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Toward a better monitoring statistic for profile monitoring via variational
autoencoders

Nurettin Dorukhan Sergin and Hao Yan

Arizona State University, Tempe, Arizona

ABSTRACT
Variational autoencoders have been recently proposed for the problem of process monitor-
ing. While these works show impressive results over classical methods, the proposed moni-
toring statistics often ignore the inconsistencies in learned lower-dimensional representations
and computational limitations in high-dimensional approximations. In this work, we first
manifest these issues and then overcome them with a novel statistic formulation that
increases out-of-control detection accuracy without compromising computational efficiency.
We demonstrate our results on a simulation study with explicit control over latent variations,
and a real-life example of image profiles obtained from a hot steel rolling process.
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dimensional nonlinear
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1. Introduction

Profile monitoring has attracted a growing interest in
the literature in the past decades for its ability to con-
struct control charts with much better representations
for certain types of process measurements (Maleki,
Amiri, and Castagliola 2018; Woodall 2007; Woodall
et al. 2004). A profile can be defined as a functional
relationship between the response variables and
explanatory variables or spatiotemporal coordinates.
In this work, we focus on the case where the profiles
generated from the process are high-dimensional, that
is, the number of such explanatory variables or spatio-
temporal coordinates are large. Specifically, we focus
on the case where profiles are observed in a high-
dimensional space, but profile-to-profile variation lies
on a nonlinear low-dimensional manifold. Our moti-
vating example of such high-dimensional profiles is
presented in Figure 1, in which we exhibit a sample of
surface defect image profiles collected from a hot steel
rolling process.

In literature, profile monitoring techniques can be
categorized by their assumptions on the type of func-
tional relationship. For example, linear profile monitor-
ing techniques assumed that the profiles can be
represented by a linear function. The idea is to extract
the slope and the intercept from each profile and
monitor its coefficients (Zhu and Lin 2009).
Regularization techniques can also be used in linear
profile estimation. For example, Zou, Ning, and Tsung

(2012) utilize a multivariate linear regression model for
profiles with the LASSO penalty and use the regression
coefficients for Phase-II monitoring. However, the lin-
ear assumption can be quite limiting. To address this
challenge, nonlinear parametric models are normally
proposed (Jensen and Birch 2009; Maleki, Amiri, and
Castagliola 2018; Noorossana, Saghaei, and Amiri 2011;
Williams, Woodall, and Birch 2007). These models
assume an explicit family of parameterized functions
and, their parameters are estimated via nonlinear
regression. In both cases, the drawback of both linear
and nonlinear parametric models is that they assume
the parametric form is known beforehand, which might
not always be the case in practice.

Another large body of profile monitoring research
focuses on the type of profiles where the basis of the
representation is assumed to be known, but the coeffi-
cients are unknown. For instance, to monitor smooth
profiles, various nonparametric methods based on
local kernel regression (Qiu, Zou, and Wang 2010;
Zou, Tsung, and Wang 2008) and splines ( Chang
and Yadama 2010; Yan, Paynabar, and Shi 2018 ) are
developed. To monitor the nonsmooth waveform sig-
nals, a wavelet-based mixed effect model is proposed
(Paynabar and Jin 2011). However, for all the afore-
mentioned methods, it is assumed that the nonlinear
variation pattern of the profile is well captured by a
known basis or kernel. Usually, there is no guidance
on selecting the right basis of the representation for
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the original data and it requires many trials and errors
to find the right basis.

In the case that the basis of HD profiles is not
known, dimensionality reduction techniques are widely
used. Principal component analysis (PCA) is arguably
the most popular method in this context for profile
monitoring because of its simplicity, scalability, and
good data compression capability. In Liu (1995), PCA
is proposed to reduce the dimensionality of the stream-
ing data where T2 and Q charts are constructed to
monitor the extracted representations and residuals,
respectively. To generalize PCA methods to monitor
the complex correlation among the channels of multi-
channel profiles, Paynabar, Zou, and Qiu (2016) pro-
pose a multivariate functional PCA method and apply
change point detection methods on the function coeffi-
cients. Along this line, tensor-based PCA methods are
also proposed for multichannel profiles, examples
including uncorrelated multilinear PCA (Paynabar, Jin,
and Pacella 2013) and multilinear PCA (Grasso,
Colosimo, and Pacella 2014), and various tensor-based
decomposition methods (Yan, Paynabar, and Shi 2015).

The main limitation of all the aforementioned
PCA-related methods is that the expressive power of
linear transformations is very limited. Furthermore,
each principal component represents a global variation
pattern of the original profiles, which is not efficient
at capturing the local spatial correlation within a sin-
gle profile. Therefore, PCA requires much larger
latent-space dimensions than the dimension of the
actual latent space, yielding a suboptimal and overfit-
ting-prone representation. This phenomenon hinders
profile monitoring performance.

A systematic discussion of this issue is articulated in
Shi, Apley, and Runger (2016). In that work, the authors
identify the problems associated with assuming a close-
ness relationship in the subspace that is characterized by
Euclidean metrics. They successfully observe that the
intra-sample variation in complex high-dimensional cor-
pora may lie on a nonlinear manifold as opposed to a
linear manifold, which is assumed by PCA and related
methods. However, the authors only focus on applying
manifold learning for Phase-I analysis, while the Phase-
II monitoring procedure is not touched upon.

Figure 1. A collection of 64 by 64 image profiles taken from a hot steel rolling process.
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In recent years, we observe a surge in deep learn-
ing-based solutions to the problem. For instance, deep
autoencoders have been proposed for profile monitor-
ing for Phase-I analysis in Howard, Apley, and
Runger (2018). In another work, Yan et al. (2016)
compared the performance of contractive autoen-
coders and denoising autoencoders for Phase-II moni-
toring. Zhang et al. (2018) proposed a denoising
autoencoder for process monitoring. Aside from
deterministic deep neural networks, only three works
(Lee et al. 2019; Wang et al. 2019; Zhang et al. 2019)
proposed to use deep probabilistic latent variable
models, specifically, variational autoencoders (VAE),
for Phase-II monitoring. All the monitoring statistics
in those works differ slightly, but they are all exten-
sions of the classic T2 and Q-charts of PCA. We argue
that there is room for improvement for the monitor-
ing statistic formulations in those works for several
reasons, especially when high-dimensional profiles are
considered. In this work, we propose a new monitor-
ing statistic formulation to address this issue.

The contributions of this work are as follows:

� We compare the existing monitoring statistics pro-
posed by previous works on VAE-based monitor-
ing and unify them into the latent-space and
residual-space monitoring statistics. We also prove
the mathematical equivalency of these statistics
with the classical T2 and Q-charts of PCA in the
linear setting.

� We highlight an important shortcoming of neural
network-based encoders and how it negatively
impacts the efficiency of statistics that are derived
exclusively from learned latent representations. We
demonstrate this on a carefully designed simulation
study with explicit control over the actual
latent variations.

� We explain why residual-space monitoring statis-
tics can cover most types of process drifts in both
conceptual illustration and real simulation study.

� We propose two approximations on the residual-
space monitoring statistics leveraging on the first-
order and second-order Taylor expansion that
strikes a better balance between detection accuracy
and computational feasibility than previously pro-
posed similar statistics.

� We support our claims on both simulation and
real-life case study profile datasets.

The rest of the article is organized as follows:
Section 2 first introduces VAEs and reviews trad-
itional T2 and Q charts of PCA as well as the existing

monitoring statistics proposed for VAE. Section 3
introduces our proposed monitoring statistic formula-
tion and the rationale behind how it tackles the short-
comings of existing formulations. Section 4 introduces
the simulation process used in this work as well as the
manifestations of the aforementioned shortcomings.
Finally, Section 5 demonstrates the advantages of the
proposed methodology on a real-life case study, using
images from a hot-steel rolling process.

2. Background

In this section, we review the VAE in Section 2.1. We
will then review the T2 and Q statistics for PCA meth-
ods in Section 2.2. Finally, we will briefly review the
existing works profile monitoring works utilizing the
VAE in Section 2.3.

2.1. Variational autoencoders

We will first review the VAE, which was first intro-
duced by Kingma and Welling (2014). VAE soon
became one of the most prominent probabilistic mod-
els in the literature. The Gaussian factorized latent
variable model perspective of VAEs is crucial to
understand the role of this model in the context of
profile monitoring. This is why we begin with an
introduction to latent variable modeling.

Let us assume we observe samples x 2 R
d in a

high-dimensional space, generated by a multivariate
random process that can be described by the density
function pðxÞ: We also believe that there is redun-
dancy in this observation and sample-to-sample vari-
ation can be explained well by a latent representation
z 2 R

r, where the latent dimension r � d: Latent
variable models are powerful tools to model such
complex distributions. The joint density pðx, zÞ is fac-
torized into the distribution of the latent variables
pðzÞ and the conditional distribution of observed vari-
ables given latent variables pðx j zÞ: A typical example
of latent variable models is when the joint distribution
is Gaussian factorized as in Eq. [1].

pðzÞ ¼ N ðz; 0, IrÞ
phðx j zÞ ¼ N ðx; lhðzÞ, r2IdÞ
phðx, zÞ ¼ phðx j zÞpðzÞ

: [1]

In the above formulation, the function lh : R
r !

R
d is a function parameterized by h, which describes

the relationship between the latent variables and the
mean of the conditional distribution. The Gaussian
prior pðzÞ is typically chosen to be standard multivari-
ate Gaussian distribution to avoid degenerate solu-
tions (Roweis and Ghahramani 1999) and conditional
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covariance is typically assumed to be isotropic r2Id to
avoid ill-defined problems. The aim is to approximate
the true density phðxÞ � pðxÞ and this approximation
can be obtained through marginalization:

phðxÞ ¼
ð
phðx, zÞdz:

A famous member of the family of models
described above is the probabilistic PCA (PPCA)
(Tipping and Bishop 1999). The parameters are opti-
mized via a maximum likelihood estimation frame-
work and it can be solved analytically since the
function lh is a simple linear transformation. This
enables reusing analytical results from solutions to the
classical PCA problem. The assumption of PPCA that
the latent and observed variables have a strictly linear
relationship is restrictive. In real-world processes, this
relationship is likely highly nonlinear. Deep latent
variable models are a marriage of deep neural net-
works and latent variable models that aim to solve
this problem. Deep learning has enjoyed a tremendous
resurgence in the last decade due to their superior
performance that was unprecedented for many tasks
such as image classification (Krizhevsky, Sutskever,
and Hinton 2012), machine translation (Bahdanau,
Cho, and Bengio 2014), and speech recognition
(Amodei et al. 2016). In theory, under sufficient con-
ditions, a two-layer multilayer perceptron can
approximate any function on a bounded region
(Cybenko 1989; Hornik 1991). However, growing the
width of shallow networks exponentially for arbitrarily
complex tasks is not practical. It has been shown that
deeper representations can often achieve better expres-
sive power than shallow networks with fewer parame-
ters due to the efficient reuse of the previous layers
(Eldan and Shamir 2016).

VAE is arguably the most foundational member of
the deep latent variable model family. The main dif-
ference between PPCA and VAE is that VAE replaces
the linear transformation with a high-capacity deep
neural network (called generative or decoder). This is
powerful in the sense that, along with a general-pur-
pose prior pðzÞ, deep neural networks can transform
such prior to model a wide variety of densities to
model the training data (Kingma and Welling 2019).
Unlike PPCA, these models will not have analytical
solutions due to the complex nature of the neural net-
work used. Like most other deep learning models,
their parameters are often optimized via variants of
stochastic gradient descent optimizers. The problem
becomes even harder given that the posterior
phðx j zÞ takes meaningful values only for a small

subregion within the latent space R
r: This makes sam-

pling from the prior pðzÞ to estimate the likelihood
prohibitively expensive. Both models work around
this problem using the importance sampling frame-
work (Bishop 2006, 532), where they introduce
another network (called recognition or encoder) to
approximate a proposal distribution q/ðz j xÞ – para-
meterized by / – which aims to sample latent varia-
bles from a much smaller region that is more likely to
produce higher posterior densities for a given input x.
The encoder is modeled as another Gaussian distribu-
tion q/ðz j xÞ ¼ N ðz;l/ðxÞ, r/ðxÞÞ where the mean
and standard deviation of the proposal distribution
are inferred via high capacity neural networks l/ and
r/, respectively.

One important output of a trained VAE is the like-
lihood estimator. Once the two networks are trained,
the log-likelihood log phðxÞ can be approximated by a
Monte Carlo sampling procedure with L iterations
(Kingma and Welling 2019, 30):

log phðxÞ � log
1
L

XL
l¼1

phðx, zðlÞÞ
q/ðzðlÞjxÞ : [2]

However, the Monte Carlo sampling procedure is
shown to be computationally inefficient and the evi-
dence lower bound (ELBO), which is deemed a proxy
to the likelihood, is often used as the objective to be
optimized.

ELBO ¢ log pðxÞ� �� KL q/ðz j xÞ jj q�ðzjxÞ
� �

¼ Ez�qh log phðx j zÞ þ KL q/ðz j xÞ jj pðzÞ
� �

,

[3]

In the equation above, KLð� jj �Þ denotes the
Kullback–Leibler divergence (KLD) between two dis-
tributions. The left-hand side is the quantity of inter-
est, while the right-hand side is the tractable
expression that guides the updating of parameters h,/
in an end-to-end fashion.

2.2. Review of T2 and Q statistics in PCA

We will then review the profile monitoring statistics
in the PCA. Profile monitoring via PCA is typically
done using the T2 and Q statistics (Chen et al. 2004).
The Q statistic for PCA is defined as the reconstruc-
tion error between the observed profile x and the
reconstructed profile ~x: The geometric interpretation
of Q statistics is that it quantifies how far the sample
is away from the learned subspace of in-control sam-
ples. T2 statistics on the other hand, quantifies the
shift along the directions of the most dominant prin-
cipal components.
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The T2 statistic and Q statistic for PCA are defined
formally as follows:

QðxÞ ¼ jj x� ~x jj 2

T2ðxÞ ¼ z>R�1r z ¼ x>WrR�1r W>
r x

[4]

where matrix Wr is the loading matrix, and R�1r is
the inverse of the covariance matrix when only the
first r principal components are kept. There are vari-
ous methods to choose r such as fixing the percentage
of variation explained (Chiang, Russell, and Braatz
2001, 41).

For processes with relatively small latent and
residual dimensionality, the upper control limits of
these statistics for the a percent Type-1 error toler-
ance is constructed by employing the normality
assumptions of PPCA (Chiang, Russell, and Braatz
2001, 43–44). However, using such measures for high-
dimensional nonlinear profiles is prohibitively error-
prone as both r and d will be much higher than the
assumptions of chi-square distribution can tolerate. As
an alternative, nonparametric methods are typically
used to estimate these limits, such as simple percen-
tiles or kernel density estimators.

2.3. Review of previously proposed monitoring
statistics proposed for VAE

In this section, we will briefly review several proposed
monitoring statistics for VAEs. Three works have
recently considered VAE for process monitoring, all
of which propose different statistic formulations for
monitoring. Zhang et al. (2019) propose H2, which is
basically the Mahalanobis distance of the mean of the
proposal distribution from standard Gaussian distribu-
tion.

H2 ¼ l/ðxÞ>l/ðxÞ: [5]

In another work, Lee et al. (2019) propose two sta-
tistics: T2 and SPE. For a given input x, a single sam-
ple is drawn from the proposal distribution
zðlÞ � q/ðz j xÞ which is used to reconstruct the input
using the generative model xðlÞ � phðx j zðlÞÞ: The
proposed test statistics in this work can be formalized
as follows:

T2 ¼ ðzðlÞ � �zÞ>S�1z ðzðlÞ � �zÞ
SPE ¼ jj xðlÞ � x jj 2

2
[6]

where �z and S�1z are estimated over a single pass of
the entire set of in-control samples. In their method-
ology, these two statistics work in combination and at
least one positive decision from either of the two sta-
tistics is enough to claim that the process is out-
of-control.

Finally, Wang et al. (2019) propose the R and D
statistics by focusing on the two major components of
the tractable part of the objective function of VAE
shown as in Eq. [3]. The D statistic is simply the KL
divergence between the prior and proposal. For R stat-
istic, like Lee et al. (2019), they employ summary sta-
tistics over samples from proposal but also claim that
sampling size can be fixed to one:

D ¼ KLðq/ðz j xÞ jj pðzÞÞ
R ¼ 1

L

XL
l¼1
� log qhðx j zðlÞÞ : [7]

SPE in and R are essentially the same quantities up
to a constant, which makes them identical in the con-
text of monitoring. This is why we will refer to them
as SPE/R throughout the rest of the article.

3. Methodology

In this section, we start by explaining how previously
proposed statistics for VAE-based monitoring are
modeled as extensions of their PCA-based monitoring
counterparts, in Section 3.1. Then, we will reveal the
pitfalls of this extension concerning the behaviors of
neural networks in Section 3.2. Against the backdrop
of these pitfalls, we will propose a novel monitoring
statistic formulation. Lastly, we will outline the imple-
mentation details of profile monitoring procedures
and neural network architectures we use in this study
in Sections 3.3 and 3.4, respectively.

3.1. Relationship of the monitoring statistics for
VAE and PCA

A common approach in the literature to tackle process
monitoring with VAE is to extend the definitions of
T2 and Q statistics of the PCA-based monitoring to
VAE. This is done by breaking the tractable portion
of Eq. [3] into two terms as follows:

QVAE ¼ Ez�qh log phðx j zÞ,T2
VAE

¼ KLðq/ðz j xÞ jj pðzÞÞ: [8]

Either these formulations or some variant of them
are typically used as the monitoring statistics. To
understand the rationale behind this, we will revisit
the assumptions of the model described in Eq. [1]. Let
us formally represent an out-of-control distribution as
a shift in pðxÞ: Since pðxÞ ¼ Ð

pðx j zÞpðzÞdz, we can
anticipate two sources: a shift in the latent distribution
pðzÞ or a shift in the residual distribution pðx j zÞ:
The two statistics are assumed to be connected to
these two sources: (1) a shift in the conditional
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distribution pðx j zÞ can be detected monitoring
QVAE ¼ Ez�qh log phðx j zÞ and (2) a shift in the latent
distribution pðzÞ, can be detected monitor-
ing T2

VAE ¼ KLðq/ðz j xÞ jj pðzÞÞ:
This idea is similar to utilizing both T2 and Q-

charts in the PCA-based method, where both terms
play an important role in process monitoring (Kim
and Lee 2003). To make this similarity more obvious,
we prove that if the same ELBO framework for VAE
used above is used for PPCA (see Section 2.2), we
prove the equivalency of T2 and Q statistics of PPCA
and T2

VAE and QV AE of VAE in the linear settings.

Proposition 3.1. If we use linear decoders for VAE,
the models will become the Probabilistic PCA (Tipping
and Bishop 1999) that the prior and decoding func-
tions are normally distributed as:

pðzÞ ¼ N ð0, IÞ,
phðx j zÞ ¼ N ðWz, r2IÞ:

In this case, the encoder can be solved analytically as
another normal distribution as q/ðz j xÞ ¼
N ðl/ðxÞ,RzÞ, where l/ðxÞ ¼ M�1W>x,Rz ¼ r2M�1,
and M ¼W>W þ r2I: Then, the two monitoring sta-
tistics defined in Eq. [8] can be derived as follows:

KL q/ðz j xÞ jj pðzÞ
� � ¼ 1

2
jj l/ðxÞ jj 2 þ C1

[9]

Ez�q/ log phðx j zÞ / jj x �Wl/ðxÞ jj 2 þ C2

[10]

where C1 and C2 are constants that do not depend on
x. The proof is given in Appendix A.

Note that the constants do not affect the profile
monitoring decision as the control limits will be trans-
lated accordingly. Thus, the test statistic T2

VAE and QV

AE for linear decoders (i.e., PPCA) is equivalent to the
T2-statistic and Q-statistic of PCA, respectively,
residual-space.

Observe that previously proposed formulations
mentioned in Section 2.3 draw inspiration – directly
or indirectly – from this framework. Statistics R and
SPE are based on the Q-statistic. Let us call these
residual-space statistics, as they rely on the sum of
squared differences between the signal itself and its
predicted value, that is, residuals. The statistics H2, T2,
and D are based on the T2 of PCA. We call these
latent-space statistics, as they rely exclusively on latent
representations.

Figure 2 shows a graphical illustration of this ana-
logy of residual-space statistics and latent-space statis-
tics for PCA and VAE. Residual-space statistics
quantify the distance of the observed data with respect
to the learned linear or nonlinear manifold. The
latent-space statistics monitor the distance within the
learned manifold. In the linear case (i.e., PCA), this is
the Euclidean distance. However, in the nonlinear
case (i.e., VAE), this distance should be defined on
the nonlinear manifold.

3.2. Proposed monitoring statistic

In this section, we will first reveal the shortcomings of
the previously proposed VAE-based monitoring meth-
odologies we presented in Section 2.3. This will lead
us to the rationale behind the design of our proposed
statistic, which is also included in this section after
the explanation of the shortcomings.

There are two major pitfalls of the previously pro-
posed methodologies:

1. Latent-space statistics H2, T2, and D or any other
formulation that relies exclusively on the latent

Figure 2. Illustration of the analogy between PCA and VAE. Closed regions describe the lower-dimensional manifold the in-control
distribution lies in. The crosses represent the in-control samples observed in Phase-I and the gray region represents the subset of
the lower-dimensional manifold where in-control samples are typically sampled from. The observation represented with a circle is
typically detected with Q-statistic and the observation represented with a triangle is typically detected with T2-statistic.
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representation z � q/ðzjxÞ will be unreliable for
process monitoring. Thus, they should be dis-
carded altogether from the monitoring framework
since they will likely increase false alarms without
contributing to the detection power in any mean-
ingful way.

2. Residual-space statistic SPE and R rely on Monte
Carlo sampling. These are not computationally
feasible given how expensive calculations are on
deep neural networks. An alternative approach is
required to stay computationally feasible without
sacrificing too much from the estimation quality
of these statistics.

We will address these two shortcomings in Sections
3.2.1 and 3.2.2.

3.2.1. Unreliability of latent-space statistics for deep
autoencoders

First, we focus on the unreliability of latent-space sta-
tistics. Let us first start with the case when the shift
occurs in the latent distribution (i.e., pðzÞ). According
to the PCA–VAE analogy illustrated in Figure 2,
latent-space statistics are supposed to catch such
shifts, which are represented with triangular points in

the same figure. While this may work for PCA-based
monitoring, we claim that such an analogy cannot be
straightforwardly made for VAE. Here, we will explain
the two major reasons why the latent-space statistics
failed to capture the change in the latent space:
“incorrect” latent representation by the encoder and
failure to extrapolate by the decoder.

The first reason that latent-space statistics should
not be used is that neural network-based encoders in
autoencoder architectures typically learn “incorrect”
latent representation. We illustrate this phenomenon
in Figure 3. The line segment ABC illustrates a traver-
sal along a latent dimension. All the samples gener-
ated along the line segment AB are sampled from the
typical region of the in-control process and their
latent representations are contained within the typical
region of the predicted space. However, Point C is
generated by an out-of-control process where there is
a shift in the latent distribution but its mapping incor-
rectly falls within the probable region. This leads to
false evidence which suggests that Point C is unlikely
to be generated by an out-of-control process while in
reality, it was.

The reasons as to why incorrect latent representa-
tion is learned by deep autoencoders have been

Figure 3. Illustration of incorrect latent representation phenomena and how process control fails in latent space. Bottom left: The
true latent variations of in-control samples are generated from the gray region, which is the probable region. Point A and Point B
are extreme values along a dimension of variation. Point C is generated by an out-of-control process with a shift in latent distribu-
tion. Point D is generated by an out-of-control process with a shift in the residual distribution. The predicted counterpart of each
point is denoted by an apostrophe (e.g., A’ for A). Top Left: Observations of true latent variation in the high-dimensional space
that lie close to a low-dimensional manifold. Top Middle: The encoder and decoder of VAE trained exclusively with in-control sam-
ples (i.e., the gray region in the observed space). Bottom Middle: Incorrectly mapped variation in the predicted latent space where
the gray region is the probable region. Top Right: Reconstructions of the variation in high-dimensions, with a failure in extrapola-
tion beyond the in-control region.
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studied well in the deep learning literature. Interested
readers are encouraged to refer to Achille and Soatto
(2018) for a discussion of the properties of ideal latent
representations and to Locatello et al. (2019) for a dis-
cussion of the challenges around attaining one of
these properties, namely, disentanglement. The key
takeaway is that it is very likely that we end up with
an imperfect mapping, especially with real-life data-
sets. Consequently, in Phase-II, samples generated by
out-of-control processes that are characterized by a
shift in the latent distribution will not be mapped
consistently to the regions in the latent space, which
we consider to be unusual. This will result in an
increased type-II error.

A natural question to ask at this point is how we
should expect to detect shifts in latent distribution if
we cannot rely on latent representations. We argue
that the residual-space statistics (i.e., an analog of a
Q-chart) would catch such shifts too, even though its
original purpose is to catch shifts in the residual
space. Our argument is based on another
“shortcoming” of neural networks, namely, failure to
extrapolate. Deep neural networks approximate well
only at a bounded domain defined by where the train-
ing set is densely samples from. In the context of our
problem, this refers to the high-density region of
pðxÞ, which generated the set of in-control profiles we
use in Phase-I. The behavior of the function is unpre-
dictable and often erroneous outside the training
domain. In other words, it does not extrapolate well
beyond the domain of training samples, which are
likely to be coming from out-of-control processes. We
refer interested readers to Appendix B, where we rep-
licate this phenomenon on a toy example.

This leads to the second reason why the residual-
space statistics should be used only: failure to extrapo-
late by the decoder. A decoder that fails to extrapolate
is counter-intuitively helpful for the residual-space sta-
tistics since it will struggle with generating profiles
that are in the low-density region of the in-control
data distribution pðxÞ: This means that the discrep-
ancy between the true profile and its generated coun-
terpart will be larger for out-of-control profiles than it
is for in-control profiles, regardless of the source of
the shift. Overall, we conclude that the residual-space
monitoring statistic would be efficient at detecting
changes in the residual space and latent space. We
refer the readers to Figure 3 for an illustration. Point
C is generated from a shift in the latent space distri-
bution. However, due to the “incorrect” mapping of
the latent distribution, Point C’ will still lie in the in-
control region of the latent space. There is a

significant discrepancy between Point C and recon-
struction C’, which can be detected by the residual-
space statistics. Point D is generated from a shift in
the residual space and can be captured by the residual
space statistics. In conclusion, the residual-space stat-
istic should be able to catch changes in both the
residual space and latent space.

3.2.2. Improving the computational efficiency of the
residual-space statistics

Now that we established our rationale behind the first
shortcoming we claim to reveal, we move onto the
second and focus on the previously proposed residual-
based statistics: SPE and R. Both SPE and R rely on
samples from the proposal distribution for the estima-
tion of the expectation. This approach requires a large
number of samples to be generated, and thus a large
number of the forward passes through the decoder
network, which is prohibitively expensive in terms of
computation when deployed in real-life systems. To
overcome this problem, we propose a Taylor expan-
sion based approximation. First, observe that
log phðx j zÞ / jj x� lhðzÞ jj 2

2 þ C for all x and
z because of the common isotropic covariance assump-
tion. The constant C can be discarded as noneffective
in terms of control charting because it would only
translate the limits and the statistics by the same
amount for any given x and z. We call the expression
Ez�q/ jj x � lhðzÞ jj 2

2 as the expected reconstruc-
tion error (ERE). The Taylor expansion for the first-
order and second-order moment of ERE given the ran-
dom variable z � q/ðz j xÞ can be derived analytically.

Proposition 3.2. Assume that a VAE is trained with
in-control samples. The training results in the mean
and diagonal covariance estimators of the proposal
distribution as well as the mean estimator of the con-
dition distribution which are denoted by l/, r/, and
lh, respectively. The first and second-order Taylor
Expansion (denoted by ERE1 and ERE2 respectively)
for the function Ez�q/ jj x� lhðzÞ jj 2

2 given the
random variable z � q/ðz j xÞ ¼ N ðl/ðxÞ, r/ðzÞÞ
and where the conditional phðx j zÞ ¼
N ðl/ðxÞ, diagðr/ðxÞÞÞ can be derived analytically as

ERE1 ¼ jj x� lhðl/ðxÞÞ jj 2
2 [11]

ERE2 ¼ jj x� lhðl/ðxÞÞ jj 2
2

þ 1
2
trðHzdiagðr/ðxÞÞÞ [12]

where Hz is the Hessian of the function jj x �
lhðzÞ jj 2

2 with respect to z. The derivation is pro-
vided in Appendix C.

8 N. D. SERGIN AND H. YAN



Given a trained VAE, ERE1 can be computed effi-
ciently by a single forward pass of the new profile
from the pass x through l/ and lh successively and
calculating the squared prediction error, without the
need for any sampling. ERE2 requires the additional
computation of the diagonal of the Hessian Hz and a
relatively less expensive trace operation since the
covariance is diagonal. Both ERE1 and ERE2 are
residual-based statistics that are accurate and efficient
to compute, which addresses the two shortcomings we
mentioned at the beginning of this section. In our
experiments, we will evaluate the effectiveness of both
of these statistics in comparison to previously pro-
posed monitoring statistics for VAE.

3.3. Profile monitoring procedure

A typical profile monitoring follows two phases:
Phase-I analysis and Phase-II analysis. Phase-I analysis
focuses on understanding the process variability by
training an appropriate in-control mode and selecting
an appropriate control limit. In our case, Phase-I ana-
lysis results in a trained model (i.e., an encoder and a
decoder) and an Upper Control Limit (UCL) to help
set up the control chart for each of the monitoring
statistics. In Phase-II, the system is exposed to new
profiles generated by the process in real-time to
decide whether these profiles are in-control or out-of-
control. Our experimentation plan, outlined below, is
formulated to emulate this scenario to effectively
assess the performance of any combination of a
model, a test statistic, and a disturbance scenario to
generate the out-of-control samples.

� Obtain in-control dataset D and partition it into
train, validation and test sets Dtrn,Dval,Dtst:

� Train VAE using samples from Dtrn:

� Calculate test statistic for all x 2 Dval and take its
95th percentile as the UCL.

� Start admitting profiles online from the process.
Calculate test statistic using the trained VAE. If the
test statistic is over UCL, identify the sample as
out-of-control.

We train 10 different model instances with differ-
ent seeds to account for inherent randomness due to
the weight initialization of deep neural networks.

3.4. Neural network architectures and training

In this work, we use convolutional neural networks
for the encoders and decoders in our VAE model to
represent the spatial neighborhood structures of the
profiles. Introduced in LeCun et al. (1989), convolu-
tional layers have enabled tremendous performance
increase in certain neural network applications where
the data are of a certain spatial neighborhood struc-
ture such as images or audio waveform. They exploit
an important observation of such data, where the
learner should be equivariant to translations. This is
an important injection of inductive bias into the net-
work that largely reduces the number of parameters
compared to the fully connected network by the use
of parameter sharing. It eventually increases the statis-
tical learning efficiency, especially for small samples.
It must be noted, however, convolutional layers are
not equivariant to scale and rotation as they are to
translation. Knowing what sort of inductive biases is
injected into these layers is important for the under-
standing of disentanglement, which we will introduce
later in this article.

We use the encoder–decoder structure outlined in
Table 1. The layers used that build the model archi-
tectures used in this study are summarized as follows:

� C(O,K, S,P): Convolutional layer with arguments
referring to the number of output channels O, ker-
nel size K, stride S and size of zero-padding P.

� CT(O,K, S,P): Convolutional transpose layer with
arguments referring to the number of output chan-
nels O, kernel size K, stride S, and size of zero-
padding P.

� FC(I, O): Fully connected layer with arguments
referring to input dimension I and output dimen-
sion O.

� A(): Activation function. Leaky ReLU with a nega-
tive slope of 0.2.

Here, C(), CT(), and FC() are considered the linear
transformation layers while R(), LR(), and S() are consid-
ered the nonlinear activation layers. Strided convolutions
can be used to decrease the spatial dimensions in the
encoders. Pooling layers are typically not recommended
in autoencoder-like architectures (Radford, Metz, and
Chintala 2016). Convolutional transpose layers are used
to upscale latent codes back to ambient dimensions.

Table 1. Architecture details of deep neural networks used in this study.
Module Architecture

Encoder C(32, 4, 2, 1) - A() - C(32, 4, 2, 1) - A() - C(64, 4, 2, 1) - A() - C(64, 4, 2, 1) - A() - C(64, 4, 1, 0) - FC(256, 2r)
Decoder FC(r, 256) - A() - CT(64, 4, 0, 0) - A() - CT(64, 4, 2, 1) - A() - C(32, 4, 2, 1) - CT(32, 4, 2, 1) - A() - CT(1, 4, 2, 1)
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The sequential order of the computational graphs
used for this study is summarized in Table 1. The
architecture choice is directly based on the encoder-
decoder architecture that was used in Higgins et al.
(2017), except that we use Leaky ReLU with a negative
slope of 0.2 as the activation, which is advised in
Radford, Metz, and Chintala (2016) for better gradient
flow. The encoder outputs 2r nodes, which is a con-
catenation of the inferred posterior mean l/ðxÞ and
variance diagðrðxÞÞ, both are of length r. The number
of epochs per training is fixed at 1000, and the learn-
ing rate and batch size are fixed at 0.001 and 64,
respectively, both are chosen empirically to guarantee
a meaningful convergence. Adam algorithm is used
for first-order gradient optimization with parameters
ðb1,b2Þ ¼ ð0:9, 0:999Þ as advised in Kingma and Ba
(2015). The model checkpoint is saved at every epoch
where a better validation loss is observed. The latest
checkpoint is used as the final model.

In our experiments, the architecture and the train-
ing conditions described above are optimized with
respect to the convergence performance of the VAE
objective on the in-control dataset. This is because in
real life, the practitioner will not have access to out-
of-control samples. Consequently, the same setting
worked well for both the simulation dataset and the
case study dataset we considered in this article. This
gives us confidence that the selection is robust from
one set to the other. However, a different dataset
might benefit from adjustments to the above condi-
tions. The adjustments should be based on monitoring
the convergence of the VAE objective, as the proced-
ure will benefit from a better approximated in-control
distribution.

We would like to emphasize that even we focus
only on the image profiles in our article by the convo-
lutional architectures, which will be introduced to the
readers in the upcoming simulation and case study
sections, the monitoring statistics we propose in Eqs.
[11] and [12] can be applied to other profiles as well,
which will be left as the future work.

4. Simulation study analysis and results

In this section, we will evaluate the proposed method-
ology via a simulation study. We will first test our
claims we make in Section 3.2 in a controlled environ-
ment over the data generating process as described in
Section 4.1. For every experiment mentioned in this
section, we follow the procedure outlined in Section
3.3 and we use VAE models with the architecture
described in Section 3.4.

We will then illustrate the incorrect mapping of the
latent space and the extrapolation issue in Sections 4.2
and 4.3 under this controlled experiment.

4.1. Simulation setup

We first evaluate the performance of the deep latent
variable models in a simulation setting where we have
explicit control over the latent variations. The simula-
tion procedure produces 2D structured point clouds
that resemble the scanned topology of a dome.

Let each pixel on a 64 by 64 grid be denoted by a
tuple p ¼ ðp0, p1Þ: The values of the tuples stretch from
0 to 1, equally spaced, left to right and bottom-up. Each
tuple takes a value based on its location through a func-
tion p7!f ðp; c, rÞ þ �, where � � Nð0, 1	 10�2Þ is i.i.d
Gaussian noise. The function f is parameterized by the
horizontal location of the dome c, and the radius of the
base of the dome r. The vertical location of the dome
on the 2D surface is fixed at the vertical center of the
surface. Given any parameter set {c, r}, each pixel p can
be evaluated with the following logic:

gðp; c, rÞ ¼ 1� ðp0 � cÞ
r2

� ðp1 � 0:5Þ
r2

f ðp; c, rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðp; c, rÞp

if gðp; c, rÞ 
 0
0 if gðp; c, rÞ < 0

:

(
[13]

The samples are best visualized as grayscale images,
as shown in Figure 4.

The processes that generate the latent variations of
in-control domes are defined as Gaussian distribu-
tions:

Figure 4. Dome profiles depicted as grayscale images simu-
lated with radius and center location they coincide with on
the axes.
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c � Nð0:5, 1	 10�2Þ
r � Nð0:2, 6:25	 10�4Þ : [14]

As our out-of-control scenarios consider the fol-
lowing four distribution shifts in which d denotes the
intensity of the shift:

� Location shift: the mean of the process that gener-
ates c is altered by an amount d as in

c � Nð0:5þ d	 10�2, 1	 10�2Þ
� Radius shift: the mean of the process that gener-

ates a is perturbed by an amount d as in

r � Nð0:2þ d	 10�4, 6:25	 10�4Þ
� Mean shift: all the pixels are added to an additive

disturbance d as in

f ðp; c, rÞ  f ðp; c, rÞ þ d

� Magnitude shift: all the pixels are added to a
multiplicative disturbance d as in

f ðp; c, rÞ  f ðp; c, rÞ � d
Note that the location shift and radius shift repre-

sent disturbances in latent distribution pdðzÞ: The
other two cases, mean shift and magnitude shift, rep-
resent disturbances in the conditional distribu-
tion pdðx j zÞ:

We generate the training, validation, and testing
sets for in-control domes as well as a set of each out-
of-control scenario above. All sets have exactly 500
distinct samples. We generate these sets once, fix
them, and use them for the analyses in the subse-
quent sections.

4.2. On the incorrect mapping of latent
representations by the encoder

In this section, we will investigate the latent represen-
tations produced by the encoder and whether it can
be mapped back to the “true” latent space that gener-
ates the data in the context of our simulation study.

We first train a VAE with an architecture described
in Table 1 and fix the generating latent representation
as r¼ 2. The training samples are generated by the in-
control dome generation process as described in
Section 4.1. We will use the encoder of the trained
VAE for the rest of the analysis.

We can generate samples from the trained encoder
by fixing one of the true latent factors and traversing
along the other. The plots on the left side of Figure 5
depict the traversals of the true latent space we sample
the domes from. We then push these generated

examples through the encoder to obtain their respective
proposal distributions. We will compare the mean of
the respective proposal distributions and the true latent
space. If the learned proposal distribution is mapped
into a substantially different geometry by the encoders,
we will describe the distribution as “incorrect”.

Figure 5 shows the incorrectness in the mapping of
latent representations. This incorrect mapping behav-
ior is even worse when we are dealing with the
extreme values in the true latent space. For example,
from Figure 5b, we can conclude that domes with
extremely small radii will likely go undetected if only
the latent-space statistic is used.

Overall, the learned latent representations are typic-
ally “incorrect” especially for the samples with extreme
latent variables. This, in turn, will lead to an incorrect
out-of-control assignment in Phase-II analysis, if only
the latent-space monitoring statistic is used.

4.3. On the extrapolation performance of
the decoder

In this subsection, we will evaluate the extrapolation
performance of the decoder. To demonstrate this, we
showed the generated images by the decoder in Figure
6, when traveling along one axis of the latent dimen-
sion while keeping the other fixed.

Here, the decoder is trained on in-control samples
described in Section 4.1, which is the same VAE
described in Section 4.2

It should be cross-examined with Figure 5 above as
the encoder and decoder are tightly coupled to each
other. We observe two important behaviors: the pos-
terior gets distorted beyond two or three standard
deviations, and the representations are partially
entangled in line with the behavior of its encoder
depicted in Figure 5.

To see how this will help to detect disturbances in
the latent space, we consider a dome that is extremely
small in terms of the radius (i.e., small r) or at the
very margins of the grid in terms of center location
(i.e., center location c far from 0.5). Looking at Figure
6, we can observe that the decoder simply cannot gen-
erate such a sample because it does not extrapolate
well in either of the latent dimensions. This will, in
turn, produce a larger reconstruction error and can be
captured by the residual-space monitoring statistic.

Recall once again that the disturbance described is
purely on the latent distribution pðzÞ and yet detected
by the residual-space monitoring statistic only due to
the extrapolation issue.
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4.4. On the estimation of log-likelihood under
importance sampling

Earlier, we claimed that it would take too many
Monte Carlo iterations to get a meaningful estimate of
ERE defined as Ez�qh log phðx j zÞ: In this section, we
test that claim on a random in-control sample x using
the proposal distribution z � q/ðz j xÞ, which is
obtained via the encoder of the same VAE model we
have been using in this section. The results of the
sampling-based estimation of ERE, first-order
approximation ERE1, and second-order approximation
ERE2 are shown in Figure 7. The key observation is

that it takes at least 60 Monte Carlo iterations to get a
stable and accurate estimation. At that level, the single
pass through the encoder is negligible. This means
using sampling will be more costly at least 60 samples
to achieve the same accuracy as the first-order
approximation that we suggest and at least 80 samples
to get the accuracy of the second-order approxima-
tion. Another important observation is that the
second-order approximation is a bit more accurate
than first-order approximation since it is closer to the
sample-average approximation, but their difference is
quite insignificant. Furthermore, it requires much

Figure 5. Figure depicting the discrepancy between the true and predicted latent representations of the encoder of a VAE with
two-dimensional latent code trained with in-control samples. For each subfigure, plots on the left show where real factors of vari-
ation are sampled from and the figure on the right is what the VAE encoder infers as the mean of the proposal distribution. In all
figures, the regions that are considered to be in-control are represented with a dashed circle. Top: Real factors of variation are
generated at three fixed levels of radius r and varying values of center location c on the left figure. Corresponding inferred means
are plotted on the right graph. Bottom: Similar to (b) but the center location c fixed at three levels and varying r.(a) Fixed r, vary-
ing c.(b) Fixed c, varying r.
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more computation for the second-order approxima-
tion, given the second-order Hessian matrix needs to
be evaluated. In the next subsection, we will evaluate
the performance of ERE2 and ERE1 in Phase-II moni-
toring to evaluate whether the added computational
complexity for ERE2 is justifiable.

4.5. Comparison of detection performance of
proposed statistics

We now compare the proposed statistics based on the
Phase II monitoring performance by how accurately
they detect profiles from out-of-control processes out-
lined in Section 4.1. Note that for all statistics that
require sampling, we obtain a single sample and cal-
culate the statistic based on that to keep the computa-
tional demand the same for all statistics and emulate
the computational constraints of a real-life case. A
preliminary result we must check is the robustness of
the statistics by making sure all proposed statistics
have false alarm rates on the held-out in-control test
set, which should also be less than the desired rate 5
percent. Table 2 demonstrates that this is the case for
all of them.

Through Figure 8, we observe a clear superiority of
ERE1 and ERE2 over other methods when the

disturbance is on the observable space (top row).
Latent-space statistics D, H2, and T2 fail in this case
since that they are purely computed using the proposal
distribution latent variables. ERE1 and ERE2 also out-
perform SPE/R, although by a smaller margin it has
with the latent variable-statistics. Between ERE1 and
ERE2, it is hard to claim which one works better since
their mean performances are quite close to each other.

For the latter two disturbances occurring purely on
latent dimensions, results are presented in the bottom
row of Figure 8. The key observations can be listed
as follows:

� Generally ERE1 and ERE2, D and H2 tend to per-
form better than SPE/R and T2. A commonality
between the former three is that they do not rely
on random samples, supporting our argument
against this practice.

� Observe the radius shift-type disturbance show in
the bottom left figure. Even though H2 performs
better on positive intensities (larger radii), it com-
pletely misses negative intensities (smaller radii).
We foresaw this result in Section 4.2. To reiterate,
the “incorrect” mapping of the latent space and the
lack of extrapolation in the encoder is the reason
behind this. We would also suggest that this result
can extend to all the latent-variable based statistics
for deep autoencoder-based methods.

� Unlike latent-space statistics, ERE1 and ERE2 and SPE/
R behave more robustly against varying intensities. In
other words, the detection rate increases with increased
intensities consistently. Among these, we observe that
ERE1 and ERE2 consistently outperform SPE/R.

� ERE1 and ERE2 perform very similarly. In this
case, we conclude that the second-order informa-
tion does not help too much for Phase-II

Figure 7. Estimation comparison between Monte Carlo sam-
pling, first-order approximation and second-order approxima-
tion. A 95 percent confidence interval band is shown in the
gray band and is based on simulations with 10 different seeds.

Table 2. False alarm rates on the held-out dataset averaged
over 10 replications per model and monitoring statistic.
Statistic ERE1 SPE/R D H2 T2

0.041(0.006) 0.051(0.005) 0.044(0.004) 0.052(0.005) 0.043(0.009)

Standard deviations are in parentheses.

Figure 6. Latent-space traversal and the response of the decoder of a VAE with two-dimensional latent codes and trained with in-
control dome samples. Each row represents which latent dimension is traversed while the other dimension is fixed at zero. Each
column represents what value is assigned to that latent dimension that is represented by the row label. Each image in each cell is
generated by the decoder using that specific latent variable combination.
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monitoring. The reason behind this is that the
second-order information also comes from the
encoder. However, given that the encoders are
trained on in-control samples and may provide
inaccurate information in the out-of-control regions,
the second-order information for out-of-control
samples would be biased. Therefore, it does not pro-
vide additional gain for monitoring performance.

As mentioned, in a real-life process, disturbances
on the residual space is often more likely than the dis-
turbance in the latent space. Therefore, we would rec-
ommend the use of residual-space monitoring
statistics. Among all residual-space monitoring statis-
tics, we conclude that ERE1 perform the best, consid-
ering the accuracy, robustness, and computational
demand. This will be further validated through the
case study analysis.

5. Case study analysis and results

In this section, we will evaluate the performance of
the proposed algorithm using a real case study. Our
dataset consists of defect image profiles from a hot-
steel rolling process, which is shown in Figure 1.
There are 13 classes of surface defect types identified
by the domain engineers. Four of these classes – 0, 1,
9, and 11 – are considered minor defects and they
constitute our in-control set. There are 338 images in
these classes. The other nine classes make up the out-
of-control cases and they have in combination 3351
images to report detection accuracy for. We randomly
partition the in-control corpus to fix train, validation,
and test sets with 60 percent–20 percent–20 percent
relative sizes, respectively. The rest of the procedure
followed is outlined in Section 3.3. Same as in the
simulation study, to account for randomness in weight

Figure 8. Fault detection rates (y-axis) for varying intensities (x-axis) of different disturbance types (quadrants). Bands represent a
95 percent confidence interval estimated around mean detection rates.
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initialization, we replicate the experiment with 10 dif-
ferent seeds. For comparison, we also include the
monitoring performance with the traditional PCA
method with the same residual-space control chart,
denoted as PCA-Q. The results are summarized in
Table 3.

From Table 3, we can observe that ERE1 and ERE2
consistently outperform all other monitoring statistic
formulations. The divide between residual-space statis-
tics and latent-space statistics observed in the simula-
tion study is further validated here too. The inferiority
of latent-space statistics is much more obvious here in
the real case study, as we observe for most out-of-
control classes, the detection rate is simply zero. This
observation further validates our claims that in prac-
tice, for deep autoencoders, the change happens in the
residual space rather than the latent space. The

advantage of VAE over PCA is mainly due to the bet-
ter representative power and data compression ability
of deep autoencoders compared to PCA. It is worth
noting that the superiority of VAE over PCA for pro-
cess monitoring was also demonstrated in the earlier
works in various applications (Lee et al. 2019; Wang
et al. 2019; Zhang et al. 2019).

To support our claim of the ineffectiveness of
latent-space statistics, we refer the reader to Figure 9.
We observe how well separated the statistics are for
ERE1 and SPE/R while for latent-space statistics, the
obtained values are mostly overlapping. Note that we
omitted ERE2 because it was almost identical to ERE1.
To obtain a deeper understanding of the results, we
point out in Figure 10 for the original images and
their reconstructions. The decoder is persistent on
generating samples that look like in-control rolling

Table 3. Summary of fault detection rates on out-of-control cases averaged over 10 replications per model and monitoring statistic.

Model
VAE

PCA
Statistic D H2 T2 SPE/R ERE ERE2 Q

Fault ID
2 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.37(0.03) 0.44(0.06) 0.50(0.06) 0.00(0.00)
3 0.17(0.06) 0.23(0.04) 0.03(0.03) 0.84(0.01) 0.85(0.01) 0.86(0.01) 0.78(0.00)
4 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.62(0.02) 0.75(0.05) 0.71(0.05) 0.56(0.00)
5 0.58(0.07) 0.62(0.09) 0.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.99(0.00)
6 0.06(0.03) 0.15(0.08) 0.05(0.05) 0.79(0.01) 0.80(0.01) 0.80(0.00) 0.52(0.00)
7 0.01(0.01) 0.01(0.01) 0.00(0.00) 0.13(0.01) 0.17(0.01) 0.15(0.00) 0.11(0.00)
8 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.64(0.02) 0.70(0.07) 0.69(0.01) 0.34(0.00)
10 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.49(0.03) 0.57(0.05) 0.57(0.04) 0.29(0.00)
12 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.79(0.01) 0.80(0.02) 0.80(0.02) 0.69(0.00)
13 0.00(0.00) 0.00(0.00) 0.01(0.00) 0.71(0.04) 0.77(0.02) 0.76(0.02) 0.56(0.00)

Standard deviations are in parentheses. Bolded values represent the maximum average across different statistics.

Figure 9. Kernel density estimation plots of statistics obtained for in-control and out-of-control steel defect profiles, per each pro-
posed statistic type.(a) ERE1, (b) SPE / R, (c) H

2, (d) D, (e) T2.
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samples with little fidelity to how the original defect
sample looks like. When Figures 10a and b are cross-
examined, it is apparent why reconstruction error
would be high. On the contrary, Figure 10c shows
that most latent representations fall into the region
that would be considered in-control from a profile
monitoring perspective. We observed instances of
classes 3, 5, 6, and 7 generate the latent variables in
the out-of-control regions. However, even for these
classes, SPE/R, ERE1, and ERE2 yield much better
detection power than D, H2, and T2, as it can be seen
in Table 3. In conclusion, we would like to suggest
the use of ERE1 for deep autoencoders, which is con-
sistent with our findings in the simulation study.

Finally, we report execution time details for our
proposed statistic, ERE1. For this study, we utilized a
workstation with 6-core Intel(R) Core(TM) i7-5930K
CPU 3.50GHz CPUs and 4 GeForce GTX 1080 Ti
GPUs. Neural network computations are executed on
a single GPU and a single CPU core is used for image
input/output and preprocessing steps such as resizing
to 64-by-64 and grayscale conversion wherever
needed. A single GPU has 12GB memory and the
model parameters take up about 730MBs. GPUs can
leverage parallel computation of multiple images,
therefore the remaining memory can be used to stock

up images so their execution becomes parallel. An
example of a batch of 128 images takes up only
63MBs more space in the GPU’s memory and the per
image execution time is roughly 0.8ms. On the
extreme case of using a single image per batch, per
image execution time is around 2ms on average,
which satisfies the real-time monitoring constraint.

6. Conclusion

In this article, we focused on evaluating Phase-II
monitoring statistics proposed so far in the literature
for VAE and demonstrate that they were not perform-
ing optimally in terms of accuracy and/or computa-
tional feasibility. First, we classified these statistics
into two groups and showed how they are designed as
an extension to the classical statistics used for PCA.
Then we pointed out that such an extension is not
as straightforward as it seems due to the incorrect-
ness of learned latent representations by VAEs and
also due to the failure to extrapolate behavior. This
led us to the conclusion that only residual-space sta-
tistics should be monitoring, regardless of the
anticipated source of the shift in the process. We
also pointed out that the residual-space statistics
based on sampling will require too many samples to

Figure 10. Output of the VAE decoder and the encoder for randomly select rolling profiles. Left: Original profiles visualized. Each
row is a class of defect profile and each column is randomly selected from that class. Middle: Reconstructions of the samples with
one-to-one correspondence to the samples on the image to the left. Right: Inferred mean locations of each of the defects visual-
ized on the left. Points are annotated by their class IDs.
(a) Original profiles. (b) Reconstructions via VAE. (c) Inferred means.
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be computationally feasible. Finally, we proposed a
novel formulation by deriving the Taylor expansion
of the expected reconstruction error that addresses
the computational efficiency issue in residual-
space statistics.

We put our claims to the test with a carefully
designed simulation study. This study demonstrated
the discrepancy between the true latent variations and
its learned counterparts, and its implications to the
process monitoring performance of latent-space statis-
tics. We also reinforced our claim that the derived
statistics based on the residual space is overall more
robust and accurate than all the other statistics pro-
posed so far. Finally, we validated the superiority of
our formulation on a real-life case study, where steel
defect image profiles are used.

For future work, we hope to extend the proposed
method for other types of data format. For example,
for sequential profiles (e.g., time series), one-dimen-
sional convolutional layers or a recurrent neural net-
work for encoder and decoder structures as outlined
in Chung et al. (2015) can be used. We are also curi-
ous to see how new developments in deep learning
research will affect profile monitoring in high dimen-
sions in the future. Specifically, developments in deep
latent variable models and representation learning
may have important implications.
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Appendix A: Proof of proposition 3.1

The Kullback-Leibler divergence between two multivariate
Gaussian distributions has a closed-form solution. If we
define these distributions as p0 ¼ Nðz; l0,R0Þ and p1 ¼
Nðz; l1,R1Þ where l and R are respective mean vectors
and covariance matrices, then according to Hershey and
Olsen (2007) the closed-form solution will be the
following:

KL p0 jj p1
� � ¼ 1

2

log
j R1 j
j R0 j þ TrðR�11 R0Þ � r þ ðl0 � l1Þ>R�11 ðl0 � l1Þ

� �
[A1]

Since q/ðz j xÞ ¼ N ðlðxÞ,RzÞ and pðzÞ ¼ N ð0, IÞ, we
can derive that

KLðq/ðz j xÞ jj pðzÞÞ ¼ 1
2
� log j Rz j þ TrðRzÞ � r
� �

þ 1
2
lðxÞ>lðxÞ

¼ 1
2
lðxÞ>lðxÞ þ C,

[A2]

where C ¼ � log j Rz j þ TrðRzÞ � r is a constant, which
does not depend on x.

To derive the SPE statistics, we will derive

Ez�qh jj x�Wz jj 2 ¼ Ez�qhðx>x� 2z>Wxþ z>W>WzÞ
¼ x>x� 2lðxÞ>Wxþ Ez�qhðz>W>WzÞ

[A3]

Here, we know that

Ez�qhðz>W>WzÞ ¼ Ez�qh trðz>W>WzÞ
¼ trðW>WEz�qhðzz>ÞÞ

¼ trðW>WðlðxÞlðxÞ> þ RzÞÞ
¼ lðxÞ>W>WlðxÞ þ trðW>WRzÞ

[A4]

Therefore, by plugging Eq. [A4] into Eq. [A3], we have

Ez�qh jj x�Wz jj 2 ¼ x>x� 2lðxÞ>Wxþ Ez�qhðz>W>WzÞ
¼ x>x� 2lðxÞ>Wxþ lðxÞ>W>WlðxÞ þ trðW>WRzÞ

¼ jj x�WlðxÞ jj 2 þ C

[A5]

where C ¼ trðW>WRzÞ that does not depend on x.

Appendix B: A toy example to demonstrate
out-of-distribution behavior of
neural networks

Assume using a multilayer perceptron, we are trying to
approximate the famous Rosenbrock function f ðx, yÞ ¼
ða� xÞ2 þ bðy� x2Þ2 given ða, bÞ ¼ ð1, 100Þ: In this small
experiment, we sample tuples of two-dimensional points from
a bounded region ðxi, yiÞ 2 ½�1, 3� 	 ½�2, 3�: We use a multi-
layer perceptron with six hidden layers and a 100 neurons in
each layer. Half of the points are used in training, and the
other half is used as a validation set to optimize hyper-
parameters. Using the trained network, we plot the actual
Rosenbrock function along with the neural network
approximation in Figure A1. Notice how well the function

Figure A1. Rosenbrock function (green surface) approximated
by an multilayer perceptron (red surface) given training (black
crosses) and validation (black dots) samples form a bounded
region ðxi , yiÞ 2 ½�1, 3� 	 ½�2, 3�:
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is approximated for the region ½�1, 3� 	 ½�2, 3�, but there is
a serious discrepancy between the approximated and the
real outside of the region. This is a small yet to the point
example of out-of-distribution issues with neural networks.

Appendix C: ERE testing statistic derivation

To derive the ERE1 and ERE2, we first define RðzÞ ¼
jj y� lhðzÞ jj 2 as the reconstruction error (RE). The quan-
tity we would like to approximate is Ez�q/RðzÞ where
q/ðz j xÞ ¼ N ðl/ðxÞ,RzÞ: We are looking for the Taylor
expansion of the expected RE (ERE) around z0 ¼ l/ðxÞ,
that is, the first moment. For notational simplicity, we use
Hz to denote the Hessian R00ðl/ðxÞÞ: The derivation is for-
malized as follows:

Ez�q/RðzÞ ¼ Rðl/ðxÞÞ þ R0ðl/ðxÞÞEz�q/ z � l/ðxÞ
� �Þ

þ 1
2
Ez�q/ ðz � l/ðxÞÞ>Hzðz � l/ðxÞÞ

h i
þ Oðjjðz � l/ðxÞjj3

’ Rðl/ðxÞÞ þ
1
2
Ez�q/ ðz � l/ðxÞÞ>Hzðz � l/ðxÞÞ

h i
¼ Rðl/ðxÞÞ þ

1
2
trðHzE ðz � lzÞðz � lzÞT

h i
Þ

¼ Rðl/ðxÞÞ þ
1
2
trðHzRzÞ

[C1]

Note for ERE1, the second term 1=2ðtrðHzRzÞÞ is droped
and we are left with Rðl/ðxÞÞ only. For ERE2, since Rz is a
diagonal matrix, trðHzSzÞ ¼ trðdiagðHzÞSzÞ ¼

P
iðHzÞiiðSzÞii

holds. We can utilize this result to compute ERE2, in a
more computationally efficient manner.

20 N. D. SERGIN AND H. YAN


	Abstract
	Introduction
	Background
	Variational autoencoders
	Review of T2 and Q statistics in PCA
	Review of previously proposed monitoring statistics proposed for VAE

	Methodology
	Relationship of the monitoring statistics for VAE and PCA
	Proposed monitoring statistic
	Unreliability of latent-space statistics for deep autoencoders
	Improving the computational efficiency of the residual-space statistics

	Profile monitoring procedure
	Neural network architectures and training

	Simulation study analysis and results
	Simulation setup
	On the incorrect mapping of latent representations by the encoder
	On the extrapolation performance of the decoder
	On the estimation of log-likelihood under importance sampling
	Comparison of detection performance of proposed statistics

	Case study analysis and results
	Conclusion
	Funding information
	Orcid
	References
	mkchapUJQT_S0008_sec
	mkchapUJQT_S0009_sec
	mkchapUJQT_S0010_sec



