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ABSTRACT

In multistage manufacturing systems, modeling multiple quality indices based on the pro-
cess sensing variables is important. However, the classic modeling technique predicts each
quality variable one at a time, which fails to consider the correlation within or between
stages. We propose a deep multistage multi-task learning framework to jointly predict all
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output sensing variables in a unified end-to-end learning framework according to the
sequential system architecture in the MMS. Our numerical studies and real case study have
shown that the new model has a superior performance compared to many benchmark
methods as well as great interpretability through developed variable selection techniques.

1. Introduction

A Multistage Manufacturing System (MMS) refers to
a system consisting of multiple stages (e.g., units, sta-
tions, or operations) to fabricate a final product. In
most cases, an MMS has a sequential configuration
that links all stages with a directed flow from the ini-
tial part/material to the final product. In an MMS,
massive data are collected from the in-situ multivari-
ate sensing of process variables and the product qual-
ity measurements from intermediate stages and the
final stage. It is challenging to model the MMS data
due to the following characteristics: 1) Multiple corre-
lated output variables: The MMS can have hundreds
of output sensing variables at different stages that
measure different quality attributes of the product in
different stages. These quality responses are often cor-
related and evolve together with the product in the
MMS. 2) High dimensional input variables: In an
MMS, there can be hundreds of input variables (e.g.,
process sensors) in each stage as well as a large number
of stages/stations. 3) Complex sequential dependency
between stages and sensor measurements: The product
quality from an MMS is determined by complex inter-
actions among multiple stages. For example, the quality
characteristics of one stage are not only influenced by
local process variations within that stage, but also by
the variation propagated from upstream stages.

The methodology developed in this paper is moti-
vated by a diaper manufacturing system, which is
composed of several sequential converting process
steps with associated equipment components, which
are controlled through many process factors. The set-
points for these factors and their variation may affect
the reliability of the process and the quality of the
product produced by it. Performance data of the con-
verting equipment, as well as in-process product qual-
ity measures, are collected and stored by sensors and
high-speed cameras installed on the production line.
The time-series data may be high-frequency data
(sampled every several milliseconds over seconds or
minutes) and/or low-frequency data (samples collected
on a one-minute frequency over months). The
number of variables in this MMS is in the range of
500-1000. This data is used to detect abnormal per-
formance early enough to prevent machine stops,
quality degradation or scrap from rejected defective
products. To model the variation propagation of the
entire MMS, the stream of variation (SoV) theory was
proposed to model the variation propagation in an
MMS (Shi 2006). For example, when one of the stages
of the multistage system experiences a malfunction,
SoV can be used to model the consequence of such a
change on the final product (Li and Tsung 2009;
Lawless, Mackay, and Robinson 1999; Jin and Tsung
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2009). However, in modern manufacturing processes,
such as semiconductor manufacturing or diaper man-
ufacturing process, it is often not easy to define the
system state explicitly due to the complex system
mechanism. In conclusion, since classic approaches
assume the design information and physical law of the
process to be perfectly known, these classical
approaches cannot be used for complex systems with
unknown engineering or science knowledge.

In industrial practice and literature, to deal with
more complicated types of data and nonlinear
dependencies, predictive modeling techniques are
often used. However, these models are typically
designed based on a single output variable such as
decision tree (Bak Ir et al. 2006; Jemwa and Aldrich
2005) or neural network (Zhou et al. 2006; Tam et al.
2004; Chang and Jiang 2002) and have the following
major limitations: 1) Due to the independent model-
ing of each output variable at each stage, the correl-
ation between each output variable is not considered.
2) Due to the need to have one model for every single
variable, it lacks a unified way of modeling the MMS
and variation propagation throughout the system.
Hundreds or even thousands of independent models
are needed, which is very hard to train and deploy. In
addition, this greatly increases the number of parame-
ters in modeling the entire MMS, which could lead to
severe over-fitting when the number of samples is
limited. 3) Due to the need for a unified model for
process monitoring and control, there may be trade-
offs between different output variables (e.g., quality
variables). A joint modeling framework can be used
for process optimization of multiple input variables,
considering the tradeoffs between different output var-
iables simultaneously.

To address the aforementioned challenges, we aim
to develop a data-driven approach, namely the deep
multistage multi-task learning (DMMTL) framework,
to link all the input and output variables in a sequen-
tial MMS. To the best of the authors’ knowledge, this
is the first end-to-end system-level predictive modeling
framework in modeling all input and output variables
jointly in an MMS. The proposed framework uses a
latent state representation similar to the SoV model,
but instead of specifying the hidden state representa-
tion manually, the proposed framework aims to learn
the latent state representation and how it propagates
through the MMS in an end-to-end fashion through
all the output variables simultaneously. We further
make many improvements on the model architecture
to model the MMS, such as an independent state tran-
sition model and the group lasso penalty. Finally, since

Table 1. Comparison of literature.
Proposed  SoV

Predictive ~ MTL

Unknown Physical State v X v v
Definition

Nonlinear Extension v X v X

Variable Selection v X v v

Sequential Multistage Modeling v v X X

Joint Multi-sensor Modeling v v X X
Within Stages

Diagnostics v v X X

model interpretability and diagnostics are also import-
ant, we will also demonstrate how the proposed
DMMTL is able to rank the most important input
variables according to each output variable for system
diagnostics.

To model multiple output variables simultaneously,
the proposed DMMTL is also inspired by the recent
development in multi-task learning (MTL). MTL is a
sub-field of statistical machine learning in which mul-
tiple correlated learning tasks are solved at the same
time while exploiting the commonalities across tasks
while modeling their differences (Caruana 1997). The
proposed DMMTL can benefit through incorporating
the use of MTL to jointly model all output variables
from all stages simultaneously since these output vari-
ables often measure correlated attributes of the same
product in the MMS. However, MTL by itself can
only be used for joint modeling of multiple sensing
variables within the same stage, which fails to model
the out variables with sequential order.

Finally, we present an overview of the proposed
methodology compared to existing manufacturing
methodology such as stream of variation (denoted as
“SoV”) (Shi 2006), predictive modeling (denoted as
“Predictive”) (Kuhn and Johnson 2013), and multi-
task learning (denoted as “MTL”) (Obozinski, Taskar,
and Jordan 2006) in Table 1. The proposed method is
the only one that can handle the unknown physical
state (e.g., unknown transition functions), nonlinear
models, variable selection, joint multistage modeling,
and joint multiple sensor modeling within the stages.
Finally, the proposed method can also achieve diag-
nostics and interpretability by using the gradient
tracking techniques developed in this paper.

The remaining parts of the paper are organized as
follows. Section 2 reviews the related literature in
manufacturing modeling. In Section 3, we develop the
proposed methodology for quality prediction and vari-
able selection. Section 4 discusses the estimation pro-
cedure and variable selection techniques. Section 5
presents a simulation study to compare the proposed
framework with several traditional methods in the lit-
erature. In Section 6, we apply the proposed



framework to model a diaper manufacturing line. In
Section 7, we provide concluding remarks and future
direction. For a more detailed comparison of the pro-
posed method with SoV, please refer to Appendix A.

2. Literature review

In this section, we will review the related literature in
the modeling of manufacturing systems. We briefly
classify existing techniques into two types, single-stage
modeling and multistage modeling.

Single-stage models typically focus on process mon-
itoring (Joe Qin 2003; Kourti, Lee, and Macgregor
1996; MacGregor and Kourti 1995) and the prediction
(Hao et al. 2017; Jin, Li, and Shi 2007) of sensing vari-
ables observed in the same stage of the manufacturing
system. For process monitoring, uni-variate (Shewhart
1931), multivariate (Lowry and Montgomery 1995),
profile-based (Woodall 2007), multi-channel-profile-
based (Paynabar, Jin, and Pacella 2013; Zhang et al.
2020), and image-based (Yan, Paynabar, and Shi 2015,
2017) process monitoring techniques are developed.
For quality prediction, regression and classification
techniques such as linear regression (Skinner et al.
2002), logistic regression (Jin, Li, and Shi 2007), ten-
sor learning (Yan, Paynabar, and Pacella 2018), deci-
sion trees (Bak Ir et al. 2006; Jemwa and Aldrich
2005), and neural network (Zhou et al. 2006; Tam
et al. 2004; Chang and Jiang 2002) are applied to
relate the input variables (e.g. process sensing varia-
bles) with the output variables (e.g. quality sensing
variables). Despite the use of nonlinear methods and
the ability to incorporate heterogeneous high-dimen-
sional data, it still lacks a unified framework for mod-
eling the variation propagation among stages.

To model multistage systems, SoV has been suc-
cessfully implemented in the multistage automotive
assembly process (Jin and Shi 1999; Apley and Shi
1998; Ceglarek and Shi 1996; Ding et al. 2005; Shiu,
Ceglarek, and Shi 1997) and machining process
(Huang, Zhou, and Shi 2002; Liu, Shi, and Hu 2009;
Zhou, Huang, and Shi 2003; Abellan-Nebot et al.
2012). For example, SoV introduces the state space
representation to quantify the system status. In a trad-
itional SoV model, the state variables are defined
physically (e.g., geometry deviation of the product
(Ding et al. 2005)). For a more detailed literature
review on MMS models, please refer to (Shi 2006).
There are some other techniques besides SoV that
have been developed for multistage modeling.
Bayesian network techniques (Friedman, Geiger, and
Goldszmidt 1997; Jensen 1996) have been proposed to
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model the complex dependency between multiple
manufacturing stages for both process monitoring
(Liu, Zhang, and Shi 2014; Yu and Rashid 2013; Liu
and Shi 2013) and quality prediction (Reckhow 1999;
Correa et al. 2008). However, these techniques assume
that the complex dependencies between multiple out-
put variables are known and require the feature selec-
tion techniques to be used beforehand, and thus
cannot be applied to a system with unknown transi-
tion and dependency. In the literature, reconfigured
piece-wise linear regression trees are developed (Jin
and Shi 2012) to take advantage of intermediate qual-
ity variables and model the nonlinear relationship
between the sequential order of the input and output
variables. However, this technique cannot perform
feature selection for a large number of sensors and it
also assumes the same quality responses are measured
in the intermediate stages. Furthermore, it optimizes
the model in a greedy stage-wise approach, which
may suffer from local optimality. In conclusion, simi-
lar to SoV, most of the techniques in the literature
focus on either manual selection of important sensors,
manual extraction of useful features transformation,
and clear definition of system state and transition
before the MMS modeling can be applied. But these
techniques cannot be used for quality prediction of
complex systems with unknown architectures (Ding
et al. 2005; Apley and Shi 1998; Zhou, Huang, and
Shi 2003, Zhou, Chen, and Shi 2004; Ceglarek and
Shi 1996).

3. Methodology development

In this section, we will first define the problem setting
and notations in Section 3.1 followed by our proposed
DMMTL framework in Section 3.2. We further
derived a more efficient optimization algorithm to
handle the non-smooth loss function and penalty in
Section 3.3.

3.1. Problem setting and notation

We denote x; = (xk,l,...,xk,nx)k)T is a vector of input
variables (i.e. process sensing variables) in stage k,
where x; is the i sensing variable in stage k, and
ny i is the total number of input sensing variables in
stage k=1,...,K, where K is the number of stages.
We denote y, = (V1. ..V, ny’k)T as the output varia-
bles (i.e. product quality sensing variables) in stage k,
where yy; is the j™ sensing variable in stage k and
ny,k is the total number of output sensing variables in
stage k. To link multiple stages together, we introduce
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the hidden state variable hy, which is a vector to rep-
resent the state of the product in stage k. For simpli-
city, we assume the hidden state variable hy is of the
same dimension #y, across different states. The goal of
this research is to build a multi-task learning frame-
work to predict the quality indices YV = {y,,...¥x}
measured at different stages given X = {x;,...,xx}. In
this section, we assume that we are only dealing with
data with sample size 1. We will discuss how to
extend this to the mini-batch version utilizing mini-
batch stochastic gradient descent with multiple sam-
ples in Appendix D in detail.

3.2. Proposed framework

We will introduce our proposed DMMTL model to
solve the aforementioned challenges by learning the
hidden state representation h; from data. Here, hy
should contain the information not only to predict
the current state output y, but also the future stage
output y, with K > k. In k™ manufacturing stage, we
will define the transition function to model the state
transition between hy_; and hy and the emission func-
tion to model the relationship between hy and vy, as
learnable parametric functions with model parameters
0y, 6 as

hy = fi(he 1, xk; 07), v, = ge(hi; 65) + e (1)

&k ~ N(0,0%). One example of such architecture is
listed in (12), which we use a one-layer neural net-
work to model the nonlinear state transition and
emission function.

hi = 6(Wauxi + Uprhi 1 + buk), y;
— ykhk —|— bgk + €yka (2)

where o(x) =1/(1+ exp(—x)) is the activation
function. Define the stage transition model parameters
as OZ = {Upts Wi, b} g(-) represents the emission
function to link the hidden variable to the output
variable. For example, gij(-) can be a linear function
with model parameters 6§ = {Vy, by} or nonlinear
functions such as neural networks. Here, we denote
0r = {0/,6¢} as the model parameters for stage k.
Furthermore, if we use one-layer neural networks for
both transition and emission, the model does share
some similarity with RNN models. However, the
major limitation of using RNN in MMS is that differ-
ent manufacturing stages are inherently different. The
underlying physics is entirely different for each stage
which not only results in the different transition
parameters OZ = {Upk, Wk, by} and emission param-
eters 6f = {V,i,bu}. RNN also assumes the same set

of variables are predicted in each time. However, in
MMS, different quality inspection sensors are set up
in each manufacturing stage, denoted by y,. Finally,
RNN is a complicated model and can not achieve
input and output variable selection as the proposed
approach. More discussion of the relationship and dif-
ferences of the one-layer version of the proposed
DMMTL and RNN are shown in Appendix B.

The benefit of the proposed method is also its
ultimate flexibility of plugging in any differentiable
functions as fi(-) and g (). For example, depending
on different applications, we can either use simpler
models (e.g., linear models) or more complicated
models (e.g., deep neural networks). As an example,
two-layer transition and emission networks are shown
as follows:

h, = o(Ujhy + b}zlk)z’ h; = o(Waxi + Ufllkhifll +by,)
Yi = Vi + by + 60 vt = o(Vyhi + by )

(3)

In this case, the stage transition model parameters
are 0] = {U},,U2,,Wy,b;,,b’}, and the emission
parameters 6§ = {V;k,ij, b; ,b;k} and 6; = {02,0‘2}
In general, we can use a neural network with depth
D, to model for the transition function and a neural
network with depth D, to for the emission function.
In this case, the model parameter is 0 =
{Wao {Uf b, oy (Vi Do acr, .o, }- To show
the relationship of the proposed framework and the
deep neural network, we also visualized the architec-
ture of the proposed methods in Figure 1. In this fig-
ure, we showed a special case where only a single
layer neural network is used for the transition
between the hidden variables. In this case, the number
of transition layers is exactly the number of manufac-
turing stages. There are some additional layers models
the relationship of the input variables/output variables
with the hidden variables.

In the proposed DMMTL, instead of modeling
each P(yij|{x1,...,Xx}) individually, we assume that
the hidden state hy is learned through the model such
that it compresses all the necessary information to
predict the current stage output y, and future stage
output y,, for kK’ > k. There are two benefits of using
the latent variable hy rather than the original data
{X1,....X¢} : 1) Dimension reduction in the sequential
transition model: {xi,..,xx} is typically very high-
dimension, especially for the later stages when k is
large. Here the model creates the low-dimensional
hidden state variable hy to compress all the necessary
information from {xi,...,x¢}. Therefore, the condi-
tional probability can be compactly represented by
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P(yiil{x1>....Xk}) = P(yij|hg). 2) Shared representation
for multi-task learning: Here hy itself is used to pre-
dict all the output variables y;; in stage k, which is
especially helpful when the output variables y; in
each stage k are correlated. By assuming that different
output variables are conditionally independent given
the hidden state variables hy, the architecture of the
model is shown in Figure 2.

The benefit of introducing this recursive structure
and the hidden state representation hy is that the
negative joint log likelihood L(®;X,)) can be
decomposed in each stage k and each sensor j as

K
L(©;X,Y) == logP(y,|h; ©)
k=1

K M,k

= - Z Z log P(yj|hy; ©)
=1 j=1

K M,k

X ZLk(ek; @), (4)
j=

k=1 j=1

where ey = yi — gj(hx; ®) and Li(-) is the negative
log-likelihood of the noise distribution. For example,
for Gaussian noise, we can set Li(ex; ©) = |[lex||>. We

» TETTE O

Figure 1. Deep neural network structure for the proposed method.

will discuss in more detail how to define Li(ex; ®) in
MMS. Finally, to make the model interpretable and to
prevent overfitting, we propose to minimize the fol-
lowing loss function:

ming £L(0®) + R(®), (5)

where @ = {0),....0k}. L(©®) =3, Li(0x) is the
likelihood loss function, R(®) = >, Re(0x) is the
regularization function. Here, Ri(60x) and Ly(0x) are
defined as the regularization term and the loss func-
tion in stage k, which will be defined in more detail
later. Equation (5) can also be seen as a multi-layer
neural network, where the architecture of the neural
network structure depends on the physical layout of
the manufacturing system. For example, each layer (or
a set of layers) represents one stage of the manufac-
turing system, with the emission network output the
prediction of output sensing variables (i.e., quality
indices measured at each stage), and the transmission
network passes the information to the next stage. We
propose to combine the process variables x; or quality
variables y, for all K stages in a multi-task learning
framework in order to optimize @; in an end-to-
end fashion.
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Figure 2. Architecture of the proposed DMMTL.

It is also interesting to compare the proposed
DMMTL in Equation (5) to the independent mod-
eling approach, where each output variable y;; at
stage k and output j is modeled independently.
Because such an independent modeling approach
needs to introduce new model parameters 0; for
each output variable j in each stage k, for a K-stage
system with n, output sensors and n, input sensors
in each stage, it requires to have O(K?nn,) model
parameters in total. These model parameters are
normally time-consuming to train and can lead to
the over-fitting problem. On the other hand, since
our proposed framework reduces the hidden state
dimension to #n, using Oh,k: 1,...,K with
O(Kny(ny + n,)) number of variables, which is typ-
ically much smaller than O(K®nn,) given n, <
min(Kny, Kn,). Therefore, a shared representation
yields a more compact representation with better
memory efficiency.

Furthermore, we would like to propose the loss
function Li(-) and regularization Ri(0)) in Equation
(1) that leads to a better engineering interpretation. In
addition, we use the regularized model to select key
input variables and output variables. More specifically,
we propose the group lasso penalty (Yuan and Lin
2006) and robust statistics for a more interpretable
transition model, allowing us to perform input and
output variable selection.

3.2.1. Group sparsity penalty

In MMS, many input variables are irrelevant in rela-
tion to predicting output variables. Therefore, these
input variables should not affect the hidden states. To
select the important sensors in each stage, we propose
to use the L, ; nom on Wfk to encourage the model
to only select the most important sensors. In the lit-

erature, the L; norm is defined as [[W],, =

I

< Stage k

i/ 2 Wizj, which penalizes the entire row of the

matrix W to be zero. Here, we propose to add this
L, 1 norm on the transposed coefficient W, on (4),
which penalizes the entire column of matrix W,; to
be zero. In other words, if we define the i column of
Wk 18 Wi xks ||W£k||2,1 = Zj [[Wi, k|-

This penalty not only controls the model flexibility
but also can lead to a more interpretable result due to
the sensor selection power as follows:

A
2
where || ||, is the L, norm and |[WL]|,, tends to
penalize the entire column of W,; to be 0. For

Ri(0k) = 4l [ W], + 5 11O, (6)

example, if the i column of Wy is 0, the i input
variable of xy; in stage k is not selected, which means
this input variable x;; is not important to the predic-
tion of any output variables in the following stages.
Furthermore, £ ||@®||* is added for the general L, pen-
alty to prevent overfitting. We will discuss how to
identify the most important input variable for each
individual output variable in Section 4. These regular-
ization terms enforce that only some of the input vari-
ables or hidden variables are used in the prediction,
which models the weakly correlated patterns and
improves the interpretability of the model. Finally, we
will use the validation prediction error to select the
best tuning parameters /4, 4 and 7.

3.2.2. Robust regression

The most commonly defined loss function is the sum
of square error (SSE) loss defined as Li(e) = |e||*.
However, the proposed DMMTL is a multi-task learn-
ing framework that focuses on predicting multiple
tasks (i.e., quality variables) simultaneously. In reality,
due to the lack of sensing powers, many output varia-
bles simply cannot be predicted by the input variables



no matter what models we use. Using these non-inform-
ative quality variables may not help or even corrupt the
training results. Here, the goal is to derive the loss func-
tion such that the model is robust to these unrelated
tasks or achieve a better balance between tasks.
Therefore, we will compare the use of the Huber loss
function Li(e) = p(e) as defined in Equation (7) with
the traditional sum of square loss function.

2 Y
P <2

ple) = ¥ . (7)
Vel — 1 le] > 5

Huber loss can be used instead of the mean-squared
error. The Huber loss function uses a linear function
when the difference is large which enables a more
robust estimation. Furthermore, we find that it can also
help the model identify and focus more directly on the
related output variables by being more robust to the
unrelated output variables. We will discuss how to opti-
mize the model parameters efficiently in Section 3.3.

3.3. Optimization algorithm

It is worth noting that problem (5) has a non-smooth
loss function penalty such as A,|[W[]|, ;. In literature,
the stochastic sub-gradient algorithm can be used to
handle the non-smooth penalty. However, the conver-
gence speed of the stochastic sub-gradient algorithm
is typically slow. Therefore, to address the non-
smooth loss function, we propose to combine the
stochastic proximal gradient algorithm and block
coordinate algorithm for efficient optimization.

To efficiently optimize the problem, we will discuss
the use of the stochastic proximal gradient as follows.
First, we will first establish the equivalency of the pro-
posed algorithm by introducing another set of outlier
variables A = {ay;}, ;. Here, aj; represents the out-
lier in stage k and sensor j. If a; ; = 0, it implies that
there is no outlier in stage k and sensor j for the cur-
rent sample. However, if a;; # 0, it implies that the
outlier occurs for this sample.

Proposition 1. Solving @ in (5) will give the same
solution as solving @ in (8).

A
ming, {a,} £(@, A) + Al W ll,, + 5||®||2

+7 ) llakll (8)
kyj

where L(0©, A) =3 ||y — gij(he; ©)
loss function, A = {ax,j} ;-

—ay||® is the
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It worth noting that both y;; and ay; are scalar if
only a single sample is used. However, if multiple
samples are used, yi; and ay; are vectors. Please see
Appendix D for more details to generalize the pro-
posed methods to the mini-batch version.

The proof relies on the equivalency of the Huber
loss function and the sparse outlier decomposition
and has been proved in (Mateos and Giannakis 2012).
The benefit of using (8) is that R(®,.A) is continuous
and differentiable so that the back-propagation algo-
rithm can be used efficiently. We will show how to
handle non-differentiable components of 3~ . ||al[,
and |[WL |, by using Block Coordinate algorithm to
update each set of variables A, Wy, and ® (excluding
W,i) iteratively until convergence. Proposition 2
shows how to solve A and Wy, given the other varia-
bles are fixed.

Proposition 2. In the t™
©=0"

iteration, solving ay; given
in (8) can be derived analytically as

ay = S, (r — gy(hi; O)).

Given © = @V
defined as

and AY, the upper bound of (8),

min{w, xk}ﬁ(G) (1), A1)
oL@V, A") (t-1)
* Z zxk (

Wixk — Wi )
+EZ||wi’x’< zxk ‘ + Ax ZHwtkaz
ik
+_Z||wi,xk‘| .
2 i,k

in the proximal gradient algorithm, can be solved by
® L wen

19£(01, A)
Wik = S%(L+/1 Wik “I7 ow w

))-

a"Vi, xk

Here, S,(x) = sgn(x)(|x| — ), is the soft threshold-
ing operator, in which sgn(x) is the sign function and
0", A", and wg)tik are the corre-
sponding values of the model parameters in the '
iterations. L is the Lipschitz constance of the func-
tion L(-).

The proof is given in Appendix C. The gradient

E)L((*)('),A(t))
awi,xk

tion algorithm, which is detailed in Appendix D.
Finally, since the loss function is differential for the
defined as O

{Wi>Xk}i,k’ the standard stochastic gradient algorithm
and A =AY

x; = max(x,0).

can be computed from the back-propaga-

parameter O, excluding W=

can be applied given W = W as fol-

lows:
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L ) 40
6= JLOWLAT)
Pre)

>

where c is the step length. Finally, the mini-batch ver-
sion of the algorithm can also be derived with a sub-
set of samples {X", )"} _\+ in iteration t. More
details of using stochastic optimization algorithm is
also shown in Appendix D.

The algorithm is summarized in Algorithm 1.
Given the non-convex formulation of deep neural net-
works, there is no guarantee that the algorithm would
converge to the the global optimum. However, we
find out that optimization algorithms typically per-
form reasonably well. In case the training failed to
converge to a good optimum (measured by the valid-
ation accuracy), the training can be restarted with a
new random initialization point.

3.4. Tuning parameter selection

In this section, we would like to discuss the selection
of tuning parameters. Overall, we need to decide the
following tuning parameters: 1) Number of dimen-
sions of the hidden vector hy. For the dimensionality
of the hidden vector hy, in principle, we can vary the
number of neurons for hy for different stage k. Here,
we would like to mention that in this paper, we use
the same dimensionality of the hidden vector hy for
different stage k for simplicity. However, we will use
the regularization term to control the amount of
information that flows into the network. 2) Tuning
parameter A, and A. Here, the /, is used to control
the sparsity of the input variables. For example,
increasing 4, will lead to a more sparse selection of
the input variables at different stages. 4 is used to
regularize the L, norm of all the parameters. 3) The
depth of neural network architectures for each stage.
Again, in principle, we can use different layer depths
for different manufacturing stages. For example, if one
particular manufacturing stage is more complex, we
can actually increase the number of layers for such a
stage. In our simulation study and case study, we find
that a one-layer neural network for each stage is
enough to cover most of the cases.

Finally, to select all these parameters, we propose
to use a set of validation dataset {X"%, )"},
Furthermore, we will use a randomized search of the
tuning parameter space with the prediction accuracy
of the validation set ||J** — j)ml”2 as the metric to
select the best combinations of the tuning parameters.

4. Improve model local and global
interpretability

After the model is derived in Equation (5) and the
transition and emission are defined in Equations (6)
and (7), we will discuss how to improve the model
interpretability by developing novel techniques for
input variables identifications. Moreover, we aim to
develop an interpretation module in this chapter to
understand what happens exactly in the black-box
model. In literature, there are two types of interpret-
ability, global interpretability and local interpretability.
Global interpretability refers to understand how the
model makes decisions, based on a holistic view of its
features and each of the learned components such as
weights, other parameters, and structures, as defined
in Chapter 2.3.2 in (Molnar 2020). In the context of
MMS, global interpretability refers to identify import-
ant input variables that are important for any output
variables for all samples. We will discuss how to
achieve global interpretability in the proposed
DMMTL method in Section 4.1.

Local interpretability refers to understand how the
model makes decisions based on each individual sam-
ple. Local interpretability is quite important, given
that the different output variables for different sam-
ples may depend on different sets of input variables,
as defined in Chapter 2.3.4 in (Molnar 2020). In the
context of MMS, local interpretability refers to iden-
tify important input variables (e.g., process variables)
for each output variable (e.g., quality index) for each
individual sample (i.e., or a subset of samples). We
will discuss how to achieve the local interpretability in
the proposed DMMTL method in Section 4.2.

4.1. Improve model local interpretability

In this subsection, we will discuss how to achieve glo-
bal model interpretability by identifying the input var-
iables contributing to the prediction of the entire
MMS systems by examining the model coefficients. In
general, the L, ; penalty is able to pick up the most
important input variables for each stage automatically
and the non-zero value of the L, norm of different
columns of Wy, or namely ||w; «||,, correspond to
the most important input variables in stage k. These
important input variables are selected because they
contribute significantly to the entire MMS systems
(i.e., any output variable in the future stages). We will
then discuss how to achieve local interpretation by
identifying important sensing variables with respect to
each individual output sensor (i.e., diagnostics) for a
single sample.



4.2. Improve model global interpretability

In this subsection, we will discuss how to achieve local
model interpretability by identifying the important
input variables that relate the most to one specific
quality index for any particular subset of samples.
Motivated by (Apley and Zhu 2020), we propose the
gradient tracking technique to achieve the input vari-
able selection for a selected output variable for a par-
ticular sample for local interpretability. This is done
through tracking back the gradient of the identified
output variable yj; according to each individual input
variable by back-propagation through the output link-

age function yj; = gii(hi; 07) and the state transition

matrix hy = fi(hi_1, X6 ¥5_ 15 OZ) If we choose a linear
function for both g(-) and fi(-), the relationship
between yi; and each individual x; is also linear.
However, for a nonlinear output function and state
transition matrix, the exact functional form of each Vi
and input variable x can be quite complex. To analyze
the relationship between the input and output varia-
bles, we propose to use the Taylor expansion of yj;
according to the input variable x as follows:

Mk ay
ZZ@IZA ki

=1 i=1

+ z Z Z Z Ak s axk 8xk/ i Ay

+ O(Axki)

Vpq(x + Ax) =

)

Therefore, the relative 1mportance of a sensor can
be computed by the gradient 3 P The first-order gra-
dient information can be computed through the back-
propagation through the sequential stages, as

aypq _ 8ypq ahkr o athrl 6hk

= —_—. 1
an ahk/ 0hk/_1 (91’1]( an ( 0)

The detailed derivation for each component is
shown in Appendix D. Because the gradient %L,fz also

depends on the value of x;, to obtain the relative
importance of each input variable, we propose to
compute the sum of squares of the gradient averaging

Zn 1(()y"q) or a

selected number of defective samples for local inter-
pretation. It is worth noting that in many applica-
tions, the important sensors may not be consistent
across different ranges of xi. In this case, it may be
useful to divide the entire region of x; into different
windows and compute this average for each window.

over either the entire samples as
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5. Simulation

In this section, we simulate a multistage manufactur-
ing process with 9 stages. For the k" stage there are
n, = 90 input variables, denoted as x;=
(Xk, 1> s Xk,n,) and 1, = 6 output variables, denoted as
Ve = jyk 1>+ Yk n,)- For the input variable we simulate
Xk, S N(0,1). We will discuss how to generate the
output variables in three different scenarios. In all
simulation scenarios, we assume there is a hidden
state representation hy. We will assume three different
hidden state hy transition scenarios.

Case 1. One Unified MMS

In this case, we generate the MMS with linear hid-
den state transition model as hy = Wyx, + Uphi_ +
by. Furthermore, for each output variable y;, it is
generated from the y, = W hi + €x, where ¢ ~
N(0,0°) and ¢ = 0.5. Each element of W, is gener-

ated from normal distribution N (0, ﬁ) Each elem-
ent of by, Up, W, is generated from N (0, ﬁ)
where #y, is the dimensionality of hy. Furthermore, for
each stage k, we will generate 15 out of n, = 90 as
unimportant sensors for each stage by setting the last
15 rows of W, to be 0.

Case 2. Three Parallel Sensor
one MMS

n this case, we assume that the input variable x;
and output variable y, can be divided into three

Groups in

groups as Xy = {x,((g),g =1,2,3} and y, = {y,(cg),g =
1,2,3}. For each group, we generate n,(cg) = 30 input
variables and n}(,g) =2 output variables. For each

group g, the hidden state h,ig) follows its own transi-

tion and only relates to the corresponding output var-
iables yf(g) as hf(g> = Wi?x,ig) + U;ﬁh,&g_) L+ b,(cg) and
Y](cg) _ W(g)h(g) + e,(f),

element of Wyk) R

g=1, 2, 3. In this case, each

b,((g), and U,(ﬁ? is generated from the

1

(®)
ny,

normal distribution N(0, ), where n;g) is the

dimensionality of the hidden state h,(cg). Each element

of Wﬁ) is generated from N(0, %) and ¢ ~

X

N(0,6%). Furthermore, for each stage k and group g,
we generate 5 unimportant input variables for each

stage by setting the last 5 rows of Wi‘i) to be 0.
Case 3. Three Manufacturing Lines in one MMS
In this case, we assume that the state transition is
only related to the hidden state that is three-stage
apart hy = Wyxy + Upchi_3 + bg. In other words, the
three groups of output variables in the stage k=1, 4,
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7, k=2, 5, 8 k=3, 6, 9 are correlated within the
group but independent from each other. However,
this relationship is assumed to be unknown. We gen-
erate n, = 90 input variables and n, = 6 output varia-
bles in each stage. Each element of W, is generated

from normal distribution N (0, ﬁ) Each element of

by, Upi, Wi is generated from N (0, ﬁ)’ where ny, is

the dimensionality of hy. Furthermore, for each stage
k, we generate 15 unimportant input variables for
each stage by setting the last 15 rows of W, to be 0.

In all cases, we assume that the relationship
between different stages and different sensing variables
are not known. The goal is to predict each output
variable yj, given the input variables up to stage k,
denoted by xi,...,x; without relying on the specific
relationship between stages. Finally, we divide the
data into training (x”,y") and testing (x",y") and use
the relative mean of squared error (RMSE)
S It — 5P/l — I for - performance
evaluation. If RMSE is smaller than 1 it means that
the estimator is able to get some signals by beating
the naive predictor as the training mean. A smaller
RMSE indicates better performance. For benchmark
methods, we will compare the proposed MMS model
framework with other prediction methods that focus
on modeling each single input variable individually.
The modeling methods we are comparing are linear
regression (LR), elastic net (EN), random forest (RF)
and multi-layer perceptron (MLP). We will also
include the stream of variation (SoV) as an oracle
method since it assumes the true transition and out-
put function is known. For the MLP, we build a 2-
layer fully connected neural network to link the input
variables up to stage k to each output variable y;. We
also compare with another Multi-task learning
method, namely the Multi-task Elastic Net (MEN),
which combines the MTL to model the multivariate
response in each stage y, and elastic net for variable
selection. MEN assumes that the same variables
should be selected for different tasks/sensors in each
stage. For more details about MEN methods, please
check the Appendix. To be fair, we will look at the
supervised learning models to predict the output sen-
sors in the last stage and look at the magnitude of the
model coefficients for each sensor. The results are
shown in Table 2.

From Table 3, we see that DMMTL is able to
obtain the smallest RMSE in all cases compared
to other benchmark methods. This superiority is due
to the following three reasons: 1) Benefit of modeling
the multiple output variables jointly. MEN models all

Table 2. RMSE.

Sensor # 16 33 75 132 197
DMMTL 0.12 0.07 0.05 0.37 0.73
MEN 0.59 0.76 0.83 1.21 0.95
EN 1.00 0.89 0.09 1.00 0.98
RF 0.39 0.65 0.41 7.73 0.83
MLP 0.16 3.94 0.32 2.84 7.33

Table 3. Prediction RMSE and standard deviation.

RMSE
Case 1 Case 2 Case 3
DMMTL 0.090 (0.037) 0.138 (0.060) 0.134 (0.057)
MEN 0.239 (0.134) 0.192 (0.108) 0.166 (0.072)
LR 0.577 (0.632) 0.666 (1.173) 1.213 (1.653)
EN 0.273 (0.162) 0.150 (0.090) 0.273 (0.127)
RF 0.863 (0.079) 0.768 (0.123) 0.822 (0.085)
MLP 0.728 (0.266) 0.808 (0.330) 1.006 (0.413)

output variables in each stage jointly by assuming that
these model coefficients share the same sparsity struc-
ture, which can often lead to better modeling accur-
acy. This benefit can be seen in Case 3 by comparing
the RMSE of MEN, about 0.166, with the RMSE of
EN, about 0.273. However, we have to mention that
in the case when the output variables are not corre-
lated, this could lead to a worse result. For example,
in Case 2, there are 3 different variable groups in each
manufacturing stage and EN achieves the RMSE of
0.150, which is better than MEN with the RMSE as
0.192). 2) Benefit of jointly modeling the manufactur-
ing stages. MEN models do not model the output var-
iables in all stages jointly like DMMTL. In all cases,
DMMTL achieves a smaller RMSE than that of MEN.
For example, in Case 1, DMMTL achieves an RMSE
of 0.090, which is smaller than the second best,
namely the MEN, which achieves RMSE of 0.239.
This shows the advantage of modeling all output vari-
ables jointly in all stages. 3) Benefit of sparsity penalty
for feature selection. This benefit can be seen clearly
by comparing the EN with LR and MLP. Without any
sparsity constraint, both MLP and LR perform badly
with a much larger variance due to the model over-
fitting. In comparison, EN clearly outperforms these
two methods in all cases.

To understand how the model works, we also plot
the RMSE of the top 3 methods, namely EN, MEN
and DMMTL in Figure 3. We can conclude that in
Case 1, DMMTL is able to keep a consistent RMSE
over all manufacturing stages due to the information
provided by the output variables in the intermediate
stages. However, EN and MEN normally demonstrate
an increasing trend of the RMSE over stages. The rea-
son for this is that for later stages, the number of
input variables increases dramatically. Without the
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(a) Case 1
Figure 3. RMSE according to each stage.

guidance of the output variables in the intermediate
stages, both EN and MEN cannot find the important
variables easily. In Case 2, the RMSEs of all methods
increase over the stages due to the decrease in
dependency between the manufacturing stages.
However, DMMTL still outperforms others. In Case 3,
DMMTL has a slightly larger error compared to MEN
in the initial stages. The reason for this is that the first
three stages in Case 3 are actually completely inde-
pendent. However, DMMTL is forced to learn a
dependency between these stages, which could lead to
a worse result. When the stages become dependent
after Stage 3 (e.g., stage 4 is related to stage 1, and
stage 5 is related to stage 2), DMMTL is able to
quickly exploit this dependency and outperform all
other benchmark methods.

Furthermore, we would like to compare the input
variable selection accuracy for Case 2 and Case 3 for
the last output variable in the last stage (Stage 9). It is
worth noting that only the proposed method, EN and
MEN, are able to perform the feature selection by
selecting the non-zero elements of the model due to
the sparsity penalty. Other benchmark models, such
as LR, RF, and MLP cannot perform variable selection
naively. Recall that the data are already normalized to
mean 0 and variance 1. For LR, we will use the abso-
lute value of the model coefficient directly for the
variable importance score. For MLP, we will use only
the norm of the model coefficient of the first layer
(connected to the input variables) as the input vari-
able importance score. For RF, we propose to use the
feature importance metric computed by the average
accuracy gain of each split according to each individ-
ual variable. The result of the percentage of the input
variable identification is shown in Table 4.

To evaluate the variable selection accuracy, we can
view the input variable identification problem as the
classification problem and we also compute the preci-
sion, recall, and AUC score in Table 4. Precision is
defined as the percentage of identified variables that
are actually important. Recall is defined as the

Stage Stage

(b) Case 2

Table 4. Input variable identification accuracy.

Precision Recall AUC

Case 2 Case 3 Case 2 Case 3 Case 2 Case 3
DMMTL 0.795 0.867 0.515 0.871 0.810 0.958
MEN 0.677 0.834 0.280 0.671 0.633 0916
LR 0.143 0.724 0.022 0.3511 0.486 0.689
EN 0.189 0.752 0.031 0.404 0.465 0.706
RF 0.167 0.589 0.027 0.191 0.463 0.599
MLP 0.333 0.348 0.071 0.071 0.503 0.526

percentage of important variables that are actually
identified. AUC is defined as the area under the
receiver operating characteristic curve. The threshold
to determine the important input variable is set to
maintain the false positive rate as 5 percent. From
Table 4, we can conclude that DMMTL is able to
accurately identify the input variables compared to
other benchmark methods in both Case 2 and 3 with
the highest precision, recall, and AUC score. MEN
performs the second best, due to the ability to use
information from multiple output sensors jointly
within each stage. MEN is especially able to achieve a
much higher recall score than the other benchmark
methods, showing the strength of a multi-task learn-
ing framework. To better understand how each
method performs feature selection, we also plot the
feature importance score computed by each method
in Figure 4. From Figure 4, we can conclude that
DMMTL is able to use the least number of input vari-
ables to achieve the best prediction power compared
to all other benchmark methods due to the group
lasso penalty.

6. Case study

In this case study, we apply DMMTL to model the
diaper assembly process introduced in Section 1. We
divide the whole converting process into five stages
and identify 484 process variables (e.g. temperature,
pressure, etc.) as inputs and 200 quality measurements
(e.g. product dimensions) as output variables in the
model. Due to the complex physical process involved,
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DMMTL
MEN
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RF
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(a) Case 2

Figure 4. Identified important sensor for Case 2 and Case 3.

it is very hard to derive the physics relationship
between the input variables and output variables. The
detailed information of the number of input and out-
put sensors in each stage is shown in Table 5. Due to
the privacy constraint, the name of the stages and the
name of the sensors can not be given here.
Furthermore, to increase the prediction power of our
model, we also use the output measurements from the
previous stage as input variables to the next stage.
Because the manufacturing data is very noisy, we use
both the Huber loss function and the traditional
residual sum of squares for comparison. We also com-
pare DMMTL with several benchmark methods,
including the multi-task elastic net (MEN), ridge
regression (RR), elastic net (EN), random forest (RF),
and multi-layer perception (MLP). We do not include
linear regression (LR) in the comparison because its
parameter estimation is numerically unstable and it
can also be seen as a special case of RR without add-
ing penalties.

One interesting phenomenon in the realistic case
study is that not all output variables can be predicted
well based on the input variables. Given the complex-
ity of the manufacturing process, even with 484 input
variables some of the important characteristics of the
underlying process are still not measured by the sen-
sors. Therefore, we try to find a model that can
achieve excellent predictive power for most of the out-
put variables. Furthermore, even knowing which out-
put variables cannot be predicted is useful
information. This could guide adding more sensors or
increasing sample frequency. Finally, for more compli-
cated cases, we used two-layer neural networks for
both emission and transition functions.

To compare how the methods are able to identify
related output variables, we first compute the RMSE
of all 200 output variables. Recall that the RMSE is
defined as 37, 3 |y, = 715/, — 31| and if
its value is smaller than 1 then that indicates the

True
DMMTL
MEN
LR

EN

RF

MLP

S1 S2 S3 S4 S5 S6 S7 S8 S9
(b) Case 3

Table 5. Number of input and output variables for
each stage.

Stage 1 Stage 2 Stage 3  Stage 4  Stage 5
Input Variables 110 86 165 120 0
Output Variables 20 64 10 90 16
Table 6. Quantiles of Prediction RMSE.
Quantile 20% 40% 50% 70%
DMMTL (Huber) 0.29 0.73 0.87 1.01
DMMTL (MSE) 0.39 0.71 0.81 0.99
Multi-task Elastic Net 0.79 0.88 0.92 0.99
Elastic Net 0.60 0.91 0.99 1.00
Random Forest 0.53 0.79 0.93 1.1
Multi-layer Perception 0.76 1.83 2.59 5.68

model can achieve a better prediction than the naive
predictor based on the mean response value. To
evaluate the performance of different methods for
identifying the important variables, we first compute
the 20 percent, 40 percent, 50 percent and 70 per-
cent quantiles of the 200 RMSE scores in Table 6 for
200 output variables for each method. We then choose
thresholds on the RMSE ranging from 0.05 to 0.95
and define the number of output variables with the
RMSE score smaller than the threshold as the number
of identified related output variables. In Figure 5, we
plot the number of identified related output variables
for different thresholds.

Table 6 shows that DMMTL can achieve a lower RMSE
over all quantiles 20 percent, 40 percent, 50 percent and
70 percent. In particular, for the 20 percent quantile,
DMMTL with Huber and mean square error loss
function achieve the RMSE of 0.29 and 0.39, which
indicates the strong prediction power (i.e., much
smaller than 1). Furthermore, when comparing the
median of the RMSE, only the proposed methods are
able to achieve RMSE lower than 0.9. This can also be
seen from Figure 5 that DMMTL outperforms all
other benchmark methods due to the ability to com-
bine the modeling with multiple output variables in



1004 — DMMTL_Huber
--- DMMTL_MSE
" —— MEN
@0
§ 80_ ..... EN
3 -—- RF
= MLP
2 60
=}
o
T 40
£
[}
2 20
0-
0.0 0.2 0.4 0.6 0.8

Threshold of RMSE

Figure 5. Number of identified important output variables
with different threshold on the prediction RMSE.
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different stages in a unified model. Furthermore, from
Table 6, we see that DMMTL with the Huber loss
function is able to outperform the mean square error
loss function at the 20 percent and 40 percent quan-
tiles or when the threshold is small as shown in
Figure 5. The reason is that the Huber loss function is
more robust to outlier sensing variables and therefore,
will focus more on reducing the loss functions of the
output variables which are truly correlated to the
input variables. RF and EN’s performances follow
immediately after our proposed method because they
have the ability to select important variables. MLP, in
general, performs worse due to the lack of penaliza-
tion and feature selection. MEN performs the worst in
this example since there are many uncorrelated output

(a) DMMTL (b) MEN

(c) EN

(d) RF (e) MLP

(f) DMMTL (g) MEN

(h) EN

(i) RF (j) MLP

(k) DMMTL (1) MEN

(m) EN

(n) RF (o) MLP

(p) DMMTL (q) MEN

(r) EN

(s) RF (t) MLP

(u) DMMTL (v) MEN

(w) EN

(x) RF

(v) MLP

Figure 6. Example of Sensor Prediction (1st row: sensor 16, 2nd row: sensor 33, 3rd row: sensor 75, 4th row: sensor 132, 5th row:

sensor 197).



14 H. YAN ET AL.

variables even in the same stage, which violates the
assumption of MEN that the sparsity structure for all
input variables in the same stage is the same.

To demonstrate the performance of the prediction
accuracy for all methods, in Figure 6 we plot the pre-
dicted signals and the true signal for the output varia-
bles for both training and testing data. A dashed black
line is added in each plot to separate the training and
testing data. We select output sensors 16, 33, 75, 132,
197 for demonstration in stage 1, 2, 3, 4, 5, respect-
ively. The RMSE according to these output sensors
and the selected number of input variables of each
method are shown in Tables 3 and 7.

From Figure 6 and Table 7, we first conclude that
these output variables share similar patterns. For
example, Output 16 has a meanshift during time 1961
and Output 33, 75, and 197 has a meanshift at time
2813. Output 132 have meanshifts at both time points.
DMMTL is able to achieve the least RMSE among all
methods due to its ability to combine all output sen-
sors in a unified model, therefore leading to a better
model for all output sensors. EN also achieves good
performance for Output 16 and 75. For Output 33

Table 7. Number of input sensors identified.

Sensor # 16 33 75 132 197
DMMTL 16 20 21 21 21
MEN 35 35 35 35 36
EN 18 18 18 16 16
RF 21 116 151 30 342
MLP 119 225 225 593 682

(d) Output 132

and 132, only DMMTL is able to accurately predict
the trend. RF sometimes does not capture the trend
correctly. MLP typically overfits the data, and there-
fore it normally produces much larger noises in the
testing data. MEN typically underfits the data due to
its strong assumption that the models for output sen-
sors in the same stage must share the same sparsity
patterns. In terms of the number of input sensors
identified, typically EN is able to identify the least
number of input sensors, followed by DMMTL and
MEN. MLP is not able to perform feature selection,
which leads to severe over-fitting. In conclusion, we
see that DMMTL is able to achieve the least RMSE
with a relatively small number of selected
input sensors.

Finally, in Figure 7, we also plot the top three
important input variables identified for all these five
output variables. Among them, Input 744 can explain
the meanshift at time 2813 for all output variables
and Input 747 can explain some of the other small
meanshifts for Output 16 and 33. Finally, Input 733
and Input 67 are able to explain the small increasing
trend in Output 33 and 197, respectively. We have
validated that the selected input variables indeed can
explain the variation for the selected output variable
from the domain knowledge.

7. Conclusion

Modeling complex multistage manufacturing systems
is an important research topic for accurate process
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745

497

e oA Al A e

(c) Output 75

(e) Output 197

Figure 7. Top three important input variables identified by DMMTL for Output 16, 33, 75, 132 and 197.



prediction, monitoring, diagnosis and control. This
paper proposes a deep transition model with multi-
task learning to jointly model all output sensing varia-
bles with the input sensing variables according to the
sequential production line structure. Furthermore,
since the dimensionality of the input sensing variables
and output sensing variables can be very high, we sug-
gest reducing the dimensionality by utilizing the
sparse regularization and robust Huber loss function
to select the important sensing variables. DMMTL has
been tested through several simulated studies and a
realistic case study of a real diaper manufacturing sys-
tem. The results demonstrate that it achieves a better
prediction accuracy as well as a better local and global
interpretability by identifying important relationship
between input and output sensing variables.

There are several future research directions that we
would like to investigate. One is to extend this
method to heterogeneous measurements with more
stage dependencies (e.g., tree structures) other than
the production line set up in series. Another extension
is to study the proposed algorithm under the stochas-
tic transition of the hidden variables similar to the
stream of variation models.
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Appendix
A. Relationship to stream of variation

The foundation of SoV methodology is a mathematical model
that links the output variables (e.g., key quality characteristics
of the product) with key input variables (e.g., key process
sensing variables) through the state space representation.

hy = Waxi + Upchiy + enr, i = Vihy + ey (11)

The variable hy is the state vector representing the out-
put variables at stage k. ejx and e are the modeling error
and measurement error, respectively. The coefficient matri-
ces Wi, Ui, and Vi are determined by product and pro-
cess design information at stage k. W, represents the
impact of the new stage process to the product. Uy repre-
sents the transition from stage k —1 to stage k. Vi is the
measurement matrix, which links the hidden state h; and
the output y,.

These mathematical models have achieved great success
in MMS modeling by integrating the product and process
design information and modeling the variation propagation
in the MMS. However, the SoV methodology assumes that
the key output variables y, and key input variables x; have
been correctly identified. Furthermore, it requires the matri-
ces Wy, Ui, and Vi are known in each stage k, which is
not possible if the system is too complex. Finally, it assumes
the linear transition matrix between states which could be
an over-simplification in many real cases. However, SoV
assumes that the transition between the state variables are
known as the linear stochastic function. The proposed
DMMTL assumes that the transition is unknown nonlinear
functions. Extending the framework to stochastic functions
would be one of our future work.

B. Relationship to recurrent neural network

The formulation of RNN methodology is a neural network
that links the output variables y,, input variables x; in a
neural network. More specifically, at each time k, the output
Y, and input x; are linked together via the hidden state hy
in (Equation (12)).

h;, = a(Wxxk + Uph_ + bh),yk = Vyhk + by (12)

In RNN, it is typically assumed that the system is time-
invariant, which means the model parameters W,,U,,V,
are independent of k. RNN has achieved great success in
machine translation problems (Graves, Mohamed, and
Hinton 2013a), handwriting recognition (Graves and
Schmidhuber 2009) and speech recognition (Graves,
Mohamed, and Hinton 2013b). Furthermore, model param-
eters W,,U,,V, can be learned in an end-to-end fashion
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via the combination of back-propagation (LeCun et al.
1990) and stochastic gradient descent (Bottou 2010).

However, the major limitation of using RNN in MMS is
that different manufacturing stages are inherently different.
The underlying physics is entirely different for each stage
which not only results in the different transition matrix
W,, Uy, and V,. RNN also assumes the same set of varia-
bles are predicted in each time. However, in MMS, different
quality inspection sensors are set up in each manufacturing
stage. Finally, RNN is a complicated model and can not
achieve input and output variable selection as the pro-
posed approach.

C. Proof of Proposition 2

Proof. Considering the loss function

My, k

ming, [ — gki(hk; ©) — al[* + 2 > [[wixkll,
K i=1
*H®|| +”/Z‘|“k1”1 (13)

kyj

Here, the loss function in (13) can be decoupled into
each pair of (k, j) individually. Therefore, each a;; can be
solved individually by optimizing

|y — g (hy; ©) — ag| > + 7l|al,

and can be solved by
agy = ;2 (v — gi(hi; @)),

To optimize the w; , we will follow the derivation of
the proximal gradient algorithm the Taylor expansion of

L(0,A) as
L(O,A) < LO, A)

(t=1)

i E | |Wi, xk

wi=D
lxk H

(14)
L is the Lipschitz constance of £(®,.A). Therefore, we

aim to minimize the upper bound of £(0, A) + R(0,A)
as follows:

oL©" Y, A -

ming,, k}E( (=1 4) +Z(8w—xk)(wi xk—W,(,txkl))
ZHWi,kaZ

2%

£33 Wi — Wi P + 2wl +
ik
Here, we find that the optimization can be decoupled to
each individual (i, k) as
oy 106D,
8w1,xk

miniwese = 777 (Wi — 7

N, k

oI

and can be solved in closed form as

190L(01Y, A))

L _
wit) =S4 ( (w(f 1) — ).

1xk Ty m i, xk _Z

D. Back-propagation along the sequential stages
over parameters 0y

We will discuss how to efficiently optimize the model

parameters ® via stochastic gradient descent. Suppose we
denote X", )" as the n™ sample of the entire dataset with

n=1,...,N,, then the loss function can be decomposed as
1 N, K Ny
L(0;{X},{V}) = > logP(ylh: ©).  (15)
Ny n=1 k=1 j=1

If the number of samples N, is large, averaging the gra-
dient over the entire dataset is normally slow. To address
this, we propose to apply the mini-batch stochastic gradient
algorithm, which is widely used to optimize large-scale
machine learning problems. In each iteration f, we can
choose a subset of samples N, € {1,...,N,}, where the gra-
dient is only evaluated as the average of the subset of the
entire samples in (16):

OL(x", Y 0Y)

INtl v 00

@ (t+1) ®(t) (16)

Now we will discuss how to compute the gradient
according to the model coefficients @. @ = {0,,...0}.
First, the likelihood can be decomposed into different sam-
ples, stages, and output variables due to the conditional
dependency of the hidden variables hy in (17).

Ny K MK

ZZZ@@ log P(yp,[he; ) (17)

8 Lixy:®
80 n=1 k'=
Therefore, we need to compute 55- logP(yk, |hy; 6%). For
k' <k, it is obvious that
O—&ClogP(yk,j|hk/, #) =0. However, if kK >k we can

. Olog P(y", [hy;0¢)
compute the gradient 54’51“‘

dlog Py, [hy:0%)  OlogP(y, [hyi6}) op, Ohy,, Oh, .

0c = ah:, Bhk/k o ohe 00, © DY plugging
in this into (17), we can derive the gradient according to
the state transition parameters (18).

recursively  as

B
—L(x,y;
o0 (xy;0) =
n, i n 18
K yz’k(‘?logp(yk/jlhkw(fi) Ohg Oy Ohy (18)
K=k =1 ohy ohp_, Ohy aﬂh

Finally, to derive the gradient according to output coeffi-
cient 6, we can derive
& Olog P(yjlhy; )

0

—L(x,y;0) = By~ — 19

oo L27:©) > 0 (19)
j=1 k

We would then discuss how to compute the gradient

dlogP(yyhisf)  OlogP(yyhisy)  oh,  oh

based for Dh de% £, 8—02, T
putation is shown as follows:

. The com-



o Emission layer

1og P(yy|h; %) 9gij (h; )

= 2(gij(hi; 65) — yx)

ahk ahk
dlog P(yylhi; 0F) _ Ogij(hy 05)
aﬂi = z(gkl(hkvei) _}’k) 80%

o Transition layer

8hk _ 8fk(hk,1,xk; 02) % _ 8fk(hk7hxk§ 02) %
8hk_1 8hk_1 ’ 802 802 ’ an
_ Of(hg1, 3 o)
8Xk

Depending on the different function forms of fi(-) and
gk(+), the gradient can be computed.

E. Multi-task elastic net

In this section, we will briefly review the multi-task elastic
net methods in the literature. Here, Y € R™* is the
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multivariate output, where n is the number of the samples
and k is the number of tasks. X € R™? is the input varia-
bles and p is the number of feature variables. W € RP* is
the regression coefficient matrix.

Finally, to impose the similarity between multiple tasks,
the following regularization is used as follows.

1 1
%HY—XWII2 +oflIWlly, +5a(l - BIWIP.

Here, |[W]|,, =3, W2 is the sum of norm of
each row of W, where \(W\t,l encourages the same
sparsity patterns among all tasks. For example, it is easy
to show that when the number of tasks equals to one,
the problem MEN reduces to the L;-norm regularized
optimization problem (or Lasso). When there are mul-
tiple tasks, the weights corresponding to the i-th feature
are grouped together via the L,-norm of W.
Furthermore, ||[W||> is used to further regularize the
model to avoid the multicollinearity of the task input
matrix X. « and f§ are two tuning parameters control the
level of regularization.
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