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Abstract: The mechanical micro-environment of cells and tissues influences key aspects of cell
structure and function, including cell motility. For proper tissue development, cells need to migrate,
interact, and form contacts. Cells are known to exert contractile forces on underlying soft substrates
and sense deformations in them. Here, we propose and analyze a minimal biophysical model for
cell migration and long-range cell—cell interactions through mutual mechanical deformations of the
substrate. We compute key metrics of cell motile behavior, such as the number of cell-cell contacts
over a given time, the dispersion of cell trajectories, and the probability of permanent cell contact, and
analyze how these depend on a cell motility parameter and substrate stiffness. Our results elucidate
how cells may sense each other mechanically and generate coordinated movements and provide an
extensible framework to further address both mechanical and short-range biophysical interactions.
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1. Introduction

Many eukaryotic cells move by crawling, which is by adhering to and exerting me-
chanical stresses and local forces on their extracellular matrix (ECM) that they then actively
deform (see, for instance, [1-4] and the references therein). For these motile cells, which
include fibroblasts, endothelial, and muscle cells, among others, the mechanical proper-
ties such as viscosity and elasticity of the environment on or in which the cell moves is
known to play crucial roles in determining cell and tissue structure and function [5,6]. The
biological relevance of mechanical signaling between cell and substrate or between two
or more cells, as opposed to more extensively studied inter-cellular chemical signaling,
was dramatically illustrated in [7], where it was shown that the lineage specification of
stem cells can be directed by varying only the substrate stiffness. Much recent progress
has been made since this pioneering work in understanding the role of mechanical forces
in biology, and how biomolecules, especially those in the cellular force-generating and
surface-sensing systems and signalling networks, respond to mechanical forces through
the process of mechanotransduction [5,8-16].

Existing approaches to modeling collective cell motility focus on direct (steric and ad-
hesive) cell—cell interactions or focus at the single cell level on cell-substrate interactions [2].
The latter deals with details of focal adhesions that are crucial in generating traction stresses
in both adherent and motile cells [17]. Experiments surprisingly and strongly indicate that
cells cultured on soft, elastic, bio-compatible substrates can respond to each other even
when not in direct contact [3,4]. Such non-contact and long-range cell—cell interactions
often arise when the cells are cultured. A common method is to culture cells on the surface
of synthetic hydrogels such as polyacrylamide, a linearly elastic polymer. In this instance,
cells that are spatially separated may still sense each other through mutual and active
deformations of the gel by the cells. These mechanically derived non-contact cell—cell
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interactions are even more relevant and they act over longer ranges in the biological extra-
cellular matrix (ECM) comprising collagen or fibrin, where cells can interact by remodeling
and reorienting the fibers in the ECM [18-20]. Even without such cell-matrix feedback,
the presence of matrix or substrate deformations has recently been shown to guide the
migration of other cells without requiring chemotactic cues [21].

In this context, it is useful to compare non-contact and long range mechanical signalling,
as analyzed by these studies, to cell-cell interactions that are not mechanical; specifically,
chemical signalling, such as in immune cell interactions (for instance, see the review by [22]
and references therein), or other forms of interactions, such as haptotaxis [23-28], cell stimu-
lation by activating or secretory molecules, such as in inflammation and thromboses [29,30].
Mechanical non-local interactions between cells offer advantages as compared to chemical
means in terms of the rate at which cells can communicate. Mechanical signaling and
mechanosensing of neighbouring cells is typically faster and longer-ranged than chemical
signaling and concentration field based interactions that are limited by slow diffusion
rates. This is because mechanical interactions propagate near instantaneously [31]. This
crucially allows cells to not just sense each other, but also synchronize their behaviour
quickly at time scales faster than that seen in diffusive processes. For instance, substrate
deformation-mediated long-range interactions have been clearly demonstrated in heart
muscle cells that synchronize their beating without direct contact [32,33], as well as at a
subcellular level between myofibrils within a single heart muscle cell [34]. Cell commu-
nications via the sensing of substrate or matrix deformation are particularly important in
sparse, non-confluent cell cultures, or tissue that occur in a number of biologically relevant
situations. Apart from beating cardiomyocytes, examples of such situations include wound
healing involving fibroblasts [35], sprouting blood vessels comprising endothelial cells
[36], and the migration of mesenchymal cells in zebrafish embryo before the formation
of confluent epithelial tissue [37]. In all of these cases, cells are not in direct contact, but
they exert traction forces on the surrounding mechanical medium and concomitantly sense
deformations that are caused by nearby cells. Therefore, such interactions crucially depend
on the stiffness of the substrate, and they can be probed by experiments that vary the
stiffness of the hydrogel substrate on which the cells are cultured [5,38]. These aspects
influence not only motility response at the single cell level, but they also strongly impact
collective behavior, including directed motility and subsequent spatial self-organization.

While substrate-mediated cell-cell elastic interactions have been considered for the
organization of adherent cells in a variety of mechanobiological contexts [39,40] (the
physical basis of such modeling is reviewed in [41]), their effect on collective cell motility,
which, in principle, is always present, have not been carefully modeled. Here, we present
a simple biophysical agent-based model and computational results that focus on how
substrate-mediated mechanical communication allows two cells to sense each other and
impacts their collective and relative motility. The focus on mechanical interactions allows
us to clearly explore the role of mechanical signaling. By itself, this minimal model can be
used to describe cell movements in tissue culture experiments and guide applications that
involve varying the mechanical properties of the cellular microenvironment.

Chemical signaling between cells and attendant biochemistry and kinetics is undeni-
ably important in a biological context, and it is expected to act in concert with mechanical
substrate mediated interactions between cells. However, our model provides a foundation
for the study of more general cell interactions that include both mechanical and chemical
signalling, and generally short-range near-contact and long-range interaction modalities.
For instance, we have used a similar methodology to study short range interactions for
prokaryotic cells, such as bacterial swarms moving on substrates and responding to chemi-
cal cues [42]. Our approach also serves as a starting point for studies of mechanical substrate
based interactions in multi-cellular systems, such as growing tissue and confluent sheets.
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2. Experimental Observations Motivate Model for Cell Elastic Interactions

Many eukaryotic cells use contractile localized forces that are generated by their
actomyosin cytoskeleton to adhere to and move on their substrates (Figure 1a). Such
traction forces typically cause measurable deformations in the underlying substrates in
cell culture experiment [17], and they have a spatially dipolar pattern [43]. A cell typically
acts as a force dipole exerting—a pair of equal and opposite forces—on the elastic medium
(Figure 1b). The dipole arrangement arises since no external forces are present on the
system (cell + substrate), and the cell, therefore, moves on its own accord by exploiting
the resisting forces that are exerted by the substrate on the cell. The net effect of traction
stresses is to contract or pull in the elastic material comprising the substrate towards the
cell (Figure 2A).
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Figure 1. Traction forces that are exerted by motile cells on soft substrates can be modeled as force

Dipole axis

dipoles. (a) Schematic of an animal cell, e.g., an isolated fibroblast in culture [17] adhered to a compli-
ant substrate through focal adhesions comprising of integrins and a host of other mechanosensitive
adhesion proteins. Mechanical forces are actively generated by molecular motors of the myosin-II
family that put the actin cytoskeleton under tension. Stress fibers are bundles of crosslinked actin
filaments with a periodic (sarcomeric) organization of myosin [44] that often span the length of
the cell and are anchored at the focal adhesions to the extracellular substrate or matrix (ECM). The
contractile forces are transmitted at these sites from the stress fibers to the underlying substrate,
which can be strongly deformed if soft. Such deformations are long range (they extend up to a few
cell lengths away from the cell) and they can be measured by Traction Force Microscopy (TMF). This
is a common index of cell-substrate mechanical interactions. (b) (i) A simplified top view of the
same cell showing the alignment of the stress fibers and, therefore, of the contractile forces that are
generated by them. In order to model the effects of the cell on the substrate, we use classical linear
elasticity theory with the stress distributions effectively modeled as a contractile force dipole, a pair
of equal and opposite forces separated by some distance acting along the dipole axis (marked). (ii)
This leads to a very simplified mechanical model of the cell in terms as a contractile force dipole that
is exerted on the substrate along its average axis of orientation defined by the alignment of its stress
fibers.

Here, to focus our discussion, we use experiments on endothelial cells to build the
elastic model. In a seminal study, [3] studied bovine aortic endothelial cells (BAECs)
cells that were cultured on polyacrylamide based hydrogel substrates of varying stiffness.
Endothelial cell migration and traction stresses were directly measured in this study. The
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number of cell extensions sent out toward an adjacent cell that result in cell-cell contact
was also counted for a period of 6 h as a function of substrate compliance. To investigate
the influence of substrate compliance on cell—cell interactions, pairs of cells on varying
compliance gels, ranging from very soft (Young’s modulus, E = 500 Pa) to very stiff (E =
33,000 Pa), were examined. Three qualitatively different behaviors were observed. On the
softest gels (500 Pa), cells were seen to touch and remain in contact for the duration of the
experiment. Once in contact, the cells were seen to extend additional pseudopodia toward
the adjacent cell, but the cells generally did not become significantly spatially separated.
Cells on intermediate compliances studied (E = 2500 and 5500 Pa) were observed to contact,
separate and retouch repeatedly. Once the cells contacted, they were also observed to
generally not migrate significantly far from each other, unless the two-cell interaction was
disturbed by a third cell. On the stiffest gels (33,000 Pa), the cells contacted and migrated
away from each other, without the same repeated contact behavior that was observed for
cells on intermediate compliance substrates. Thus, cells made stable contacts on very soft
gels (Elastic modulus, 500 Pa), whereas they made repeated contacts and withdrawals on
substrates of intermediate compliance (Elastic modulus, 2500-5500 Pa). The tracking of
the collective migration of two-cells also showed a strong response to substrate stiffness.
Specifically, pairs of endothelial cells could display hindered migration when compared to
individual cells, strongly implying that these cells sensed each other through the matrix.
Pairs of cells on softer gels also showed reduced collective migration in comparison to
isolated cells.

(Inter-cell)
Radial distance

Figure 2. Schematic of the cell-cell mechanical interactions model: (A) Two cells A and B cultured
on the surface of thick elastic substrate can sense each other and interact at long range (when the
inter-cell distance r is longer than typical cell sizes, depicted here by dashed red circles) through
mechanical deformations of the underlying substrate; here the contractile stresses set up in the
substrate yield deformations as indicated by green arrows. The cells are restricted to move on the
surface of the substrate. (B) We study with our computational model how a motile cell (M, Cell A,
pink) moves in the presence of a fixed central cell (Cell B, yellow). This two cell system on a substrate
(schematic shown as a top view) also mimics scenarios where a motile cell may encounter an elastic
impurity or obstacle on the medium. Shown in blue circles are contours of constant elastic potential
(in simplified form) that determine the inter-cell elastic force that is experienced by the motile cell B
as a result of the elastic deformations of the medium by both cells A and B. Also shown (in black) is a
representative simulated trajectory of the motile cell which starts outside the area of influence of the
stationary cell.

Motivated by this experiment, here we model the motility characteristics of a two cell
system (the schematic in Figure 2A) that captures how elastic deformations induced in the
substrate allow cells to respond to each other. Our aim is the prediction of signatures of
this interaction that are the most relevant to biological processes involving cell motility.
Specifically, as in experiments, we seek to understand the effects of substrate stiffness on
cell migration speeds, dispersivity, and on the frequency and manner of binary cell contacts.
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Once mechanical far-field interactions between cells can be modeled, we can, in further
studies, consider additional near-field or contact chemical and bio-chemical interactions.

We consider a pair of cells that each adhere to, and exert stresses on, the underlying
substrate, thereby deforming it, as shown in Figure 2A. As mentioned above, adherent
and motile cells generate contractile stresses on the substrate via focal adhesions. Focal
adhesions comprise of integrins and a host of other mechanosensitive adhesion proteins
with contractile forces actively generated by actin-myosin aggregates that form stress
fibers—bundles of cross-linked actin filaments that are anchored at the focal adhesions. The
contractile forces are transmitted at these sites from the stress fibers to the underlying sub-
strate. While the cell by itself is a soft substrate, studies have indicated that stiffness in the
vicinity of the focal adhesion may be regulated and controlled so as to achieve locally large
stiffness values in cellular domains involved in the formation of focal adhesions. Therefore,
as a first approximation, we treat substrate elasticity as being the controlling parameter
and treat the effective (actively maintained) stress fiber stiffness as much larger than the
substrate stiffness. Next, the contractility of each cell is minimally described by a physical
model of force dipoles —a pair of equal and opposite forces exerted on the substrate, and is
thus a tensorial quantity [39]. Such modeling is inspired by the theory of deformations that
are induced by inclusions in materials [45]. Unlike passive material inclusions, cells can
actively regulate their force production in response to external mechano-chemical cues from
the substrate, including the presence of other cells. Such complicating feedback effects in
cell—cell interactions have also been theoretically considered [46,47], but we ignore these for
simplicity here, and we treat contractility as an intrinsic cell property that is independent
of underlying substrate matrix strain and stiffness.

We start with a model that mimics experimental setups and considers two cell in-
teractionsm, as illustrated in Figure 2A. To simplify our study, we assume that one of
the cells is motile (Cell A) and the other is stationary (Cell B). The stationary cell B is
nonetheless alive in that it still deforms the substrate. The resulting deformation field, or
equivalently the substrate mediated elastic potential, is sensed by the other, distant, motile
cell A. The interaction potential between the cells, in turn, creates a mechanical force on the
motile cell A. For polarized and elongated cells, the deformations have a dipolar spatial
pattern (as described in Appendix A). However, here we consider a simplified scenario
that is valid when cells reorient very fast in the time for them to translate and migrate
(Appendix A, §3). This implies that the directions of the dipole axis of both cell A and of
cell B fluctuate rapidly. This implies that cell A moves and feels an effectively isotropic,
attractive interaction potential that decays with distance as ~ 1/73 (iso-surfaces shown as
blue circles in Figure 2B).

Polarized cells may persistently propel themselves along their body axis; here, we
consider cells that are unbiased and, thus, act in the absence of any orienting chemical field
or signal and, therefore, randomly extend their pseudopodia in different directions. This
response, together with thermal noise, is the origin of the diffusive behaviour observed
as the cell moves. Such meandering cell trajectories can be characterized by a diffusion
coefficient; similar features hold for cell-pairs, in which case one may evaluate the disper-
sion or migration coefficients. In reference to Figure 2B, as the motile cell A moves, it is
additionally acted upon by an elastic interaction force that arises due to its interaction (via
the substrate) with the stationary cell B. The motion of the motile cell (A) may then be
described while using the Langevin equation. While such an approach has been previously
proposed and validated with experiments on elastically coupled motile active particles,
such as swarming bacteria [42,48], it has not been previously studied in conjunction with
cell-cell dynamics on elastic substrates.

We note that the model can be easily generalized (as derived in Appendix A) to
describe a pair of motile cells, since the interactions are pairwise and reciprocal. The
interaction potential is not isotropic and it depends on both the inter-cell distance as well
as on the instantaneous alignment of the cells” dipole axes. Thus, the force on each cell
(related to the gradient of the potential) depends on not just the relative positions of the
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cells, but additionally on the direction of the contractile dipoles that are exerted by cells
A and B. Truly spherical dipoles that are embedded in an elastic medium do not interact
mechanically [45], unless cell-substrate feedback effects occur [47]. Furthermore, cell—cell
interactions in a fibrous, nonlinear elastic medium can be longer ranged [49], and they
have a power law character, ~ 1/r%, where & < 3 [50]. The interaction of disk-like cells on
top of a thick substrate (semi-infinite geometry) is also more complicated [51]. We choose
the isotropic, attractive 1/r3 potential as the simplest attractive interaction with the same
distance dependence as the dipolar interaction, with the objective of testing how such a
potential can affect cell motility. Motivating future work, we show how the conclusions
from the simpler potential remain qualitatively valid, even as specifics of cell trajectories
change when the more general dipolar potential is used. This model highlighted in this
work, although very simplified in both its description of cell contractility and motility, can
thus capture key aspects of motility and contact formation, as we now describe.

3. Materials and Methods
3.1. Model for Two-Cell Interactions

An agent-based stochastic model is the model that is used to analyze the two-cell
system. We start with the stochastic Langevin equation for the dynamics of the moving cell
A in the presence of a second cell B fixed at the origin, as illustrated in Figure 1a. Details of
the model and the simplifications involved may be found in Appendix A. Starting from
the more general model where both cells A and B can move, we now fix cell B and thus
set r = 0. In other words, we choose the center of cell B to be the origin from which the

position of cell A and its distance relative to B is measured. Writing r = r? — r4, we write
the equation for r(t), where ¢ is the time,

dr ow

o5 = “HT5 + V2Dest (1) @

where D is the effective translational diffusivity quantifying the random motion of the
moving cell in the absence of the fixed cell, and 7 is a random white noise term whose
components satisfy

(ni(t)n;(t)) = 6(t — )5

Note that #—the active noise term—has units of t=1/2 The mobility yt in Equation (1)
quantifies the effective friction from the medium and it is inversely proportional to the cell
size o and inversely proportional to the viscosity at the surface. Here, it is assumed that the
cells moving on a wet surface and that the fluid nature of the surface provides a viscous
resistance opposing cell motion.

The two-cell potential W derives from the elastic interactions communicated via the
linear deformation of the substrate (Appendix A, Equation (A5)), and it is given by,

W = %k(a— r)z, when 0<r <, and ()
_P2o(v)
E

3 when r > 0. 3)

Numerical solutions to Equation (1) are obtained with varying initial conditions for
cell A, as explained subsequently. To ease the computational analysis, we work in scaled
dimensionless units. We choose cell size (diameter) o (see Figure 1), diffusion time 02/ Dy,
and thermal energy kg T—with T corresponding to the temperature of the cell/substrate
system—as our length, time, and energy scales, respectively. Equations (1)—(3) may then be

rewritten as I AW
r
Jr = T + V2Dt Tﬁ"/ 4)
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where the potential in scaled form is

1

W' = Sksteric(1—7")>, when 0 <7* <1, and ®)
= —%, when r* > 1. (6)

The superscripts * in Equations (4)-(6) denote non-dimensional quantities. Henceforth,
we will drop this subscript for clarity. Thus, the dynamics may be followed as a function of
three dimensionless numbers (parameters)

_ ([ P*p(v) _ ( Degt _ [ ko?
N = (EkBTU’3>, DT = < DO ), and kstenc = <w> (7)

3.2. Dimensionless Parameters Quantifying Cell Motion and Interactions

Table 1 summarizes the parameters that emerge in Equations (1)—(7) and that are typi-
cal of the two-cell scenario studied here. Following Ref. [3], we are interested in substrates
that are linearly elastic with the Young’s modulus E ranging from 0.5 kPa to 33 kPa, well
within the range of 0.1-100 kPa appropriate for tissues and bio-compatible materials [5].
The effective diffusion coefficients that are exhibited by cells in the experiments [3] include
the random noisy motion as the cells explore territory and a contribution due to short-time
deterministic motion. We explore values in the range of 3 um?/minute to 50 um?/minute.
Time scales are estimated from experiments as well and 250 s in real time correspond to a
dimensionless time duration of unity.

Table 1. The biophysical parameters characterizing the two-cell (typical values from [3,52,53]).

Quantity Interpretation Experimental Values
o Cell size 10-100 um

T Temperature 25°C

Dy Thermal Diffusivity 25 um?/min

Degs Effective Diffusivity 3-50 um?/min

E Young’s modulus 0.5-33 kPa

1% Poisson ratio 0.3-0.5

P Contractility 10~ Nm

Scaled non-dimensional parameters that are relevant to the simulation may be calcu-
lated from dimensional quantities, as explained earlier. Three scaled parameters determine
the dynamics of the two-cell system: D7, &, and kteric. Table 2 lists the values used in the
computations. The self avoidance parameter kgeric is chosen, such that the cells do not
overlap, and it is computed based on the time step used in the simulations. This allows us
to control the stability of the simulation and its accuracy.

Table 2. Simulation parameters and their meaning.

Parameter Interpretation Definition Simulation values
D Diffusivity Det/ Dy 0.1-10

o Cell-cell interaction P2¢(v)/(EkpTa?) 0.1-100

Kksteric Self-avoidance ko?/kgT 103-10*

3.3. Numerical Solution and Tracking Cell Trajectories

Equations (4)—(7) are solved for the dynamics of the moving cell with appropriate
boundary and initial conditions. The Langevin Equation (4) is an example of stochastic
differential equations; here, we solve this equation using the explicit half-order Euler—
Maruyama method that one of us has used recently in similar problems involving bacteria
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cells moving in light fields [42] and in simulations of active Brownian particles [48]. Given
the position of cell A at time ¢, r(t), its subsequent location at time ¢ + dt, r(t + dt), follows,

r(t+6t) =r(t) — (a(,;;\]r(t)>5f + /2Dt w, (8)

In Equation (8), w is a random two-dimensional vector with components each being
drawn at every time step from a normal distribution with mean zero and standard deviation
of unity. We simulated several trajectories of cell A (N = 1000 trajectories, cells have
diameter ¢ = 1 in scaled units), under the influence of the central stationary cell B (also
having diameter o = 1). The simulations were conducted in two different geometries, as
described below. To study the contact frequency between two-cells and systematically
explore the role of the elastic potential, we simulated cell A moving in a confined square
box of size 120 with the stationary cell B at the center of the box. The cells reflect from the
box surface when they encounter it and, thus, are restricted to remain within the simulation
domain.

We define a contact radius 1.5¢ from the centre of the stationary cell, and we consider
a contact if the centre of the test cell lies within the contact radius, in order to calculate
the number of contact in due course of the simulation. The cell can come out of the
contact radius and re-enter, increasing the number of contacts. The time step used in these
simulations is dt = 0.0001 and the total number of steps in this simulation is 107, i.e., a cell
trajectories were followed for a total time of T = 1000.

On the other hand for calculating cell dispersivities, and specifically the mean squared
displacement (MSD) of cell A, we used periodic boundary conditions and a periodic
potential. This corresponds to cell A moving in a periodic domain and interacting with a
regular square lattice of multiple stationary cells (images of B) separated uniformly by a
distance 12¢. The time step that is used to integrate Equation (7) in these simulations is also
dt = 0.0001 and the total number of steps in this simulation is 107, i.e., cell trajectories were
followed for a total time of T = 1000. The mean square displacement MSD was calculated
by tracking trajectories of cell A (the same as tracking N = 100 cells). As before, cell A is
randomly initialized inside the same square box of length of 12¢, but outside the contact
radius. Cells that move out of the domain are reintroduced into the domain in a manner
that respects periodic boundary conditions and the appropriate symmetries.

In this case, since r = xey + yey is the relative distance between the cells, the mean
square displacement is calculated by the equation,

MSD(z i ([ea(tr +7) = xa(tR)] + [ya(tr + T) = ya(tr)]?) ©)

where T is the delay time, and the summation is over each cell trajectory (indexed by «) and
it extends over the full number of trajectories N = 100. The delay time is varied and the
averages are obtained by choosing different values of the reference time g, as is normally
done.

Thus, the MSD is an average over time and also an average over realized cell trajecto-
ries. We also note that the mean square displacement in (9) is written as a function of the
delay time 7 that may be interpreted as an effective observation time over which the cell
motion is observed.

The mobility of cell A reflects the properties of the microenvironment created by cell
B and the substrate. For instance, a cell that moves with constant speed for small times
(say ~ T1) and undergoes a diffusive random walk when observed over long times (say
~ T,) will exhibit different slopes for T < T and for T > T;. The exponent characterizing
the dependence of the MSD on the delay time provides information regarding whether
the motion is sub-diffusive (exponent < 1), diffusive (exponent = 1), or super-diffusive
(exponent > 1).
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It is constructive to study the expected MSD for cell A in the absence of cell B. In this
particular case, since A is purely diffusive, the MSD has the simple form that is valid for
diffusion in two dimensions MSD(7) = 4D77. Deviations from this expression arise due
to the mechanically induced inter-cell interaction and, thus, quantify the extent to which
cell B perturbs the dispersion of cell A. For instance, transient or persistent trapping of cell
A will result in the MSD scaling sub-linearly with 7.

4. Results
4.1. Cell-Cell Contact Frequency Is Controlled by Matrix Elastic Interactions

Being motivated by experiments that show that two cells make repeated contact and
withdrawals on soft substrates, with contact frequency dependent on the substrate stiffness,
we measure the total number of contacts of the motile cell (A) with the stationary cell (B) in
our model simulations. As indicated earlier, the simulated cells are initialized randomly
inside the box, but outside of a pre-defined contact radius around the stationary cell. The
total number of contacts between the cells is counted over a fixed period of timei.e., T =
1000. It should be remembered that the cells are confined to stay within the square domain
during the course of the simulation.

Cell A’s movement is governed by an attractive elastic potential that is induced by
the stationary, central cell, and its own random motion, described as an effective diffusion.
Additionally, when the cell encounters the bounding wall of the square domain, it reflects
(moves away) from it. Overall, random noise encapsulated in the diffusion coefficient
causes A to move towards or away from B in an unbiased manner. The attractive potential
W being isotropic and spatially varying suggests that there is a critical radius of influence
(dependent on both & and D), within which forces due to the attractive potential dominate
diffusion and significantly influence the trajectory of cell A. This effect results in the cell
getting closer to cell B, eventually entering this zone of influence.

To carefully study how elastic interactions («) and random diffusion (D7) each influ-
ence this process, we first systematically calculated the number of contacts by «, while
keeping Dt constant at three different values, Dt = 1,2,5. (Figure 3). The behavior is
highly non-monotonic, as illustrated by the dotted lines which serve as a guide to the eye.
For small «, the number of contacts increases with increasing «, then reduces to 1 at high «.
The position of the peak increases with increasing Dt. The initial increase in contacts is
due to the increased directional movement of the test cells towards the central cell. The
decrease in the number of contacts for very high values of « is expected, since the attractive
potential is strong enough to overcome the effect of diffusion. In this case, the motile cell is
unable to move away from and it makes stable contact with the stationary cell. For & = 5
and Dt = 1 (trajectory 1), the test cell spends most of the time exploring space rather than
near the stationary cell, which also reduces the number of contacts.

Upon increasing « to 10 (trajectory 2), the radius of influence increases, increasing
the duration of contact, and thereby increasing the contacts. On further increasing « to 20
(trajectory 3), the test cell is tightly adhered to the stationary cell which allows only one
single contact. Note that the statistics for the high Dt and low & regime are influenced by
the confinement. Cells in this particular limit frequently escape the region of influence and
wander away, only to return again after encountering the wall and diffusing away. For
instance, the number of contacts for D7 = 5 and « = 0.1 combines the effect of repeated
escapes from the region of influence and repeated returns due to confinement. Because
the size of the box is fixed, the increase in number of contacts with Dt for &« = 0.1 is still a
signature of diffusive effects dominating the attractive potential.

We next investigated the effect of increasing diffusivity on the number of contacts for
constant & (1, 10, and 20). The results from this set of simulations are shown in Figure 4.
The red dotted line serves as a guide to the eye, highlighting the trend observed. We
see a steady increase in cell—cell contacts with diffusivity. Without diffusion, the test cell
shows unidirectional motion towards the central cell and remains in contact throughout
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the simulation. Increasing diffusion increases the chance of test cell to go out of the radius
of influence and then come back again (trajectories 3 and 4).
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Figure 3. The number of cell-cell contact events measured in a fixed interval of time depends strongly
on the elastic interaction parameter. A contact event is identified as cell A coming within a prescribed
contact radius of cell B with cell A initialized randomly in a certain area around cell B. Thus the
number of contact is be interpreted as the average number of contacts of the two cells. The number
of simulation runs conducted were 50 for each combination of D and «. The dashed curves are
guides to the eye illustrating the trends seen with increasing values of . Diffusion is the major
factor in governing the number of contacts for low values of a. For higher «, the attractive potential
increases the probability of the cell to stay near the contact radius and controls the number of contacts.
The trajectories for highlighted data points (1)—(4) are shown on the right. The box plots show
the distribution of contact numbers. The lower and upper bounds of the box are the first and the
third quartiles respectively, while the line in middle is the median. The lower and upper limits of
the dashed lines are the minimum and maximum number of contacts observed for cells for each
combination of « and Dr. The simulation was run for a total time of T = 1000 and updates in the cell
position were made every 6t = 0.001.

Overall, combining the results that are shown in Figures 3 and 4, we conclude that
the number of contacts is maximized at an optimal value of the elastic interaction strength.
If the elastic strength is too high or too low, the cell either makes stable contact or is too
motile to make too many contacts. This optimal value scales with the diffusivity, which is a
measure of the cell motility in our model. We note that these are precisely the behaviors
seen in experiments on two-cell interactions and motility, suggesting that purely long-
ranged mechanical cell—cell interactions suffice to predict the contact frequency and the
effective duration for which two cells can remain close to each other. This is important,
because, for short-range interactions and specific biochemical recognition mechanisms
to be initiated, cells have to first be drawn together. Our results suggest that mechanical
interactions may play an important role in first getting cells close to one another in order
for subsequent attractive or repulsive cell-cell direct interactions to then turn or and control
subsequent dynamics. Taken together, our simulations suggest that elastic interactions can
lead to stable contact between initially distant cells.

4.2. Cell Motility Characteristics Depend on Elastic Interactions

To quantify the long-time statistics of the motility of cell A in the elastic potential field
that is generated by cell B, we analyze the mean squared displacement (MSD), as given
by Equation (9) from simulation. The metric MSD measured in terms of a delay time T
contains information regarding the short time mobility of a cell, the long time mobility of
the cell, and additionally provides signatures of capture and trapping effects. Specifically,
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the slope of the mean square displacement can be used to extract effective exponents that
provides insight on the relative importance of diffusion and elastic attractive interactions.
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Figure 4. The number of cell—cell contact events in a fixed interval of time (T = 1000) plotted here as
a function of the scaled effective diffusivity, D, which represents the random motility of cell B. Here,
we show how the number of cell-cell contact varies for three different elastic interaction strength
values, &, corresponding to substrates with three different stiffness. The highlighted points numbered
from (1)—(4), show representative cell trajectories over long times and highlight how varying « and
Dr can yield states where the cells are in close proximity most of the time (low Dr, high ) or states
where cells interact rarely (high Dr, low «). The interpretation of the box plots is the same as in
Figure 2. The simulation was run for a total time of T = 1000 and updates in cell position were made
every 6t = 0.001.

We plot the MSD in Figure 5 for Dt = 2and « = 0.1, 1, 5, 10,20, 100. For« = 0.1,1, 5, 10,
we find that the slope is close to 1, which suggests that diffusion drives the motion of the
cell and the attractive potential is not strong enough to influence the movement of the
cell. For higher &, we observe a transition towards sub-diffusive behavior at T ~ 0.5. At
« = 20 (green line), the curve shows a significant decrease in slope at T = 2, the time scale
for which a test cell, on average, encounters the central cell for the first time and stays in
contact for a while, as shown by trajectory 3, Figure 4. The slope then increases again, but
it remains less than 1, suggesting a sub-diffusive behavior in the long run. Ata = 100
(blue line), the MSD saturates after initial diffusion to a zero slope, which suggests that the
motion is bounded, and it can only explore the circumference of the stationary cell.

4.3. Elastic Interactions Lead to Effective Capture of Motile Cell

Figures 3-5 suggest that the motile cell A (as it explores space and samples the potential
field over its various trajectories) is attracted to the stationary cell with the attracting force
increasing with decreasing distance r. Acting in tandem and superposed on this aspect of
the motion is diffusion that allows A to wander away from B multiple times. Therefore,
we next explore the statistics of this capture process. Capture mechanisms underlying
and influencing these statistics are potentially relevant for timescales of contact formation
between initially well-separated motile cells that then form confluent monolayers, such as
in mesenchymal-to-epithelial transitions during tissue morphogenesis [54].

We tracked the number of cells inside the contact radius over the course of the sim-
ulation in order to understand how parameters « and D7 affect this phenomenon. The
probability of cells inside the contact radius reached a steady state at time ¢ < 100 for all
parameters (Figure 6A). Keeping « constant and increasing D, the probability of cells
being inside the contact radius decreases (Figure 6B). The steady-state probability P, in-
creases with an increase in a for constant Dt (Figure 6C). To understand the relationship
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between Ps; and both « and D7, we investigated Ps; for the ratio «/Dr, and showed that
they remain constant for this ratio.
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Figure 5. Mean square displacement (MSD) as a function of the delay time interval 7 (calculated
from Equation (9)), for the motile cell A is shown. Here we explore the variation in the MSD for
various values of substrate-mediated elastic interactions, a. The diffusivity D7 is held constant for
these simulations with D = 2. Other diffusivities were explored (results not shown). At low elastic
interaction strengths, «, corresponding to stiff substrates, the cell shows a purely diffusive trajectory,
whereas at higher values of «, the motile cell is captured by the strong attractive interaction from
the stationary cell, resulting in a flattening of the MSD (blue curve). At an intermediate interaction
regime (green curve), the motile cell makes repeated contact with the fixed cell, but it is never fully
captured.

Plotting Pss vs a/ D, the strength of the elastic interactions relative to the diffusivity,
we find that the data can be collapsed into a single master curve (Figure 6D). The collapse of
our data and the master curve plotted in Figure 6D is expected; meanwhile, the competition
between attractive interactions and noise dictates the relative numbers of cells that are
captured vs. cells that escape.

Figure 6 motivates thinking about the moving cell as exploring a special region where
substrate mediated elastic cell-cell interactions dominate. This region has a characteristic
radius of influence equal to the distance from the stationary cell at which its elastic attractive
tendency approximately balances the random noisy movements of the motile cell. Here,
we use a simple balance to estimate this radius of influence. Working in dimensionless
units, we note that the dipolar interaction potential fall off as a /73, while the effects of
the randomizing diffusion scale as kgT = purDt. Balancing these yields, a length scale
(for mechanical interaction) fy ~ («/ yTDT)l/ 3, which explicitly shows the importance
of the a/ Dt parameter. Thus, a stronger a from deformations exerted by the stationary
cell (corresponding to softer substrate stiffness, or higher contractility) and lower random
movements of the motile cell, D7, leads to a larger radius of influence. This, in turn, implies
that the probability of being captured within the contact radius increases because the
stationary cell can influence motile cells over a larger area.

5. Discussion and Future Extensions to Other Forms of Interactions
5.1. Anisotropic Cell-Cell Elastic Interactions

For polarized cells, which orient their cytoskeletal fibers and contractility along some
principal axis, the cell—cell interaction potential is not isotropic. The individual cells on
an elastic medium behave as force dipoles, with the interaction potential energy having
both attractive and repulsive regions that depend on the mutual orientation of the two
cells and their separation vector [39], as detailed in Appendix A. The force experienced by
the motile cell has both radial and tangential components, depending on its position and
orientation relative to the central cell, and its direction is sensitive to the Poisson’s ratio
of the elastic medium [55]. Thus, trajectories of cell A interacting with stationary cell B
when the fully anisotropic interaction potential (Equations (Al) and (A2), Appendix A) is
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included will differ from the trajectories observed in isotropic potentials. The difference
arises in part due to an additional torque that reorients cell A to preferentially align with
cell B as it moves towards it. Nonetheless, the qualitative nature of the capture process and
the observation of an effective region of influence will still remain valid.
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Figure 6. Capture statistics of motile cell. (A) Probability that cell B is inside contact radius as a
function of time. (B,C) The dependence of steady state capture probability, Ps, i.e., the fraction of
cells captured within the contact radius after a long time interval, on simulation parameters. (B)
shows the dependence on diffusivity, D at different values of the elastic interaction parameter, «,
whereas (C) shows the dependence on « for different values of Dr. (D) The steady state capture
probability, Pss, data can be collapsed into a single master curve, when plotted vs. the key parameter,
alpha/Dr, the strength of the elastic interactions relative to the diffusivity. This is expected since
our model steady state is a thermal equilibrium with the effective temperature set by the noisy cell
motility, D, and the competition between attractive interactions and noise dictates the number of
cells (cell trajectories) captured vs. the number that escape.

Here, we would like to point out that the term anisotropy of the interactions is coupled
to the directionality of the dipole axis quantifying the contractile stresses that are exerted
by the focal adhesions on the underlying substrate. The substrate by itself is still treated as
a homogeneous linearly elastic isotropic material; the anisotropy specifically refers to the
fact that cell-cell interactions are not not just dependent on the inter-cell distance, but also
on the relative angles between their dipole axes. This is important, for instance, in cells that
vary their direction of motion slowly, or equivalently bleb, and change their direction of
motion very slowly. In this scenario, the direction each cell is moving along is as important
as the inter-cell distance (see Appendix A).

To illustrate this, we simulated the equilibrium orientation of uniformly spaced
(pinned) test dipolar cells on a square lattice that are kept fixed in a square box of length 100
The Poisson’s ratio of the simulated substrate is 0.3 and « is 40. Figure 7 shows the results.
None of the cells overlap with the central stationary cell; they may rotate to reorient their
dipole axis but are restricted from translating. We re-iterate that the cells on the lattice do
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not mutually interact with each other, but they are only meant to illustrate the interaction
of the test dipolar cell A placed at different spatial locations with the central stationary cell
B. We note that fixed cells adjust the axis of their contractile dipoles in accordance to the
potential field due to cell B (the dipole axis of B is fixed).

"’&3’ Y B Fixed cell

"
b, Cell Alinitially aligned
(] B\, X normal to dipole axis

& Cell Ainitially aligned
along dipole axis

Figure 7. Dipolar cell orientation and trajectory. The equilibrium orientation of contractile cells fixed
in position, but free to reorient, and that are uniformly distributed in a square box of size 100, are
depicted by two arrows (red) pointing towards each other. Each cell is influenced by the central
stationary cell B (green) and not by each other. Two possible trajectories of cell A (blue and black) are
recorded for Dt = 0.1, &« = 40 for total time T = 500 with time steps of df = 0.001. The cells did not
have any self propulsion or rotational diffusion. The Poisson’s ratio v of the substrate was considered
to be 0.3 for this simulation.

Superposed on this are two trajectories that correspond to two cells that are freed from
constraints and allowed to rotate and translate in response to the two-cell potential and
thermal noise. The two cells start from their equilibrium orientation—i.e, they are first
held pinned and allowed to reorient until the dipole axis attains a static value and then the
pinning constraint is removed. The cells in close vicinity of the central cell’s orientation
axis exhibit a nearly linear motion to the pole of the fixed cell (trajectory in black). Cells
away from the orientation axis take a longer route to come in contact with the central cell
(trajectory in blue). The common attribute in both trajectories is that they prefer to adhere
to the central cell’s pole, which is cell A, as it moves towards B, also continuously reorients
in a manner that brings it into alignment with the cell B’s polar axis (the axis of the dipole).

5.2. Extensions to Near-Contact Biochemical or Bond Interactions

In many realistic biological settings, several different modalities mediate cell—cell
interactions, sometimes with parallel intercellular signaling events occurring together. The
interplay between these different modalities is still unexplored. In addition to long range
mechanical interactions, cells may sense other cells by short-range mechanosensation and
adhesion mechanisms, including ligand based bond interactions, by biochemical signalling
and other molecular recognition mechanisms [22], by haptotaxis [23], as well as by re-
sponses to specific molecules or signals put forth by neighboring cells [25,27]. A salient
example is that of immune cells that can sense and respond to biophysical cues—from
dynamic forces to spatial features—during their development, activation, differentiation,
and expansion, as well as to biochemical cues. The biophysical signals modulate immune
cell functions, including leukocyte extravasation, macrophage polarization, T cell selec-
tion, and T cell activation [56,57]. Meanwhile, cell-cell interaction between cells in close
proximity may be impacted strongly by biochemical interactions. In lymphocytes, T cell re-
ceptors and B cell receptors recognize antigens and activate effector functions that combine
chemical and mechanical features. In general, near-contact encounters between cells may
be positive (attracting), as between T lymphocytes and B cells, or negative (repulsion), as
occurs between IL-1-producing macrophages and endothelial or immune cells.
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The agent that is based the Langevin equation model here provides a foundation to
analyze some forms of these biochemical or near-contact interaction mechanisms. As a
first example, we consider integrin-ligand interactions that are hypothesized to mimic
catch bonds [58-61]. In previous work, one of the authors analyzed the kinetically driven
capture of a cell (such as a leukocyte) by binders that were attached to a stationary surface
[62]. In the context of the two interacting cells discussed here, similar near-contact binding
interactions can be simulated by positing a distribution of bonds (with attachment and
detachment probabilities /rates drawn from detailed mechanochemistry) on the surface of
each cell. If mechanochemistry dictates that binders interact when the inter-cell distance
is £, then, for soft to moderate substrates, we may expect {3 < f)s. That is, mechanical
interactons are crucial in enabling close contact between cells first before the binder interac-
tions kick in and either capture (attract) or deflect (repulse) the cell. A detailed model for
this process is a part of current work.

As a second example, we consider motile cells that are elastically coupled, and bio-
chemically coupled through chemical agents and matching receptors. A specific example
related to cultured microglia—the immune cells of the brain—where a number of chemical
markers (e.g., a5-integrin) are left behind on the substrates as cells move with these surface
bound degradable markers serving as signaling agents guiding two-cell interaction [23-28].
This process by which microglia exhibit haptotaxis by following these chemical signal
trails they generate may also be studied by coupling Equations (1)-(7) or, more generally,
Equations (A1)-(A6) to a scalar equation for the time-dependent concentration field of
these chemical markers. The limiting case where mechanical interactions are absent has
been addressed earlier (see, for instance, [23]).

Finally, the computational framework introduced and analyzed here can be extended
to study durotaxis—that is, the modification of cell motility by variations in substrate
elasticity at the single cell or tissue level and the motion of cells towards higher stiffness
regions [63,64].

6. Summary

Using our model for cell contractility and motility, we computed several metrics of
experimental relevance, such as number of cell—cell contacts, the mean square displacement
of a motile cell in the presence of elastic deformations induced by a cell in its vicinity, and
associated capture statistics that result from attractive interactions between two such cells.
In each case, we predict how the computed metric depends on the elastic properties of the
substrate, captured in the interaction parameter, « ~ 1/E, and on cell motility, captured by
the effective diffusivity, D. Our results support the hypothesis that cell-cell interactions
with purely mechanical origins can lead to mutual contact without requiring specific
chemical factors to guide their motility. Our model also predicts that substrate stiffness
is an important control parameter in guiding cell motility and forming multi-cellular
structures.

Similar to the observations for pairs of endothelial cells mechanically interacting
through the compliant substrates [3], we find that the motility and number of cell—cell
contacts are lowered at large «, corresponding to softer substrates. This is because the elastic
deformations of the substrate and, therefore, the cell-cell attractive interactions are stronger
when compared to the random motility. As observed in the experiments, we also find that,
at intermediate interaction strength, the cells can make repeated contacts and withdrawals,
as shown in the contact number measurements. For very stiff substrates, which is low
interaction strength, we find the cell remains diffusive and can migrate away from the
stationary cell and does not make frequent contacts. Our findings would therefore suggest
an optimal substrate stiffness at which contact frequency is maximal. These trends are also
reflected in the MSD measurements. Unlike the experiment, we do not find diffusive MSD
for the strongly attractive case, but the MSD turns sub-diffusive, which suggests perhaps
that such high interaction strengths were not probed in the experiment.
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Biologically, altered motility and contact formation can be relevant for forming stable
adhesive contacts between cells and tissue development, including that of blood vessels
during vasculogenesis [65]. In our approach and in formulating the minimal model, we
made several simplifying assumptions in the model (as stated in Section 2), including using
a purely attractive and isotropic potential instead of the dipolar potential that is relevant
for elongated and motile cells. Figure 6 illustrates how the position and orientation of the
motile cell with respect to the stationary cell leads to qualitatively different trajectories
when the interaction potential is dipolar. Such an anisotropic potential is expected to lead
to end-to-end alignment and contact formation of a pair of cells. With multiple cells, larger
scale structures, such as chains and networks of cells, can result [39]. The influence of
cellular motility on these structures will be the topic of a future study.

Cells are typically soft with values of estimated elastic moduli that are approximately
equal to the range that we have used here for the substrate stiffness. One may ask how
the nominal cell stiffness or elasticity enters the model and the range of validity of the
model. We note that our model, by itself, holds for stiffer substrates as far as the response
is that of a linear elastic material. With regard to the manner by which cell properties are
implemented in the agent-based model, we point out that the underlying theoretical model
that forms the basis of our agent based simulations treats the cell as a line dipole exerting
contractile stresses on the substrate. In this minimal framework, properties of the cell, such
as its stiffness and the variation of the contractile stress with both cell properties (such as
type and stiffness), are encapsulated in the dipole strength.

To improve on this further, we briefly consider the recent advances that shed light
on how cell (cortical) stiffness, the mechanical properties of the focal adhesion regions,
and alignment of intracellular structures affect the dipole strength. Recent work paints
a complex and tightly coupled picture. (a) Cell elastic modulus is not a constant, but
dynamically and continuously altered dependent on substrate stiffness and topography
(see [66], for instance). (b) Thus, the coupling between surface stresses, substrate stiffness,
and focal adhesion dynamics is emergent, and it cannot be predicted apriori. It was recently
shown in experiments using mouse embryonic fibroblasts [67] that vinculin regulates force
transmission to the substrate and vinculin and focal adhesion area did not correlate with
traction force magnitudes at single focal adhesions, and this was consistent across different
ECM stiffness and cytoskeletal tension states. Vinculin residence time varied linearly with
applied force for stiff substrates; this was disrupted on soft substrates. (c) There is strong
indication that local stiffness and the alignment of intrafiber aggregates in the cell-substrate
contact area are important. Vargas et. al [68] hypothesize that the point at which substrate
stiffness becomes as high as that of the cell-cell interface corresponds to configurations
where cell-substrate biophysics may dominate. (d) Atomic force microscopy (AFM) in-
dentation measurements of cells that were cultured on deformable substrates suggest that
cells adapt their stiffness to that of their surroundings. Recent work [16] probed the elas-
ticity of microglial cells and fibroblasts that were cultured on soft matrices mimicking the
mechanical properties of the physiological cell environment. When combining analytical
estimates from Hertz contact theory with detailed finite element modeling, they found
that cell stiffness was rather insensitive to substrate stiffness. These studies indicate that
significant work still remains to be done in order to clarify the roles that are played by cell
stiffness and substrate stiffness.

In this paper, we used a minimal model, where the microscopic details are coarse-
grained. More detailed models and descriptions of cell and substrate deformation can be
included if needed using finite element methods coupled with mechanochemical models
that take detailed deformation history of the substrate and the cell-substrate region into ac-
count. The advantages of complementing experimental studies with modeling approaches
as discussed in this paper is that hard to realize parameter regimes may be easily inves-
tigated. Furthermore, the role of different physical parameters may be clearly studied in
isolation; a feature that is hard to achieve in an experimental setting. Understanding the
mechanistic aspects of cell-cell interactions, as done here, has implications for regenerative
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medicine and tissue engineering, and it will guide and inform experiments exploring how
cells communicate with each other in the process of organizing and moving collectively.
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Abbreviations

The following abbreviations are used in this manuscript:
MSD  Mean Square Displacement

Appendix A Model for a Moving Cell Interacting with a Stationary Cell Via Substrate
Elasticity

The flat substrate is treated as being semi-infinite (Figure 1) and comprised of a
linearly elastic, isotropic gel-like material with Young’s modulus E and Poisson’s ratio v,
that capture its stiffness and compressibility respectively. The minimal model that describes
the deformations created by cells exerting contractile forces on the substrate is a point-like
force dipole [52]. Two identical dipolar cells denoted by A and B move in the upper plane
(chosen to be the x-y plane, see Figure 1). Cell A is allowed to move and its dynamics
is specified completely by its location on the substrate r* () and by its self-propulsion
direction e/ (¢). Cell B is held fixed at point r?. As a result of the contractile dipoles exerted
on the substrate the cells communicate elastically. The potential WA characterizing this
elastic interaction between the two cells is given by

WAB(r) = Pze]BelBajal GiB(r)efeft, with r=r" — 15, (A1)

where P is the strength of the force dipole capturing the contractile stresses exerted by a
cell on the medium. In writing (A1), we have made the plausible assumption that cells
orient their cytoskeletal structures such as stress fibers and exert their traction primarily
along their motility axis, such that the force dipole tensor, which captures the moment of
their force distribution, is assumed to be, Pjj = Pe;e;. The tensor

1+v 0 ritj
e @

is the Green’s function that captures the displacement in the elastic medium at the location
of one cell (dipole) caused by the application of a point force at the location of the other [69].
The partial derivatives in (A1) on the right hand side are taken with respect to relative
position vector r. Standard Einstein notation has been chosen in writing the form of W48
and the derivatives in Equations (A1) and (A2).

To obtain the force and torque balance equations that govern the dynamics of cell
A, we make the simplifying assumption that the cells move in an overdamped fashion.
This implies that hydrodynamic interactions between cells are ignored, and that each cell
feels a resisting viscous frictional drag/torque that is proportional to its velocity /rotation
rate. Conversely, when acted on by a force F or a torque T, a cell in this overdamped
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environment will move with velocity u7F or rotate at a rate ugT respectively. Here, y7 and
MR are appropriate mobility terms that depend on the cell size.

The micro-dynamics of cell A moving on the substrate is governed by the Langevin
equations for the translation and rotary motion of cell. Recognizing that the elastic interac-
tion generates (extra) forces and torques that act on each cell, and including the effects of
fluctuating time dependent forces &' (t) and torques &R (t) originating from thermal noise,
we can write the equations for the position and orientation of cell A in the presence of cell
Bas

or4 oWAB

= = vge?t — HT =5 A~ +urél(t), and (A3)
del oWAB

= = —MR(eA><aeA>‘%VRCR(0' (A4)

In an equilibrium situation, the random forces and torques are white noise terms
and are related to one another by the equipartition and fluctuation-dissipation theorems:
(ET(HET(H)) = (2kpT/ut)d5(t — t') where ¢ is the Kronecker delta function. For active
cells however, these restrictions do not hold; these terms are set by active internal cell
responses to the substrate properties. Equations (A1)-(A4) are used in the results illustrated
in Figure 5.

In the bulk of the paper and for results presented in Figures 1-4, we use an isotropic
version of the potential in Equation (A1) that ignores orientational dynamics that are in
general present for highly elongated cells. This assumes a separation of scales between the
time over which cells reorient and the dipole axis changes and the time for the center of
the cell to move significantly such as when the rotation noise in (A4) is significant. In this
limit, one can average over the rapid reorientations of the cells and replace ef ef by d;j and

efleft by 6j;. Equation (A1) then reduces to the simpler form that we employ in the main
discussion of the paper and implement as a numerical simulation,

wﬂ@zﬂm@ﬁ@zgﬂ? (A5)

with the function ¢(v) = (1 — v?)/7 dependent solely on the Poisson ratio, and hence
fixed in the simulation. Furthermore, since the dipole axis of cell A reorients in time scales
much faster than its slower rate of translation, the v,e” term in (A3) simplifies to a time
fluctuating variable with a mean that is roughly zero but with a non-zero variance. Thus
its net effect may be incorporated by appropriately modifying the translational diffusivity.
For an isotropic symmetric potential as here, the equation that needs to be solved is then

or oWAB T
g = —HT or + VT@* (t)r (A6)

with the modified random force &I reflecting an effective translational diffusivity D differ-
ent from the thermal diffusivity Dy, through a relation, (¢I (#)¢I(#)) = (Deg/u%)65(t —t').
We define the dimensionless number Dt = Dgg/Dy. Consistent with this, we choose
Ur = Degt/kpT.
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