for a pixel pt be

P (pt+1 = b | pt = b), (2)

which models the probability that if a pixel is already blood it

will continue being blood. In the case of blood vessel ruptures,

this should be set close to 1 since the vessel rupture will not

stop emitting blood until it has been closed. For the transition

probabilities where the pixel is not blood at time t, an additional

parameter, k
p
t , is introduced to the model:

P (pt+1 = b | pt = b, k
p
t = b) (3)

P (pt+1 = b | pt = b, k
p
t = b), (4)

where k
p
t describes the state of the neighboring pixels of pt. This

is modelled as the resulting Boolean-OR operation (∨) on the

states of the neighboring pixels:

k
p
t =

∨

qi∈Ap

qit (5)

where Ap is the set of neighboring pixels to pt. Therefore,

the model from (3) is capturing the flow of the blood and (4)

is describing the probability a blood source starts at pixel pt.

To appropriately describe these processes in this case of blood

vessel ruptures, (3) should be set less than (2) and (4) close to 0.

The temporal filter is designed to estimate the posterior proba-

bility of the statept using transition probabilities and observation

models. This is done using a predict and update step after every

detection. The predict step can be calculated as:

P (pt+1 | zp1:t) = P (pt+1 | pt = b)P (pt = b | zp1:t)

+
∑

k
p

t ∈{b,b}

P (pt+1 | pt = b, k
p
t )P (pt = b, k

p
t | zp1:t) (6)

and the update step is computed:

P (pt+1 | zp1:t+1) ∝ P (zt+1 | pt+1)P (pt+1 | zp1:t) (7)

However, the predict expression has the joint probability of pt
and k

p
t . Explicit estimation for this joint probability would be

computationally intractable, so each pixel’s probability of being
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blood is approximated to be independent of all others at time t.

With this simplification, the predict step can be rewritten as:

P (pt+1 | zp1:t) = P (pt+1 | pt = b)P (pt = b | z1:t)

+
∑

k
p

t ∈{b,b}

P (pt+1 | pt = b, k
p
t )P (kpt | zp1:t)P (pt = b | zp1:t)

(8)

and an expression can be found for P (kpt | zp1:t) using the

inclusion-exclusion principle:

P (kpt | zp1:t) =

|Ap|
∑

j=1

(−1)j−1
∑

J⊆Ap

|J|=j

∏

qi∈J

P (qit | z
p
1:t) (9)

This results in the ability to compute and track the probabilities

of each pixel being blood using (8) and (7) after every detection.

To find the region of blood on the image frame, a mask is

generated where all pixels with a posterior probability greater

than 0.5 is set to 1, and the rest are set to 0. Then dilation and

erosion morphological operations are applied once to reduce

noise on the mask. Finally, the largest connected region of the

mask is considered the region with blood flowing if its size is

greater than a threshold of γB . This threshold keeps a detection

from occurring when there is no actual blood flowing.

Fig. 3. Example of trajectory generation for blood suction from in-vivo scene.
In the top figure, the white highlighted region is the detected blood region and
the blue path is the generated trajectory. The starting and stopping points are
chosen from the newest and oldest regions of the detected blood respectively,
and a heatmap of the normalized detected blood age is shown in the bottom left
figure. The generated path uses an additional clearance reward, which is shown
in the bottom right figure, to reward paths that stay centered along the blood
stream.

C. Trajectory Generation for Blood Suction

A start and end point must be decided to generate a trajectory

for suction. The end point should be roughly near the loca-

tion of the vessel rupture in order to continuously remove any

newly released blood. Meanwhile, the starting point should be

downstream of the flowing blood in order to effectively clear

the surgical field when suctioning upstream towards the source.

Therefore, a simple estimation for the start and end point is done

based on the age of the pixels in the blood region. The pixel with

the largest and smallest ages in the blood region are defined as

the end and start points respectively. To ensure that the end point

is not generated at the exact edge of the blood stream, the blood

region is eroded before selecting it.

The trajectory generated from the start to end point should also

maximize its ability to suction blood while moving upstream.

Therefore, using standard minimum distance paths are not ideal

as they would tend to plan towards the edges of the blood

region rather than the center. To center the trajectory in the

blood region, an additional clearance reward is given to the

motion planner. The clearance reward is generated by iteratively

eroding the blood region for a max of γr iterations. The pixels

left in the eroded region are given an additional reward of r

at each iteration. The final trajectory in the image frame is

then generated using Dijkstra’s algorithm where the path is

constrained to stay within the blood region and the clearance

reward is subtracted from the normal distance cost. An outline

of this trajectory generation technique is shown in Algorithm 2,

and an example is shown in Fig. 3. The trajectory is then executed

if it is longer than a threshold γT . This threshold gives time for
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Fig. 4. Simulated scenes used to evaluate the proposed blood flow detection algorithm. The arrows highlight the direction of flow for the blood and how it fills
the cavity. The detection algorithm estimates the blood flow via temporal tracking and aids in trajectory generation for a suction tool to remove the blood.

Fig. 5. The left and right plots show Intersection over Union (IoU) results of blood flow estimation when using the proposed blood flow detection and tracking
algorithm and only the blood detection from optical flow thresholding respectively. The complete pipeline results in better performance overall.

the start and end points to stabilize so an effective trajectory can

be generated.

IV. EXPERIMENTS AND RESULTS

The proposed blood flow detection and tracking method was

evaluated on both simulated scenes and a live surgery involving

a hemorrhage during a thyroidectomy. The complete automated

suctioning solution was demonstrated on in a lab setting on a

simulated surgical cavity and red fluid for blood. The following

sections describe these experiments, the necessary implementa-

tion details, and results.

A. Implementation Details

All subsequent experiments were ran on a computer with Intel

Core i9-7940X Processor and NVIDIA’s GeForce RTX 2080.

The blood flow detection and trajectory generation algorithms

were implemented in MATLAB. The CNN for optical flow

estimation [25] is pre-trained on the Middlebury dataset [27],

uses l = 3 image frames for input, and the resolution of the

optical flow estimation is 1/4 of the input frame resolution. These

are the default values of the original CNN implementation. The

size of the probability map is set to the optical flow resolution.

The threshold for detection, γo, region size, γB , maximum

number of erosions for clearance, γr, and trajectory length,

γT , are set to 0.45, 20, 4, and 30 respectively. The detection

probability, P (zpt = b|pt = b), P (zpt = b|pt = b), are set to

0.95 and 0.2 respectively because experimentally we found the

true positive rate and false negative rate to be very accurate

and noisy respectively. The initial probability of a pixel being

blood, P (p0 = b) and transition probabilities of a pixel be-

ing blood, P (pt+1 = b|pt = b), P (pt+1 = b|pt = b, k
p
t = b),

P (pt+1 = b|pt = b, k
p
t = b), are set to 0.1, 0.98, 0.85, and 0.01

respectively. The neighbors for a pixel, Ap, are set to just up,

down, left, and right since the algorithm needs to run quickly for

real-time detection in the upcoming experiments. The clearance

reward per erosion, r, is set to 0.2.

B. Datasets to Evaluate Blood Region Detection

Two separate datasets were generated for this work to evaluate

the proposed blood region detection algorithm. Both datasets

have labelled ground-truth masks, Gt, of the blood region. Per-

formance is evaluated from these datasets using the Intersection

over Union (IoU) metric:

Bt ∧Gt

Bt ∨Gt

(10)

where Bt is a mask of the detected blood region from our

proposed method, ∧ is the Boolean-AND operation and ∨ is

the Boolean-OR operation.

1) Simulated Scenes: Six simulated scenes of flowing blood

are generated using Unity3D’s particle-based fluid dynamics

(PBDs). The scenes are shown in Fig. 4. A total of 61 image

frames were extracted per scene. The ground-truth mask, Gt, of

the blood region is generated by projecting the fluid particles

onto a virtual camera’s image plane and applying Gaussian

smoothing. The rendered image is set to 1095 × 1284 pixels.

2) In-Vivo Surgical Scene: After the completion of a thy-

roidectomy conducted on a pig (UCSD IACUC S19130), a

rupture occurred on the carotid artery. The 8 s video data from

this incident is used to evaluate the blood flow detection and

tracking algorithm in a similar manner to the simulated scenes.

For ground-truth masks of the blood region, Gt, 10 evenly dis-

tributed frames were manually annotated. The recorded image

size was 640 by 480 pixels.
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Fig. 6. Example figures of blood flow detection and tracking. The top and bottom sequences are from an in-vivo rupture and simulated scene respectively. The
highlighted green regions are the intersection between ground truth and blood flow detection. Meanwhile, the highlighted blue regions are the error of detection,
i.e., the union minus intersection between the ground truth and blood flow detection. These figures are best viewed in color.

C. Performance of Blood Region Detection

To show the effectiveness of the tracking algorithm, a com-

parison experiment was conducted where the blood flow region

was simply set to be the pixels with optical flow magnitude

greater than γO. The distribution of IoU results are shown in

Fig. 5 for blood flow region detection with and without the

tracking algorithm on the simulated scenes and in-vivo dataset.

There is a clear difference in performance of the blood flow

detection and tracking between the simulated scenes and in-vivo

rupture. We believe this is due to the poorer lighting conditions

and the reflective surgical clamps used in the in-vivo scene as

seen in Fig. 6. Nonetheless, the blood region is successfully

estimated when using the tracking algorithm despite the many

red stains, hence highlighting the importance of using temporal

information for detection rather than color features. For addi-

tional comparison, Lucas-Kanade’s [26] and Farnebeck’s [28]

optical flow estimation techniques were replaced for the CNN

based optical flow estimation [25]. Note that Lucas-Kanade’s

optical flow estimation is the proposed detection method for

fluids by Yamaguchi and Atkeson used for robot pouring [23].

The resulting IoU for the in-vivo and simulated scenes was

measured to be consistently below 0.50 in both cases, which

is substantially lower than our proposed detection technique.

D. Automated Suction in Cavity

To evaluate the complete autonomous surgical task of recog-

nizing blood flow and performing autonomous suction, a tissue

phantom with a cavity for liquid to flow through is constructed

from silicone, and water with red coloring dye is drained into the

cavity using surgical tubing as shown in Fig. 7. A stereoscopic

camera with a resolution of 1080 × 1920 pixels at 30 fps on

the dVRK [2] is used. The trajectory generated for suction is

converted into 3D position commands using the Pyramid Stereo

Matching Network (PSMNet) [29], which takes the stereo-

images of the cameras and determines the depth of each pixel.

PSMNet’s weight are provided by their original implementations

without any task-specific fine-tuning; the maximum disparity is

Fig. 7. Endoscopic view of phantom used for the automated suction experi-
ments. The red arrows highlight the direction of flow at the four injection points
tested in the experiment.

set to 192. PSMNet estimated depth using an image size of 640

by 480 pixels meanwhile the blood flow detection algorithm

used a reduced image size of 160 by 120 pixels to improve its

speed.

A Patient Side Manipulator (PSM) from the dVRK [2] was

equipped with da Vinci Si Suction Tool and followed the gener-

ated trajectory to clear the simulated surgical cavity from blood.

To follow the trajectory, the position of the end-effector in the

PSM base frame, bt, is iteratively set to:

bt+1 =

{

γs
dt

||dt||
+ bt if ||dt|| > γs

dt + bt if ||dt|| ≤ γs
(11)

where γs = 0.75 mm is the max step size, the operator · =
[· 1]⊤ gives the homogeneous representation of a point, and

the direction, dt, is computed as

dt = T
b
cb

g
− bt (12)

The camera to base transform, Tb
c ∈ SE(3), is estimated in real

time using our previous work [10] andbg is the 3D goal position
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Fig. 8. Sequence of figures (from left to right) of an automated suction experiment where the liquid is injected at the bottom left corner. The images are captured
from the endoscopic view with the first one highlighting the detected and tracked blood region in white and the generated trajectory in blue. To achieve real-time
capabilities and react quickly to flowing blood, the blood detection and tracking algorithm is set to a lower resolution in these experiments. Nonetheless, the robotic
suction tool follows the generated trajectory and efficiently removes fluids from the cavity.
.

TABLE I
MEAN RESULTS FROM AUTOMATED SUCTION EXPERIMENT AT EACH

INJECTION POINT

generated by the trajectory and PSMNet. This controller is ran

at 100 Hz and is repeated until ||dt|| < 2mm per target position,

b
g , from the generated trajectory. Meanwhile the orientation of

the suction tip is set to always be in direction of gravity. The

position, bt, and orientation of the end-effector is converted to

joint angles using an analytical inverse kinematic solution. These

joint angles are then regulated using dVRK [2].

To account for imperfections in the 3D depth estimation from

PSMNet and surgical tool tracking to regulate the end-effector,

the suction tool was commanded to oscillate in and out along

the direction of gravity an additional 5 mm at every point on the

trajectory. This probing behavior ensured that the tool always

sucked up the blood and neither drifted above the blood nor

penetrated and dragged tissue. The Robot Operation System

(ROS) is used to encapsulate the image processing and robot

trajectory tracking processes [30].

Roughly 50 mL of liquid is injected using a syringe into the

cavity at one of the four locations highlighted in Fig. 7. Before

each trial, the end-effector is centered in the middle of the silicon

mold such that it does not obstruct any of the injected liquid as

shown in Fig. 7. The percentage of liquid removed from the

cavity, time to react to the injected fluid, the time to complete

the trajectory were measured to evaluate the performance of the

proposed automation method. The percentage of liquid removed

was measured by weighing the silicon mold and syringe before

and after each trial. Time to react refers to the time taken to detect

the flowing blood and generate a trajectory (i.e., completing

Algorithm 1) from the first moment that the injected blood

is visible in the camera frame. To ensure consistency of the

proposed automation method, the experiment is repeated ten

times at each of the four injection spots.

The results from the total 40 trials of the automated suction

experiment are shown in Table I and an example sequence is

shown in Fig. 8. During the experiments, we noticed the liquid

generally pooled near the bottom left injection point since it was

slightly lower with respect to gravity than the rest of the cavity.

This lead to shorter trajectories being generated, and hence less

time to execute them as seen in the results, for the bottom left

corner experiment compared to the others.

A similar set up is repeated for demonstration purposes and

the result is shown in Fig. 1. The mold used for this demon-

stration was constructed using candle wax and has pig intestine

embedded in it. Everything else is kept the same as the previously

described. Despite changes to the visual textures and topology of

the scene, we can see that the method is robust enough to perform

autonomous tracking and suction of blood without modification.

V. DISCUSSION AND CONCLUSION

In this work, the first completely automated solution for

clearing the surgical field from blood is presented. The solution

provides both the perception, trajectory generation, and control

strategy required for the task of clearing blood. This is the

first step taken towards automation of a crucial surgical task,

hemostasis, which can occur in any surgery at any time. To en-

sure robustness against blood stains, the algorithm relies on tem-

poral information for detection. The novel blood flow detection

and tracking algorithm presented offers a unique, probabilistic

solution to tracking liquids over 3D cavities and channels, under

noisy and harsh visibility conditions, and is a critical perceptual

element. This estimation and tracking helps inform a trajectory

generation technique to act upon the detected blood and uses a

clearance reward to maximize the blood suctioned by the suction

tool and be robust against imperfect blood region estimation.

For future work, we intend to push towards a complete solu-

tion for automation of hemostasis. To accomplish this, a more

precise location of the bleeding source will be estimated using a

particle based motion model, similar to PBD simulators, in the

temporal filtering. Another consideration will be integration of

surgical tool masking using our previous works [10], [11] into

the blood tracking framework as the hemostasis automation task

will require additional surgical robotic tools.
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