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Real-time detection of clustered events in video-imaging data with applications
to additive manufacturing

Hao Yana , Marco Grassob , Kamran Paynabarc, and Bianca Maria Colosimob

aSchool of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA; bDipartimento di
Meccanica, Politecnico di Milano, Italy; cH. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, USA

ABSTRACT
The use of video-imaging data for in-line process monitoring applications has become popular in
industry. In this framework, spatio-temporal statistical process monitoring methods are needed to
capture the relevant information content and signal possible out-of-control states. Video-imaging
data are characterized by a spatio-temporal variability structure that depends on the underlying
phenomenon, and typical out-of-control patterns are related to events that are localized both in
time and space. In this article, we propose an integrated spatio-temporal decomposition and
regression approach for anomaly detection in video-imaging data. Out-of-control events are typic-
ally sparse, spatially clustered and temporally consistent. The goal is not only to detect the anom-
aly as quickly as possible (“when”) but also to locate it in space (“where”). The proposed approach
works by decomposing the original spatio-temporal data into random natural events, sparse spa-
tially clustered and temporally consistent anomalous events, and random noise. Recursive estima-
tion procedures for spatio-temporal regression are presented to enable the real-time
implementation of the proposed methodology. Finally, a likelihood ratio test procedure is pro-
posed to detect when and where the anomaly happens. The proposed approach was applied to
the analysis of high-sped video-imaging data to detect and locate local hot-spots during a metal
additive manufacturing process.
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1. Introduction

Nowadays, the use of spatio-temporal data streams, such as
images and videos, in change detection and process moni-
toring is becoming more popular in advanced manufactur-
ing systems (Megahed et al., 2011; Megahed and Jones
Farmer, 2015) and other complex systems. On the one
hand, the increasing availability of compact, low-cost, and
robust machine vision systems that can be easily integrated
into production plants has enabled real-time image acquisi-
tion. On the other hand, continuously improving computa-
tional capabilities has made an in-line analysis of image
streams more feasible. An effective anomaly detection
method for such data streams should address the follow-
ing challenges:

1. High dimensionality: High-resolution images are com-
prised of millions of pixels.

2. High velocity: A standard video camera collects 24
frames per second, whereas a high-speed camera may
acquire thousands of frames per second, which requires
a computationally efficient real-time analysis of
image frames.

3. No anomaly labels: In most industrial applications, there
are few anomaly samples available and normally no
labels are provided to assess whether the sample is
anomalous or not.

4. Complex spatio-temporal correlation structure: Neighbor
pixels are spatially correlated, and consecutive image
frames are temporally correlated.

5. Measurement uncertainty: Measurement noise may
mask relevant spatial and temporal patterns.

One specific goal addressed by this article is to detect
spatio-temporally correlated anomalies by separating them
from the natural foreground and background patterns cap-
tured in video-image data. To this aim, this study presents a
new scalable spatio-temporal decomposition methodology to
detect the structured anomalies in real-time. The method
relies on the following common assumptions about the spa-
tial and temporal structure of foreground natural events and
anomaly events: (i) the foreground natural events are sparse
and random in the spatio-temporal domain; and (ii) the
anomaly event is sparse, spatially clustered and temporally
consistent. It is worth noting that as long as these assump-
tions hold, the proposed methodology is applicable to any
spatio-temporal process monitoring/change detection.
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Furthermore, we propose an efficient and recursive estima-
tion procedure to detect and locate the anomaly event in
real-time, i.e., as soon as a new data point (e.g., a video
frame) is recorded. In order to automatically signal the
occurrence of an anomaly event, we propose to combine the
penalized spatio-temporal regression framework with a
Likelihood Ratio Test (LRT) for change detection, process
monitoring, and anomaly localization (Mood, 1950; Gertler,
2017). Sub-section 1.1 presents a motivating case study used
to demonstrate and test the effectiveness of the proposed
methodology.

1.1. A motivating case study

In the recent years, particular interest has been devoted to
the use of machine vision in metal Additive Manufacturing
(AM) applications (Everton et al., 2016; Grasso and
Colosimo, 2017). Indeed, the layer-wise production para-
digm involved in AM allows one to acquire images and vid-
eos during the production of each layer. This yields the
capability of measuring several quantities that are proxies of
the part quality and the process stability while the part is
being produced, enabling several benefits including defect
detection, waste reduction and cost savings in post-process
inspection. In-situ and in-line monitoring of manufacturing
processes based on video-imaging data require the capability
of making sense of big data streams in an efficient and
sound way.

The motivating case study considers dealing with in-situ
defect detection in Laser Powder Bed Fusion (LPBF). LPBF
is a metal AM approach where a laser beam is used to
selectively melt a powder bed (Stucker et al., 2010). Despite
the great industrial potential of LPBF technology, its actual
application is limited by the various kinds of defects that
may originate during the process (Everton et al., 2016;
Grasso and Colosimo, 2017). Nowadays, most industrial
LPBF systems are equipped with sensors suitable to measure
several quantities during the process (Grasso and Colosimo,
2017), but what is still lacking is the availability of analytical
tools able to quickly make sense of the gathered data during
the process and automatically signal the onset of defects and
process instabilities. In this framework, in-situ video imag-
ing allows one to monitor the stability of the process while

the part is being produced on a layer-by-layer basis and to
detect the onset of process defects. However, although such
defects are visually detectable from image streams, automatic
and real-time analysis of images is imperative for scalable
and effective process monitoring. The main goal of the real
case study is to automatically detect and locate over-heating
phenomena in LPBF known as “hot-spots” via in-situ video-
imaging. A hot-spot is a region of the powder bed where
local heat accumulation occurs, due to an excessive energy
input and a diminished heat flux towards the surrounding
material (Grasso et al., 2017; Colosimo and Grasso, 2018).
The quick detection and localization of hot-spots is a key
issue in the reduction of scrap fractions in LPBF, as hot-
spots may lead to local geometrical distortions and micro-
structural inhomogeneity in the manufactured part.

Figure 1 shows an example of a video-frame acquired
during the LPBF of a metal part. The dark area corresponds
to the background, where no action occurs. The foreground
region includes:

1. The natural process including the Laser-Heated Zone
(LHZ), i.e., the high-intensity region that includes and
surrounds the zone where powder melting occurs, and
the spatters generated by the laser–material interaction.

2. A hot-spot, i.e., the anomaly to be detected.

The LHZ displaces along the pre-defined scanning path
of the laser, and its size mainly depends on the energy
input. Spatters consist of either hot particles of the powder
bed blown away by the metallic vapor or molten material
ejected by the melt pool (Liu et al., 2015; Khairallah et al.,
2016). Therefore, we can claim that hot-spots are sparse and
clustered in the spatial domain, since when a hot-spot
occurs, it stays at the same location until the affected region
cools down.

Figure 1 shows that the separation of the entire image
into the natural process phenomena including the LHZ, the
sparse foreground events (i.e., spatters) and an out-of-con-
trol anomaly event (i.e., the hot-spot). From Figure 1 (left
panel), we can conclude that using one single image to sep-
arate these events is difficult or even impossible. Therefore,
the information enclosed by the temporal structure of the
video-imaging data should be considered as well. Figure 1

Figure 1. Spatial temporal structure of the video-frame. Spatial structure of the hot-spot is presented along with the LHZ and the spatters (left panel). Example of a
natural temporal pattern of pixel intensities where peaks are caused by the quick transition of spatters or by the LHZ (middle panel); example of an out-of-control
temporal pattern of pixel intensities in the presence of a hot-spot (right panel).
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(middle and right panels) illustrates the temporal behavior
of two pixels, i.e., the time-series of their intensity within
the recorded video. One pixel was located where the natural
process took place, and one in a region affected by a hot-
spot. Figure 1 (middle panel) shows that the natural spatter
and LHZ dynamics yield sudden intensity peaks in the tem-
poral domain, which is representative of the natural tem-
poral pattern of pixel intensities. In the presence of a hot-
spot, as shown in Figure 1 (right panel), however, the local
heat accumulation causes the saturation of the pixel inten-
sity and a slower cooling transitory to the background level.
This is representative of the over-heating phenomena that
may finally lead to a defective part. The hot-spot event can
be characterized by its pixel intensity pattern in the time
domain. However, this pattern can be partially “masked” by
the natural patterns related to the underlying process
dynamics, which makes a fast and robust detection of the
hot-spot a challenging task. This motivates the use of a spa-
tio-temporal approach, taking advantage of both spatial and
temporal signatures of the anomaly.

The remainder of this article is organized as follows.
Section 2 reviews the literature devoted to statistical process
modelling and monitoring for video-image data. Section 3
presents the proposed methodology. In Section 4, a simula-
tion study is used to evaluate the hot-spot detection per-
formances. In Section 5, we compare our proposed method
against benchmark techniques in the LPBF real case study.
Section 6 concludes and presents future directions.

2. Literature review

To address the challenge of detecting localized anomaly
events in video-image data, three different categories of
methods have been proposed in the literature: (i) Principal
Component Analysis (PCA)-based approaches; (ii) kernel
and basis representation methods; and (iii) scanning statis-
tics techniques.

The first category includes various PCA and dimension
reduction techniques suitable to reduce the dimensions of
spatio-temporal data in the framework of statistical process
monitoring. For example, Celik (2009) proposed a change
detection algorithm for satellite image detection using PCA
and K-means clustering. Various multi-variate functional
PCA methods and subspace learning methods have been
developed (Paynabar et al., 2013; Paynabar et al., 2016;
Zhang et al., 2018, 2020) to monitor multi-channel signals.
Yan et al. (2015) compared several famous tensor PCA
methods for image-based process monitoring. The major
drawback of the PCA-based approach is that although it
assumes the low-rank structure of the spatio-temporal data-
set, it neglects the locally correlated structure in images. To
address this issue, an enhanced method based on a spatially-
weighted PCA formulation was proposed by Colosimo and
Grasso (2018), which considers the locally correlated struc-
tures of the foreground events. However, this method does
not fully utilize the sparsity structure of the anomalies,
which may cause a detection delay.

The second category includes methods that attempt to
model the spatio-temporal structure of an image stream by
a set of known spatial or temporal basis, kernels and covari-
ance structures. To model the smooth spatial or temporal
structure of the foreground high-dimensional data for
change point detection, non-parametric techniques such as
local kernel regression (Zou et al., 2008; Zou et al., 2009;
Qiu et al., 2010) were developed. Gaussian process regres-
sion was also proposed for video anomaly detection and
representation (Cheng et al., 2015). Spatio-Temporal
Smooth-Sparse Decomposition (ST-SSD) focuses on detect-
ing sparse anomalies from the smooth spatial and temporal
foreground (Yan et al., 2017, 2018). One major disadvantage
of ST-SSD is that it assumes that the anomaly at each point
in time is independent. However, in many applications, the
anomaly event should be temporally coherent. The tempor-
ally coherent and spatially clustered structure of the anomaly
is not fully considered in the aforementioned methods.

The third category includes window-based scanning
methods developed to deal with anomaly detection in spatial
and temporal data (Glaz et al., 2001; Neil et al., 2013). For
example, scan statistics use a window-based approach to
search the cluster of points in the spatial domain. However,
although they are widely used for anomaly detection in scat-
tered point patterns in 3D data, they are not necessarily
suitable for spatio-temporal image streams. Other window-
based approaches for anomaly detection are developed based
on low-dimensional features, such as the spatio-temporal
gradient and texture information (Li et al., 2014). However,
window-based approaches usually require the maximum size
of the anomaly to be known in advance, which is not feas-
ible in most applications.

The fourth group of papers in the literature is focused on
using the deep learning methodology for pattern recognition
in spatio-temporal data streams (Gobert et al., 2018; Scime
and Beuth, 2018; Okaro et al., 2019; Sergin and Yan, 2019;
Kwon et al., 2020). Techniques such as convolutional neural
networks and recurrent neural networks are commonly used
to model complex spatial and temporal structures in image
data. However, they typically envisage a supervised learning
paradigm and require a large and representative training
dataset. In the present application, the geometry of the
printed slice, together with the underlying dynamics of the
melting process, may vary from one layer to another and
from one part to another, which could make difficult to col-
lect a labelled dataset that is sufficiently large to implement
these methods.

3. Proposed methodology

We first introduce the spatio-temporal decomposition and
regression model in Section 3.1. In Section 3.2, we discuss
how to design process monitoring statistics for monitoring
and localization of the hot-spot event. For notation consist-
ency, we use a for a scalar, a for a vector, and A for
a matrix.
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3.1. A spatio-temporal decomposition model

3.1.1. Formulation
To capture the spatio-temporal structure of video-imaging
data and detect anomaly events, we present the penalized
non-parametric regression model and recursive estimation
algorithm. We denote xs, t as the intensity value of certain
spatio-temporal data (e.g., signal/functional curve or videos)
at location s and time t: Here, the spatial index s can be
either 1D (e.g., signals or functional curves) or 2D (e.g.,
images). Our proposed model aims to decompose the ori-
ginal image/signal xs, t into the background ls, t , a natural
foreground event us, t , an anomaly foreground event as, t ,
and noise es, t as in Equation (1):

xs, t ¼ ls, t þ us, t þ as, t þ es, t , s ¼ 1, :::, S, t ¼ 1, :::,T, (1)

where we assume that the background ls, t is known and es, t
follows an i.i.d normal distribution. However, us, t and as, t
are unknown and should be estimated. We assume that the
natural foreground event, us, t , and the anomaly event, as, t ,
are both sparse in the spatial domain. In addition, the
anomaly event is clustered, but natural events can be either
clustered or scattered.

To model the smooth temporal structure of the anomaly,
e.g., a pattern like the one in Figure 1 (right panel), we pro-
pose to apply a first-order model with parameter hs to
model the temporal behaviour of the anomaly as as, t ¼
hsxs, t�1: Therefore, combining with Equation (1), we have:

xs, t ¼ hsxs, t�1 þ ls, t þ us, t þ es, t , (2)

where us, t and hs are the parameters to be estimated.
Furthermore, the physical rationale behind the model struc-
ture is given in Online Supplemental Material Section A.

The goal is to estimate the foreground event, us, t , and
the anomaly event, hs, automatically from the data. We are
especially interested in the anomaly event detection, i.e.,
when and where hs 6¼ 0: Recall that both us, t and hs should
be sparse. Therefore, at each time t, we propose the penal-

ized likelihood lt h, us, tf gs¼1, :::, S

� �
as loss function in

Equation (3). Here, we denote h as the vector that contains

all hs, defined as h ¼ ½h1, :::, hS�T :

lt h, us, tf gs¼1, :::, S

� �

¼
X
s, t

k xs, t � ls, t � us, t � hsxs, t�1k2 þ c1 k us, tk1
�
þ

 

þc2 k hk1 þ c3 k hkTV þ k0 k hk2 (3)

where
P

s, t k xs, t � ls, t � us, t � hsxs, t�1k2 is the sum of
squared errors. The penalties k us, tk1 and k hk1 lead to
the sparse estimation of natural and anomaly events,
respectively. To take the clustered structure of the anomaly
into account, a further penalty term, k hkTV , defined as
khkTV ¼k Dhk1 is included in the model. This penalty
weights the estimated anomaly according to its spatial con-
nectivity in the video-image domain. D is the first-order dif-
ference matrix defined as

D ¼
1 �1

. .
. . .

.

1 �1

2
64

3
75:

Finally, the k0 k hk2 term is added to make the estima-
tion robust and to solve the colinearity problem caused by
the fact that large areas of each video frame, i.e., back-
ground areas, are dark with equal or very similar pixel
intensities (in the case where the collinearity problem can
be neglected, it is possible to get rid of this term). To

aggregate the loss function lt h, us, tf gs¼1, :::, S

� �
over time, a

higher weight can be put on more recent data with the
weight decay k 2 ð0, 1Þ to enable the most up-to-date esti-
mation of the anomalies h: Here, lt only depends on us, tf g
at time t

min
us, tf g, h

L h, us, tf gs¼1, :::, S, t¼1, :::,T

� �

¼
XT
t¼1

kT�tlt h, us, tf gs¼1, :::, S

� �
(4)

3.1.2 Recursive estimation of the spatio-temporal process
The proposed penalized spatio-temporal regression can
effectively model both the temporal and spatial structure of
video-imaging data streams. However, since it is required to
solve Equation (4) at each time t, an efficient optimization
algorithm is needed. In this section, we propose a recursive
estimation procedure to update hs and us, t in a block coord-
inate manner.

Proposition 1 is proposed to optimize the estimation of
the natural event us, t at time t in Equation (4):

Proposition 1. Given hs in Equation (4), us, t in each time t
and each point s can be solved by:

us, t ¼ S xs, t � ls, t � hsxs, t�1,
c1
2

� �
, (5)

Figure 2. Flow chart of the proposed model.
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where Sð�, �Þ is the soft thresholding operator defined by
S x, cð Þ ¼ sgn xð Þmaxðx� jcj, 0Þ and sgnðxÞ is the
sign function.

The proof is given in Online Supplemental Material
Section B.

To optimize the estimation of the anomaly h in real-time,
we ground on the following proposition:

Proposition 2. Given each us, t in Equation (4), h can be
optimized by:

argminh k ~UTh� ~hTk2 þ c2 k hk1 þ c3 k Dhk1
� �

, (6)

where

~hT ¼ ~h1,T , � � � , ~hS,T
� 	T

, ~hs,T ¼ Ws,T

~Us,T
,

~UT ¼ diag ~U1,T , :::, ~US,T

� �
, ~Us,T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

1� kT
Us,T þ k0

r
:Us, t

and Ws, t can be computed recursively as

Us, t ¼ kUs, t�1 þ x2s, t�1, Ws, t

¼ kWs, t�1 þ xs, t�1ðxs, t � ls, t � us, tÞ, (7)

with initialization Us, 1 ¼ Ws, 1 ¼ 0:
The proof is given in Online Supplemental Material

Section C.
It is worth noting that all coefficients including Us, t , Ws, t

can be computed recursively in Equation (7), which leads to
a constant updating time. To solve Equation (6), we follow
the Alternating Direction Method of Multipliers (ADMM)
algorithm by transforming Equation (6) to the equivalent
problem:

argminh k ~UTh� ~hTk2 þ c2 k pk1 þ c3 k qk1
� �

s:t: p ¼ Dh, q ¼ h (8)

The augmented Lagrangian for Equation (8) can be
derived in Equation (9):

L h,p,q,y,zð Þ¼k ~UTh�~hTk2þc2 k qk1þk pk1
�yT p�Dhð Þ� zT q�hð Þþþqp

2
k p�Dhk2þqr

2
k q�hk2:

(9)

Proposition 3. The ADMM algorithm derived by optimizing
L h, p, q, y, zð Þ in the (k þ 1)st iteration can be achieved by

y kþ1ð Þ ¼ y kð Þ � qp p kð Þ � Dh kð Þ
� �

(10)

z kþ1ð Þ ¼ z kð Þ � qqðq kð Þ � h kð ÞÞ (11)

h kþ1ð Þ can be updated via:

h kþ1ð Þ ¼ 2 ~U
2
T þ qqI þ qpD

TD
� ��1

2 ~UT
~hT þ qpD

Tp kð Þ þ qqq
kð Þ � Dy kð Þ � z kð Þ

� �
(12)

p kþ1ð Þ ¼ S Dh kð Þ þ 1
qp

y kð Þ,
c3
qp

 !
(13)

q kþ1ð Þ ¼ S h kð Þ þ 1
qq

z kð Þ,
c2
qq

 !
(14)

More details about the ADMM algorithm are given in
Online Supplemental Material Section D.
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Finally, we show that optimizing the loss function defined
in Equation (4) yields a unique global optimum in
Proposition 4. This implies that no matter what initial con-
dition we set, the model parameters will always converge to
the same unique solution.

Proposition 4. Maximizing the weighted likelihood

min
us, tf g, h

L h, us, tf gs¼1, :::, S, t¼1, :::,T

� �
in Equation (4) will yield to a unique global optimum of h

and us, tf g:
The Proof of Proposition 4 was added in Online

Supplemental Material Section E.

3.1.3 Efficient computation for 2D images
All operators in Algorithm 1 have a closed-form solution
and thus can be computed analytically in each iteration;
however, it is still possible to further speed up the computa-
tion for the real-time implementation of the proposed
approach. This section presents a few approximations that
can be applied to tackle this issue. One approximation to
solve Equation (12) consists of approximating ~U

2
T with an

identity matrix ~U
2
T � k0I: Here we denote the solution of h

for given c2 and c3 in Equation (6) as ĥc2, c3
Under this approximation, it is possible to prove the fol-

lowing proposition (Xin et al., 2014). It is worth noting that
in the case where this approximation is not accurate, we can
still use Algorithm 1 for the estimation of ~Us,T without
using this approximation.

Proposition 5. Given c3 ¼ 0 and ~UT
2 ¼ k0I in Equation

(12), hs can be solved via soft-thresholding in Equation (15):

ĥc2, c3 ¼ S ĥ0, c3 , c2

� �
, (15)

where ĥc2 , c3 is the estimated anomaly or hot-spot coefficient
under the parameter c2 and c3: In particular, ĥ0, 0ðtÞ is the
estimated h when c2 ¼ c3 ¼ 0:

The proof of Proposition 5 can be seen in Liu
et al. (2010).

Based on Proposition 5, we only need to solve a special
case where c2 ¼ 0 as ĥ0, c3 : Another advantage is that
Proposition 5 allows us to efficiently solve ĥc2, c3 with mul-
tiple c2, which can be used to better design the testing sta-
tistics as mentioned in Section 3.2. Finally, we further
implement an efficient approximation for block-circulant
matrix as shown in Online Supplemental Material Section F.

3.2. Proposed process monitoring based on penalized
spatio-temporal regression

In the context of Statistical Process Monitoring, also referred
to as Statistical Process Control (SPC), two stages are fore-
seen, namely Phase I and Phase II (Oakland and Oakland,
2007). The monitoring statistic that can be used for Phase I
and Phase II analysis is described in Section 3.2.1. Phase I
analysis is used to estimate the in-control state (by tuning

the model parameters and designing the appropriate con-
trol limit). The detailed procedure is discussed in Section
3.2.2. Finally, the localization of the hot-spots is discussed in
Section 3.2.3.

3.2.1. Monitoring statistics
In this section, we describe a statistical process monitoring
approach for video-imaging data that combines our pro-
posed penalized spatio-temporal regression with a sequential
LRT. Furthermore, we also discuss how the proposed
method can be used for locating the anomaly after a change
is detected. As we previously discussed, the goal is to detect
and monitor the occurrence of the clustered anomaly event
present in the spatio-temporal dataset. As mentioned, if
hs ¼ 0, the pixel intensity is not auto-correlated: this condi-
tion is met under natural process conditions, where sudden
spikes are caused by the natural foreground events. If hs 6¼
0, the pixel intensity is auto-correlated: this happens when
the pixel stays hot (high intensity) for a long time and sud-
den spikes are replaced by slow cooling drifts, which is rep-
resentative of the phenomenon known as a hot-spot. Finally,
to incorporate the information about the estimation algo-
rithm, instead of using the alternative hypothesis hs 6¼ 0, we
propose to use our plugin estimator h ¼ ĥc2, c3 tð Þ to replace
the alternative hypothesis as hs ¼ ĥc2, c3 tð Þ: In a high-dimen-
sional case, using the plugin estimator has been shown to
have better performance if the model is able to provide an
accurate estimate of the parameter (Zou and Qiu, 2009). We
are interested in signaling an event occurring in the image
location s where hs 6¼ 0: Therefore, we formulate the moni-
toring problem as a sequential hypothesis testing problem
with the null hypothesis that no anomaly event
is happening.

The rate of each point can be estimated individually as
ĥ0, 0 tð Þ with c2 ¼ c3 ¼ 0: Since we assume that an anomaly
event covers just a small portion of the entire image, our
proposed estimator with L1 and total variance penalty is
used to accurately represent the sparse clustered structure of
the anomaly. This provides an accurate estimation of the
anomalous event by ĥc2, c3ðtÞ at each time t with tuning
parameters c2, c3: Therefore, at each time t, we perform the
following hypothesis test:

H0 : h ¼ 0 H1 : h ¼ dĥc2, c3 tð Þ:

Following the procedure in Zou and Qiu (2009) and Yan
et al. (2018), we can derive the testing statistic in Equation
(16):

~T c2, c3 tð Þ ¼
ĥc2, c3ðtÞ
� �>

h0, 0 tð Þ
� �2

k ĥc2, c3ðtÞk2
: (16)

Before ~T c2, c3 can be used for process monitoring, the
regularization c2, c3 should be chosen carefully, as it plays
an important role in controlling the sparsity and smoothness
of ĥc2, c3 : Therefore, to make the testing statistics robust to
tuning parameter selection, the modified testing statistic is
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defined as:

~T tð Þ ¼ max
c1, c2, c3ð Þ2C

~T c2, c3 tð Þ � E ~T c2, c3

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð~T c2, c3

q
Þ

: (17)

Here, the mean and variance of the ~T c2, c3 can be esti-
mated by the sample mean and sample variance of ~T c2, c3
from the In-Control (IC) data. Finally, we choose a control
limit L > 0 for Equation (8) and if ~T tð Þ > L, the monitor-
ing scheme would trigger an Out-Of-Control (OOC) alarm
at time t: Let C be the set of parameters c1, c2, c3ð Þ: The
selection of the tuning parameter, the control limit L, and
other parameters is discussed in Section 3.2.2.

3.2.2. Tuning parameter selection
In this section, we discuss how to select tuning parameters
c1, c2, c3, k0, k, and the control limit L: First, we would like
to clarify the role of each tuning parameter. As previously
mentioned, c1 controls the sparsity of the foreground,
whereas c2 and c3, respectively, control the sparsity and the
smoothness of the hot-spots. The challenge in selecting the
parameters c2, c3 is that it is often hard to predict the mag-
nitude of the hot-spot. Also, it is not easy to predict the
level of sparsity in the foreground. Therefore, we propose a
technique to combine multiple tuning parameters ðc1, c2, c3Þ
in a way to reduce the sensitivity of the method to their val-
ues and to enhance the overall performances. This technique
has been used in some previous work including Zou and
Qiu (2009) and Yan et al., (2018).

In this study, we denote the set of parameters c1, c2, c3ð Þ
as

C ¼ c1max

nc1
j1,

c2max

nc2
j2,

c3max

nc3
j3

� �
, j1 ¼ 0, :::, nc1 ,

�

j2 ¼ 0, :::, nc2 , j3 ¼ 0, :::, nc3

�
,

where c1max can be selected when û ¼ 0, c2max can be
selected as the c2 value that results in ĥc2, 0 ¼ 0, and c3max

can be selected as the c3 value resulting in ĥ0, c3 ¼ c: The
binary search algorithm can be used to find the values
c1max, c2max, c3max: Furthermore, Proposition 3 can be used

to efficiently compute the ĥc2, c3 under different c2 values
without re-running the algorithm. The next problem is to
select a reasonable value for nc2 and nc3 : In general, larger
values of nc2 and nc3 may lead to a better detection power,
but they also yield a higher computational effort. In our
experiments, we selected nc1 ¼ nc2 ¼ 5 and nc3 ¼ 2 to bal-
ance the computational effort and detection power.

Similar to the ridge regression or elastic net, selecting a
non-zero k0 for the L2 penalty is especially helpful for the case
of large colinearity. For example, selecting a larger k0 would
always result in a smaller h: Therefore, we propose to select k0
as a tool for false positive control. We propose to select k0 such
that the falsely detected hot-spot events takes roughly about
5% of all the pixels when the proposed method is applied to IC
data, but smaller percentages could be applied too.

Finally, k � 1 is the weight parameter that shows the
decay of the samples contribution over time. In practice, a
larger k will result in all the past samples to be included in
the estimation with equal weights, which is useful to detect
a change of small magnitude. However, if the change magni-
tude is larger, a larger k may result in a large detection
delay. The selection of k follows the same philosophy of
selecting the weight parameter in exponentially-weighted
moving average control charts (Lu and Reynolds Jr, 1999).
Additional details about how k would affect the detection
power are discussed in the simulation study where we pro-
pose a simulation procedure of finding the exact k value. In
general, if we manually add the anomaly with the estimated
cooling rate, the k with the shortest detection delay will be
chosen. In the simulation study, we find that k ¼ 0:3 is a
reasonable choice.

Finally, we can choose the control limit L > 0 to achieve
a given IC average run length (ARL). Some numerical search
algorithms, such as bisection search, can be applied to select
L (Zhang et al., 2018).

3.2.3. Localization of detected changes
After the proposed control chart triggers an OOC signal,
the next step consists in identifying where the anomalous
event has occurred. This information can be used to iden-
tify regions of the manufactured part where a defect origi-
nated during the process and for diagnosis purposes.

Figure 3. Experimental setup used for high-speed video imaging with OlympusTM I-speed 3 camera placed outside a commercial RenishawVR AM250 system.
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Suppose the control chart triggers a signal at time s: We
will first find the best set of ðc1, c2, c3Þ, which optimizes
Equation. (16). Finally, the non-zero elements of the cor-
responding ĥc2, c3 can be used to identify the location of
the anomaly event.

Finally, Figure 2 shows a flowchart to guide the practi-
tioners in the implementation and use of the proposed algo-
rithm. In Phase I analysis, a set of images without the
anomaly can be collected. These images can also be a video
stream recorded previously or an initial set of video images of
the same video stream. We would like to clarify that Phase I
analysis can be carried out in two different ways. It can be
based on video-image data acquired during the production of
a sample whose properties are representative of the shape of
the part to be produced or it can be based on video-image
data acquired during a few initial layers of the same part. The
first approach is more convenient in the presence of a serial
production of parts with equal geometry or with analogous

geometrical features. The second approach is more convenient
in a one-of-a-kind application. Even if the geometry and scan-
ning path may change from layer to layer, both natural and
anomaly patterns are always characterized by similar dynam-
ics. This allows the use of some initial layers to train the
model and then the use of the same model to monitor the pro-
cess in all following layers as shown in our case study.

Through this Phase I analysis, due to the natural dynam-
ics of the process, an incorrect choice of tuning parameters
may lead to excessive false alarm rates. Therefore, during
Phase I, tuning parameters k0, k,C, L are selected to achieve
a false alarm rate for falsely identified hotspot ĥ correspond-
ing to the target one. During Phase II, the current video-
image stream is used as input to the spatio-temporal model
to estimate the hot-spot ht: The estimated hot-spot can be
used to compute the monitoring statistics by combining
multiple tuning parameters C for online monitoring and
anomaly detection.

Figure 4. Examples of video frames (in false colors) acquired during the LPBF of a cylindrical part used as a reference for the generation of simulated hot-
spot events.
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4. Simulation analysis

In this section, we will use a simulation analysis to evaluate
the performance of the proposed algorithm. The simulation
was carried out by artificially injecting hot-spot events in
different locations and with different sizes into a real video-
image stream acquired during an IC LPBF process. More
details about the simulation setup are presented in Section
4.1. We then discuss the performance evaluation of the pro-
posed method against benchmark methods in Section 4.2.
Finally, a sensitivity analysis of how the tuning parameters
would affect the methodology is presented in Section 4.3.

4.1. Simulation setup

A cylindrical shape of diameter 16mm was produced via
LPBF of AISI 316L powder (average particle size of about
25–30 lm) on a RenishawVR AM250 system. The post-pro-
cess inspections of the as-built part allowed judging the pro-
cess as being IC and the part as defect-free. A 150 fps
video-sequence was acquired during the realization of one
layer of the part by using the setup shown in Figure 3,
which consists of an OlympusTM I-speed 3 camera (CMOS
sensor) mounting a 50mm lens placed outside the build
chamber’s viewport. The camera setup used in our real case
study may induce a distortion caused by the perspective
angle, which was corrected by means of a perspective cor-
rection operation carried out in the calibration phase. A fur-
ther nuisance effect caused by this setup is the possible
presence of bright spots corresponding to reflections of the
LHZ on the viewport window. The image acquisition set-
tings were selected in order to minimize this effect. In the
experiments, due to the high-speed video imaging setup, the
integration time is so short that, when the laser is turned off
a fully dark frame is acquired (slight pixel intensity varia-
tions are simply due to the signal noise). This means that
the external lighting conditions do not affect the video

Figure 5. Examples of one original video frame (false colors) with an injection of simulated hot-spot of different sizes.

Table 1. Average values of performances indexes for different methods and
different hot-spot sizes (the standard deviation of mean values is reported in
parentheses).

Hot-spot size Method ARL Precision Recall F-score

Small
(n¼ 4)

Proposed 3.39 (1.57) 0.88 (0.27) 0.98 (0.14) 0.90 (0.24)
T-square 75.31 (47.01) 0.01 (0.01) 0.33 (0.47) 0.01 (0.02)
PCA 87.66 (49.48) 0.00 (0.01) 0.30 (0.43) 0.01 (0.01)
Tucker 77.21 (47.97) 0.01 (0.01) 0.60 (0.35) 0.01 (0.01)
Lasso 90.51 (49.12) 0.01 (0.01) 0.23 (0.42) 0.00 (0.00)
Fused Lasso 100.07 (46.45) 0.00 (0.00) 0.28 (0.45) 0.00 (0.00)
ST-SSD 77.28 (53.90) 0.00(0.00) 0.35 (0.47) 0.01(0.01)
ST-PCA 73.19 (1.57) 1.00 (0) 1.00 (0) 1.00 (0)

Med-small
(n¼ 9)

Proposed 2.65 (1.14) 0.91 (0.19) 0.98 (0.14) 0.94 (0.17)
T-square 75.31 (47.01) 0.01 (0.02) 0.34 (0.47) 0.02 (0.03)
PCA 81.96 (49.16) 0.01 (0.02) 0.35 (0.45) 0.02 (0.03)
Tucker 75.31 (47.60) 0.01 (0.02) 0.61 (0.30) 0.02 (0.03)
Lasso 84.81 (49.49) 0.01 (0.02) 0.41 (0.46) 0.01 (0.00)
Fused Lasso 83.91 (49.07) 0.00 (0.00) 0.40 (0.49) 0.00 (0.01)
ST-SSD 72.74 (54.94) 0.00(0.00) 0.46 (0.50) 0.01(0.01)
ST-PCA 68.33 (2.10) 1.00 (0) 1.00 (0) 1.00 (0)

Medium
(n¼ 20)

Proposed 2.29 (0.78) 0.97 (0.11) 0.99 (0.10) 0.98 (0.10)
T-square 81.01 (46.65) 0.02 (0.04) 0.29 (0.45) 0.04 (0.07)
PCA 84.81 (47.61) 0.02 (0.03) 0.31 (0.43) 0.04 (0.06)
Tucker 68.10 (45.90) 0.03 (0.04) 0.60 (0.26) 0.05 (0.07)
Lasso 85.76 (47.75) 0.02 (0.04) 0.52 (0.45) 0.04 (0.08)
Fused Lasso 58.25 (47.07) 0.02 (0.05) 0.63 (0.48) 0.04 (0.09)
ST-SSD 59.62 (57.87) 0.01(0.00) 0.60 (0.49) 0.02 (0.00)
ST-PCA 63.08 (2.27) 0.94 (0.01) 1.00 (0) 0.97 (0.01)

Med-large
(n¼ 45)

Proposed 2.01 (0.52) 0.98 (0.10) 0.99 (0.10) 0.98 (0.10)
T-square 80.21 (49.48) 0.05 (0.08) 0.32 (0.47) 0.09 (0.13)
PCA 83.00 (48.66) 0.05 (0.07) 0.32 (0.44) 0.08 (0.12)
Tucker 41.09 (42.54) 0.10 (0.07) 0.61 (0.22) 0.17 (0.12)
Lasso 54.56 (46.83) 0.14 (0.12) 0.74 (0.37) 0.22 (0.19)
Fused Lasso 36.33 (39.83) 0.16 (0.19) 0.75 (0.43) 0.24 (0.26)
ST-SSD 37.09 (47.73) 0.02(0.00) 0.81 (0.39) 0.04 (0.01)
ST-PCA 58.39 (2.43) 0.88 (0.01) 0.99 (0.003) 0.93 (0.01)

Large
(n¼ 80)

Proposed 1.20 (0.58) 0.87 (0.16) 0.99 (0.10) 0.92 (0.13)
T-square 65.03 (50.77) 0.14 (0.14) 0.50 (0.50) 0.22 (0.22)
PCA 74.50 (53.21) 0.12 (0.14) 0.46 (0.47) 0.19 (0.21)
Tucker 9.47 (12.54) 0.28 (0.09) 0.64 (0.22) 0.38 (0.11)
Lasso 36.73 (45.28) 0.33 (0.20) 0.75 (0.43) 0.45 (0.27)
Fused Lasso 27.60 (33.02) 0.25 (0.28) 0.79 (0.41) 0.32 (0.33)
ST-SSD 45.75 (53.82) 0.04(0.00) 0.61 (0.42) 0.07 (0.02)
ST-PCA 65.76 (2.07) 0.83 (0.01) 0.96 (0.01) 0.89 (0.01)
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images. Additional details about the experimental setup and
the LPBF process are discussed in Colosimo and
Grasso (2018).

As an example, Figure 4 shows a subset of the original
video frames, where a circular slice of the vertical cylinder
was produced. The frame size was 126 x 136 pixels.

Hot-spots were simulated at 100 different locations. The
simulation was conceived to generate the onset in a realis-
tic way, starting just after a laser scan in the selected loca-
tion and lasting for s consecutive frames. For each
location, the hot-spot duration s was varied in different
simulation runs, ranging from s > 1 to s ¼ 180 consecutive
frames. We simulated only one hot-spot at a time. In prin-
ciple, multiple hot-spots can be present in the same moni-
tored area. The proposed method is not constrained to
detect a single hot-spot event, but future analysis may be
carried out to test its performance in the presence of mul-
tiple hot-spots. Hot-spots of different sizes were simulated,
affecting a number of clustered pixel n equal to 4, 9, 20, 45
and 80.

An example of one video frame where simulated hot-
spots with different sizes were injected is shown in Figure 5.

In the simulations, a cross-shaped hot-spot was injected to
simplify the visual identification of the anomaly in the
video frames.

The simulated hot-spot consists of a saturated intensity
(as, t ¼ 255) for several consecutive frames followed by a
slow cooling transitory (i.e., a pixel intensity decrease) to the
average background intensity. A sigmoid function was used
to generate this pattern, accordingly to the following expres-
sion:

as, t ¼ 255
1þ exp 0:2ðt �Hsð ÞÞ , t ¼ 1, :::, s, (18)

where H is a constant that controls the shape of the cooling
profile in the hot-spot regions. Equation (18) with H ¼ 0:95
was used in this study to generate a realistic hot-spot pattern
over time. We refer the reader to Colosimo and Grasso
(2018) for additional details.

4.2 Performance evaluation

We compared the proposed method against four benchmark
methods available in the literature. The first benchmark

Figure 6. Example of signals from different algorithms in one simulation run; Methods not shown in the figure did not signal in the considered simulation run, and
foreground not shown for ST-PCA given it is not a decomposition-based method.

Figure 7 (Left) - Sensitivity analysis of how k (1st row), k0 (2nd row), c1 (3rd row). (Right) Sensitivity analysis of how c2 (1st row), c3 (2nd row), and the LHZ
removal pre-processing step (3rd row) affect the RL and the F-score.
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approach is Hoteling’s T2 control chart (Hotelling, 1992)
(denoted as “T2”), applied to the vectorized frames of the
video, where each pixel is treated as a variable and each
frame as a new observation. This is representative of a basic
control charting scheme that can be applied to video-images
by practitioners. The second benchmark method is a PCA-
based control chart applied to vectorized images (Nomikos
and MacGregor, 1995). This is representative of the S-mode
PCA-based approach mentioned in Colosimo and Grasso
(2018) and it is representative of the basic way to apply the
PCA to video-imaging data (denoted as “PCA”). The third
benchmark method is the Tucker decomposition, which is
the tensor-version of the PCA methods (denoted as
“Tucker”), which is detailed in Yan et al. (2015). The fourth
benchmark method consists of a Lasso-based control chart
(denoted as “Lasso”). In this case, we implemented the pro-
cedure proposed by Zou and Qiu (2009), in which Lasso
(Tibshirani, 1996) is used to first identify the sparse change
direction and the LRT is applied for change detection and
anomaly identification. The fifth benchmark method is the
Fused-Lasso-based control chart, which considers the spatial
continuity of the proposed method (Liu et al., 2010)
(denoted as “Fused Lasso”). The sixth benchmark method is
based on the ST-SSD to separate the anomaly event from
the background events (Yan et al., 2018). The last bench-
mark method is the spatially weighted T-mode PCA
(denoted as “ST-PCA”), proposed by Colosimo and Grasso
(2018). This is representative of the current state-of-the-art
methodology for hot-spot detection in LBPF via in-situ
video-imaging. In the T-mode PCA formulation (Jolliffe,
2002; Tsutsumida et al., 2017), the video frames are treated
as variables and image pixels as observations. This allows
one to capture the temporal auto-correlation of pixel inten-
sities over consecutive frames. The underlying idea of the
spatially weighted T-mode PCA consists of incorporating
the pixel spatial correlation into the projection operation
entailed by the T-mode PCA. The resulting ST-PCA was
combined with a recursive updating scheme to iteratively
include new video frames for in-line hot-spot detection. A
k-means clustering-based alarm rule was eventually

proposed to signal an alarm in the presence of a region of
the image where the hot-spot event occurred. For T2, PCA
and Lasso, since the algorithms cannot handle the temporal-
dependent dynamics of the LHZ, they rely on a pre-process-
ing step that consists of removing the largest connected
component corresponding to the LHZ from each frame. For
all the methods, we selected the control limit based on the
IC samples with the false positive rate of 0.01.

The performances of compared methods were estimated
by means of different metrics. The ARL was used to quan-
tify how fast each method can detect the hotspot. Precision
and recall scores were used to quantify the localization
accuracy when the defect is detected (Powers, 2020). The
precision score can be defined as the ratio between the pix-
els belonging to the hot-spot region that were correctly
detected by the monitoring method and the overall number
of detected pixels. A precision score that is equal to one
means that the monitoring method detected only hot-spot
pixels, and hence, no false alarm outside the hot-spot region
is produced. The recall score can be defined as the ratio
between the pixels belonging to the hot-spot region that
were correctly detected by the monitoring method and the
overall number of pixels belonging to the hot-spot. A recall
score equal to one1 means that the monitoring method can
detect the entire hot-spot region, and hence, no false nega-
tive is present. One additional metric was considered: it is
the F-score, which is the harmonic mean of the precision
and recall score (Rijsbergen, 1979). Table 1 summarizes the
comparison between the proposed approach and all other
competing methods in the presence of simulated hot-spots
of different sizes.

The data in Table 1 highlights that the proposed method
is much faster than all the other methods in detecting the
hot-spot. In terms of ARL, the proposed method can detect
the hot-spot in less than three or four frames from the hot-
spot event injection for all simulated sizes. The reason for
this delay is that the onset of real hot-spots occurs in loca-
tions where the laser beam has just scanned and melted the
area. During the time that the LHZ overlaps the hot-spot
location, no detection is possible. However, when the LHZ

Table 2. Main process parameters used in the experimental activity.

Laser power (P) Exposure time (t) Focus position (fp) Point distance (dp) Hatch distance (dh) Layer thickness (z)

Value 200 W 80 ls 0 mm 60 lm 110 lm 50 lm

Figure 8. (a) Complex shape part used to test the proposed approach; (b) examples of triangular portions of the sliced CAD model; and (c) local defects correspond-
ing the acute corners of those triangles.
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moves away following the predefined laser path, detection
becomes possible. It is also clear that a larger hot-spot will
result in a shorter detection delay. On the contrary, no other
method was able to signal the hot-spot in less than between
50 and 60 frames since its onset. Indeed, competitor meth-
ods require a sufficient number of frames before the
observed patterns in the temporal and/or spatial domain can
be signalled as anomalous with respect to the natural pro-
cess dynamics. The proposed approach, instead, entails a
model of both the natural and OOC patterns that may arise
in the video-imaging data. Therefore, the hot-spot event can
be detected since its onset stage, as its occurrence yields a
sudden shift of the corresponding parameter in the spatio-
temporal model.

In terms of hot-spot localization accuracy, the Hotelling’s
T2 control chart, the basic PCA-based approach, the Lasso-
based control chart, and ST-SSD are not only slower than
the proposed approach in detecting the hot-spot, but also
they are also less accurate. The precision score of these three
competitors is always very low, which means that they signal
as being OOC a large portion of the video frame. This
makes these methods ineffective in the present application.
The T2 control chart, the PCA-based control chart, and ten-
sor-PCA-based control chart fail because they focus on

detecting a global variation of video-imaging data patterns,
whereas the hot-spot event is local in nature, with a reduced
effect on both the average pixel intensity and the global vari-
ability. On the other hand, the Lasso-based and Fused-
Lasso-based control charts allow dealing with the spatial
structure of video frames, and hence, they are potentially
able to detect local events. However, as discussed in Section
1, the spatial information alone may not be sufficient to dis-
tinguish the hot-spot event from other natural foreground
events, i.e., the LHZ and the spatters generated by the
laser–material interaction. Indeed, the Lasso-based control
chart and fused-Lasso-based control chart fail because they
do not consider any temporal structure of the video-imaging
data. The performance of ST-SSD is quite poor. ST-SSD
assumes that the background is smooth and the anomaly is
an abrupt change, which violates our assumption that the
background is random, but the anomaly is spatially clustered
and temporally consistent. The ST-PCA methodology yields
comparable and accurate results in localizing the hot-spot,
but it requires a sufficient number of video frames to prop-
erly identify an anomalous auto-correlation pattern in the
pixel intensities within the hot-spot region. Moreover, in the
presence of the largest simulated hot-spot event, the per-
formances of the ST-PCA based methodology were slightly

Figure 9. Examples of frames from the three real-case scenarios where hot-spot events are highlighted in white circles.
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worse than those for smaller hot-spots. Indeed, when the
hot-spot becomes larger, the overlap between the hot-spot
itself and the LHZ increases, reducing the capability to dis-
tinguish the two regions into two separate clusters. This
issue does not affect the proposed method, whose perform-
ance improves as the hot-spot size increases.

Figure 6 shows the detected anomalies for different meth-
ods in one simulation run. In that run, only the proposed
method, the ST-PCA, and Fused Lasso signaled an alarm.
For the proposed method (top row), Figure 6 (left panels)
shows original images corresponding to the video frames
where an alarm was signaled. Figure 6 (middle panels)
shows the foreground separated by the proposed method.
Figure 6 (right panels) shows the regions of the frames
(white) signaled as a detected anomaly. In Figure 6, both the
proposed method and ST-PCA detect the location of
anomalies accurately, the proposed method, however, was
faster in detecting the hot-spot event (frame 53, whereas the
ST-PCA method signaled at frame 63). The proposed
method is the only one that is able to estimate the fore-
ground event, due to the decomposition framework pro-
posed. Finally, we also perform another analysis on how
many consecutive anomalous samples are needed to detect
the anomaly and the results are presented in Online
Supplemental Material Section G.

4.3. Sensitivity analysis

To understand how the tuning parameter selection k, k0 and
pre-processing procedure affects the result, Figure 7 shows
how they affect the run length and the F-score for the

medium size hot-spot (n ¼ 20Þ in our simulation. We can
clearly see that different choices of k does have an impact
on the Run Length (RL) and localization accuracy (F-score).
Too small values of k (e.g., k ¼ 0:1) lead to worse localiza-
tion accuracy (F-score much smaller than one) since too

Figure 10. Detected anomalies for the proposed method in different scenarios; For each scenario, the top four figures show the original images. The four bottom
figures show the detected anomalies, where the anomaly location is shown in white.

Table 3. Performances indexes for different methods in different real case
study scenarios.

Time of first signal (frame index)

Scenario Event 1 Event 2 Event 3 Event 4

A Actual onset of hot-spot event 25 35 81 103
Competing methods Proposed 25 38 84 107

T-square – 40 84 –
PCA – – – –
Tucker – – 85 167
Lasso – – – 165
Fused Lasso – 45 85 167
ST-SSD – – – 167
ST-PCA – 40 81 103

B Actual onset of hot-spot event 39 67 75 85
Competing methods Proposed 40 72 76 88

T-square – – 77 –
PCA – – 77 –
Tucker – – 77 –
Lasso – – 77 –
Fused Lasso – – 77 –
ST-SSD – – – –
ST-PCA – – – 94

C Actual onset of hot-spot event 77 94 150 162
Competing methods Proposed 78 97 152 164

T-square – – 152 –
PCA – – – 168
Tucker 80 – 150 168
Lasso – – 153 –
Fused Lasso 78 – 152 168
ST-SSD – – – 168
ST-PCA – – – 164
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large a weight is given to the most recent sample. However,
too large values of k (e.g., k ¼ 0:7) lead to a good localiza-
tion accuracy, but also increase the detection delay, since a
lower weight is given to the most recent samples. Similarly,
too small values of k0 (e.g., k0 ¼ 0:1) lead to a much larger
variance of the algorithm, due to the potential overfitting.
Too large values of k0 (e.g., k0 ¼ 10, 100) cause a strong
under-estimation of the anomaly, due to the shrinkage
effect. In the present application, we advocate the implemen-
tation of the proposed approach to the original images with
k ¼ 0:3 and k0 ¼ 1:

Furthermore, we also study how the regularization
parameters c1, c2, c3 would affect the results. Figure 7 shows
that too small values of c1 (e.g., c1 < 1e� 2) could give too
much flexibility in the foreground event estimation, and
some anomalies and noise could be misclassified as the fore-
ground event. However, too large values of c1 (e.g., c1 > 1)
could also cause an under-estimation of the foreground
event, and these random foreground events could then lead
to a worse estimation of the anomaly too. For c2, as long as
it is set larger than one, the detection delay and accuracy
are not greatly influenced. Finally, the combined procedure
of using multiple c1, c2 is suggested since it greatly reduces
the RL and increases the F-value compared with using any
c1 or c2 values. Finally, we found the algorithm to be rela-
tively robust to c3 unless c3 is too large. This is because too
large values of c3 (e.g., c3 > 0:01) may put too large a
smoothness penalty on the anomaly, which leads to the
under-estimation of small anomalies.

Finally, we also investigated whether the LHZ removal
pre-processing step can affect the performance of the pro-
posed algorithm. Figure 7 (right panels) show that, when
such a pre-processing step is applied, the proposed algo-
rithm typically yields a larger RL. The reason is that the
implemented LHZ removal operation might sometimes acci-
dentally also remove the hot-spot, which inflates the OOC
detection delay. Despite this, the LHZ removal operation
slightly increases the accuracy of the hot-spot localization, as
a partial overlap between the LHZ and the hot-spot
is avoided.

5. Case study

In this section, we will evaluate the performance of the pro-
posed algorithm using a case study that considers a real
LPBF process with three different settings. The real case
study was previously presented in Grasso et al. (2017) and
Colosimo and Grasso (2018). It was selected to address a
real production scenario, where all process parameters are
kept fixed, but hot-spots are produced by critical geomet-
rical features (i.e., acute corners in low-angle overhang
areas) In particular, the selected geometry (shown in

Figure 8) allows one to reproduce a variety of designs in the
same part, as the heat exchange conditions are locally vary-
ing within the part and in different layers, leading to differ-
ent hot-spot events in different locations and with
different severity.

During actual production scenarios, process parameters
are kept fixed, regardless of the shape of the product. Even
if optimal process parameters are used for a specific mater-
ial, hot-spots may occur in the presence of critical geomet-
rical features, because the scanned region is largely
surrounded by loose powder; loose powder has a much
lower level of heat conductivity than the solid material. The
real case study is representative of this kind of critical fea-
ture. Finally, during the process, the laser follows different
scanning paths in different layers. However, the proposed
approach does not depend on the laser scanning path, and
hence it can be easily applied to videos captured in different
layers, with different geometries and different scan trajecto-
ries. In this case study, real hot-spots were observed in dif-
ferent layers and in different locations, which allows us to
test the proposed methodology in the presence of different
scanning paths and different hot-spot severities.

The same dataset was previously presented in Grasso
et al. (2017) and Colosimo and Grasso (2018). The dataset
is also publicly available at http://doi.org/10.6084/m9.fig-
share.7092863.

More details of the experimental setup are discussed in
Section 5.1. A performance analysis and a comparison with
other benchmark methods are presented in Section 5.2.

5.1. Case study setup

The experimental case study previously presented in Grasso
et al. (2017) and Colosimo and Grasso (2018) was used to
demonstrate the performances of the proposed approach in
the presence of real hot-spot events. Previous studies showed
that the occurrence of local over-heating conditions may
yield geometrical distortions, especially in the presence of
thin walls and acute corners. As a consequence of the local
heat accumulation, surface tensions of the viscous melt
cause the formation of solidified balls on the surface, leading
to so-called super-elevated edges (Kleszczynski et al., 2012),
i.e., ridges of the solidified material whose height may be
higher than the layer thickness. Such local irregularities may
propagate and inflate from one layer to another, with pos-
sible damage to the powder recoating system. This makes
the quick detection of hot-spots particularly relevant in
LPBF. As an example, Figure 8 shows the consequence of
hot-spots observed during the production of the complex
shape used in this real case study in terms of geometrical
irregularities in the part.

Table 4. The computation time of all methods.

Proposed T-square PCA Tucker Lasso Fused Lasso ST-SSD ST-PCA

Time (s) 0:01 0.0002 0:004 0.002 0:001 0.03 0.006 0.28
Standard deviation (s) 0.0033 0.0004 0.001 0.001 0.0004 0.01 0.003 0.045
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The same monitoring setup described in Section 4 was
applied in this experimentation, but a higher sampling fre-
quency was applied, i.e., f ¼ 300 fps. This sampling fre-
quency was selected as a compromise between the
computational feasibility of in-situ image analysis and the
ability to capture the process-related dynamic and transitory
events without losing relevant information. The spatial reso-
lution was about 150 mm/pixel. An image crop operation
was applied to remove defocused regions and areas of the
baseplate not involved with the process. The resulting image
size was 121� 71 pixels.

The experimentation consists of an LPBF process on AISI
316L powder with an average particle size of about 25�
30 lm for the production of the complex geometry shown
in Figure 8 (overall dimensions of about
50 � 50 � 50 mm). In this case, three distinct videos were
acquired during the LPBF of triangular-shaped slices in
three different layers where hot-spots occurred in corres-
pondence to acute corners in over-hang regions. The hot-
spot events produced local geometrical deformations in the
printed part, as highlighted in Figure 8 (right panel). The
LPBF process parameters used in the experimentation are
summarized in Table 2.

The three video-sequences were labeled as Scenario A, B,
and C, respectively. In each scenario, the laser beam passed
over the hot-spot region more than once, and hence mul-
tiple events were sequentially observed. Different hot-spot
events in the same video-sequence refer to the same loca-
tion, but different time intervals. Each time the laser
scanned the defective area in correspondence to acute cor-
ners, the heat accumulation produced a hot-spot event that
lasted for a few consecutive frames. Figure 9 shows some
examples of video frames acquired in the three scenarios.
For each scenario, Figure 9 shows one example of video
frame under natural melting conditions (top-left panel) and
video-frames corresponding to the begin and end of hot-
spot events that were visible in the video sequence. At least
four consecutive hot-spot events in the same location were
visible in each scenario.

Figure 10 shows examples of anomalies detected by the
proposed method in different scenarios.

5.2. Performance evaluation

Analogous to the simulation study, we applied all the com-
peting methods to Scenarios A, B, and C, and the results are
shown in Table 3. We evaluated the capability of competitor
methods to detect the four major hot-spot events in each
scenario by comparing the time of first signal (expressed in
terms of frame index) with the time of first visible hot-spot
occurrence in the image stream. When a method was not
able to detect the hot-spot event, the symbol “- “is shown in
Table 3. Table 3 shows that the proposed method properly
detects all the hot-spot events. Following events were
detected with no more than five frames of delay, which con-
siderably outperforms all other competing techniques. T2,
PCA- Lasso- and ST-SSD-based methods were able to detect
at most one real hot-spot event. The ST-PCA and Fused

Lasso method were able to detect all the hot-spot events in
Scenario A, apart from the very first one, with performances
comparable to the ones provided by the proposed approach.
However, in Scenario B and Scenario C, the ST-PCA
approach allowed signalling only the last (and more severe)
hot-spot event, with a larger delay than the proposed
method. These results confirm that our proposed spatio-
temporal methodology is more effective than the previously
proposed ST-PCA technique, and it outperforms more trad-
itional statistical methods for video-imaging analysis.

Table 4 shows the computational time needed by each
competing method (all of them were implemented in
MatlabVR on a standard laptop). The T2, PCA, Tucker, and
Lasso-based methods were more computationally efficient
than the proposed approach, but they provided much less
accurate results. The ST-PCA method entails a recursive
scheme that inflates the computational cost as new video
frames become available. In all the case study analyses, the
ST-PCA required less than 0.3 s at each iteration step. Thus,
the proposed approach is not only more effective than the
ST-PCA for hot-spot detection and localization, but also
computationally more efficient. In the present study, all
methods were tested in off-line mode, i.e., by first collecting
real sensor data during the process and testing the proposed
algorithm on these same data after the process. It is worth
noting that the computation time of 0.01s required by the
proposed approach refers to an implementation on a stand-
ard laptop. Because of this, we believe that it is feasible to
implement this method for a real-time use exploiting an
industrial breadboard implementation that is expected to
considerably reduce the computation time.

6 Conclusion

Online monitoring of high-dimensional spatio-temporal data
is gaining increasing interest in not only advanced manufac-
turing applications but also in non-manufacturing frame-
works. In this article we proposed a novel decomposition-
based approach for real-time monitoring and anomaly
detection of spatio-temporal data. Our method was specific-
ally motivated by the “hot-spot” detection problem in metal
AM. The proposed method is able to take advantage of the
layer-wise production paradigm to gather as much informa-
tion as possible about the quality and stability of the process
during the process itself, rather than (or in addition to) rely-
ing on traditional post-process quality controls. What is
missing in industry is the availability of analytical tools able
to quickly make sense of gathered data during the process
and automatically signal the onset of defects and process
instabilities. The proposed method was tested in this frame-
work to demonstrate its ability to overcome the limitation of
existing methods. Furthermore, the proposed method is gen-
eral, and it can be applied to any image-based process moni-
toring application where the foreground events are random
and sparse, and the anomaly is spatially and temporally cor-
related. To handle the challenges of the high-dimensionality
for the video-image stream, we proposed a recursive estima-
tion procedure for real-time implementation of the
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algorithm. Finally, a sequential LRT procedure was proposed
for online change detection and anomaly localization. To
demonstrate the effectiveness of the proposed method, we
applied it to both simulated and real data drawn from a real
case study in LPBF. Both in the simulation study and in the
real case study, the proposed approach outperformed all
competitors in terms of RL and anomaly localization accur-
acy, with a computational cost that was considerably lower
than that of its best competitors.

One promising direction for future research consists of
extending the proposed method by incorporating a more
complex temporal modeling technique for the hot-spot
detection, such as a higher-order autoregressive-moving-
average model, to further enhance the characterization of
the temporal structure embedded in the spatio-temporal
data. Moreover, future studies can be aimed at testing the
proposed method in the presence of different kinds of OOC
scenarios and different manufacturing applications.
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