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1. Introduction variable is x' =[x}, ..., x;i]T € R™. The weighting factor matrix

w € RPX" of each agent i € V is only known to the agent i
itself. Moreover, x}, x| € R, with x < X, are respectively the
lower and upper bounds on the Ith decision variable of agent
i € V, if such a bound exists. In a distributed solution, each
agent i € V should obtain its respective component of x* =
[x*T, ..., xMT]T by interacting only with the agents that are
in its communication range. Problem (1) explicitly or implicitly,
captures various in-network optimization problems. One example
is the optimal in-network resource allocation, which appears in
(1b) many optimal decision making tasks such as economic dispatch
over power networks (Cherukuri & Cortés, 2016; Wood, Wol-
lenberg, & Sheble, 2013), optimal routing (Madan & Lall, 2006;
Xiao, Johansson, & Boyd, 2004) and network resource allocation
for wireless systems (Chen & Lau, 2012; Ferragut & Paganini,

We consider a group of N clustered agents Vv = {1,...,N}
with communication and computation capabilities, whose com-
munication range is such that they can form a connected undi-
rected graph topology, see Fig. 1. These agents aim to solve, in a
distributed manner, the optimization problem

N
X* = arg min Zfi(xi), subject to (1a)
XER™M =

[w'lx' + -+ [w']x¥ —b;=0, je(1,....p),
leB c{1,...,n), iev, (1c)
leB c{1,...,n'), iev, (1d)

i i
X <X,

i oi
X =X,

where fi(x}) = Z;ilf,"(xf). In this setting, each agent i € V
is a cluster of local ‘subagents’ | € {1,...,n'} whose decision
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2014). In such problems, a group of agents with limited resources,
e.g., a group of generators in a power network, add up their
local resources to meet a demand in a way that the overall cost
is optimum for the entire network. Another family of problems
that can be modeled as (1) is the in-network model predictive
control over a finite horizon for a group of agents with linear
dynamics (Alghunaim, Yuan, & Sayed, 2018; Rostami, Costantini,
& Gorges, 2017).

In recent years, there has been a surge in the design of dis-
tributed algorithms for large-scale in-network optimization prob-
lems. The major developments have been in the unconstrained
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convex optimization setting where the global cost is the sum of
local costs of the agents (see e.g. Boyd, Parikh, Chu, Peleato, & Eck-
stein, 2010; Duchi, Agarwal, & Wainwright, 2012 for algorithms
in discrete-time, and Kia, 2017a; Kia, Cortés, & Martinez, 2014;
Varagnolo, Zanella, Cenedese, Pillonetto, & Schenato, 2015; Wang
& Elia, 2011 for algorithms in continuous-time). In-network con-
strained convex optimization problems have also been studied in
the literature. For example, in the context of the power generator
economic dispatch problem, Dominguez-Garcia, Cady, and Hadji-
costis (2012), Kar and Hug (2012) and Zhang and Chow (2012)
offer distributed solutions that solve a special case of (1) with
local quadratic costs subject to bounded decision variables and a
single demand equation, p = 1 and w' = 1 for i € V. Distributed
algorithm design for special cases of (1) with non-quadratic costs
is presented in Alghunaim et al. (2018), Xiao and Boyd (2006) and
Zhang and Zavlanos (2018) in discrete-time form, and Cherukuri
and Cortés (2015, 2016), Ding and Jovanovic (2018), Kia (2017b)
and Yi, Hong, and Liu (2016) in continuous-time form. Except
for Zhang and Zavlanos (2018), all these algorithms consider the
case that the local decision variable of each agenti € V is a
scalar. Moreover, with the exception of Alghunaim et al. (2018),
Kia (2017b) and Zhang and Zavlanos (2018), these algorithms
only solve (1) when the equality constraint is the unweighted
sum of local decision variables, i.e, p = 1 and w' = 1 for
i € V. Also, only Cherukuri and Cortés (2015, 2016) consider
local inequality constraints, which are in the form of local box
inequality constraints on all the decision variables of the problem.
Lastly, the algorithms in Cherukuri and Cortés (2015, 2016) and
Xiao and Boyd (2006) require the agents to communicate the
gradient of their local cost functions to their neighbors. Such a
requirement can be of concern for privacy-sensitive applications.

In this paper, we propose a novel distributed algorithm to
solve the optimization problem (1). We start by considering the
case that B8 = B = {} fori € V, ie, when there is no
inequality constraint. For this problem, we propose a continuous-
time distributed primal-dual algorithm. To induce robustness and
also to yield convergence without strict convexity of the local cost
functions, we adapt an augmented Lagrangian framework (Bert-
sekas & Tsitsiklis, 1997). The augmented Lagrangian method has
been used in Jakovetic, Moura, and Xavier (2015), Vaquero and
Cortes (2018), and Zhang and Zavlanos (2018) to improve the
transient response of the distributed algorithms for, respectively,
an unconstrained convex optimization, an online optimization,
and a discrete-time constrained optimization problems. Different
than the customary practice of using a common augmented La-
grangian penalty parameter as in Jakovetic et al. (2015), Vaquero
and Cortes (2018) and Zhang and Zavlanos (2018), in our design
to reduce the coordination overhead among the agents we allow
each agent to choose its own penalty parameter locally. The
structure of our distributed solution is inspired by the primal-
dual centralized solution of Arrow, Hurwicz, and Uzawa (1958)
(see (6)), where the coupling in the differential solver is in the
dual state dynamics. In decentralized primal-dual algorithms,
e.g. Ding, Hu, Dhingra, and Jovanovic (2018), Ding and Jovanovic
(2018) and Kia (2016), the adopted practice is to give every agent
a copy of the dual variables and use a consensus mechanism
to make the agents arrive eventually at the same dual variable.
We follow the same approach but in our design, we pay par-
ticular attention to computation and communication resource
management by adopting a cluster-based approach. First, we
consider the sparsity in the equality constraints and give only
a copy of a dual variable to an agent if a decision variable of
that agent is involved in the equality constraint corresponding
to that dual variable. Then, only the cluster of the agents that
have a copy of the dual variable need to form a connected graph
and use a consensus mechanism to arrive at agreement on their
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Fig. 1. A group of clustered agents (generators) with undirected connected graph
topology aim to solve x* = arg miny 2 Y o, fi(x!), subject to [1 1]x' + x? +
[0.5 0.5 0.5]x* + [1 1 1]x* = 450, [0.5 0.5 0.5]x> + [1 1]x° + x® = 700,
and ¥ < x < x, i € 78, | € 7" in a distributed manner. Here,
Figxdy = Y fi(xd), where fi(xi) = ojxi2 + Bixi + yi. In the physical layer plot,
a cluster agent can communicate with another cluster if it is inside the other
cluster’'s communication disk. To solve this optimal resource allocation problem
in a distributed manner, we form subgraphs Gi(vi, &) and G2(V,, &), which
are associated, respectively, with the first and the second equality constraints.
Here, V1 = {1, 2, 3,4} and v, = {3, 4, 5, 6}. Agent 4 acts as a connectivity helper
node in G,. A solution to this problem using our proposed algorithm is given
in Moradian and Kia (2020).

dual variable, see Fig. 1. Next, in our design, we only assign a
single copy of the dual variable to an agent i regardless of how
many subagents it has. We note that if we use the algorithms
in Alghunaim et al. (2018), Cherukuri and Cortés (2015, 2016),
Ding and Jovanovic (2018), Kia (2017b), Xiao and Boyd (2006), Yi
et al. (2016) and Zhang and Zavlanos (2018) to solve problems
where X € R" of an agent i € V is a vector (n' > 1), we
need to treat each component of the i as an agent and assign a
copy of a dual variable to it. Such a treatment increases the local
storage, computation and communication costs of agent i. Our
convergence analysis, given in Moradian and Kia (2020), is based
on the Lyapunov and the LaSalle invariant set methods, and also
the semistability analysis (Haddad & Chellaboina, 2008) to show
that our algorithm is guaranteed to converge to a point in the
set of optimal decision values when the local costs are convex.
When the local cost functions are strongly convex and their local
gradients are globally Lipschitz the convergence guarantees of our
proposed algorithm over connected graphs is exponential and can
also be extended to dynamic graphs.

To address scenarios where all or some of the decision vari-
ables are bounded in (1), we use a variation of exact penalty func-
tion method (Bertsekas, 1975), called e-exact penalty function
method (Pinar & Zenios, 1994). Unlike the exact penalty method,
this method uses a smooth differentiable penalty function to
converge to the e-neighborhood of the global minimum value of
the cost. The advantage of exact penalty function methods is in
the possibility of using a finite penalty weight to arrive at a practi-
cal and numerically well-posed optimization solution. However,
as shown in Bertsekas (1975) and Pinar and Zenios (1994), the
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penalty function weight is lower bounded by the bounds on the
Lagrange multipliers. Since generally, the Lagrange multipliers are
unknown, the bound on the penalty function weight is not known
either. Many literature that use penalty function methods on
distributed optimization framework generally state that a large
enough value for the weight is used (Wei, Wang, Li, & Mei, 2017;
Zholbaryssov, Fooladivanda, & Dominguez-Garcia, 2019), with no
guarantees on the feasibility of their choice. Cherukuri and Cortés
(2015, Lemma 5.1), Kia (2016, Proposition 4), Mangasarian (1985),
and Richter, Morari, and Jones (2011), are among few results
in literature that address the problem of establishing an exact
upper-bound on the size of the Lagrange multipliers, which can
be used to obtain a lower bound on the size of the valid penalty
function weight. However, Mangasarian (1985) considers prob-
lems with inequality constraints only, while Cherukuri and Cortés
(2015, Lemma 5.1), and Kia (2016, Proposition 4) are developed
for the resource allocation problem described by (1) when there
exists only one equality constraint (p = 1) withw! = 1,i e V
and all the decision variables have boxed inequality. On the other
hand, Patrinos and Bemporad (2014) and Richter et al. (2011)
propose numerical procedures to determine a bound on Lagrange
multipliers for affine inequalities. As part of our contribution in
this paper, we obtain an explicit closed-form upper-bound on the
Lagrange multipliers of problem (1), which enables determining
the size of the suitable penalty function weight for both exact and
e-exact penalty function methods.

2. Preliminaries

Let R, R>o, Z, and Z-¢ be, respectively, the set of real, non-
negative real, integer, and positive integer numbers. For a given
i,jeZ,i<j,wedeﬁneZJi:{er | i <x <j}. We denote the
cardinality of a set A by |A|. For a matrix A = [a;] € R™™, we
denote its transpose matrix by AT, kth row by [A]y, kth column
by [A]%, and its element wise max-norm with [|A||max. We let 1,
(resp. 0,,) denote the vector of n ones (resp. n zeros), I, denote
the n x n identity matrix. When clear from the context, we do
not specify the matrix dimensions. For a vector x € R" we denote
the standard Euclidean and infinity norms by, respectively, ||X|| =
~/XTx and ||X|lc = max|x;]l ;. Given a set of vectors, we use
[{p}icat] to indicate the aggregate vector obtained from staking
the set of the vectors {p;}ica« Whose indices belong to the ordered
set M C Z-o. In a network of N agents, to distinguish and
emphasize that a variable is local to an agent i € ZY, we use
superscripts, e.g. fi(x') is the local function of agent i € ZY
evaluated at its own local value X € R"™. The Ith element of a
vector x' € R" at agent i € Z! is denoted by xi. Moreover, if p'
R? is a variable of agenti € V = {1, ..., N}, the aggregated p’s of
the network is the vector p = [{p'}icv] = [p' ', ...,p" 1T e R
For a differentiable function f : RY — R, Vf(x) represents its
gradient. A differentiable function f : RY — R is convex (resp.
a-strongly convex, @ € R.g) over a convex set C € RY if and
only if (z — x)"(Vf(z) — Vf(x)) > 0 (resp. aflz — x||* < (z —
x)"(Vf(z) — Vf(x)), or equivalently a||lz — x|| < || Vf(2) = Vf(x)|)
for all x,z € C. Moreover, it is strictly convex over a convex set
€ < RY if and only if (z — x)"(Vf(z) — Vf(x)) > 0.

Next, we briefly review basic concepts from algebraic graph
theory following Bullo, Cortés, and Martinez (2009). A weighted
graph, is a triplet G = (V, &£, A), where V = {1,...,N} is the
node set, & € V x V is the edge set, and A = [a;] € RV*V is
a weighted adjacency matrix such that a; > 0 if (i,j) € £ and
aj = 0, otherwise. An edge from i to j, denoted by (i, j), means
that agent j can send information to agent i. A graph is undirected
if (i, j) € € anytime (j, i) € £. An undirected graph whose weights
satisfy a;; = a; for all i,j € V is called a connected graph if there
is a path from every node to every other node in the network.
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The (out-)Laplacian matrix of a graph is L = Diag(A1y) — A. Note
that L1y = 0. A graph is connected if and only if I,IL =0, and
rank(L) = N — 1. Therefore, for a connected graph zero is a simple
eigenvalue of L. For a connected graph, we denote the eigenvalues
of Lby Aq,..., Ay, where Ay =0 and A; < A, fori < j.

3. Distributed continuous-time solvers

In this section, we present our distributed algorithm to first
solve the constrained optimization problem (1) when there is no
inequality constraint, i.e., B' = B = {} for i € V. Then, we extend
our results to solve the constrained optimization problem (1)
with inequality constraints. Our standing assumptions are given
below.

Assumption 3.1 (Problem Specifications). The cost function f,i :
R — R of the subagent | € Z’f of each agent i € V is convex

and differentiable. Moreover, Vf' : R" — R" of each agenti eV
is locally Lipschitz. Also,

w=[w! ... w'eRrrm (2)
is full row rank and the feasible set

Xre = {x € R™ | (1b), (1c), (1d) hold } (3)
is non-empty for local inequalities (1c) and (1d). Lastly, the op-
tin}’izatjor} problem (1) has a finite optimum f* = f(x*) =
Yo flx™). O

Local Lipschitzness of Vfi, i € V, guarantees existence and
uniqueness of the solution of our proposed algorithm (7), which
is a differential equation.

To solve problem (1) subject to only the equality constraints,
we consider the augmented cost function with a penalty term on
violating the affine constraint, i.e.,

N
X" = argmian’(x')—i— g lwx — b||?, (4a)
i=1

xeRM

Wx! + -+ WV x" = by, keZh, (4b)

where p € R is the penalty parameter. This augmentation
results in the so-called augmented Lagrangian formulation of it-
erative optimization algorithms. As stated in Boyd et al. (2010),
augmented Lagrangian methods were developed in part to bring
robustness to the dual ascent method, and in particular, to yield
convergence without assumptions like strict convexity or finite-
ness of the cost function (see also Bertsekas & Tsitsiklis, 1997).
As shown below, such positive effects are valid also for the
continuous-time algorithms we study. Augmenting the cost with
the penalty function as in (4a) however presents a challenge in
design of distributed solutions as the total cost in (4a) is no longer
separable. Nevertheless, we are able to address this challenge in
our distributed solution.

Lemma 3.1 (KKT Conditions to Characterize Solution Set of (4) Boyd
& Vandenberghe, 2004). Consider the constrained optimization prob-
lem (4). Let Assumption 3.1 hold and f' : R" — R, i €V, bea
differentiable and convex function on R™. For any p € R, a point
x* € R™ is a solution of (4) if and only if there exists a v* € RP, such
that, forie v,

VFx*) +w'v* =0, (5a)
W lex™ + -+ WV XM = by, ke Zh. (5b)

Moreover, v* corresponding to every x* is unique and finite. If the
local cost functions are strongly convex, then for any p € R the
KKT equation (5) has a unique solution (v*, x*), i.e., (4) has a unique
solution. O
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Let L(v,X) = f(x) + & w'x" + - - - + w"x" —b||> + vT(w'x' +

-.+wVxN —b) be the augmented Lagrangian of the optimization

problem (4). Following Arrow et al. (1958), a central solver for the
optimal resource allocation problem (4) is

aL(v, x
Vg = (v, X) = [wx" + -+ W x — by, (6a)
al)k
y AL(v, X) T
X =— axi = —Vfi(x Z[w] YT
pwT(w'x' + .- +w'x" —b), (6b)

where k € Z!, and i € V. The algorithm studied in Arrow et al.
(1958) is for un-augmented Lagrangian, i.e, o = 0, and the
guaranteed convergence holds only for strictly convex cost func-
tion f(x). However, we can show that the central solver (6) with
p > 0 is guaranteed to converge for convex cost function f(x),
as well (the details are omitted for brevity). A numerical example
demonstrating this positive role is presented in Moradian and Kia
(2020, Appendix B).

The source of coupling in (4) is the set of the equality con-
straints (4b), which appear in the central solver (6), as well. To
design our distributed algorithm, we adapt the structural con-
stitution of (6), but aim to create the coupling terms [w']x' +

-+ [WNxN — by, k € ZY, in a distributed manner. We note
that for every equality constraint k € Z, the coupling is among
the set of agents ¢, = {i € V | [wi]x # 0}. To have an effi-
cient communication and computation resource management, we
seek an algorithm that handles every coupled equality constraint
among only those agents that are involved. In this regards, for
every equality constraint k € Z*, we let Gy(V, &) be a connected
undirected subgraph of G that contains the set of agents Cy (see
Fig. 1 for an example). We assume that V}, C V is a monotonically
increasing ordered set. It is very likely that the agents coupled
through an equality constraint are geographically close, and thus
in the communication range of each other. Nevertheless, Vy, k €
Z‘;, may contain agents i € V that have [w], = 0 but are
needed to make G, connected (see Fig. 1 for an example). We let
Ne = W, k € Z’;. In our distributed solution for (4), we also
seek an algorithm that allows each agent to use a local penalty
parameter p' € R.g, so we can eliminate the need to coordinate
among the agents to choose the penalty parameter p. In what
follows, we define 70 = {j € Z|li € Vj}, i € V, and {b}}icy,
such that Z,ev bk = by, for k € Z” (possible options include
bl = bi/ICkl, | € Cx while b’ =0,j € VG, or b’ = by for a
particular agent j € V, and bl =0foranyle V\{]})

With the right notation at hand, our proposed distributed
algorithm to solve optimization problem (4) is

=By (v, — v}), (7a)

JEVK
=(Iw'lx' = Bl) — B Y ay(vg — v}) — Vi (7b)
JE€VK
— (14 pYWVFK) = o' Y W (w'x' — bf)
keTl
+o' Y (WY — (1401 D (w1 v)), (70)
keTt keTt

with B € R.g and p' € Ry fori € v, k € Z% and | € W.
To comprehend the connection with the centralized dynamical
solver (6), take summation of (7a) and (7b) over every connected

Gk, k € 74 to obtain
= J(0), (8a)

Y d=0= > y®

le vy leVy le vy
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w'lx! + -+ W' xY — by, (8b)

.[_
D=

leVy

which shows that for any k € Z", the dynamics of the sum of v,l{s
duplicates the Lagrange multiplier dynamics (6a) of the central
Augmented Lagrangian method. Therefore, in a convergent (7),
ultimately for each k € ZF, all the v,’(s converge to the same value
indicating that ultimately every agent obtains a local copy of (6a)
for any k € Z. On the other hand, if we factor out (1 + p)
from the right hand side of (7c¢) and exclude the third component,
which is a technical term added to induce agreement between the
agents, (7c) mimics the dynamics (6b) of the central Augmented
Lagrangian solver.

Remark 3.1 (Benefits of Cluster-Based Approach). First we note
that regardless of the size of n', in algorithm (7) we associate at
most one copy of the Lagrange multiplier generator dynamics,
i.e., (7a) and (7b), to every agent i € V. Specifically, every
agent i € V, maintains |7'| < p number of (7a) and (7b) pair
dynamics and consequently has to broadcast the same number of
variables to the network. In comparison, if we use the algorithms
in Alghunaim et al. (2018), Cherukuri and Cortés (2015, 2016),
Ding and Jovanovic (2018), Kia (2017b), Xiao and Boyd (2006),
Yi et al. (2016) and Zhang and Zavlanos (2018), when n! > 1,
for any i € V, we need to treat each component of the i as an
agent and assign a copy of a dynamics that generates the dual
variable to every subagent [ € Z’}’. This results in a storage,
computation and communication cost of order n' x p per agent
i € V. See our numerical examples for a comparison. Next, notice
that algorithm (7) can always be implemented by using G, = G,
k e Zﬁ’, where G = (V, €) is the connected interaction topology
that all the agents form. However, the flexibility to use a smaller
cyber-layer formed by only the cluster of agents that are coupled
by an equality constraint reduces the communication and compu-
tational cost of implementing Algorithm (7). Moreover, in some
problems, to our numerical example in Section 4, the coupling
equation is between the neighboring agents. In such cases, sub-
graphs Gy can be easily formed. Moreover, as one can expect and
our numerical example also highlights, using a smaller subgraph
Gy can results in a faster convergence for (7a) and (7b) dynamics
and as a result a faster convergence for algorithm (7). O

The equilibrium points of algorithm (7) when every Gy, k € Z‘l’
is a connected graph is given by

&—hm“wmpumeﬂwxnwk

k=1
1=

Vi = (9[<1N,(, Ok € R, Vfi(xi) + Z[Wi]jTej =0,

i=1 jeTi
Zwm~m+2mn [w'ix' — by,
€V
iev,levk,kez’{]. (9)

Due to (8a), if algorithm (7) is initialized such that Zlev yk 0)=

0, we have )", ¥i(t) = 1y, ¥i(0) for t € Roo. In that case, if
algorithm (7) converges to an equilibrium point ({Vk}kzl’ {Yk}k:p
{il}{v:1) € S, we have ({‘_’k}i=1v {yk i=]7 {il}f,:ﬂ = ({[{[Wllkx[* -
bl ey e ys (VpIn Yoy, (X™ ), where ({x™*}N,, {vi}P_,) satis-
fies the KKT equation (5). The following theorem shows that
indeed under the stated initialization, the algorithm (7) converges
to a minimizer of optimization problem (4).
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Theorem 3.1 (Asymptotic Convergence of (7) Over Connected
Graphs When the Local Costs are Convex). Let every Gy, k € ZF,
be a connected graph and Assumption 3.1 hold. For every k € Z‘},
suppose {bk}levk C R is defined such that Zle\}, bk = by. Then, for

eachi € v, | € V,, starting from x/(0) € R" and yk(O) vk(O)
R with levkyk 0) = O, the algorithm (7) for any p' € R.y,

makes t {vk(t)}k 1 {xi(t )1 1) converge asymptotically to
(ptn oy, X)), where ({vpt_,. (x*}Y,) is a point satisfying
the KKT condztlons (5) of problem (4). O

For brevity, the proof of Theorem 3.1 is given in Moradian
and Kia (2020). The initialization condition Z,ev yk (0) = 0 of
Theorem 3.1 is trivially satisfied by every agent I € W k €
Z’l’, using yk(O) = 0. The asymptotic convergence guarantee
for algorithm (7) in Theorem 3.1 is established for local convex
cost functions. For such cost functions, similar to the centralized
algorithm (6), (7) fails to converge when p' = 0 for all i € V.
Next, we show that if the local costs are strongly convex and have
Lipschitz gradients then the convergence is in fact exponentially
fast for p' € R.q i € V. Recall that for strongly convex local cost
functions, the minimizer of (4) is unique.

Theorem 3.2 (Exponential Convergence of (7) Over Connected
Graphs When the Local Costs are Strongly Convex and Have Lipschitz
Gradients). Let every Gy, k € Z‘l’ be connected and Assumption 3.1
hold. Also, assume each cost function f,i, le Z'{l, ieV,is m}'-_strongly
convex and has Mi Lipschitz gradient. Let m = max{{mi}?' ]}f’ 1 €
Rogpand M = max{{M'}, 1} L, € R.o. Then, starting from x/(0) €
R" and y,(( ), v k(O) € R for eachi € v, 1 € V, and given
Yew Yi0) = 0and Y, by = by in (7), the algorithm (7)
makes t — ({vk( NP e X i(t)}fv 1) converge exponentially fast to
({vklNk _1, (X)) for any p' € R.o, where ({vk s (X )
is the unique solutlon of the KKT conditions (5) of problem ( ).
Moreover, when p' = 0 for an i € V, the convergence to the unique
solution of the KKT conditions (5) is asymptotic. O

The proof of Theorem 3.2 is given in Moradian and Kia (2020).
From this proof, we can observe that Theorem 3.2 holds also for
the problems that the decision variable of any subagent [ of any
agent i is multi-dimensional.

Remark 3.2 (The Convergence of (7) Over Dynamically Changing
Connected Graphs). The proof of Theorem 3.2 relies on a Lyapunov
function that is independent of the systems parameters, and its
derivative for p' € R.g,i € V, is negative definite with a quadratic
upper bound. Hence, we can also show that the algorithm (7),
when p' € R. fori € V, converges exponentially fast to a unique
solution of the KKT conditions (5) of problem (4) over any time-
varying topology Gy, k € Z’; that is connected at all times and its
adjacency matrix is uniformly bounded and piece-wise constant.

3.1. Problem subject to both equality and inequality constraints
To address inequality constraints, we use a penalty function

method to eliminate the local inequality constraints (1c) and (1d).
That is, we seek solving

x; = arggﬂ& if;(xi), subject to (10a)
wx! +- -+ WY =b;, jezl, (10b)

with

A =F) 4y (D pelsi —x) + D pelxi — %)), (11)

leB! leB!
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i € V, where y € R.g is the weight of the smooth penalty

0, y=<0,
function p. = { £y% 0 <y <e, for some ¢ € R.g. This
y—1€). y>e,

approach allows us to use algorithm (7) to solve the optimiza-
tion (1) by using fi(x') in place of fi(x") in (7). We note that fi(x)
is convex and differentiable if fi(x') is a convex function in R".
Following this penalty method approach, when the global cost
function of (1) is evaluated at the limit point of algorithm (7),
it is in e-order neighborhood of the global optimal value of the
optimization problem (1) (see Proposition 3.1). In what follows,
we investigate when the penalty function weight y has a finite
value and give a well-defined admissible range for it.

Given Assumption 3.1, the Slater condition (Boyd & Vanden-
berghe, 2004) is satisfied. Thus, the KKT conditions below give a
set of necessary and sufficient conditions that characterize the
solution set of the convex optimization problem (1).

Lemma 3.2 (Solution Set of (1) Boyd & Vandenberghe, 2004).
Consider the constrained optimization problem (1) under Assump-
tion 3.1. A point x* € R™ is a solution of (1) if and only if there
exists v* € RP and {ui*} .z C Rso {Al}ieq C Rso, i € V, such
that

Vfi(xi*) +WiTII* _Eiw + ’—Li* =0, (12&1)
Wx* —b =0, (12b)
WG~ =0, Xl <0, 20, 18, (120
A —xX)=0, x*—x <0, z*>0, leB, (12d)

= [uf, ... ¢ with puf* = 0 for | € Zq"\ﬁi and
A =iy, ..., @517 with @ = 0 for | € Z"\B'. If the local cost
functions are strongly convex, then the optimization problem (1) has
a unique solution. O

where p* BT

Let Xg, be the e-feasible set of optimization problem (1),

X =

e

[xeR" Wx=b, x{—x] <€, leB

X—xX<e jeB, iev] (13)
The result below states that for some admissible values of y, the
minimizer of problem (10) belongs to e-feasible set Xf, and opti-

mal value of optimization problem (1) is in € order neighborhood
of the optimal value of the original optimization problem (1).

Proposition 3.1 (Relationship Between the Solution of (1) and
(10) Pinar & Zenios, 1994). Let (x*, v*, {4{"}ieis A" hiesi) be any
solution of the KKT Egs. (5). Let x; be a minimizer of optimization

problem (10) for some y,€ € Rog. If y = fy where y* >
ix = ix N

max{max{u*}c i, Max{ieyepi},_,, then

X, €X5, 0<f —f(x})<eyN, (14)

where f* = f(x*) is the optimal value of (1). O

Remark that by sl1ght tlghtenmg of the inequality constraints
according to x, < x, — € and x; + € < x and using these
modified inequalities in the penalty function, we can guarantee
that x; € Xe. But this may result in slight increase in the
optimally gap in (14). Next, we note that if ¢ — 0, we have
p<(y) — p(y) = max{0, y}, where p(y) is the well-known non-
smooth penalty function (Bertsekas, 1975) with exact equivalency
guarantees when y > y* in Proposition 3.1.

Considering Proposition 3.1, a practical and numerically well-
posed solution via the penalty optimization method (10) is
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achieved when the Lagrange multipliers are bounded. Thus, in
what follows we seek for ppoung in

) -
max{max{u}*}cpi» Max{itf }icpi } i, < Mbound: (15)

with the objective of choosing a penalty function weight y that
satisfies the condition set by Proposition 3.1 by setting y >
% Mbound- ‘ 4

For any solution of the KKT conditions (5), we let A' C B'
and Ai C B respectively be the set of indices of the active
lower bound and the active upper bound inequality constraints
of agent i € V. We note that 4' N A" = {}. Because for inactive
inequalities i = 0 (resp. uf* = 0) for | € B\ A’ and i € V (resp.
I € B\ A') (Bertsekas, 1999), we obtain

N
max {max{u}* b, Max{itf heg},_, =
N
max {max{u[*hc 4i» max{ii'},_ i}, (16)
Therefore, to find ibound, it suffilcves to find an upper bound on
max{max{u{*}c 41, max{ii} b ai} -

As known, the set of the Lagrange multipliers of an optimiza-
tion problem of form (1) is nonempty and bounded if and only
if the Mangasarian-Fromovitz constraint qualification (MFCQ)
holds (Mangasarian & Fromovitz, 1967). It is straight-forward to
show that the MFCQ condition is satisfied for a resource allocation
problem of form (1) with one equality constraint (i.e.,, p = 1) and
upper and lower bounded decision variables (i.e., B = B = Z”‘ ).
For such a problem the following result specifies a ppound that
satisfies (15).

Proposition 3.2 ((tpung for the Resource Allocation Problem with
One Equality Constraint and Bounded Decision Variables). Consider
problem (1) under Assumption 3.1 whenp = 1, w, > 0 for | €
{1,...,n'yand B' = B' = Z}',i € V. Let (x*, v*, {u*} i, {AF }1eist)
be an arbitrary solution of the KKT conditions (5) for this problem.
Then, ppoung in (15) satisfies

W N
Mbound = (1 + — )max{ max ”Vf( )”oo}i:]v (17)
xexmeq
where Xmeq (X e R" |x, < x, < xl, le Z" bLw= mm{{wl} , 1

and w = max{{wi};" IV,

Proof. For any given (x*, v*, {4{"} e+ {4} }ic51), We note that the
KKT conditions (5) can be written as

VA +wivr =0, 1ez"\{A U4}, (18a)
V() + wiv' + a* =0, le A, (18b)
VA + wjvt — upt =0, le Al (18¢)

Since {w{}}il C R., it follows from Assumption 3.1, which states
that the feasible set is non-empty for strict local inequalities, that
the upper bounds (similarly the lower bounds) for all decision
variable cannot be active simultaneously. Therefore, for any glven
minimizer, we have either (a) at least for one subagent k e Z”
in an agent i € V we have x;, < x < X, or (b) some of
the decision variables are equal to their upper bound and the
remaining others are equal to their lower bound. If case (a) holds,

it follows from (18a) that v* 7V€’V<,.(X")

, which means that we

ko
have the guarantees that |[v*| < %’M. On the other
hand, if (b) holds, then there exists at least an agent k € V
with A* £ {} and an agent j € V with 4 # {} (k = j is
possible). Therefore, for | e_ﬂ" it follows from (18b) that v* =
L (= V)~ ik, and for € A it follows from (18c¢) that v*
Wi
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i( Vf](x’*) + ) Consequently, because if* > 0 and " > 0,
1
we conclude that

_;vf{(xll*) < v* < — L V), which leads
- wi

-
. AR )
to [v*] = max{| =] | =01 < -

1 . .
we conclude that for any given (x*, v*, {i*}jci» {17«, hegi)r we

max{ max || Vfi(xt )”oo}

max{ | VF(x*) oo}

=1 Therefore,

have |v*| < max{IVf 10 loo Ly < ¥ ineq . Conse-
quently, it follows from (18b) that pL < |Vf,( ) 4+ |Wl VY <
IIVf,( oo + wv*], and from (18c) that w* < IVA oo +

|wlv | < ||Vf,( ")loo + W|v*|. Therefore, given (16), we have the
guarantees that (17) holds. O

To compute the upper-bound in (17) in a distributed way,
agents can run a set of max-consensus algorithms.

Evaluating the MFCQ condition generally is challenging for
other classes of optimization problems. A common sufficient con-
dition for the MFCQ is the linear independence constraint qual-
ification (LICQ), which also guarantees the uniqueness of the
Lagrange multipliers for any solution of the optimization prob-
lem (1) (Wachsmuth, 2013) (see Wang & Elia, 2011 and Srivastava
& Cortes, 2018 for examples of the optimization solvers that are
developed under the assumption that the LICQ holds).

We evaluate pipoung for the general form of (1) by assuming
LICQ condition in our extended version (Moradian & Kia, 2020).

4. Numerical examples

We consider a simple distributed self-localizing deployment
problem concerned with optimal deployment of 3 sensors labeled
S', i€ {1,3,5} on a line to monitor a set of events that are hor-
izontally located at P = [{pl} =112, 11 9,3,2,—-1,-2,-8,
—11, —13] for t € [0, 100), and P = [{pi}}°,] = [24,22,17, 15,
13,8,7,3, -2, —4] for t € [100, 200), see F1g 2. Agent 1 is
monitoring {p;}> et agent 3 is monitoring {p,}, _4 and agent 5 is
monitoring {p, . Sensors should find their positions coopera-
tively to keep thelr position in the communication range of each
other as well as stay close to the targets to improve the detection
accuracy. Due to limited communication range, two relay nodes
R, i € {2,4}, as shown in Fig. 2 are used to guarantee the
connectivity of the sensors during the operation. The problem is
formulated by

x* = arg min X subject to 19
gmin Zf( j (19)
x'—xf+155, je{1,..., 4},

where fi(x') = Y pilx — pjl|* for i € {1,3,5) with E' =
(1,...,3,E3 =1{4,...,7)and E> = {8,...,10} and fi(x’)) = 0
for i € {2, 4}. Here, X' with i € {1,3,5} (resp. i € {2,4}) is the
horizontal position of sensor S' (resp. relay node R'). To transform
problem (19) to the standard form described in (1) we introduce
slack variables x, € R withi € {1, ..., 4}, to rewrite (19) as

5
x* = arg min Zfi(xi),

xeR9 =
X=X X =5 %>0 je{l,...,4},

where x' € R? fori € {1,2,3,4}, x> € R, and fi(x') = fi(x})
foranyi e {1,...,5}, ie, f' (xz) = 0. We can run algorithm (7)
by choosing the cyber layer equivalent to the physical connected
topology between all the agent, i.e., Gy = G for k € {1, 2, 3, 4},
where G is the line graph connecting all 5 agents. However, as
stated earlier this configuration leads to extra computational and

subject to (20)
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Fig. 2. Schematic representation of the events, sensors and relay nodes in the
second example.
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Fig. 3. Trajectories of {x"l}?:1 generated by implementing distributed algo-

rithm (7): The gray lines show the optimum positions of agents on the line
obtained by using the Matlab’s fmincon. The thick curved lines show the
trajectories when algorithm (7) is implemented over cluster-based cyber-layers.
the thin lines show the trajectories when algorithm (7) is implemented with
Gr=06,k=1{1,2,3,4}.

communication efforts. Here, instead, we form 4 cyber-layers G,
k € {1, 2, 3,4}, where V; = {1,2}, v, = {2,3}, V3 = {3,4} and
V4 = {4,5}. We note that our proposed approach to form the
cyber-layers in correspondence to the equality constraints leads
to an efficient communication topology here. More specifically,
to generate the dual dynamics, the agents {1, ..., 5}, maintain
and communicate variables of order {1, 2, 2, 2, 1}, respectively.
Whereas, if we implement algorithms of Kia (2017b) and Zhang
and Zavlanos (2018), the corresponding variables to generate the
dual dynamics is of order {8, 8, 8, 8, 4}.

Fig. 3 shows the trajectory of the distributed optimization
algorithm (7) (using fi(x}) as defined in (11) in place of fi(x)
n (7c)) for problem (20). As shown the location of the sensors
remain in their communication range and converge to optimum
values during execution of the algorithm (the optimal solution
is shown by the gray lines, and is obtained by MATLAB’s con-
straint optimization solver ‘fmincon’). For the smooth penalty
function (11) we use € = 0.01 and y = 200, which satisfies the
condition of Proposition 3.1. What is interesting to note in Fig. 3
is how the convergence of the algorithm is slowed down when
we use G, = G for k € Z{. This is expected, as in this case the
coordination to generate the dual variables has to happen over a
larger graph. A second simulation study, solving the optimal gen-
erator dispatch problem stated in Fig. 1, is available in Moradian
and Kia (2020).

5. Conclusions

We proposed a novel cluster-based distributed augmented
Lagrangian algorithm for a class of constrained convex optimiza-
tion problems. In the design, we paid special attention to the
efficient communication and computation resource management
and required only the agents that are coupled through an equality
constraint to form a communication topology to address that
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coupling in a distributed manner. We showed that if the com-
munication topology corresponding to each equality constraint is
a connected graph, the proposed algorithm converges asymptoti-
cally when the local cost functions are convex, and exponentially
when the local cost functions are strongly convex and have Lips-
chitz gradients. We invoked the e-exact penalty function method
to address the inequality constraints and obtained an explicit
lower bound on the penalty function weight to guarantee con-
vergence to e-neighborhood of the global minimum value of the
cost. Simulations demonstrated the performance of our proposed
algorithm. As future work, we will study the event-triggered
communication implementation of our algorithm.
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