
Automatica 129 (2021) 109608

H
D

w
m
r
d

x

w
i

(

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Cluster-based distributed augmented Lagrangian algorithm for a class
of constrained convex optimization problems✩

ossein Moradian ∗, Solmaz S. Kia
epartment of Mechanical and Aerospace Engineering, University of California, Irvine, United States of America

a r t i c l e i n f o

Article history:
Received 27 February 2020
Received in revised form 6 January 2021
Accepted 13 February 2021
Available online 13 April 2021

Keywords:
Distributed constrained convex
optimization
Augmented Lagrangian
Primal–dual solutions
Optimal resource allocation
Penalty function methods

a b s t r a c t

We propose a distributed solution for a constrained convex optimization problem over a network of
clustered agents each consisted of a set of subagents. The communication range of the clustered agents
is such that they can form a connected undirected graph topology. The total cost in this optimization
problem is the sum of the local convex costs of the subagents of each cluster. We seek a minimizer
of this cost subject to a set of affine equality constraints, and a set of affine inequality constraints
specifying the bounds on the decision variables if such bounds exist. We design our distributed
algorithm in a cluster-based framework which results in a significant reduction in communication
and computation costs. Our proposed distributed solution is a novel continuous-time algorithm that
is linked to the augmented Lagrangian approach. It converges asymptotically when the local cost
functions are convex and exponentially when they are strongly convex and have Lipschitz gradients.
Moreover, we use an ϵ-exact penalty function to address the inequality constraints and derive an
explicit lower bound on the penalty function weight to guarantee convergence to ϵ-neighborhood of
the global minimum value of the cost. A numerical example demonstrates our results.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

We consider a group of N clustered agents V = {1, . . . ,N}

ith communication and computation capabilities, whose com-
unication range is such that they can form a connected undi-

ected graph topology, see Fig. 1. These agents aim to solve, in a
istributed manner, the optimization problem

⋆
= arg min

x∈Rm

N∑
i=1

f i(xi), subject to (1a)

[w1
]jx1 + · · · + [wN

]jxN − bj = 0, j ∈ {1, . . . , p}, (1b)

xil ≤ xil, l ∈ Bi
⊆ {1, . . . , ni

}, i ∈ V, (1c)

xil ≤ x̄il, l ∈ B̄i
⊆ {1, . . . , ni

}, i ∈ V, (1d)

here f i(xi) =
∑ni

l=1 f
i
l (x

i
l). In this setting, each agent i ∈ V

s a cluster of local ‘subagents’ l ∈ {1, . . . , ni
} whose decision
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variable is xi = [xi1, . . . , x
i
ni
]
⊤

∈ Rni . The weighting factor matrix
wi

∈ Rp×ni of each agent i ∈ V is only known to the agent i
itself. Moreover, xil, x̄

i
l ∈ R, with xil < x̄il, are respectively the

lower and upper bounds on the lth decision variable of agent
i ∈ V , if such a bound exists. In a distributed solution, each
agent i ∈ V should obtain its respective component of x⋆

=

[x1⋆⊤, . . . , xN⋆⊤
]
⊤ by interacting only with the agents that are

in its communication range. Problem (1) explicitly or implicitly,
captures various in-network optimization problems. One example
is the optimal in-network resource allocation, which appears in
many optimal decision making tasks such as economic dispatch
over power networks (Cherukuri & Cortés, 2016; Wood, Wol-
lenberg, & Sheble, 2013), optimal routing (Madan & Lall, 2006;
Xiao, Johansson, & Boyd, 2004) and network resource allocation
for wireless systems (Chen & Lau, 2012; Ferragut & Paganini,
2014). In such problems, a group of agents with limited resources,
e.g., a group of generators in a power network, add up their
local resources to meet a demand in a way that the overall cost
is optimum for the entire network. Another family of problems
that can be modeled as (1) is the in-network model predictive
control over a finite horizon for a group of agents with linear
dynamics (Alghunaim, Yuan, & Sayed, 2018; Rostami, Costantini,
& Görges, 2017).

In recent years, there has been a surge in the design of dis-
tributed algorithms for large-scale in-network optimization prob-

lems. The major developments have been in the unconstrained
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onvex optimization setting where the global cost is the sum of
ocal costs of the agents (see e.g. Boyd, Parikh, Chu, Peleato, & Eck-
tein, 2010; Duchi, Agarwal, & Wainwright, 2012 for algorithms
n discrete-time, and Kia, 2017a; Kia, Cortés, & Martínez, 2014;
aragnolo, Zanella, Cenedese, Pillonetto, & Schenato, 2015; Wang
Elia, 2011 for algorithms in continuous-time). In-network con-

trained convex optimization problems have also been studied in
he literature. For example, in the context of the power generator
conomic dispatch problem, Dominguez-Garcia, Cady, and Hadji-
ostis (2012), Kar and Hug (2012) and Zhang and Chow (2012)
ffer distributed solutions that solve a special case of (1) with
ocal quadratic costs subject to bounded decision variables and a
ingle demand equation, p = 1 and wi

= 1 for i ∈ V . Distributed
lgorithm design for special cases of (1) with non-quadratic costs
s presented in Alghunaim et al. (2018), Xiao and Boyd (2006) and
hang and Zavlanos (2018) in discrete-time form, and Cherukuri
nd Cortés (2015, 2016), Ding and Jovanovic (2018), Kia (2017b)
nd Yi, Hong, and Liu (2016) in continuous-time form. Except
or Zhang and Zavlanos (2018), all these algorithms consider the
ase that the local decision variable of each agent i ∈ V is a
calar. Moreover, with the exception of Alghunaim et al. (2018),
ia (2017b) and Zhang and Zavlanos (2018), these algorithms
nly solve (1) when the equality constraint is the unweighted
um of local decision variables, i.e., p = 1 and wi

= 1 for
∈ V . Also, only Cherukuri and Cortés (2015, 2016) consider

ocal inequality constraints, which are in the form of local box
nequality constraints on all the decision variables of the problem.
astly, the algorithms in Cherukuri and Cortés (2015, 2016) and
iao and Boyd (2006) require the agents to communicate the
radient of their local cost functions to their neighbors. Such a
equirement can be of concern for privacy-sensitive applications.

In this paper, we propose a novel distributed algorithm to
olve the optimization problem (1). We start by considering the
ase that Bi

= B̄i
= {} for i ∈ V , i.e., when there is no

nequality constraint. For this problem, we propose a continuous-
ime distributed primal–dual algorithm. To induce robustness and
lso to yield convergence without strict convexity of the local cost
unctions, we adapt an augmented Lagrangian framework (Bert-
ekas & Tsitsiklis, 1997). The augmented Lagrangian method has
een used in Jakovetic, Moura, and Xavier (2015), Vaquero and
ortes (2018), and Zhang and Zavlanos (2018) to improve the
ransient response of the distributed algorithms for, respectively,
n unconstrained convex optimization, an online optimization,
nd a discrete-time constrained optimization problems. Different
han the customary practice of using a common augmented La-
rangian penalty parameter as in Jakovetic et al. (2015), Vaquero
nd Cortes (2018) and Zhang and Zavlanos (2018), in our design
o reduce the coordination overhead among the agents we allow
ach agent to choose its own penalty parameter locally. The
tructure of our distributed solution is inspired by the primal–
ual centralized solution of Arrow, Hurwicz, and Uzawa (1958)
see (6)), where the coupling in the differential solver is in the
ual state dynamics. In decentralized primal–dual algorithms,
.g. Ding, Hu, Dhingra, and Jovanovic (2018), Ding and Jovanovic
2018) and Kia (2016), the adopted practice is to give every agent
copy of the dual variables and use a consensus mechanism

o make the agents arrive eventually at the same dual variable.
e follow the same approach but in our design, we pay par-

icular attention to computation and communication resource
anagement by adopting a cluster-based approach. First, we
onsider the sparsity in the equality constraints and give only
copy of a dual variable to an agent if a decision variable of

hat agent is involved in the equality constraint corresponding
o that dual variable. Then, only the cluster of the agents that
ave a copy of the dual variable need to form a connected graph
nd use a consensus mechanism to arrive at agreement on their
2

Fig. 1. A group of clustered agents (generators) with undirected connected graph
topology aim to solve x⋆

= argminx∈R12
∑6

i=1 f
i(xi), subject to [1 1]x1 + x2 +

0.5 0.5 0.5]x3 + [1 1 1]x4 = 450, [0.5 0.5 0.5]x3 + [1 1] x5 + x6 = 700,
nd xil ≤ xil ≤ x̄il, i ∈ Z6

1, l ∈ Zni
1 in a distributed manner. Here,

f i(xi) =
∑ni

l=1 f
i
l (x

i
l), where f il (x

i
l) = αi

lx
i
l
2
+ β i

l x
i
l + γ i

l . In the physical layer plot,
a cluster agent can communicate with another cluster if it is inside the other
cluster’s communication disk. To solve this optimal resource allocation problem
in a distributed manner, we form subgraphs G1(V1, E1) and G2(V2, E2), which
are associated, respectively, with the first and the second equality constraints.
Here, V1 = {1, 2, 3, 4} and V2 = {3, 4, 5, 6}. Agent 4 acts as a connectivity helper
node in G2 . A solution to this problem using our proposed algorithm is given
in Moradian and Kia (2020).

dual variable, see Fig. 1. Next, in our design, we only assign a
single copy of the dual variable to an agent i regardless of how
many subagents it has. We note that if we use the algorithms
in Alghunaim et al. (2018), Cherukuri and Cortés (2015, 2016),
Ding and Jovanovic (2018), Kia (2017b), Xiao and Boyd (2006), Yi
et al. (2016) and Zhang and Zavlanos (2018) to solve problems
where xi ∈ Rni of an agent i ∈ V is a vector (ni > 1), we
need to treat each component of the i as an agent and assign a
copy of a dual variable to it. Such a treatment increases the local
storage, computation and communication costs of agent i. Our
convergence analysis, given in Moradian and Kia (2020), is based
on the Lyapunov and the LaSalle invariant set methods, and also
the semistability analysis (Haddad & Chellaboina, 2008) to show
that our algorithm is guaranteed to converge to a point in the
set of optimal decision values when the local costs are convex.
When the local cost functions are strongly convex and their local
gradients are globally Lipschitz the convergence guarantees of our
proposed algorithm over connected graphs is exponential and can
also be extended to dynamic graphs.

To address scenarios where all or some of the decision vari-
ables are bounded in (1), we use a variation of exact penalty func-
tion method (Bertsekas, 1975), called ϵ-exact penalty function
method (Pinar & Zenios, 1994). Unlike the exact penalty method,
this method uses a smooth differentiable penalty function to
converge to the ϵ-neighborhood of the global minimum value of
the cost. The advantage of exact penalty function methods is in
the possibility of using a finite penalty weight to arrive at a practi-
cal and numerically well-posed optimization solution. However,
as shown in Bertsekas (1975) and Pinar and Zenios (1994), the
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enalty function weight is lower bounded by the bounds on the
agrange multipliers. Since generally, the Lagrange multipliers are
nknown, the bound on the penalty function weight is not known
ither. Many literature that use penalty function methods on
istributed optimization framework generally state that a large
nough value for the weight is used (Wei, Wang, Li, & Mei, 2017;
holbaryssov, Fooladivanda, & Domínguez-García, 2019), with no
uarantees on the feasibility of their choice. Cherukuri and Cortés
2015, Lemma 5.1), Kia (2016, Proposition 4), Mangasarian (1985),
nd Richter, Morari, and Jones (2011), are among few results
n literature that address the problem of establishing an exact
pper-bound on the size of the Lagrange multipliers, which can
e used to obtain a lower bound on the size of the valid penalty
unction weight. However, Mangasarian (1985) considers prob-
ems with inequality constraints only, while Cherukuri and Cortés
2015, Lemma 5.1), and Kia (2016, Proposition 4) are developed
or the resource allocation problem described by (1) when there
xists only one equality constraint (p = 1) with wi

= 1, i ∈ V
nd all the decision variables have boxed inequality. On the other
and, Patrinos and Bemporad (2014) and Richter et al. (2011)
ropose numerical procedures to determine a bound on Lagrange
ultipliers for affine inequalities. As part of our contribution in

his paper, we obtain an explicit closed-form upper-bound on the
agrange multipliers of problem (1), which enables determining
he size of the suitable penalty function weight for both exact and
-exact penalty function methods.

. Preliminaries

Let R, R≥0, Z, and Z>0 be, respectively, the set of real, non-
egative real, integer, and positive integer numbers. For a given
, j ∈ Z, i < j, we define Zj

i = {x ∈ Z | i ≤ x ≤ j}. We denote the
ardinality of a set A by |A|. For a matrix A = [aij] ∈ Rn×m, we
enote its transpose matrix by A⊤, kth row by [A]k, kth column
y [A]

k, and its element wise max-norm with ∥A∥max. We let 1n
resp. 0n) denote the vector of n ones (resp. n zeros), In denote
he n × n identity matrix. When clear from the context, we do
ot specify the matrix dimensions. For a vector x ∈ Rn we denote
he standard Euclidean and infinity norms by, respectively, ∥x∥ =

x⊤x and ∥x∥∞ = max |xi|ni=1. Given a set of vectors, we use
{pi

}i∈M] to indicate the aggregate vector obtained from staking
the set of the vectors {pi}i∈M whose indices belong to the ordered
et M ⊂ Z>0. In a network of N agents, to distinguish and
mphasize that a variable is local to an agent i ∈ ZN

1 , we use
uperscripts, e.g., f i(xi) is the local function of agent i ∈ ZN

1
evaluated at its own local value xi ∈ Rni . The lth element of a
ector xi ∈ Rni at agent i ∈ ZN

1 is denoted by xil. Moreover, if pi
∈

Rdi is a variable of agent i ∈ V = {1, . . . ,N}, the aggregated pi’s of
the network is the vector p = [{pi

}i∈V ] = [p1⊤
, . . . , pN⊤

]
⊤

∈ Rd̄.
For a differentiable function f : Rd

→ R, ∇f (x) represents its
gradient. A differentiable function f : Rd

→ R is convex (resp.
α-strongly convex, α ∈ R>0) over a convex set C ⊆ Rd if and
only if (z − x)⊤(∇f (z) − ∇f (x)) ≥ 0 (resp. α∥z − x∥2

≤ (z −

x)⊤(∇f (z)− ∇f (x)), or equivalently α∥z − x∥ ≤ ∥∇f (z)− ∇f (x)∥)
for all x, z ∈ C . Moreover, it is strictly convex over a convex set
C ⊆ Rd if and only if (z − x)⊤(∇f (z) − ∇f (x)) > 0.

Next, we briefly review basic concepts from algebraic graph
theory following Bullo, Cortés, and Martínez (2009). A weighted
graph, is a triplet G = (V, E, A), where V = {1, . . . ,N} is the
ode set, E ⊆ V × V is the edge set, and A = [aij] ∈ RN×N is

a weighted adjacency matrix such that aij > 0 if (i, j) ∈ E and
ij = 0, otherwise. An edge from i to j, denoted by (i, j), means

that agent j can send information to agent i. A graph is undirected
if (i, j) ∈ E anytime (j, i) ∈ E . An undirected graph whose weights
satisfy aij = aji for all i, j ∈ V is called a connected graph if there
is a path from every node to every other node in the network.
3

The (out-)Laplacian matrix of a graph is L = Diag(A1N )− A. Note
that L1N = 0. A graph is connected if and only if 1⊤

N L = 0, and
rank(L) = N−1. Therefore, for a connected graph zero is a simple
eigenvalue of L. For a connected graph, we denote the eigenvalues
of L by λ1, . . . , λN , where λ1 = 0 and λi ≤ λj, for i < j.

3. Distributed continuous-time solvers

In this section, we present our distributed algorithm to first
solve the constrained optimization problem (1) when there is no
inequality constraint, i.e., Bi

= B̄i
= {} for i ∈ V . Then, we extend

our results to solve the constrained optimization problem (1)
with inequality constraints. Our standing assumptions are given
below.

Assumption 3.1 (Problem Specifications). The cost function f il :

R → R of the subagent l ∈ Zni
1 of each agent i ∈ V is convex

and differentiable. Moreover, ∇f i : Rni
→ Rni of each agent i ∈ V

is locally Lipschitz. Also,

W = [w1, . . . , wN
] ∈ Rp×m (2)

is full row rank and the feasible set

Xfe =
{
x ∈ Rm

| (1b), (1c), (1d) hold
}

(3)

is non-empty for local inequalities (1c) and (1d). Lastly, the op-
timization problem (1) has a finite optimum f ⋆

= f (x⋆) =∑N
i=1 f

i(xi⋆). □

Local Lipschitzness of ∇f i, i ∈ V , guarantees existence and
uniqueness of the solution of our proposed algorithm (7), which
is a differential equation.

To solve problem (1) subject to only the equality constraints,
we consider the augmented cost function with a penalty term on
violating the affine constraint, i.e.,

x⋆
= argmin

x∈Rm

N∑
i=1

f i(xi) +
ρ

2
∥Wx − b∥

2, (4a)

[w1
]kx1 + · · · + [wN

]kxN = bk, k ∈ Zp
1, (4b)

where ρ ∈ R≥0 is the penalty parameter. This augmentation
results in the so-called augmented Lagrangian formulation of it-
erative optimization algorithms. As stated in Boyd et al. (2010),
augmented Lagrangian methods were developed in part to bring
robustness to the dual ascent method, and in particular, to yield
convergence without assumptions like strict convexity or finite-
ness of the cost function (see also Bertsekas & Tsitsiklis, 1997).
As shown below, such positive effects are valid also for the
continuous-time algorithms we study. Augmenting the cost with
the penalty function as in (4a) however presents a challenge in
design of distributed solutions as the total cost in (4a) is no longer
separable. Nevertheless, we are able to address this challenge in
our distributed solution.

Lemma 3.1 (KKT Conditions to Characterize Solution Set of (4) Boyd
& Vandenberghe, 2004). Consider the constrained optimization prob-
em (4). Let Assumption 3.1 hold and f i : Rni

→ R, i ∈ V , be a
differentiable and convex function on Rni . For any ρ ∈ R≥0, a point
x⋆

∈ Rm is a solution of (4) if and only if there exists a ν⋆
∈ Rp, such

that, for i ∈ V ,

∇f i(xi⋆) + wi⊤ν⋆
= 0, (5a)

[w1
]kx1⋆

+ · · · + [wN
]kxN⋆

= bk, k ∈ Zp
1. (5b)

Moreover, ν⋆ corresponding to every x⋆ is unique and finite. If the
local cost functions are strongly convex, then for any ρ ∈ R≥0 the
KKT equation (5) has a unique solution (ν⋆, x⋆), i.e., (4) has a unique

solution. □
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Let L(ν, x) = f (x) +
ρ

2 ∥w1x1 + · · · + wNxN − b∥
2
+ ν⊤(w1x1 +

· ·+wNxN −b) be the augmented Lagrangian of the optimization
roblem (4). Following Arrow et al. (1958), a central solver for the
ptimal resource allocation problem (4) is

˙k =
∂L(ν, x)

∂νk
= [w1

]kx1 + · · · + [wN
]kxN − bk, (6a)

ẋi = −
∂L(ν, x)

∂xi
= −∇f i(xi) −

p∑
j=1

[wi
]
⊤

j νj −

ρ wi⊤(w1x1 + · · · + wNxN − b), (6b)

here k ∈ Zp
1, and i ∈ V . The algorithm studied in Arrow et al.

(1958) is for un-augmented Lagrangian, i.e., ρ = 0, and the
uaranteed convergence holds only for strictly convex cost func-
ion f (x). However, we can show that the central solver (6) with

> 0 is guaranteed to converge for convex cost function f (x),
s well (the details are omitted for brevity). A numerical example
emonstrating this positive role is presented in Moradian and Kia
2020, Appendix B).

The source of coupling in (4) is the set of the equality con-
traints (4b), which appear in the central solver (6), as well. To
esign our distributed algorithm, we adapt the structural con-
titution of (6), but aim to create the coupling terms [w1

]kx1 +

· · + [wN
]kxN − bk, k ∈ Zp

1, in a distributed manner. We note
hat for every equality constraint k ∈ Zp

1, the coupling is among
he set of agents Ck = {i ∈ V | [wi

]k ̸= 0}. To have an effi-
ient communication and computation resource management, we
eek an algorithm that handles every coupled equality constraint
mong only those agents that are involved. In this regards, for
very equality constraint k ∈ Zp

1, we let Gk(Vk, Ek) be a connected
ndirected subgraph of G that contains the set of agents Ck (see
ig. 1 for an example). We assume that Vk ⊂ V is a monotonically
ncreasing ordered set. It is very likely that the agents coupled
hrough an equality constraint are geographically close, and thus
n the communication range of each other. Nevertheless, Vk, k ∈
p
1, may contain agents i ∈ V that have [wi

]k = 0 but are
eeded to make Gk connected (see Fig. 1 for an example). We let
k = |Vk|, k ∈ Zp

1. In our distributed solution for (4), we also
eek an algorithm that allows each agent to use a local penalty
arameter ρ i

∈ R>0, so we can eliminate the need to coordinate
mong the agents to choose the penalty parameter ρ. In what
ollows, we define T i

= {j ∈ Zp
1|i ∈ Vj}, i ∈ V , and {b̄l

k}l∈Vk
uch that

∑
l∈Vk

b̄l
k = bk, for k ∈ Zp

1 (possible options include
¯ l
k = bk/|Ck|, l ∈ Ck while b̄j

k = 0, j ∈ V\Ck, or b̄j
k = bk for a

articular agent j ∈ Vk and b̄l
k = 0 for any l ∈ V\{j}).

With the right notation at hand, our proposed distributed
lgorithm to solve optimization problem (4) is

ẏlk = βk

∑
j∈Vk

alj(vl
k − v

j
k), (7a)

˙
l
k = ([wl

]kxl − b̄l
k) − βk

∑
j∈Vk

alj(vl
k − v

j
k) − ylk, (7b)

ẋi = − (1 + ρ i)∇f i(xi) − ρ i
∑
k∈T i

[wi
]
⊤

k ([w
i
]kxi − b̄i

k)

+ρ i
∑
k∈T i

([wi
]
⊤

k y
i
k) − (1 + ρ i)

∑
k∈T i

([wi
]
⊤

k vi
k), (7c)

ith βk ∈ R>0 and ρ i
∈ R≥0 for i ∈ V , k ∈ Zp

1 and l ∈ Vk.
o comprehend the connection with the centralized dynamical
olver (6), take summation of (7a) and (7b) over every connected
k, k ∈ Zp

1 to obtain∑
ẏlk = 0 H⇒

∑
ylk(t) =

∑
ylk(0), (8a)
l∈Vk l∈Vk l∈Vk

4

∑
l∈Vk

v̇l
k = [w1

]kx1 + · · · + [wN
]kxN − bk, (8b)

hich shows that for any k ∈ Zp
1, the dynamics of the sum of vl

ks
uplicates the Lagrange multiplier dynamics (6a) of the central
ugmented Lagrangian method. Therefore, in a convergent (7),
ltimately for each k ∈ Zp

1, all the vl
ks converge to the same value

ndicating that ultimately every agent obtains a local copy of (6a)
or any k ∈ Zp

1. On the other hand, if we factor out (1 + ρ i)
rom the right hand side of (7c) and exclude the third component,
hich is a technical term added to induce agreement between the
gents, (7c) mimics the dynamics (6b) of the central Augmented
agrangian solver.

emark 3.1 (Benefits of Cluster-Based Approach). First we note
hat regardless of the size of ni, in algorithm (7) we associate at
ost one copy of the Lagrange multiplier generator dynamics,

.e., (7a) and (7b), to every agent i ∈ V . Specifically, every
gent i ∈ V , maintains |T i

| ≤ p number of (7a) and (7b) pair
ynamics and consequently has to broadcast the same number of
ariables to the network. In comparison, if we use the algorithms
n Alghunaim et al. (2018), Cherukuri and Cortés (2015, 2016),
ing and Jovanovic (2018), Kia (2017b), Xiao and Boyd (2006),
i et al. (2016) and Zhang and Zavlanos (2018), when ni > 1,
or any i ∈ V , we need to treat each component of the i as an
gent and assign a copy of a dynamics that generates the dual
ariable to every subagent l ∈ Zni

1 . This results in a storage,
omputation and communication cost of order ni

× p per agent
∈ V . See our numerical examples for a comparison. Next, notice
hat algorithm (7) can always be implemented by using Gk = G,
∈ Zp

1, where G = (V, E) is the connected interaction topology
hat all the agents form. However, the flexibility to use a smaller
yber-layer formed by only the cluster of agents that are coupled
y an equality constraint reduces the communication and compu-
ational cost of implementing Algorithm (7). Moreover, in some
roblems, to our numerical example in Section 4, the coupling
quation is between the neighboring agents. In such cases, sub-
raphs Gk can be easily formed. Moreover, as one can expect and
ur numerical example also highlights, using a smaller subgraph
k can results in a faster convergence for (7a) and (7b) dynamics
nd as a result a faster convergence for algorithm (7). □

The equilibrium points of algorithm (7) when every Gk, k ∈ Zp
1

s a connected graph is given by

e =

{
({vk}

p
k=1, {yk}

p
k=1, {x

i
}
N
i=1) ∈

p∏
k=1

RNk ×

p∏
k=1

RNk×

N∏
i=1

Rni
⏐⏐⏐vk = θk1Nk , θk ∈ R, ∇f i(xi) +

∑
j∈T i

[wi
]
⊤

j θj = 0,

N∑
j=1

[wj
]kxj = bk +

∑
j∈Vk

yjk, ylk = [wl
]kxl − b̄l

k,

i ∈ V, l ∈ Vk, k ∈ Zp
1

}
. (9)

ue to (8a), if algorithm (7) is initialized such that
∑

l∈Vk
ylk(0) =

, we have
∑

l∈Vk
ylk(t) =

∑
l∈Vk

ylk(0) for t ∈ R≥0. In that case, if
lgorithm (7) converges to an equilibrium point ({v̄k}

p
k=1, {ȳk}

p
k=1,

x̄i}Ni=1) ∈ Se, we have ({v̄k}
p
k=1, {ȳk}

p
k=1, {x̄

i
}
N
i=1) = ({[{[wl

]kxl⋆
−

¯ l
k}l∈Vk ]}

p
k=1, {ν⋆

k1Nk}
p
k=1, {x

i⋆
}
N
i=1), where ({xi⋆

}
N
i=1, {ν

⋆
k }

p
k=1) satis-

ies the KKT equation (5). The following theorem shows that
ndeed under the stated initialization, the algorithm (7) converges
o a minimizer of optimization problem (4).
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heorem 3.1 (Asymptotic Convergence of (7) Over Connected
raphs When the Local Costs are Convex). Let every Gk, k ∈ Zp

1,
be a connected graph and Assumption 3.1 hold. For every k ∈ Zp

1,
suppose {b̄l

k}l∈Vk ⊂ R is defined such that
∑

l∈Vk
b̄l
k = bk. Then, for

each i ∈ V , l ∈ Vk, starting from xi(0) ∈ Rni and ylk(0), v
l
k(0) ∈

R with
∑

l∈Vk
ylk(0) = 0, the algorithm (7) for any ρ i

∈ R>0,
makes t ↦→ ({vk(t)}

p
k=1, {x

i(t)}Ni=1) converge asymptotically to
( {ν⋆

k1Nk}
p
k=1, {x

i⋆
}
N
i=1), where ({ν⋆

k }
p
k=1, {x

i⋆
}
N
i=1) is a point satisfying

the KKT conditions (5) of problem (4). □

For brevity, the proof of Theorem 3.1 is given in Moradian
and Kia (2020). The initialization condition

∑
l∈Vk

ylk(0) = 0 of
Theorem 3.1 is trivially satisfied by every agent l ∈ Vk, k ∈
p
1, using ylk(0) = 0. The asymptotic convergence guarantee
or algorithm (7) in Theorem 3.1 is established for local convex
ost functions. For such cost functions, similar to the centralized
lgorithm (6), (7) fails to converge when ρ i

= 0 for all i ∈ V .
ext, we show that if the local costs are strongly convex and have
ipschitz gradients then the convergence is in fact exponentially
ast for ρ i

∈ R>0 i ∈ V . Recall that for strongly convex local cost
unctions, the minimizer of (4) is unique.

heorem 3.2 (Exponential Convergence of (7) Over Connected
raphs When the Local Costs are Strongly Convex and Have Lipschitz
radients). Let every Gk, k ∈ Zp

1 be connected and Assumption 3.1
old. Also, assume each cost function f il , l ∈ Zni

1 , i ∈ V , is mi
l-strongly

onvex and has M i
l -Lipschitz gradient. Let m = max{{mi

l}
ni
l=1}

N
i=1 ∈

>0 and M = max{{M i
l }

ni
l=1}

N
i=1 ∈ R>0. Then, starting from xi(0) ∈

ni and ylk(0), v
l
k(0) ∈ R for each i ∈ V , l ∈ Vk, and given

l∈Vk
ylk(0) = 0 and

∑
l∈Vk

b̄lk = bk in (7), the algorithm (7)
akes t ↦→ ({vk(t)}

p
k=1, {x

i(t)}Ni=1) converge exponentially fast to
{ν⋆

k1Nk}
p
k=1, {x

i⋆
}
N
i=1) for any ρ i

∈ R>0, where ({ν⋆
k }

p
k=1, {x

i⋆
}
N
i=1)

s the unique solution of the KKT conditions (5) of problem (4).
oreover, when ρ i

= 0 for an i ∈ V , the convergence to the unique
olution of the KKT conditions (5) is asymptotic. □

The proof of Theorem 3.2 is given in Moradian and Kia (2020).
rom this proof, we can observe that Theorem 3.2 holds also for
he problems that the decision variable of any subagent l of any
gent i is multi-dimensional.

emark 3.2 (The Convergence of (7) Over Dynamically Changing
onnected Graphs). The proof of Theorem 3.2 relies on a Lyapunov
unction that is independent of the systems parameters, and its
erivative for ρ i

∈ R>0, i ∈ V , is negative definite with a quadratic
pper bound. Hence, we can also show that the algorithm (7),
hen ρ i

∈ R>0 for i ∈ V , converges exponentially fast to a unique
olution of the KKT conditions (5) of problem (4) over any time-
arying topology Gk, k ∈ Zp

1 that is connected at all times and its
djacency matrix is uniformly bounded and piece-wise constant.

.1. Problem subject to both equality and inequality constraints

To address inequality constraints, we use a penalty function
ethod to eliminate the local inequality constraints (1c) and (1d).
hat is, we seek solving

⋆
p = arg min

x∈Rm

N∑
i=1

f ip(x
i), subject to (10a)

[w1
]jx1 + · · · + [wN

]jxN = bj, j ∈ Zp
1, (10b)

ith
i
p(x

i) = f i(xi) + γ
(∑

pϵ(xil − xil) +

∑
pϵ(xil − x̄il)

)
, (11)
l∈Bi l∈B̄i p

5

i ∈ V , where γ ∈ R>0 is the weight of the smooth penalty

function pϵ =

⎧⎨⎩
0, y ≤ 0,
1
2ϵ y

2, 0 ≤ y ≤ ϵ,

(y −
1
2ϵ), y ≥ ϵ,

for some ϵ ∈ R>0. This

pproach allows us to use algorithm (7) to solve the optimiza-
ion (1) by using f ip(xi) in place of f i(xi) in (7c). We note that f ip(xi)
s convex and differentiable if f i(xi) is a convex function in Rni .
ollowing this penalty method approach, when the global cost
unction of (1) is evaluated at the limit point of algorithm (7),
t is in ϵ-order neighborhood of the global optimal value of the
ptimization problem (1) (see Proposition 3.1). In what follows,
e investigate when the penalty function weight γ has a finite
alue and give a well-defined admissible range for it.
Given Assumption 3.1, the Slater condition (Boyd & Vanden-

erghe, 2004) is satisfied. Thus, the KKT conditions below give a
et of necessary and sufficient conditions that characterize the
olution set of the convex optimization problem (1).

emma 3.2 (Solution Set of (1) Boyd & Vandenberghe, 2004).
onsider the constrained optimization problem (1) under Assump-
ion 3.1. A point x⋆

∈ Rm is a solution of (1) if and only if there
xists ν⋆

∈ Rp and {µi⋆
l }l∈Bi ⊂ R≥0 {µ̄i⋆

l }l∈B̄i ⊂ R≥0, i ∈ V , such
that

∇f i(xi⋆) + wi⊤ν⋆
− µi⋆

+ µ̄i⋆
= 0, (12a)

Wx⋆
− b = 0, (12b)

µi⋆
l (x

i
l − xi⋆l ) = 0, xil − xi⋆l ≤ 0, µi⋆

l ≥ 0, l ∈ Bi, (12c)

µ̄i⋆
l (x

i⋆
l − x̄il) = 0, xi⋆l − x̄il ≤ 0, µ̄i⋆

l ≥ 0, l ∈ B̄i, (12d)

where µi⋆
= [µi⋆

1 , . . . , µi⋆
ni
]
⊤ with µi⋆

l = 0 for l ∈ Zni
1 \Bi and

µ̄i⋆
= [µ̄i⋆

1 , . . . , µ̄i⋆
ni
]
⊤ with µ̄i⋆

l = 0 for l ∈ Zni
1 \B̄i. If the local cost

unctions are strongly convex, then the optimization problem (1) has
a unique solution. □

Let X ϵ
fe be the ϵ-feasible set of optimization problem (1),

X ϵ
fe =

{
x ∈ Rm

|Wx = b, xil − xil ≤ ϵ, l ∈ Bi

xij − x̄ij ≤ ϵ, j ∈ B̄i, i ∈ V
}
. (13)

The result below states that for some admissible values of γ , the
minimizer of problem (10) belongs to ϵ-feasible set X ϵ

fe and opti-
al value of optimization problem (1) is in ϵ order neighborhood
f the optimal value of the original optimization problem (1).

roposition 3.1 (Relationship Between the Solution of (1) and
10) Pinar & Zenios, 1994). Let (x⋆, ν⋆, {µi⋆

l }l∈Bi , {µ̄i⋆
l }l∈B̄i ) be any

solution of the KKT Eqs. (5). Let x⋆
p be a minimizer of optimization

problem (10) for some γ , ϵ ∈ R>0. If γ =
1−N
1−

√
N
γ ⋆, where γ ⋆ >

max
{
max{µi⋆

l }l∈Bi ,max{µ̄i⋆
l }l∈B̄i

}N
i=1, then

x⋆
p ∈ X ϵ

fe, 0 ≤ f ⋆
− f (x⋆

p) ≤ ϵ γN, (14)

where f ⋆
= f (x⋆) is the optimal value of (1). □

Remark that by slight tightening of the inequality constraints
according to xil ≤ x̄il − ϵ and xil + ϵ ≤ xil and using these
odified inequalities in the penalty function, we can guarantee

hat x⋆
p ∈ Xfe. But this may result in slight increase in the

ptimally gap in (14). Next, we note that if ϵ → 0, we have
ϵ(y) → p(y) = max{0, y}, where p(y) is the well-known non-
mooth penalty function (Bertsekas, 1975) with exact equivalency
uarantees when γ > γ ⋆ in Proposition 3.1.
Considering Proposition 3.1, a practical and numerically well-

osed solution via the penalty optimization method (10) is
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chieved when the Lagrange multipliers are bounded. Thus, in
hat follows we seek for µbound in

max
{
max{µi⋆

l }l∈Bi ,max{µ̄i⋆
l }l∈B̄i

}N
i=1 ≤ µbound, (15)

with the objective of choosing a penalty function weight γ that
satisfies the condition set by Proposition 3.1 by setting γ ≥
1−N
1−

√
N

µbound.
For any solution of the KKT conditions (5), we let Ai

⊂ Bi

and Āi ⊂ B̄i respectively be the set of indices of the active
lower bound and the active upper bound inequality constraints
of agent i ∈ V . We note that Ai

∩ Āi
= {}. Because for inactive

nequalities µ̄i⋆
l = 0 (resp. µi⋆

l = 0) for l ∈ B̄i
\Āi and i ∈ V (resp.

l ∈ Bi
\Ai) (Bertsekas, 1999), we obtain

max
{
max{µi⋆

l }l∈Bi ,max{µ̄i⋆
l }l∈B̄i

}N
i=1 =

max
{
max{µi⋆

l }l∈Ai ,max{µ̄i⋆
l }l∈ ¯Ai

}N
i=1. (16)

herefore, to find µbound, it suffices to find an upper bound on
ax

{
max{µi⋆

l }l∈Ai ,max{µ̄i⋆
l }l∈Āi

}N
i=1.

As known, the set of the Lagrange multipliers of an optimiza-
ion problem of form (1) is nonempty and bounded if and only
f the Mangasarian–Fromovitz constraint qualification (MFCQ)
olds (Mangasarian & Fromovitz, 1967). It is straight-forward to
how that the MFCQ condition is satisfied for a resource allocation
roblem of form (1) with one equality constraint (i.e., p = 1) and
pper and lower bounded decision variables (i.e., Bi

= B̄i
= Zni

1 ).
For such a problem the following result specifies a µbound that
satisfies (15).

Proposition 3.2 (µbound for the Resource Allocation Problem with
One Equality Constraint and Bounded Decision Variables). Consider
problem (1) under Assumption 3.1 when p = 1, wi

l > 0 for l ∈

{1, . . . , ni
} and Bi

= B̄i
= Zni

1 , i ∈ V . Let (x⋆, ν⋆, {µi⋆
l }l∈Bi , {µ̄i⋆

l }l∈B̄i )
be an arbitrary solution of the KKT conditions (5) for this problem.
Then, µbound in (15) satisfies

µbound ≤ (1 +
w̄

w
)max

{
max

xi∈X i
ineq

∥∇f i(xi)∥∞

}N
i=1, (17)

where X i
ineq = {xi ∈ Rni

| xil ≤ xil ≤ x̄il, l ∈ Zni
1 }, w = min{{wi

l}
ni
l=1}

N
i=1

nd w̄ = max{{wi
l}
ni
l=1}

N
i=1.

roof. For any given (x⋆, ν⋆, {µi⋆
l }l∈Bi , {µ̄i⋆

l }l∈B̄i ), we note that the
KKT conditions (5) can be written as

∇f il (x
i⋆
l ) + wi

l ν
⋆
= 0, l ∈ Zni

1 \{Āi
∪ Ai

}, (18a)

f il (x
i⋆
l ) + wi

l ν
⋆
+ µ̄i⋆

l = 0, l ∈ Āi, (18b)

f il (x
i⋆
l ) + wi

l ν
⋆
− µi⋆

l = 0, l ∈ Ai. (18c)

Since {wi
l}
ni
l=1 ⊂ R>0, it follows from Assumption 3.1, which states

that the feasible set is non-empty for strict local inequalities, that
the upper bounds (similarly the lower bounds) for all decision
variable cannot be active simultaneously. Therefore, for any given
minimizer, we have either (a) at least for one subagent k ∈ Zni

1
in an agent i ∈ V we have xik < xi⋆k < x̄ik or (b) some of
he decision variables are equal to their upper bound and the
emaining others are equal to their lower bound. If case (a) holds,
t follows from (18a) that ν⋆

=
−∇f ik(x

i⋆
k )

wi
k

, which means that we

ave the guarantees that |ν⋆
| ≤

max{∥∇f i(xi⋆)∥∞}
N
i=1

w . On the other
and, if (b) holds, then there exists at least an agent k ∈ V

with Āk
̸= {} and an agent j ∈ V with Aj

̸= {} (k = j is
possible). Therefore, for l ∈ Āk it follows from (18b) that ν⋆

=
1
k (−∇f k(xk⋆)−µ̄k⋆), and for l̄ ∈ Aj it follows from (18c) that ν⋆

=

wl

l l l

6

1
wj
l̄

(−∇f j
l̄
(xj⋆

l̄
) + µ̄

j⋆
l̄
). Consequently, because µ̄k⋆

l ≥ 0 and µ̄
j⋆
l̄

≥ 0,

we conclude that −
1
wj
l̄

∇f j
l̄
(xj⋆

l̄
) ≤ ν⋆

≤ −
1
wk
l
∇f kl (x

k⋆
l ), which leads

to |ν⋆
| ≤ max{|

∇f j
l̄
(xj⋆

l̄
)

wj
l̄

|, |
∇f kl (xk⋆l )

wk
l

|} ≤
max{∥∇f i(xi⋆)∥∞}

N
i=1

w . Therefore,

we conclude that for any given (x⋆, ν⋆, {µi⋆
l }l∈Bi , {µ̄i⋆

l }l∈B̄i ), we

have |ν⋆
| ≤

max{∥∇f i(xi⋆)∥∞}
N
i=1

w ≤

max
{

max
xi∈Xiineq

∥∇f i(xi)∥∞

}N
i=1

w . Conse-
uently, it follows from (18b) that µ̄i⋆

l ≤ |∇f il (x
i⋆
l )| + |wi

l ν
⋆
| ≤

∥∇f il (x
i⋆
l )∥∞ + w̄|ν⋆

|, and from (18c) that µi⋆
l ≤ ∥∇f il (x

i⋆
l )∥∞ +

|wi
l ν

⋆
| ≤ ∥∇f il (x

i⋆
l )∥∞ + w̄|ν⋆

|. Therefore, given (16), we have the
guarantees that (17) holds. □

To compute the upper-bound in (17) in a distributed way,
agents can run a set of max-consensus algorithms.

Evaluating the MFCQ condition generally is challenging for
other classes of optimization problems. A common sufficient con-
dition for the MFCQ is the linear independence constraint qual-
ification (LICQ), which also guarantees the uniqueness of the
Lagrange multipliers for any solution of the optimization prob-
lem (1) (Wachsmuth, 2013) (see Wang & Elia, 2011 and Srivastava
& Cortes, 2018 for examples of the optimization solvers that are
developed under the assumption that the LICQ holds).

We evaluate µbound for the general form of (1) by assuming
LICQ condition in our extended version (Moradian & Kia, 2020).

4. Numerical examples

We consider a simple distributed self-localizing deployment
problem concerned with optimal deployment of 3 sensors labeled
Si, i ∈ {1, 3, 5} on a line to monitor a set of events that are hor-
izontally located at P = [{pi}10i=1] = [12, 11, 9, 3, 2, −1, −2, −8,
−11, −13] for t ∈ [0, 100), and P = [{pi}10i=1] = [24, 22, 17, 15,
13, 8, 7, 3, −2, −4] for t ∈ [100, 200), see Fig. 2. Agent 1 is
monitoring {pi}3i=1, agent 3 is monitoring {pi}7i=4, and agent 5 is
monitoring {pi}10i=8. Sensors should find their positions coopera-
tively to keep their position in the communication range of each
other as well as stay close to the targets to improve the detection
accuracy. Due to limited communication range, two relay nodes
Ri, i ∈ {2, 4}, as shown in Fig. 2 are used to guarantee the
connectivity of the sensors during the operation. The problem is
formulated by

x⋆
= argmin

x∈R5

5∑
i=1

f i(xi), subject to (19)

xj − xj+1
≤ 5, j ∈ {1, . . . , 4},

where f i(xi) =
∑

j∈Ei ∥x
i
− pj∥2 for i ∈ {1, 3, 5} with E1

=

{1, . . . , 3}, E3
= {4, . . . , 7} and E5

= {8, . . . , 10} and f i(xi) = 0
for i ∈ {2, 4}. Here, xi with i ∈ {1, 3, 5} (resp. i ∈ {2, 4}) is the
horizontal position of sensor Si (resp. relay node Ri). To transform
problem (19) to the standard form described in (1) we introduce
slack variables xi2 ∈ R with i ∈ {1, . . . , 4}, to rewrite (19) as

x⋆
= argmin

x∈R9

5∑
i=1

f i(xi), subject to (20)

xj1 − xj+1
1 + xj2 = 5, xj2 ≥ 0, j ∈ {1, . . . , 4},

where xi ∈ R2 for i ∈ {1, 2, 3, 4}, x5 ∈ R, and f i(xi) = f i(xi1)
for any i ∈ {1, . . . , 5}, i.e., f i(xi2) = 0. We can run algorithm (7)
by choosing the cyber layer equivalent to the physical connected
topology between all the agent, i.e., Gk = G for k ∈ {1, 2, 3, 4},
where G is the line graph connecting all 5 agents. However, as
stated earlier this configuration leads to extra computational and
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Fig. 2. Schematic representation of the events, sensors and relay nodes in the
second example.

Fig. 3. Trajectories of {xi1}
5
i=1 generated by implementing distributed algo-

ithm (7): The gray lines show the optimum positions of agents on the line
btained by using the Matlab’s fmincon. The thick curved lines show the
rajectories when algorithm (7) is implemented over cluster-based cyber-layers.
he thin lines show the trajectories when algorithm (7) is implemented with
k = G, k = {1, 2, 3, 4}.

ommunication efforts. Here, instead, we form 4 cyber-layers Gk,
∈ {1, 2, 3, 4}, where V1 = {1, 2}, V2 = {2, 3}, V3 = {3, 4} and

V4 = {4, 5}. We note that our proposed approach to form the
cyber-layers in correspondence to the equality constraints leads
to an efficient communication topology here. More specifically,
to generate the dual dynamics, the agents {1, . . . , 5}, maintain
and communicate variables of order {1, 2, 2, 2, 1}, respectively.

hereas, if we implement algorithms of Kia (2017b) and Zhang
nd Zavlanos (2018), the corresponding variables to generate the
ual dynamics is of order {8, 8, 8, 8, 4}.
Fig. 3 shows the trajectory of the distributed optimization

lgorithm (7) (using f ip(xi1) as defined in (11) in place of f i(xi)
n (7c)) for problem (20). As shown the location of the sensors
emain in their communication range and converge to optimum
alues during execution of the algorithm (the optimal solution
s shown by the gray lines, and is obtained by MATLAB’s con-
traint optimization solver ‘fmincon’). For the smooth penalty
unction (11) we use ϵ = 0.01 and γ = 200, which satisfies the
ondition of Proposition 3.1. What is interesting to note in Fig. 3
s how the convergence of the algorithm is slowed down when
e use Gk = G for k ∈ Z4

1. This is expected, as in this case the
oordination to generate the dual variables has to happen over a
arger graph. A second simulation study, solving the optimal gen-
rator dispatch problem stated in Fig. 1, is available in Moradian
nd Kia (2020).

. Conclusions

We proposed a novel cluster-based distributed augmented
agrangian algorithm for a class of constrained convex optimiza-
ion problems. In the design, we paid special attention to the
fficient communication and computation resource management
nd required only the agents that are coupled through an equality
onstraint to form a communication topology to address that
7

oupling in a distributed manner. We showed that if the com-
unication topology corresponding to each equality constraint is
connected graph, the proposed algorithm converges asymptoti-
ally when the local cost functions are convex, and exponentially
hen the local cost functions are strongly convex and have Lips-
hitz gradients. We invoked the ϵ-exact penalty function method
to address the inequality constraints and obtained an explicit
lower bound on the penalty function weight to guarantee con-
vergence to ϵ-neighborhood of the global minimum value of the
cost. Simulations demonstrated the performance of our proposed
algorithm. As future work, we will study the event-triggered
communication implementation of our algorithm.
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