


169

We also show the importance of designing the

logical language in a manner such that the ground-

truth programs for related utterances are consistent

with each other. Such consistency in the logical

language would facilitate the consistency-based

training proposed above, and encourage the seman-

tic parser to learn generalizable correspondence

between natural language and program tokens. In

the previously proposed language for the Natural

Language Visual Reasoning dataset (NLVR; Suhr

et al., 2017), we notice that the use of macros leads

to inconsistent interpretations of a phrase depend-

ing on its context. We propose changes to this

language such that a phrase in different contexts

can be interpreted by the same program parts (§4).

We evaluate our proposed approaches on NLVR

using the semantic parser of Dasigi et al. (2019)

as our base parser. On just replacing the old log-

ical language for our proposed language we see

an 8% absolute improvement in consistency, the

evaluation metric used for NLVR (§5). Combin-

ing with our consistency-based training leads to

further improvements; overall 10% over the best

prior model, reporting a new state-of-the-art on the

NLVR dataset.

2 Background

In this section we provide a background on the

NLVR dataset (Suhr et al., 2017) and the semantic

parser of Dasigi et al. (2019).

Natural Language Visual Reasoning (NLVR)

dataset contains human-written natural language

utterances, where each utterance is paired with 4

synthetically-generated images. Each (utterance,

image) pair is annotated with a binary truth-value

denotation denoting whether the utterance is true

for the image or not. Each image is divided into

three boxes, where each box contains 1-8 objects.

Each object has four properties: position (x/y coor-

dinates), color (black, blue, yellow), shape (trian-

gle, square, circle), and size (small, medium, large).

The dataset also provides a structured represen-

tation of each image which we use in this paper.

Figure 1 shows an example from the dataset.

Weakly supervised iterative search parser We

use the semantic parser of Dasigi et al. (2019)

which is a grammar-constrained encoder-decoder

with attention model from Krishnamurthy et al.

(2017). It learns to map a natural language utter-

ance x into a program z such that it evaluates to the

correct denotation y = JzKr when executed against

the structured image representation r. Dasigi et al.

(2019) use a manually-designed, typed, variable-

free, functional query language for NLVR, inspired

by the GeoQuery language (Zelle and Mooney,

1996).

Given a dataset of triples (xi, ci, yi), where xi is

an utterance, ci is the set of images associated to it,

and yi is the set of corresponding denotations, their

approach iteratively alternates between two phases

to train the parser: Maximum marginal likelihood

(MML) and a Reward-based method (RBM). In

MML, for an utterance xi, the model maximizes

the marginal likelihood of programs in a given set

of logical forms Zi, all of which evaluate to the

correct denotation. The set Zi is constructed either

by performing a heuristic search, or generated from

a trained semantic parser.

The reward-based method maximizes the (ap-

proximate) expected value of a reward function R.

max
θ

∑

∀i

Ep̃(zi|xi;θ)R(xi, zi, ci, yi) (1)

Here, p̃ is the re-normalization of the probabili-

ties assigned to the programs on the beam, and the

reward function R = 1 if zi evaluates to the cor-

rect denotation for all images in ci, or 0 otherwise.

Please refer Dasigi et al. (2019) for details.

3 Consistency reward for programs

Consider the utterance x = There is a yellow object

above a black object in Figure 1. There are many

program candidates decoded in search that eval-

uate to the correct denotation. Most of them are

spurious, i.e., they do not represent the meaning

of the utterance and only coincidentally evaluate

to the correct output. The semantic parser is ex-

pected to distinguish between the correct program

and spurious ones by identifying correspondence

between parts of the utterance and the program can-

didates. Consider a related utterance x′ = There are

2 boxes with a yellow object above a black object.

The parser should prefer programs for x and x′

which contain similar sub-parts corresponding to

the shared phrase p = yellow object above a black

object. That is, the parser should be consistent in

its interpretation of a phrase in different contexts.

To incorporate this intuition during program search,

we propose an additional reward to programs for

an utterance that are consistent with programs for

a related utterance.



170

Specifically, consider two related utterances x

and x′ that share a phrase p. We compute a reward

for a program candidate z of x based on how simi-

larly it maps the phrase p as compared to a program

candidate z′ of x′. To compute this reward we need

(a) relevant program parts in z and z′ that corre-

spond to the phrase p, and (b) a consistency reward

that measures consistency between those parts.

(a) Relevant program parts Let us first see how

to identify relevant parts of a program z that corre-

spond to a phrase p in the utterance.

Our semantic parser (from Krishnamurthy et al.

(2017)) outputs a linearized version of the pro-

gram z = [z1, . . . , zT ], decoding one action at

a time from the logical language. At each time

step, the parser predicts a normalized attention vec-

tor over the tokens of the utterance, denoted by

[at1, . . . , a
t
N ] for the zt action. Here,

∑N
i=1 a

t
i = 1

and ati ≥ 0 for i ∈ [1, N ]. We use these attention

values as a relevance score between a program ac-

tion and the utterance tokens. Given the phrase

p with token span [m,n], we identify the relevant

actions in z as the ones whose total attention score

over the tokens in p exceeds a heuristically-chosen

threshold τ = 0.6.

A(z, p) =
{

zt
∣

∣ t ∈ [1, T ] and

n
∑

i=m

ati ≥ τ
}

(2)

This set of program actions A(z, p) is consid-

ered to be generated due to the phrase p. For

example, for utterance There is a yellow ob-

ject above a black object, with program objEx-
ists(yellow(above(black(allObjs))), this approach

could identify that for the phrase yellow object

above a black object the actions corresponding to

the functions yellow, above, and black are relevant.

(b) Consistency reward Now, we will define a

reward for the program z based on how consis-

tent its mapping of the phrase p is w.r.t. the pro-

gram z′ of a related utterance. Given a related

program z′ and its relevant action set A(z′, p), we

define the consistency reward S(z, z′, p) as the F1

score for the action set A(z, p) when compared to

A(z′, p). If there are multiple shared phrases pi
between x and x′, we can compute a weighted av-

erage of different S(z, z′, pi) to compute a singular

consistency reward S(z, z′) between the programs

z and z′. In this work, we only consider a sin-

gle shared phrase p between the related utterances,

hence S(z, z′, p) = S(z, z′, p) in our paper.

As we do not know the gold program for x′,

we decode top-K program candidates using beam-

search and discard the ones that do not evaluate

to the correct denotation. We denote this set of

programs by Z ′
c. Now, to compute a consistency

reward C(x, z, x′) for the program z of x,we take a

weighted average of S(z, z′) for different z′ ∈ Z ′
c

where the weights correspond to the probability of

the program z′ as predicted by the parser.

C(x, z, x′) =
∑

z′∈Z′

c

p̃(z′|x′; θ)S(z, z′) (3)

Consistency reward based parser Given x and

a related utterance x′, we use C(x, z, x′) as an ad-

ditional reward in Eq. 1 to upweight programs for

x that are consistent with programs for x′.

max
θ

∑

∀i

Ep̃(zi|xi;θ)

[

R(xi, zi, ci, yi)+C(xi, zi, x
′
i)
]

This consistency-based reward pushes the parser’s

probability mass towards programs that have con-

sistent interpretations across related utterances,

thus providing an additional training signal over

simple denotation accuracy. The formulation pre-

sented in this paper assumes that there is a single

related utterance x′ for the utterance x. If multiple

related utterances are considered, the consistency

reward C(x, z, x′j) for different related utterances

x′j can be summed/averaged to compute a single

consistency reward C(x, z) the program z of utter-

ance x based on all the related utterances.

4 Consistency in Language

The consistency reward (§3) makes a key assump-

tion about the logical language in which the ut-

terances are parsed: that the gold programs for

utterances sharing a natural language phrase actu-

ally correspond to each other. For example, that the

phrase yellow object above a black object would

always get mapped to yellow(above(black)) irre-

spective of the utterance it occurs in.

On analyzing the logical language of Dasigi et al.

(2019), we find that this assumption does not hold

true. Let us look at the following examples:

x1: There are items of at least two different colors

z1: objColorCountGrtEq(2, allObjs)
x2: There is a box with items of at least two differ-

ent colors

z2: boxExists(
memberColorCountGrtEq(2, allBoxes))

Here the phrase items of at least two different colors



171

Model
Dev Test-P Test-H

Acc. Cons. Acc. Cons. Acc. Cons.

ABS. SUP. (Goldman et al., 2018) 84.3 66.3 81.7 60.1 - -

ABS. SUP. + RERANK (Goldman et al., 2018) 85.7 67.4 84.0 65.0 82.5 63.9

ITERATIVE SEARCH (Dasigi et al., 2019) 85.4 64.8 82.4 61.3 82.9 64.3

+ Logical Language Design (ours) 88.2 73.6 86.0 69.6 - -

+ Consistency Reward (ours) 89.6 75.9 86.3 71.0 89.5 74.0

Table 1: Performance on NLVR: Design changes in the logical language and consistency-based training, both

significantly improve performance. Larger improvements in consistency indicate that our approach efficiently

tackles spurious programs.

is interpreted differently in the two utterances. In

x2, a macro function memberColorCountGrtEq is

used, which internally calls objColorCountGrtEq
for each box in the image. Now consider,

x3: There is a tower with exactly one block

z3: boxExists(memberObjCountEq(1,allBoxes))
x4: There is a tower with a black item on the top

z4: objExists(black(top(allObjs)))
Here the phrase There is a tower is interpreted dif-

ferently: z3 uses a macro for filtering boxes based

on their object count and interprets the phrase using

boxExists. In the absence of a complex macro for

checking black item on the top, z4 resorts to using

objExists making the interpretation of the phrase

inconsistent. These examples highlight that these

macros, while they shorten the search for programs,

make the language inconsistent.

We make the following changes in the logical

language to make it more consistent. Recall from

§2 that each NLVR image contains 3 boxes each

of which contains 1-8 objects. We remove macro

functions like memberColorCountGrtEq, and in-

troduce a generic boxFilter function. This function

takes two arguments, a set of boxes and a filtering

function f: Set[Obj] → bool, and prunes the input

set of boxes to the ones whose objects satisfies the

filter f. By doing so, our language is able to reuse

the same object filtering functions across different

utterances. In this new language, the gold program

for the utterance x2 would be

z2: boxCountEq(1, boxFilter(allBoxes,
objColorCountGrtEq(2)))

By doing so, our logical language can now con-

sistently interpret the phrase items of at least two

different colors using the object filtering function

f: objColorCountGrtEq(2) across both x1 and x2.

Similarly, the gold program for x4 in the new logi-

cal language would be

z4: boxExists(boxFilter(allBoxes, black(top)))
making the interpretation of There is a box consis-

tent with x3. Please refer appendix §A for details.

5 Experiments

Dataset We report results on the standard de-

velopment, public-test, and hidden-test splits of

NLVR. The training data contains 12.4k (utterance,

image) pairs where each of 3163 utterances are

paired with 4 images. Each evaluation set roughly

contains 270 unique utterances.

Evaluation Metrics (1) Accuracy measures the

proportion of examples for which the correct de-

notation is predicted. (2) Since each utterance

in NLVR is paired with 4 images, a consistency

metric is used, which measures the proportion of

utterances for which the correct denotation is pre-

dicted for all associated images. Improvement in

this metric is indicative of correct program pre-

diction as it is unlikely for a spurious program to

correctly make predictions on multiple images.

Experimental details We use the same parser,

training methodology, and hyper-parameters as

Dasigi et al. (2019). For discovering related ut-

terances, we manually identify ∼10 sets of equiv-

alent phrases that are common in NLVR. For ex-

ample, there are NUM boxes, COLOR1 block on a

COLOR2 block, etc. For each utterance that con-

tains a particular phrase, we pair it with one other

randomly chosen utterance that shares the phrase.

We make 1579 utterance pairs in total. Refer ap-

pendix §B for details about data creation.1

Baselines We compare against the state-of-the-

art models; ABS. SUP. (Goldman et al., 2018) that

1We release the data and code at https://www.
github.com/nitishgupta/allennlp-semparse/tree/nlvr-v2/
scripts/nlvr v2



172

uses abstract examples, ABS. SUP. + RERANK

that uses additional data and reranking, and the

iterative search parser of Dasigi et al. (2019).

Results Table 1 compares the performance of our

two proposed methods to enforce consistency in the

decoded programs with the previous approaches.

We see that changing the logical language to a more

consistent one (§4) significantly improves perfor-

mance: the accuracy improves by 2-4% and con-

sistency by 4-8% on the dev. and public-test sets.

Additionally, training the parser using our proposed

consistency reward (§3) further improves perfor-

mance: accuracy improves by 0.3-0.4% but the

consistency significantly improves by 1.4-2.3%.2

On the hidden-test set of NLVR, our final model

improves accuracy by 7% and consistency by 10%

compared to previous approaches. Larger improve-

ments in consistency across evaluation sets indi-

cates that our approach to enforce consistency be-

tween programs of related utterances greatly re-

duces the impact of spurious programs.

6 Conclusion

We proposed two approaches to mitigate the issue

of spurious programs in weakly supervised seman-

tic parsing by enforcing consistency between out-

put programs. First, a consistency based reward

that biases the program search towards programs

that map the same phrase in related utterances to

similar sub-parts. Such a reward provides an ad-

ditional training signal to the model by leveraging

related utterances. Second, we demonstrate the

importance of logical language design such that

it facilitates such consistency-based training. The

two approaches combined together lead to signifi-

cant improvements in the resulting semantic parser.

Acknowledgement

We would like to thank Pradeep Dasigi for helping

us with the code for preprocessing NLVR and the

Iterative Search model, Alane Suhr for getting us

our model’s evaluation results on the hidden test set

in a timely manner, and the anonymous reviewers

for their helpful comments. This work is supported

in part by NSF award #IIS-1817183.

2We report average performance across 10 runs trained
with different random seeds. All improvements in consis-
tency are statistically significant (p-value < 0.05) based on
the stochastic ordering test (Dror et al., 2019).

References

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
Question-Answer pairs. In EMNLP.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In CoNLL.

Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke
Zettlemoyer, and E. Hovy. 2019. Iterative search
for weakly supervised semantic parsing. In NAACL-
HLT.

Rotem Dror, Segev Shlomov, and Roi Reichart. 2019.
Deep dominance-how to properly compare deep neu-
ral models. In ACL.

Omer Goldman, Veronica Latcinnik, Udi Naveh,
A. Globerson, and Jonathan Berant. 2018. Weakly-
supervised semantic parsing with abstract examples.
In ACL.

Kelvin Guu, Panupong Pasupat, E. Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. In ACL.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In EMNLP.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc V. Le, and N. Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. In NeurIPS.

Percy S. Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. Computational Linguistics.

Alane Suhr, M. Lewis, James Yeh, and Yoav Artzi.
2017. A corpus of natural language for visual rea-
soning. In ACL.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
UAI ’05.



173

A Logical language details

In Figure 2, we show an example utterance with

its gold program according to our proposed logi-

cal language. We use function composition and

function currying to maintain the variable-free na-

ture of our language. For example, action z7

uses function composition to create a function

from Set[Object] → bool by composing two func-

tions, from Set[Object] → bool and Set[Object]
→ Set[Object]. Similarly, action z11 creates a

function from Set[Object] → Set[Object] by com-

posing two functions with the same signature.

Actions z8 - z10 use function currying to curry

the 2-argument function objectCountGtEq by giv-

ing it one int=2 argument. This results in a

1-argument function objectCountGtEq(2) from

Set[Object] → bool.

B Dataset details

To discover related utterance pairs within the

NLVR dataset, we manually identify 11 sets of

phrases that commonly occur in NLVR and can be

interpreted in the same manner:

1. { COLOR block at the base, the base is

COLOR }

2. { COLOR block at the top, the top is COLOR

}

3. { COLOR1 object above a COLOR2 object }

4. { COLOR1 block on a COLOR2 block,

COLOR1 block over a COLOR2 block }

5. { a COLOR tower }

6. { there is one tower, there is only one tower,

there is one box, there is only one box }

7. { there are exactly NUMBER towers, there

are exactly NUMBER boxes }

8. { NUMBER different colors }

9. { with NUMBER COLOR items, with

NUMBER COLOR blocks, with NUMBER

COLOR objects }

10. { at least NUMBER COLOR items, at least

NUMBER COLOR blocks, at least NUMBER

COLOR objects }

11. { with NUMBER COLOR SHAPE, are NUM-

BER COLOR SHAPE, with only NUM-

BER COLOR SHAPE, are only NUMBER

COLOR SHAPE }

In each phrase, we replace the abstract COLOR,

NUMBER, SHAPE token with all possible options

from the NLVR dataset to create grounded phrases.

For example, black block at the top, yellow object

above a blue object. For each set of equivalent

grounded phrases, we identify the set of utterances

that contains any of the phrase. For each utterance

in that set, we pair it with 1 randomly chosen ut-

terance from that set. Overall, we identify related

utterances for 1420 utterances (out of 3163) and

make 1579 pairings in total; if an utterance con-

tains two phrases of interest, it can be paired with

more than 1 utterance.



174

x: There is one box with at least 2 yellow squares

z: boxCountEq(1, boxFilter(allBoxes, objectCountGtEq(2)(yellow(square))))

Program actions for z:

z1: bool → [<int,[Set[Box]:bool>, int, Set[Box]]
z2: <int,[Set[Box]:bool> → boxCountEq
z3: int → 1
z4: Set[Box] → [<Set[Box],<Set[Object]:bool>:Set[Box]>, Set[Box], <Set[Object]:bool>]
z5: <Set[Box],<Set[Object]:bool>:Set[Box]> → boxFilter
z6: Set[Box] → allBoxes
z7: <Set[Object]:bool> → [*, <Set[Object]:bool>, <Set[Object]:Set[Object]>]
z8: <Set[Object]:bool> → [<int,Set[Object]:bool>, int]
z9: <int,Set[Object]:bool> → objectCountGtEq
z10: int → 2
z11: <Set[Object]:Set[Object]> → [*, <Set[Object]:Set[Object]>, <Set[Object]:Set[Object]>]
z12: <Set[Object]:Set[Object]> → yellow
z13: <Set[Object]:Set[Object]> → square

Figure 2: Gold program actions for the utterance There is one box with at least 2 yellow squares according to

our proposed logical language. The grammar-constrained decoder outputs a linearized abstract-syntax tree of the

program in an in-order traversal.


