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Adaptive Change Point Monitoring for High-Dimensional Data

Teng Wu, Runmin Wang, Hao Yan, Xiaofeng Shao

Department of Statistics, University of Illinois at Urbana-Champaign

Department of Statistical Science, Southern Methodist University

School of Computing Informatics & Decision Systems Engineering, Arizona State University

Abstract: In this paper, we propose a class of monitoring statistics for a mean shift in a sequence

of high-dimensional observations. Inspired by recent U-statistic based retrospective tests, we extend

the U-statistic-based approach to the sequential monitoring problem by developing a new adaptive

monitoring procedure that can detect both dense and sparse changes in real time. Unlike existing

methods in retrospective testing that use self-normalization, we introduce a class of estimators for

the q-norm of the covariance matrix and prove their ratio consistency. To facilitate fast computation,

we further develop recursive algorithms to improve the computational efficiency of the monitoring

procedure. The advantages of the proposed methodology are demonstrated using simulation studies

and real-data illustrations.
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1. Introduction

Change-point detection problems have been studied extensively in areas, such as statistics,

econometrics, and engineering, and there are wide applications in the fields of physical

science and engineering. The literature on this topic is extensive, and growing rapidly. For
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low-dimensional data, early works include those of Page (1954), MacNeill (1974), and Brown

et al. (1975), among others. More recent works on change-point problems for low-/fixed-

dimensional multivariate time series data include those of Shao and Zhang (2010), Matteson

and James (2014), Kirch et al. (2015), Bücher et al. (2019), among others. Refer to Perron

(2006), Aue and Horváth (2013), and Aminikhanghahi and Cook (2017) for excellent reviews

on this topic.

The literature on change-point detection can be roughly divided into two categories:

retrospective testing and the estimation of change points based on a complete data sequence

offline, and online sequential monitoring for change points based on some training data and

data that arrive sequentially. This study focuses on the sequential monitoring problem for

temporally independent, but cross-sectionally dependent high-dimensional data. There are

two major lines of research for sequential change-point detection/monitoring. The first fol-

lows the paradigm set by pioneers in the field, such as Wald (1945), Page (1954), and Lorden

(1971); see Lai (1995, 2001) and Polunchenko and Tartakovsky (2012) for comprehensive

reviews. Most sequential detection methods along this line are optimized to have a minimal

detection delay, controlling the average run length under the null. Furthermore, most ex-

isting procedures are developed for low-dimensional data. These methods often require us

to make some parametric assumptions about the pre-change and post-change distributions.

In the second line, Chu et al. (1996) assume there is a set of training data (without any

change points), and apply sequential monitoring to test the data that arrives sequentially.

They employ the invariance principle to control the type-I error, and their framework has

been adopted by many other researchers in both parametric and nonparametric contexts;
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see Horváth et al. (2004), Aue et al. (2012), Wied and Galeano (2013), Fremdt (2015), and

Dette and Gösmann (2019). Here, it is typical to use the size and power (plus average detec-

tion delay) to describe and compare the operating characteristics of competing procedures.

Our procedure falls into the second category. It seems to us that these two frameworks are,

in general, difficult to compare, because they differ in terms of the model assumptions and

evaluation criteria.

Today, with the rapid improvement of data acquisition technology, high-dimensional

data streams involving continuous sequential observations appear frequently in modern man-

ufacturing and service industries, and the demand for efficient online monitoring tools for

such data has never been higher. For example, Yan et al. (2018) proposed a method for

monitoring a multi-channel tonnage profile used for the forging process, which has thou-

sands of attributes. Furthermore, image-based monitoring [Yan et al. (2014)] has become

popular in the literature, which includes thousands of pixels per image. Lévy-Leduc and

Roueff (2009) considered the problem of monitoring thousands of Internet traffic metrics

provided by a French Internet service provider. This kind of high-dimensional data poses

significant new challenges to traditional multivariate statistical process control and moni-

toring, because when the dimension p is high and is comparable to the sample size n, most

existing sequential monitoring methods constructed based on fixed-dimension assumptions

become invalid.

In this article, we propose a new class of sequential monitoring methodology to detect the

change in the mean of independent high-dimensional data based on (sequential) retrospective

testing. Our proposal is inspired by recent works on the retrospective testing of mean
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changes in high-dimensional data by Wang et al. (2019) and Zhang et al. (2021). In Wang

et al. (2019), the authors propose a U-statistic-based approach to target the L2-norm of the

mean difference by extending the U-statistic idea of Chen and Qin (2010) from two-sample

testing to the change-point testing problem. Zhang et al. (2021) further extend the test

of Wang et al. (2019) to an Lq-norm-based test mimicking that of He et al. (2018), where

q ∈ 2N, to capture the sparse alternative. By combining the L2-norm-based test and the

Lq-norm-based test, the adaptive test statistic they propose is shown to achieve high power

for both dense and sparse alternatives. However, one of the limitations of these works is

that the methods are designed for offline analysis, which is not suitable in real-time online

monitoring systems. Building on the works of Wang et al. (2019) and Zhang et al. (2021),

we propose a new adaptive sequential monitoring procedure that can capture both sparse

and dense alternatives. Instead of using the self-normalization scheme [Shao (2010); Shao

and Zhang (2010); Shao (2015)], as in Wang et al. (2019) and Zhang et al. (2021), we use

ratio-consistent estimators for ‖Σ‖qq based on the training data, where Σ is the common

covariance matrix of the sequence of random vectors, and provide a rigorous proof for ratio

consistency. Furthermore, we develop recursive algorithms for fast implementation so that

at each time, the monitoring statistics can be computed efficiently. Finally, theory and

simulations show that the resulting adaptive monitoring procedure using a combination of

sequential tests based on L2 and Lq (say q = 6) is powerful against both dense and sparse

alternatives.

There is a growing body of literature on high-dimensional change-point detection in the

retrospective setting; see Horváth and Hušková (2012),Cho and Fryzlewicz (2015), Jirak
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(2015), Yu and Chen (2017), Wang and Samworth (2018), Yu and Chen (2019), Wang et al.

(2019), Zhang et al. (2021), and Wang and Shao (2020), among others. Note that Enikeeva

and Harchaoui (2019) developed a test based on a combination of a linear statistic and a scan

statistic, and their test can be adaptive to both sparse and dense alternatives. However, their

Gaussian and independent component assumptions are too restrictive. In addition, works

on the online monitoring of high-dimensional data streams have been growing steadily in

the literature on statistics and quality control. In particular, Mei (2010) proposed a global

monitoring scheme based on the sum of the cumulative sum monitoring statistics from each

individual data stream. His method aims to minimize the delay time and control the global

false alarm rate, which is based on the average run length under the null. This is different

from the size and power analysis in our work. Note that the assumptions in Mei (2010)

are quite restrictive, in the sense that he assumed that no data streams have cross-sectional

dependence, and that both the pre-change and the post-change distributions are known. See

Wang and Mei (2015), Zou et al. (2015), Liu et al. (2019), and Li (2020) for several variants

on how to aggregate the local monitoring statistics. Xie and Siegmund (2013) proposed a

mixture detection procedure based on a likelihood ratio statistic that takes into account the

fraction of data streams being affected. They argue that the performance is good when the

fraction of affected data streams is known, and do not require a complete specification of the

post-change distribution. However, the mixture global log-likelihood they specify relies on

the hypothesized affected fraction p0, and they show the robustness of different choices of p0

using numerical studies only. The results they derive hold for data generated from a normal

distribution or from other exponential families of distributions. A common feature of all
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these works is that they assume the data streams do not have cross-sectional dependence,

which may be violated in practice. In fact, our theory for the proposed monitoring statistic

demonstrates the impact of the correlation/covariance structure of multiple data streams,

which is lacking in the above-mentioned literature.

The rest of the paper is structured as follows. In Section 2, we specify our change point

monitoring framework and propose a monitoring statistic that targets the Lq-norm of the

mean change. An adaptive monitoring scheme can be derived by combining the test statistic

for different q, for q ∈ 2N. Section 3 provides a ratio-consistent estimator for ‖Σ‖qq, which

is crucial when constructing the monitoring statistics. Section 4 provides simulation studies

that examine the finite-sample performance of the adaptive monitoring statistic. In Section

5, we apply the adaptive monitoring scheme to two real data sets. Section 6 concludes the

paper. All technical details can be found in the Appendix.

2. Monitoring Statistics

In this section, we specify the general framework we use to perform change-point monitoring.

We consider a closed-end change-point monitoring scenario, following Chu et al. (1996).

Assume that we observe a sequence of temporally independent high-dimensional observations

X1, . . . , Xn ∈ Rp, which are ordered in time and have constant mean µ and covariance matrix

Σ. We start the monitoring procedure from time (n+ 1) to detect whether the mean vector

changes in the future. Throughout the analysis, we assume that all data Xt are independent

over time. A decision is made at each of the time points, and we signal an alarm when the
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monitoring statistic exceeds a certain boundary. The process ends at time nT , regardless

of whether a change point is detected, where T is a prespecified number. The type-I error

of the monitoring procedure is controlled at α, which means the probability of signaling an

alarm when there is no change within the period [n + 1, nT ] is at most α.

Under the null hypothesis, no change occurs within the monitoring period, and we have

E(Xt) = µ for t = 1, . . . , nT .

Under the alternatives, the mean function changes at some time t0 > n, and remains at the

same level for the following observations. That is,

E(Xt) =


µ 1 < t < t0

µ+ ∆ t0 ≤ t ≤ nT.

We propose a family of test statistics Tn,q(k), which serves as the monitoring statistic

targeting ‖∆‖q. The case q = 2 corresponds to dense alternatives, and larger values of q

correspond to sparser alternatives. We discuss the formulation of our monitoring statistic

for q = 2, and then extend this to general q in the subsequent subsections.

2.1 L2-norm-based monitoring statistics

In this section, we first develop the L2-norm-based monitoring statistic, which is especially

useful for detecting the dense alternative. Furthermore, we discuss the asymptotic properties

of the L2-norm-based statistic. Finally, the recursive computational algorithm is developed

to allow for efficient implementation.
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2.1.1 Monitoring statistics

For a given time k > n, suppose we know a change point happens at location m, where

n < m < k. We can separate the observations into two independent samples: pre-break

X1, . . . , Xm, and post-break Xm+1, . . . , Xk. Consider using a two-sample U-statistic with

kernel

h((X, Y ), (X ′, Y ′)) = (X − Y )T (X ′ − Y ′),

where (X ′, Y ′) is an independent copy of (X, Y ). Then, we have

E[h((X, Y ), (X ′, Y ′))] = ‖E(X)− E(Y )‖2
2,

which estimates the squared L2-norm of the mean difference. Indeed, Wang et al. (2019)

constructed an L2-norm-based retrospective change-point detection statistic by scanning

over all possible m. For the online monitoring problem, we combine this idea with the

approach in Dette and Gösmann (2019) to propose a monitoring statistic. Specifically, at

each time point k, we scan through all possible change-point locations m (n < m < k − 2),

and perform a change-point testing. We take the maximum of these U-statistics over m as

our test statistics at time k. Suppose we get a ratio-consistent estimator of ||Σ||F learned

from the training sample {X1, . . . , Xn}, denoted by ‖̂Σ‖F . Then, our monitoring statistic

at time k = n+ 3, . . . , nT is

Tn,2(k) =
1

n3‖̂Σ‖F
max

m=n+1...,k−2

p∑
l=1

∗∑
1≤i1,i2≤m

∗∑
m+1≤j1,j2≤k

(Xi1,l −Xj1,l)(Xi2,l −Xj2,l)

=
1

n3‖̂Σ‖F
max

m=n+1...,k−2
Gk(m).
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2.1.2 Asymptotic properties

To calibrate the size of the testing procedure, we need to obtain the asymptotic distribution

of the test statistic under the null. The following conditions are imposed in Wang et al.

(2019) to ensure the process convergence results.

Assumption 1. tr(Σ4) = o(‖Σ‖4
F ).

Assumption 2. Let Cum(h) =
∑p

l1,...,lh=1 cum
2(X1,l1 , . . . , X1,lh) ≤ C||Σ||hF , for h = 2, 3, 4, 5, 6

and some constant C. Here cum(·) is the joint cumulant. In general, for a sequence of ran-

dom variables Y1, . . . , Yn, their joint cumulant is defined as

cum(Y1, . . . , Yn) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

(∏
i∈B

Yi

)
,

where π runs through the list of all partitions of {1, . . . , n}, B runs through the list of all

blocks of partition π, and π is the number of parts in the partition.

Assumption 1 was also imposed in Chen and Qin (2010), who pioneered the use of the

U -statistic approach in the two-sample testing problem for high-dimensional data, and can

be satisfied by a wide range of covariance models. Assumption 2 can be viewed as restrictions

on the dependence structure, which holds under uniform bounds on the moments and “short-

range” dependence-type conditions on the entries of the vector (X0,1, ..., X0,p). See Wang

et al. (2019) for discussions about these two assumptions. Finally, under the null hypothesis

and these assumptions, we provide the limiting distribution of the proposed monitoring

statistic in Theorem 1.
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Theorem 1. Under Assumptions 1 and 2, we have

max
k=n+3,...,nT

Tn,2(k)
D−→ sup

t∈[1,T ]

sup
s∈[1,t]

G(s, t),

where

G(s, t) = t(t− s)Q(0, s) + stQ(s, t)− s(t− s)Q(0, t),

and Q is a Gaussian process with the following covariance structure:

Cov(Q(a1, b1), Q(a2, b2)) =


(min(b1, b2)−max(a1, a2))2 if max(a1, a2) ≤ min(b1, b2)

0 otherwise.

In general, we can also consider some nonconstant boundary function w(t), that is,

max
k=n+3,...,nT

Tn,2(k)

w(k/n− 1)

D−→ sup
t∈[1,T ]

sup
s∈[1,t]

G(s, t)

w(t− 1)
.

We take the double supremums here to control the familywise error rate. Therefore, we

reject the null hypothesis if Tn,2(k) > cαw(k/n− 1), for some k ∈ {n+ 3, . . . , nT}. The size

can be calibrated by choosing cα such that

P

(
sup
t∈[1,T ]

sup
s∈[1,t]

G(s, t)

w(t− 1)
> cα

)
= α.

Different choices of w(t) are considered in Dette and Gösmann (2019).

• (T1) w(t) = 1,

• (T2) w(t) = (t+ 1)2,

• (T3) w(t) = (t+ 1)2 ·max
{(

t
t+1

)1/2

, 10−10
}

.
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These w(t) are motivated by the law of the iterated logarithm, and are used to reduce

the stopping delay under the alternative. Based on our simulation results and real-data

applications, the choice of w(t) from the above three candidates does not seem to have a big

impact on the power and detection delay. Thus, in practice, for a closed-end procedure, any

choice would work. Detailed comparisons are shown in the simulation studies in Section 4.

Remark The current method can be generalized to an open-end framework. For an

open-end monitoring procedure, we are interested in testing

E(Xt) = µ for t = 1, 2, . . .

against the alternative

E(Xt) =


µ 1 < t < t0

µ+ ∆ t > t0,

for some t0 > n. Suppose we use the same L2-norm-based monitoring statistic at time

k = n+ 3, . . ., that is,

Tn,2(k) =
1

n3‖̂Σ‖F
max

m=n+1...,k−2
Gk(m).

For a suitably chosen boundary function w(·), we expect that

max
k=n+3,...,∞

Tn,2(k)

w(k/n− 1)

D−→ sup
t∈[1,∞)

sup
s∈[1,t]

G(s, t)

w(t− 1)
,

as n→∞. The critical value can be determined by

P

(
sup

t∈[1,∞)

sup
s∈[1,t]

G(s, t)

w(t− 1)
> cα

)
= α.

We reject the null hypothesis if Tn,2(k) > cαw(k/n − 1), for some k ∈ {n + 1, . . .}. In

practice, we can approximate the critical values cα using the procedure for simulating the
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critical values in the closed-end procedure, using a large T , say T = 200. Note that the

boundary function used for open-end monitoring needs to satisfy certain smoothness and

decay rate assumptions, and the above three we used for the closed-end procedure are no

longer applicable; see Assumption 2.4 in Gösmann et al. (2020) and the related discussion.

The following theorem provides a theoretical analysis of the power of the L2-norm-based

monitoring procedure.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Assume further that the change point

location is at bnrc, for some r ∈ (1, T ). Then, we have

1. When n∆T ∆
||Σ||F

→ 0,

max
k=n+3,...nT

Tn,2(k)
D−→ sup

t∈[1,T ]

sup
s∈[1,t]

G(s, t).

2. When n∆T ∆
||Σ||F

→ b ∈ (0 +∞),

max
k=n+3,...nT

Tn,2(k)
D−→ T̃2 = sup

t∈[1,T ]

sup
s∈[1,t]

[G(s, t) + bΛ(s, t)] ,

where

Λ(s, t) =



(t− r)2s2 s ≤ r

r2(t− s)2 s > r

0 otherwise

.

3. When n∆T ∆
||Σ||F

→∞,

max
k=n+3,...nT

Tn,2(k)
D−→∞.

Theorem 2 implies that, under the local alternative where n∆T ∆
||Σ||F

→ 0, the proposed

monitoring procedure has trivial power. For the diverging alternative where n∆T ∆
||Σ||F

→ +∞,
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the test has power converging to one. When the strength corresponding to the change falls

in between, the test has power in the range (α, 1).

2.1.3 Recursive computation

One challenge for the proposed monitoring statistic Tn,2(k) is that it needs to be recomputed

at each given time k. The brute force calculation of the test statistics has O(n4p) time

complexity and O(np) space complexity. In this section, we develop a recursive algorithm

to efficiently update the monitoring statistic, which greatly improves the computational

efficiency for online monitoring. More specifically, we propose a recursive algorithm to

update Gk(m), which is a major component of computing the monitoring statistic Tn,2(k),

as follows:

Gk(m) = (k −m)(k −m− 1)
∑

1≤i<j≤m

XT
i Xj +m(m− 1)

∑
m+1≤i<j≤k

XT
i Xj

− (m− 1)(k −m− 1)
m∑
i=1

k∑
j=m+1

XT
i Xj.

To compute Gk(m), we need to keep track of two CUSUM processes

Bt =
t∑
i=1

Xi and Ct =
t∑
i=1

XT
i Xi,

where Bt are still p-dimensional. The partial sum process S(a, b) =
∑

a≤i<j≤bX
T
i Xj in

Gk(m) can be expressed in terms of functions of Bt and Ct,

S(a, b) =
∑

a≤i<j≤b

XT
i Xj =

1

2
[(Bb − Ba−1)T (Bb − Ba−1)− (Cb − Ca−1)].

The detailed algorithm is stated as follows:

Statistica Sinica: Preprint 
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1. Initialization: Start with the first pair (m, k) = (n+ 1, n+ 3). Record the following

quantities:

Bn+1, Bn+2, Bn+3, Cn+1, Cn+2, Cn+3.

The first statistic is calculated based on

Gn+3(n+ 1) = 2 · (BT
n+1Bn+1 − Cn+1)/2

+ (n+ 1)n[(Bn+3 − Bn+1)T (Bn+3 − Bn+1)

− (Cn+3 − Cn+1)]/2− nBT
n+1(Bn+3 − Bn+1).

2. Increase index from k to k + 1: Fix index m, and compute Bk+1 and Ck+1:

Bk+1 = Bk +Xk+1, Ck+1 = Ck +XT
k+1Xk+1.

The statistic for the pair (m, k + 1) is

Gk+1(m) = (k −m+ 1)(k −m)(BT
mBm − Cm)/2

+m(m− 1)[(Bk+1 − Bm)T (Bk+1 − Bm))

− (Ck+1 − Cm)]/2− (m− 1)(k −m)
m∑
i=1

BT
m(Bk+1 − Bm).

3. Increase index from m to m+ 1: For fixed index k, all Bi and Ci, for i = n . . . , k,

are already recorded. The statistic for the pair (m + 1, k) is

Gk(m+ 1) = (k −m− 1)(k −m− 2)(BT
m+1Bm+1 − Cm+1)/2

+ (m+ 1)m[(Bk − Bm+1)T (Bk − Bm+1))− (Ck − Cm+1)]/2

− (k −m− 2)mBT
m+1(Bk − Bm+1).
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The algorithm should start with (m, k) = (n + 1, n + 3), increase the second index k first,

and then increase along the first index m. This recursive formulation reduces the time

complexity to O(n2p), with additional space complexity O(np).

2.2 Lq-norm-based monitoring statistics

In this section, we generalize the monitoring statistic from the L2-norm to the Lq-norm.

As shown in the previous analysis, the power of the L2-norm-based monitoring statistic

depends on the quantity ‖∆‖2, which is sensitive to dense alternatives. However, in real

applications, we usually do not know a priori if the mean change is dense or not. As an

approximation, we consider a similar test statistic targeting ‖∆‖q, for q ∈ 2N. When q

is large, we are essentially testing against sparse alternatives. As a special case, if we let

q →∞, limq→∞ ‖∆‖q = ‖∆‖∞, we only target on the largest element (in absolute value) of

∆.

2.2.1 Monitoring statistics

To define the monitoring statistics, we adopt the idea used in Zhang et al. (2021) without

applying self-normalization. Self-normalization requires more extensive computation, and

can be avoided by using the Phase-I data to obtain a ratio-consistent estimator of ‖Σ‖q.

Furthermore, as pointed out by Shao (2015), self-normalization can result in a slight loss of

power. Essentially, we can construct an Lq-norm-based test statistic at time k = n + q +

Statistica Sinica: Preprint 
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1, . . . , nT ,

Tn,q(k) =
1√

n3q‖̂Σ‖qq
max

m=n+1,...,k−q

p∑
l=1

∗∑
1≤i1,...,iq≤m

∗∑
m+1≤j1,...,jq≤k

(Xi1,l −Xj1,l) · · · (Xiq ,l −Xjq ,l)

=
1√

n3q‖̂Σ‖qq
max

m=n+1,...,k−q
Un,q(k,m),

where ‖̂Σ‖qq is a ratio-consistent estimator of ‖Σ‖qq.

2.2.2 Asymptotic properties

In this subsection, we study the asymptotic properties of the Lq-norm-based test statistics.

First, we impose the following conditions in Zhang et al. (2021) to facilitate the asymptotic

analysis.

Assumption 3. Let Xt = µ + Zt. Suppose Zt are independent and identically distributed

(i.i.d.) copies of Z0 with mean zero and covariance matrix Σ. There exists c0 > 0 independent

of n such that inf i=1...,p V ar(Z0,i) ≥ c0.

Assumption 4. Z0 has up to eighth moments, with sup1≤j≤pE[Z8
0,j] ≤ C, and for h =

2 . . . 8, there exist constants Ch depending on h only and a constant r > 2 such that

|cum(Z0,l1 . . . , Z0,lh)| ≤ Ch(1 ∨ max
1≤i<j≤h

|li − lj|)−r.

These assumptions appeared in Zhang et al. (2021), and Wang et al. (2019) showed

that they imply Assumptions 1 and 2 for the case q = 2. Assumption 4 can be implied by

the geometric moment contraction [cf. Proposition 2 of Wu and Shao (2004)], the physical

dependence measure proposed by Wu (2005) [cf. Section 4 of Shao and Wu (2007)], or
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α-mixing. It essentially requires weak cross-sectional dependence among the p components

in the data.

Under the null hypothesis, to obtain the limiting distribution of the monitoring statistic

Tn,q, we use the limiting process in Zhang et al. (2021). Thus, we have the following theorem.

Theorem 3. Under Assumptions 3 and 4,

max
k=n+q+1,...,nT

Tn,q(k)
d−→ T̃q := sup

t∈[1,T ]

sup
s∈[1,t]

Gq(s, t),

where

Gq(s, t) =

q∑
c=0

(−1)q−c

q
c

 sq−c(t− s)cQq,c(s; [0, t]),

and Qq,c(r; [a, b]) is a Gaussian process with covariance structure

cov(Qq,c1(r1; [a1, b1]), Qq,c2(r2; [a2, b2])) =

C
c

 c!(q − c)!(r − A)c(R− r)C−c(b−R)q−C ,

where A = max(a1, a2), c = min(c1, c2), C = max(c1, c2), and b = min(b1, b2). Two processes

Qq1,c1 and Qq2,c2 are mutually independent if q1 6= q2 ∈ 2N.

The limiting null distribution is pivotal, and its critical values can be simulated based

on the following equation:

P

(
sup
t∈[1,T ]

sup
s∈[1,t]

Gq(s, t)

w(t− 1)
> cα

)
= α.

We reject H0 when Tn,q(k) > cαw(k/n − 1), for k = n + q + 1, . . . , nT . We tabulate the

critical values for T = 2, q = 2, 6, and different boundary functions in Table 1. Critical

values under other settings are available upon request.

Finally, we study the power of the Lq-norm-based monitoring procedure in Theorem 4.

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438



18

Table 1: Simulated critical values for Lq-norm-based test, T = 2

Boundary T1 T2 T3

Quantile L2 L6 L2 L6 L2 L6

90% 0.756 3.235 0.204 0.867 0.141 0.592

95% 1.264 3.711 0.331 0.973 0.232 0.676

99% 2.715 4.635 0.706 1.196 0.485 0.837

Theorem 4. Suppose that Assumptions 3 and 4 hold and the change-point location is at

bnrc, for some r ∈ (1, T ),

1. When
nq/2‖∆‖qq
‖Σ‖q/2q

→ 0, max
k=n+q+1,...,nT

Tn,q(k)
D−→ T̃q;

2. When
nq/2‖∆‖qq
‖Σ‖q/2q

→ γ ∈ (0,+∞),

max
k=n+q+1,...,nT

Tn,q(k)
D−→ sup

t∈[1,T ]

sup
s∈[1,t]

[Gq(s, t) + γJq(s; [0, t])],

where

Jq(s; [0, t]) =



rq(t− s)q r ≤ s < t

sq(t− r)q s ≤ r < t

0 otherwise

;

3. When
nq/2‖∆‖qq
‖Σ‖q/2q

→∞, max
k=n+q+1,...,nT

Tn,q(k)
D−→∞.

Analogous to the q = 2 case, the power of the test depends on ‖∆‖q. Therefore, for

large q, the proposed test is sensitive to sparse alternatives.

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438



Adaptive Change Point Monitoring 19

2.2.3 Recursive computation

Similarly to the L2-based-test statistics, we would like to extend the recursive formulation

to the Lq-norm-based test statistic. According to Zhang et al. (2021), under the null, the

process Un,q(k,m) can be simplified as

Un,q(k,m) =

q∑
c=0

(−1)q−c

q
c

Pm−1−c
q−c P k−m−q+c

c Sn,q,c(m; 1, k),

where P k
l = k!/(k − l)! and

Sn,q,c(m; s, k) =

p∑
l=1

∗∑
s≤i1,...,ic≤m

∗∑
m+1≤j1,...,jq−c≤k

c∏
t=1

Xit,l

q−c∏
g=1

Xjg ,l.

Because Sn,q,c(m; 1, k) are the major building blocks of our final test statistic, and need

to be computed at each time k, we need to find efficient ways of calculating them recursively.

A key element is the sum of product terms such as

B(c,m, l) :=
∗∑

1≤i1,...,ic≤m

c∏
t=1

Xit,l, and

M(c,m, k, l) :=
∗∑

m≤j1,...,jc≤k

c∏
g=1

Xjg ,l.

When we increase from m to m+ 1,

∗∑
1≤i1,...,ic≤m+1

c∏
t=1

Xit,l =
∗∑

1≤i1,...,ic≤m

c∏
t=1

Xit,l +Xm+1,l ·
∗∑

1≤i1,...,ic−1≤m

c−1∏
t=1

Xit,l.

We can derive the following recursive relationship for B(c, k, l):

B(c,m+ 1, l) = B(c,m, l) + B(c− 1,m, l) ·Xk+1,l. (2.1)
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There is a similar recursive relationship for M(c,m, k, l),

M(c,m+ 1, k, l) = M(c,m, k, l) +Xm+1,lM(c− 1,m, k, l). (2.2)

To enable the recursive computation, for each c = 0, . . . , q, we maintain a matrix to

store the cumulative sums.

1. Initialization: Starting with c = 0 and c = 1, for all l = 1, . . . , p, initialize B(0, k +

1, l), . . . , B(0, k + q, l) = 0 and calculate

B(1, k + 1, l) =
k+1∑
i=1

Xi,l, . . . , B(1, k + q, l) =

k+q∑
i=1

Xi,l.

Then, recursively calculate B(c, i, l), for all c = 0, . . . , q and i ≤ k + q, based on

Equation 2.1.

2. Update from B(c, k, l) to B(c, k + 1, l): Let B(0, k + 1, l) = B(0, k, l) +Xk+1,l, and

obtain the result for other B(c, k + 1, l) (c ≤ q) using Equation 2.1.

3. Update fromM(c,m, k, l) toM(c,m+1, k, l): Fix index k, for any n+1 ≤ m ≤ k−q,

l = 1, . . . , p, let M(0,m, k, l) = 0, and calculate

M(1,m, k, l) =
k∑

i=m

Xi,l.

All other M(c,m, k, l), where c ≤ q and n + 1 ≤ m ≤ k − q, can be obtained using

Equation 2.2. Construct the test statistic Tn,q(k + 1) using B(c, k, l) and M(c,m, k, l)

and repeat from step 2.

The time complexity of the recursive formulation is O(n2pq), with space complexity O(npq).
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2.3 Combining multiple Lq-norm-based statistics

In this section, we propose combining multiple Lq statistics to detect both dense and sparse

alternatives. Specifically, based on the theoretical results in Zhang et al. (2021), the U-

process for different q are asymptotically independent, which implies that {Tn,q}nTk=n+q+1 are

asymptotically independent for q ∈ 2N. Therefore, maxnTk=n+q+1 Tn,q(k) are asymptotically

independent for q ∈ I, where I ⊂ 2N, say I = {2, 6}. Thus, we can combine the monitoring

procedure for different q and adjust for the asymptotic size. In general, if we want to combine

a set of q ∈ I, we can adjust the size of each individual test to be 1− (1− α)1/|I|, given the

asymptotic independence, and reject the null if any of the monitoring statistics exceeds its

critical value. Zhang et al. (2021) provide power analysis for the identity covariance matrix

case,showing that the adaptive test enjoys good overall power.

In practice, there is this issue of which q to use. Based on the recommendation in Zhang

et al. (2021), we set q = 6. As mentioned in the latter paper, using larger q leads to more

trimming and more computational cost. As we demonstrate in the simulations, using q = 6

and combining with q = 2 show a very promising performance; see Section 4 for more details.

3. Ratio-consistent estimator of ‖Σ‖qq

Note that the test statistic Tn(k) requires a ratio-consistent estimator of ‖Σ‖qq. For example,

when q = 2, this can be simplified to ‖Σ‖2
F . A ratio-consistent estimator of ‖Σ‖2

F is proposed

in Chen and Qin (2010), but it seems difficult to generalize to ‖Σ‖qq. In this section, we

introduce a new class of ratio-consistent estimators of ‖Σ‖qq based on U-statistics. We first
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show the result when q = 2, and generalize it to q ∈ 2N later.

Assume {Xt}nt=1 ∈ Rp are i.i.d. random vectors with mean µ and variance Σ. Define

‖̂Σ‖2
F =

1

4
(
n
4

) ∑
1≤j1<j2<j3<j4≤n

tr
(
(Xj1 −Xj2)(Xj1 −Xj2)

T (Xj3 −Xj4)(Xj3 −Xj4)
T
)

(3.1)

as an estimator of ‖Σ‖2
F .

Theorem 5. Under Assumption 1 and Cum(4)≤ C‖Σ‖4
F in Assumption 2, ‖̂Σ‖2

F is a ratio-

consistent estimator of ‖Σ‖2
F , that is ‖̂Σ‖2

F/‖Σ‖2
F

p−→ 1.

Now, we extend this idea to general q ∈ 2N. We let

‖̂Σ‖qq =
1

2q
(
n
2q

) p∑
l1,l2=1

∑
1≤i1<···<iq<j1<···<jq≤n

q∏
k=1

(Xik,l1 −Xjk,l1)(Xik,l2 −Xjk,l2),

as an estimator for ‖Σ‖qq, for any finite positive even number q. The following proposition

states that the proposed estimator is unbiased.

Proposition 1. ‖̂Σ‖qq is an unbiased estimator of ‖Σ‖qq.

Proof of Proposition 1. Because {Xt}nt=1 are i.i.d.,

E[‖̂Σ‖qq] =
1

2q
(
n
2q

) p∑
l1,l2=1

∑
1≤i1<···<iq<j1<···<jq≤n

q∏
k=1

E[(Xik,l1 −Xjk,l1)(Xik,l2 −Xjk,l2)]

=
1

2q
(
n
2q

) p∑
l1,l2=1

∑
1≤i1<···<iq<j1<···<jq≤n

q∏
k=1

(2Σl1,l2)

=
1

2q
(
n
2q

) p∑
l1,l2=1

(
n

2q

)
2qΣq

l1,l2
= ‖Σ‖qq.

This completes the proof.

The ratio consistency can be shown under the following assumption.
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Assumption 5. We assume that

1. there exists c > 0 such that inf i=1,...,p Σi,i > c;

2. there exists C > 0 and r > 2 such that for h = 2, 3, 4 and 1 ≤ l1 ≤ · · · ≤ lh ≤ p,

|cum(X0,l1 , ..., X0,lh)| ≤ C(1 ∨ (lh − l1))−r.

Note that Assumption 5(2) is required for the ratio consistency, which is weaker than

Assumption 4. The Assumptions 1–5 required for our theory do not state the explicit

relationship between n and p. For example, when Σ = Ip, which means there is no cross-

sectional dependence, all the assumptions are satisfied and (n, p) can go to infinity freely

without any restrictions. When there is cross-sectional dependence, our assumptions may

implicitly restrict the relative scale of n and p. In general, a larger p is a blessing in our

setting, and it makes the asymptotic approximation more accurate. Furthermore, a larger

n is always preferred, owing to the large-sample approximation. On the other hand, the

computational cost increases when both the dimension and the sample size get large.

Theorem 6. Under Assumption 5, ‖̂Σ‖qq is a ratio-consistent estimator of ‖Σ‖qq, that is,

‖̂Σ‖qq/‖Σ‖qq
p−→ 1.

Note that implementing the above estimator may be time-consuming for large q. In

practice, we can always take a random sample of all possible indices and form an incom-

plete U-statistic to approximate. The consistency of the incomplete U-statistic can also be

established, but is not pursued here for simplicity.
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4. Simulation Results

We compare the monitoring procedures for q = 2, q = 6, and q = (2, 6) combined. We

consider (n, p) = (100, 50) with T = 2, where the observations Xi ∼ N(µi,Σ) are generated

independently over time. We consider four possible choices of Σ,

Σij = ρ|i−j| for ρ = 0, 0.2, 0.5, 0.8,

to evaluate the performance of the monitoring scheme for the independent-components set-

ting or under weak and strong dependence between components. All tests have nominal size

α = 0.1.

Under the null H0, there is no change point: µi = 0, for all i. For the alternative, we

consider µi =
√
δ/r(1r,0p−r), for i = (b1.25nc + 1), . . . , nT . Under the dense alternative,

we set (δ, r) = (1, p), (2, p). Under the sparse alternative, we set (δ, r) = (1, 3), (1, 1).

To illustrate the finite-sample performance of our monitoring statistics, we compare

our results with those of Mei (2010) (denoted as Mei) and Liu et al. (2019) (denoted as

LZM), which are similar to the open-end scenario in Chu et al. (1996). Neither method

require Phase-I data, and both were originally designed to minimize the average run length.

Therefore, they do not explicitly control the type-I error. To make a fair comparison with

the current methods, which are proposed under the closed-end monitoring framework, we

generate n independent Gaussian samples from N(0, Ip×p), and calculate the Mei and LZM

monitoring statistics. We empirically determine the critical value such that the empirical

rejection rate is 10%, based on 2500 simulated data sets. For Mei’s methods, we need to

specify the distribution after the change point, which we set as the distribution under the
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alternative (δ, r) = (1, p). For LZM’s method, we use the same setting in Liu et al. (2019),

and set b = log(10), ρ = 0.25, t = 4, and s = 1.

Table 2 shows the size of the monitoring procedure for the benchmark methods and the

proposed methods for the three boundary functions T1, T2, and T3 introduced in Section 2.1

under different correlation coefficients ρ. Note that the size is noticeably worse for ρ = 0.8.

This is partially due to the poor performance of the ratio-consistent estimator, because its

variance increases as the cross-sectional dependence increases. Furthermore, note that the

size seems to go in different directions for q = 2 and q = 6 as the correlation increases. The

combined test, on the other hand, balances out such distortions. To make sure this is only a

finite-sample behavior, we increase (n, p) from (100, 50) to (200, 200), showing that the size

distortion for all tests improved noticeably for almost all settings. The additional results

are available in the Supplementary Material. In contrast, Mei and LZM only achieved the

correct size for the independent-component case, because we select the threshold under the

same setting. However, when there is cross-sectional dependence between data streams, the

size is no longer controlled, and the size distortion is much more severe than it is in the

Lq-based tests.

Table 3 provides the power result (left column) and average delay time (ADT) (right

column) for different tests under dense alternatives. As expected, the L2-based test demon-

strates higher power than that of the L6-based test. The power of the combined test lies

between and is closer to the power of the L2-based test. As the correlation increases, the

power of each test decreases, owing to the reduced signal. Of the three different boundary

functions, T2 seems to have the shortest ADT, with a slight sacrifice in power. Mei’s method
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Table 2: Sizes of different monitoring procedures

T1 T2 T3

α = 0.1 Mei LZM L2 L6 Comb L2 L6 Comb L2 L6 Comb

ρ = 0 0.094 0.105 0.086 0.048 0.067 0.093 0.045 0.071 0.097 0.045 0.070

ρ = 0.2 0.058 0.125 0.083 0.048 0.057 0.082 0.045 0.055 0.083 0.046 0.051

ρ = 0.5 0.002 0.176 0.103 0.048 0.084 0.104 0.048 0.082 0.108 0.048 0.080

ρ = 0.8 0.000 0.409 0.135 0.028 0.085 0.145 0.027 0.093 0.137 0.026 0.086

is only better than the L6-based test when there is no strong cross-sectional dependence,

and is generally worse than the other methods and has a relatively longer delay, even when

the distribution under the alternative is correctly specified. Note that when ρ = 0.8, Mei’s

method loses power completely. LZM, in general, has a slightly shorter detection delay, but

at the cost of much lower power compared with that of the L2-based test and the combined

test. This means the LZM is quicker in signaling an alarm when a change point is detected.

Although LZM showed good power for the strong cross-sectional dependence case compared

with the combined test, it comes at the price of a much distorted size. This is because LZM

assumes all data streams are independent.

Table 4 provides the power of different tests under sparse alternatives. The L6-based

test and the combined test are comparable in terms of power, and the L2-based test exhibits

inferior power in most settings, as expected. An interesting observation is that for the case

(δ, r) = (1, 3), the L2-based test still shows slightly higher power than the L6-based test when
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Table 3: Power under dense alternatives

Power Mei LZM L2 L6 Comb

α = 0.1 (δ, r) power ADT power ADT w(t) power ADT power ADT power ADT

ρ = 0.0

(1, p) 0.852 72.9 0.628 38.0

T1 0.958 51.9 0.295 64.6 0.926 55.0

T2 0.951 44.3 0.284 63.0 0.921 47.7

T3 0.953 46.8 0.286 63.4 0.921 50.2

(2, p) 0.999 69.3 1.000 15.1

T1 1.000 27.5 0.919 56.2 1.000 29.5

T2 1.000 20.4 0.919 54.3 1.000 21.9

T3 1.000 22.9 0.920 54.9 1.000 24.7

ρ = 0.2

(1, p) 0.740 73.3 0.675 38.2

T1 0.935 51.8 0.302 64.4 0.907 54.9

T2 0.930 44.2 0.291 62.9 0.906 47.7

T3 0.933 46.7 0.294 63.5 0.903 50.3

(2, p) 1.000 69.9 1.000 15.6

T1 1.000 28.0 0.884 56.6 1.000 30.0

T2 1.000 20.8 0.884 54.8 1.000 22.3

T3 1.000 23.4 0.883 55.3 1.000 25.2

ρ = 0.5

(1, p) 0.243 74.1 0.715 34.3

T1 0.844 52.9 0.274 63.3 0.796 55.8

T2 0.843 45.2 0.267 61.5 0.787 47.9

T3 0.847 47.9 0.267 62.0 0.792 50.7

(2, p) 0.932 72.2 1.000 15.7

T1 1.000 30.7 0.864 55.9 1.000 33.0

T2 1.000 23.1 0.861 54.2 1.000 24.8

T3 1.000 25.7 0.861 54.8 1.000 27.8

ρ = 0.8

(1, p) 0.000 NA 0.803 29.0

T1 0.632 54.6 0.165 62.5 0.560 56.8

T2 0.637 46.4 0.162 60.9 0.575 48.6

T3 0.642 49.4 0.162 61.4 0.568 51.8

(2, p) 0.001 74.0 0.997 16.1

T1 0.990 38.3 0.666 56.0 0.984 40.8

T2 0.990 30.1 0.663 54.2 0.983 32.1

T3 0.990 32.7 0.666 54.9 0.983 35.4

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438



28

ρ = 0.2, which means that for this particular setting, the change is not “sparse” enough.

As the correlation increases, we observe a noticeable drop in power, which is similar to the

dense alternative setting and is again attributed to the reduced signal size. Of the three

boundary functions, T2 still has the shortest ADT with a slight power loss compared to

the other two boundary functions. Mei’s method has worse power because it is designed

for dense signals and the distribution under the alternative is misspecified. By comparison,

LZM gives consistently good power and short ADTs across all settings. However, the good

power under strong cross-sectional dependence is still offset by the severe size distortion

under the null.

In addition to evaluating the size and power of the monitoring procedure, we compare

the computational cost of the recursive formulation versus that of the brute force approach.

For the case of (n, p) = (100, 50), the average run-time of the brute force approach is 12.89

times that of the recursive algorithm under H0, and is 13.07 times that of the recursive

algorithm under the alternative. The code is implemented in R. This demonstrates the

substantial efficiency gain from the recursive computational algorithm.

5. Data Illustration

5.1 Tonnage dat aset

We first apply the proposed methodology to monitor the multi-channel tonnage profile col-

lected in a forging process in (Lei et al., 2010), where four different strain gauge sensors are

mounted at each column of the forging machine, measuring the exerted force of the press.
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Table 4: Power under sparse alternatives

Power Mei LZM L2 L6 Comb

α = 0.1 (δ, r) power ADT power ADT w(t) power ADT power ADT power ADT

ρ = 0.0

(1, 3) 0.422 74.0 0.990 27.4

T1 0.976 51.5 0.999 37.8 0.999 40.5

T2 0.967 43.8 0.999 35.9 0.999 38.0

T3 0.972 46.4 0.999 36.6 0.999 39.0

(1, 1) 0.400 73.9 1.000 23.4

T1 0.961 51.5 0.951 51.0 0.976 52.2

T2 0.958 44.1 0.953 49.5 0.974 46.3

T3 0.959 46.4 0.953 50.0 0.976 48.7

ρ = 0.2

(1, 3) 0.274 74.1 0.990 29.1

T1 0.946 52.2 0.937 51.6 0.955 52.6

T2 0.939 44.6 0.935 50.0 0.955 47.1

T3 0.943 47.1 0.936 50.5 0.954 49.2

(1, 1) 0.268 74.1 1.000 23.9

T1 0.961 52.6 0.998 37.3 0.999 40.2

T2 0.951 45.3 0.998 35.4 0.999 37.7

T3 0.957 47.6 0.998 36.0 0.999 38.6

ρ = 0.5

(1, 3) 0.048 74.5 0.972 28.2

T1 0.871 54.7 0.881 51.5 0.887 53.4

T2 0.856 47.1 0.878 49.8 0.884 48.7

T3 0.860 49.9 0.880 50.4 0.886 50.6

(1, 1) 0.036 74.3 1.000 23.2

T1 0.880 55.9 0.997 38.0 0.997 40.7

T2 0.871 49.1 0.997 36.1 0.997 38.2

T3 0.879 51.2 0.997 36.8 0.997 39.2

ρ = 0.8

(1, 3) 0.000 NA 0.971 24.7

T1 0.621 58.9 0.800 52.9 0.808 55.3

T2 0.610 50.6 0.801 51.3 0.802 51.5

T3 0.614 53.7 0.803 51.9 0.807 53.2

(1, 1) 0.000 NA 1.000 21.5

T1 0.602 61.1 0.998 38.8 0.997 41.7

T2 0.588 53.6 0.998 36.8 0.997 39.3

T3 0.601 56.8 0.998 37.5 0.997 40.2
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(a) The setup of the forging machine (b) Data collected in the forging machine

Figure 1: Forging machine setup and the collected tonnage data set

The setup of the process is shown in Figure 1a. The four strain gauge sensors represent

the signature of the product and are used for process monitoring and change detection in

Lei et al. (2010). For example, 10 examples of the signals before the changes and after the

changes are shown in Figure 1b. As mentioned by Lei et al. (2010) and Yan et al. (2018),

the missing part affects only a small region of the signals, making it difficult to detect, as

shown in Figure 1b.

We select a subset of the data with n = 200 observations, where the first 130 observations

are from the normal tonnage sample, and the last 70 observations are abnormal. We project

the data onto a 20-dimensional space by training the anomaly basis on a holdout sample,

as in Yan et al. (2018). The first 100 observations are treated as a Phase-I stage without

any changes, and we learn the 2-norm and q-norm of the covariance matrix from them.

The monitoring scheme started at observation 107 (trimming due to q = 6). The L6-based

test stopped at time 137, and estimated the possible change-point location at time 128 by

performing a retrospective test at time 137. The L2-based test signaled slightly earlier at

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438



Adaptive Change Point Monitoring 31

110 115 120 125 130 135

0
2

4
6

8
10

12

Plot of L2−based test statistic

Time

L 2

L2−based stats
90% threshold
94.87% threshold
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(b) L6 based test for tonnage data

Figure 2: Testing Statistics for tonnage data

time 135, and also estimated the change at 128. The combined test signaled an alarm at time

135, with the same estimated location. The trajectory of the L2 and the L6 test statistics

are shown in Figure 2a and 2b, respectively. Note that when we set the size of the individual

test to α∗ = (1 − 0.1)1/2 = 5.13%, the size of the combined test is α = 1 − α∗2 = 0.1. We

signal an alarm when at least one test statistic exceeds the corresponding threshold.

5.2 Rolling data set

Here, we consider process monitoring in a steel rolling manufacturing process. Surface

defects, such as seam defects, can result in a stress concentration on the bulk, and may

cause failures if the steel bar is used in a product. However, the rolling process is a high-

speed process, with the rolling bar moving at around 200 miles per hour. Thus, providing

real-time online anomaly detection for the high-speed rolling process is very important to
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(a) Normal rolling image (b) Abnormal rolling image

Figure 3: Examples of the rolling images

prevent further product damage.

The data set is collected in the high-speed rolling process. Here, we selected a segment

near the end of the rolling bar, which contains 100 images of the rolling process. To remove

the trend, we have applied a smooth background remover and downsampled the image to

16 × 64 pixels. An example of the normal image and the abnormal image are shown in

Figure 3a and 3b, respectively.

We treated the first 50 observations as the training set and obtained ratio-consistent

estimators ‖̂Σ‖qq. After performing the change-point monitoring procedure, the L6-norm-

based test signaled an alarm at time 97, and estimated that the possible change-point

location is at time 89, based on the retrospective test. On the other hand, the L2 based test

failed to detect the change within the finite time horizon. The combined test also signaled

an alarm at time 97. We present the rolling image at time 91 in Figure 3b. This shows that
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Figure 4: Examples of the rolling images

after downsampling, the change is still quite sparse. The adaptive monitoring procedure

is still powerful, as long as one test has power. We also present the trajectory of the test

statistic at each time point in Figure 4a and 4b. Note that there is a downshift in the L2-

based monitoring statistic right after the estimated change. This is because the signal is very

sparse, and the construction of our proposed statistic may admit negative values for a short

period. The negative values here should not be a major concern, because the test statistic

should admit positive values in probability under the alternatives. We confirmed this by

adding an artificial dense change to the data. On the other hand, the L6-based monitoring

statistics detect the change efficiently, owing to their ability to capture the sparse change in

the system.
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6. Conclusion

In this article, we have proposed a new methodology to monitor a mean shift in temporally

independent high-dimensional observations. Our change point monitoring method targets

the Lq-norm of the mean change for q = 2, 4, 6, · · · By combining the monitoring statistics

for different values of q ∈ 2N, the adaptive procedure achieves overall satisfactory power

against both sparse and dense changes in the mean. This can be desirable from a practi-

tioner’s viewpoint, because often we do not have knowledge about the types of alternatives.

Compared with the recently developed methods for monitoring large-scale data streams [e.g.,

Mei (2010), Xie and Siegmund (2013), Liu et al. (2019)], our method is fully nonparametric

and does not require strong distributional assumptions. Furthermore, our method allows for

certain cross-sectional dependence across data streams, which could arise naturally in many

applications.

To conclude, we mention a few interesting directions for future work. First, our focus is

on the mean change, and it is natural to ask whether the method can be extended to monitor

a change in the covariance matrix. Second, many streaming data have weak dependence over

time, owing to their sequential nature. Thus, how to accommodate weak temporal depen-

dence is of interest. Third, in the current implementation, the ratio-consistent estimators are

learned from the training data, and do not change as more observations become available. In

practice, if the monitoring scheme runs for a long time without signaling an alarm, it might

be helpful to periodically update the ratio-consistent estimators to gain efficiency, especially

when the initial training sample is short. However, it may be impractical to update this
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estimator for each k, because there seems no easy recursive way to update this estimator

and the associated computational cost is high. The user might need to determine how often

to update it based on the actual computational resources. Fourth, even though the proposed

algorithm can detect a sparse change, in many applications, it is also an important problem

to identify which individual data stream actually experiences a change. These issues are left

for future research.

Supplementary Material

The online Supplementary Material contains technical proofs for the theoretical results, as

well as additional simulation results.
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Lévy-Leduc, C. and Roueff, F. (2009). “Detection and localization of change-points in high-dimensional network

traffic data.” The Annals of Applied Statistics , 3(2): 637–662.

Li, J. (2020). “Efficient global monitoring statistics for high-dimensional data.” Quality Reliability Engineering

International , 36: 18–32.

Liu, K., Zhang, R., and Mei, Y. (2019). “Scalable sum-shrinkage schemes for distributed monitoring large-scale data

streams.” Statistica Sinica , 29: 1–22.

Lorden, G. (1971). “Procedures for reacting to a change in distribution.” Annals of Mathematical Statistics , 42:

1897–1908.

MacNeill, I. B. (1974). “Tests for change of parameter at unknown times and distributions of some related functionals

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438



38

on Brownian motion.” The Annals of Statistics , 2(5): 950–962.

Matteson, D. S. and James, N. A. (2014). “A nonparametric approach for multiple change point analysis of multi-

variate data.” Journal of the American Statistical Association , 109(505): 334–345.

Mei, Y. (2010). “Efficient scalable schemes for monitoring a large number of data streams.” Biometrika, 97(2):

419–433.

Page, E. S. (1954). “Continuous inspection schemes.” Biometrika, 41(1/2): 100–115.

Perron, P. (2006). “Dealing with Structural Breaks.” Palgrave Handbook of Econometrics Vol. 1: Econometric

Theory, K. Patterson and T.C. Mills (eds.), Palgrave Macmillan , 278–352.

Polunchenko, A. S. and Tartakovsky, A. G. (2012). “State-of-the-art in sequential change-point detection.” Method-

ology and computing in applied probability , 14(3): 649–684.

Shao, X. (2010). “A self-normalized approach to confidence interval construction in time series.” Journal of Royal

Statistical Society, Series B , 72: 343–366.

— (2015). “Self-normalization for time series: a review of recent developments.” Journal of the American Statistical

Association , 110: 1797–1817.

Shao, X. and Wu, W. B. (2007). “Asymptotic spectral theory for nonlinear time series.” The Annals of Statistics ,

35(4): 1773–1801.

Shao, X. and Zhang, X. (2010). “Testing for change points in time series.” Journal of the American Statistical

Association , 105: 1228–1240.

Wald, A. (1945). “Sequential tests of statistical hypotheses.” Annals of Mathematical Statistics , 16: 117–186.

Wang, R. and Shao, X. (2020). “Dating the break in high-dimensional data.” Available at

https://arxiv.org/pdf/2002.04115.pdf .

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438



Adaptive Change Point Monitoring 39

Wang, R., Volgushev, S., and Shao, X. (2019). “Inference for change points in high dimensional data.” arXiv preprint

arXiv:1905.08446 .

Wang, T. and Samworth, R. J. (2018). “High dimensional change point estimation via sparse projection.” Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 80(1): 57–83.

Wang, Y. and Mei, Y. (2015). “Large-scale multi-stream quickest change detection via shrinkage post-change esti-

mation.” IEEE Transactions on Information Theory , 61(12): 6926–6938.

Wied, D. and Galeano, P. (2013). “Monitoring correlation change in a sequence of random variables.” Journal of

Statistical Planning and Inference , 143(1): 186–196.

Wu, W. B. (2005). “Nonlinear system theory: Another look at dependence.” Proceedings of the National Academy

of Sciences , 102(40): 14150–14154.

Wu, W. B. and Shao, X. (2004). “Limit theorems for iterated random functions.” Journal of Applied Probability ,

41(2): 425–436.

Xie, Y. and Siegmund, D. (2013). “Sequential multi-sensor change-point detection.” The Annals of Statistics , 41(2):

670–692.

Yan, H., Paynabar, K., and Shi, J. (2014). “Image-based process monitoring using low-rank tensor decomposition.”

IEEE Transactions on Automation Science and Engineering , 12(1): 216–227.

— (2018). “Real-time monitoring of high-dimensional functional data streams via spatio-temporal smooth sparse

decomposition.” Technometrics , 60(2): 181–197.

Yu, M. and Chen, X. (2017). “Finite sample change point inference and identification for high-dimensional mean

vectors.” Journal of the Royal Statistical Society: Series B (Statistical Methodology).

— (2019). “A robust bootstrap change point test for high-dimensional location parameter.” arXiv preprint

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438



40

arXiv:1904.03372 .

Zhang, Y., Wang, R., and Shao, X. (2021). “Adaptive Inference for Change Points in High-Dimensional Data.”

Journal of the American Statistical Association , 1–34.

Zou, C., Wang, Z., Zi, X., and Jiang, W. (2015). “An efficient online monitoring method for high-dimensional data

streams.” Technometrics , 57(3): 374–387.

Teng Wu, Department of Statistics, University of Illinois at Urbana-Champaign

E-mail: tengwu2@illinois.edu

Runmin Wang, Department of Statistical Science, Southern Methodist University

E-mail: runminw@smu.edu

Hao Yan, School of Computing Informatics & Decision Systems Engineering, Arizona State University

E-mail: haoyan@asu.edu

Xiaofeng Shao, Department of Statistics, University of Illinois at Urbana-Champaign

E-mail: xshao@illinois.edu

Statistica Sinica: Preprint 
doi:10.5705/ss.202020.0438


	Introduction
	Monitoring Statistics
	L2-norm-based monitoring statistics
	Monitoring statistics
	Asymptotic properties
	Recursive computation

	Lq-norm-based monitoring statistics
	Monitoring statistics
	Asymptotic properties
	Recursive computation

	Combining multiple Lq-norm-based statistics

	Ratio-consistent estimator of qq
	Simulation Results
	Data Illustration
	Tonnage dat aset
	Rolling data set

	Conclusion



