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Adaptive Change Point Monitoring for High-Dimensional Data

Teng Wu, Runmin Wang, Hao Yan, Xiaofeng Shao

Department of Statistics, University of Illinois at Urbana-Champaign
Department of Statistical Science, Southern Methodist University

School of Computing Informatics € Decision Systems Engineering, Arizona State University

Abstract: In this paper, we propose a class of monitoring statistics for a mean shift in a sequence
of high-dimensional observations. Inspired by recent U-statistic based retrospective tests, we extend
the U-statistic-based approach to the sequential monitoring problem by developing a new adaptive
monitoring procedure that can detect both dense and sparse changes in real time. Unlike existing
methods in retrospective testing that use self-normalization, we introduce a class of estimators for
the g-norm of the covariance matrix and prove their ratio consistency. To facilitate fast computation,
we further develop recursive algorithms to improve the computational efficiency of the monitoring
procedure. The advantages of the proposed methodology are demonstrated using simulation studies

and real-data illustrations.
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1. Introduction

Change-point detection problems have been studied extensively in areas, such as statistics,
econometrics, and engineering, and there are wide applications in the fields of physical

science and engineering. The literature on this topic is extensive, and growing rapidly. For



Statistica Sinica: Preprint
doi:10.5705/55.202020.0438

low-dimensional data, early works include those of Page (1954), MacNeill (1974), and Brown
et al. (1975), among others. More recent works on change-point problems for low- /fixed-
dimensional multivariate time series data include those of Shao and Zhang (2010), Matteson
and James (2014), Kirch et al. (2015), Biicher et al. (2019), among others. Refer to Perron
(2006), Aue and Horvath (2013), and Aminikhanghahi and Cook (2017) for excellent reviews
on this topic.

The literature on change-point detection can be roughly divided into two categories:
retrospective testing and the estimation of change points based on a complete data sequence
offline, and online sequential monitoring for change points based on some training data and
data that arrive sequentially. This study focuses on the sequential monitoring problem for
temporally independent, but cross-sectionally dependent high-dimensional data. There are
two major lines of research for sequential change-point detection/monitoring. The first fol-
lows the paradigm set by pioneers in the field, such as Wald (1945), Page (1954), and Lorden
(1971); see Lai (1995, 2001) and Polunchenko and Tartakovsky (2012) for comprehensive
reviews. Most sequential detection methods along this line are optimized to have a minimal
detection delay, controlling the average run length under the null. Furthermore, most ex-
isting procedures are developed for low-dimensional data. These methods often require us
to make some parametric assumptions about the pre-change and post-change distributions.
In the second line, Chu et al. (1996) assume there is a set of training data (without any
change points), and apply sequential monitoring to test the data that arrives sequentially.
They employ the invariance principle to control the type-I error, and their framework has

been adopted by many other researchers in both parametric and nonparametric contexts;
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see Horvath et al. (2004), Aue et al. (2012), Wied and Galeano (2013), Fremdt (2015), and
Dette and Gésmann (2019). Here, it is typical to use the size and power (plus average detec-
tion delay) to describe and compare the operating characteristics of competing procedures.
Our procedure falls into the second category. It seems to us that these two frameworks are,
in general, difficult to compare, because they differ in terms of the model assumptions and
evaluation criteria.

Today, with the rapid improvement of data acquisition technology, high-dimensional
data streams involving continuous sequential observations appear frequently in modern man-
ufacturing and service industries, and the demand for efficient online monitoring tools for
such data has never been higher. For example, Yan et al. (2018) proposed a method for
monitoring a multi-channel tonnage profile used for the forging process, which has thou-
sands of attributes. Furthermore, image-based monitoring [Yan et al. (2014)] has become
popular in the literature, which includes thousands of pixels per image. Lévy-Leduc and
Roueff (2009) considered the problem of monitoring thousands of Internet traffic metrics
provided by a French Internet service provider. This kind of high-dimensional data poses
significant new challenges to traditional multivariate statistical process control and moni-
toring, because when the dimension p is high and is comparable to the sample size n, most
existing sequential monitoring methods constructed based on fixed-dimension assumptions
become invalid.

In this article, we propose a new class of sequential monitoring methodology to detect the
change in the mean of independent high-dimensional data based on (sequential) retrospective

testing. Our proposal is inspired by recent works on the retrospective testing of mean
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changes in high-dimensional data by Wang et al. (2019) and Zhang et al. (2021). In Wang
et al. (2019), the authors propose a U-statistic-based approach to target the Ly-norm of the
mean difference by extending the U-statistic idea of Chen and Qin (2010) from two-sample
testing to the change-point testing problem. Zhang et al. (2021) further extend the test
of Wang et al. (2019) to an L,-norm-based test mimicking that of He et al. (2018), where
q € 2N, to capture the sparse alternative. By combining the Ls-norm-based test and the
L,norm-based test, the adaptive test statistic they propose is shown to achieve high power
for both dense and sparse alternatives. However, one of the limitations of these works is
that the methods are designed for offline analysis, which is not suitable in real-time online
monitoring systems. Building on the works of Wang et al. (2019) and Zhang et al. (2021),
we propose a new adaptive sequential monitoring procedure that can capture both sparse
and dense alternatives. Instead of using the self-normalization scheme [Shao (2010); Shao
and Zhang (2010); Shao (2015)], as in Wang et al. (2019) and Zhang et al. (2021), we use
ratio-consistent estimators for ||X[|¢ based on the training data, where X is the common
covariance matrix of the sequence of random vectors, and provide a rigorous proof for ratio
consistency. Furthermore, we develop recursive algorithms for fast implementation so that
at each time, the monitoring statistics can be computed efficiently. Finally, theory and
simulations show that the resulting adaptive monitoring procedure using a combination of
sequential tests based on Ly and L, (say ¢ = 6) is powerful against both dense and sparse
alternatives.

There is a growing body of literature on high-dimensional change-point detection in the

retrospective setting; see Horvath and Huskovd (2012),Cho and Fryzlewicz (2015), Jirak
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(2015), Yu and Chen (2017), Wang and Samworth (2018), Yu and Chen (2019), Wang et al.
(2019), Zhang et al. (2021), and Wang and Shao (2020), among others. Note that Enikeeva
and Harchaoui (2019) developed a test based on a combination of a linear statistic and a scan
statistic, and their test can be adaptive to both sparse and dense alternatives. However, their
Gaussian and independent component assumptions are too restrictive. In addition, works
on the online monitoring of high-dimensional data streams have been growing steadily in
the literature on statistics and quality control. In particular, Mei (2010) proposed a global
monitoring scheme based on the sum of the cumulative sum monitoring statistics from each
individual data stream. His method aims to minimize the delay time and control the global
false alarm rate, which is based on the average run length under the null. This is different
from the size and power analysis in our work. Note that the assumptions in Mei (2010)
are quite restrictive, in the sense that he assumed that no data streams have cross-sectional
dependence, and that both the pre-change and the post-change distributions are known. See
Wang and Mei (2015), Zou et al. (2015), Liu et al. (2019), and Li (2020) for several variants
on how to aggregate the local monitoring statistics. Xie and Siegmund (2013) proposed a
mixture detection procedure based on a likelihood ratio statistic that takes into account the
fraction of data streams being affected. They argue that the performance is good when the
fraction of affected data streams is known, and do not require a complete specification of the
post-change distribution. However, the mixture global log-likelihood they specify relies on
the hypothesized affected fraction pg, and they show the robustness of different choices of pg
using numerical studies only. The results they derive hold for data generated from a normal

distribution or from other exponential families of distributions. A common feature of all
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these works is that they assume the data streams do not have cross-sectional dependence,
which may be violated in practice. In fact, our theory for the proposed monitoring statistic
demonstrates the impact of the correlation/covariance structure of multiple data streams,
which is lacking in the above-mentioned literature.

The rest of the paper is structured as follows. In Section 2, we specify our change point
monitoring framework and propose a monitoring statistic that targets the L,-norm of the
mean change. An adaptive monitoring scheme can be derived by combining the test statistic
for different ¢, for ¢ € 2N. Section 3 provides a ratio-consistent estimator for [|X[[Z, which
is crucial when constructing the monitoring statistics. Section 4 provides simulation studies
that examine the finite-sample performance of the adaptive monitoring statistic. In Section
5, we apply the adaptive monitoring scheme to two real data sets. Section 6 concludes the

paper. All technical details can be found in the Appendix.

2. Monitoring Statistics

In this section, we specify the general framework we use to perform change-point monitoring.
We consider a closed-end change-point monitoring scenario, following Chu et al. (1996).
Assume that we observe a sequence of temporally independent high-dimensional observations
Xq,..., X, € RP, which are ordered in time and have constant mean g and covariance matrix
Y. We start the monitoring procedure from time (n + 1) to detect whether the mean vector
changes in the future. Throughout the analysis, we assume that all data X; are independent

over time. A decision is made at each of the time points, and we signal an alarm when the
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monitoring statistic exceeds a certain boundary. The process ends at time nT', regardless
of whether a change point is detected, where T is a prespecified number. The type-I error
of the monitoring procedure is controlled at «, which means the probability of signaling an
alarm when there is no change within the period [n + 1,n7] is at most .

Under the null hypothesis, no change occurs within the monitoring period, and we have

EXy) =pfort=1,...,nT.

Under the alternatives, the mean function changes at some time ¢, > n, and remains at the

same level for the following observations. That is,

7 1<t <ty
E(X;) =

p+ A tg<t<nT.
We propose a family of test statistics T, ,(k), which serves as the monitoring statistic
targeting ||All,. The case ¢ = 2 corresponds to dense alternatives, and larger values of ¢
correspond to sparser alternatives. We discuss the formulation of our monitoring statistic

for ¢ = 2, and then extend this to general ¢ in the subsequent subsections.

2.1 Ly-norm-based monitoring statistics

In this section, we first develop the Ly-norm-based monitoring statistic, which is especially
useful for detecting the dense alternative. Furthermore, we discuss the asymptotic properties
of the Lo-norm-based statistic. Finally, the recursive computational algorithm is developed

to allow for efficient implementation.
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2.1.1 Monitoring statistics

For a given time k£ > n, suppose we know a change point happens at location m, where
n < m < k. We can separate the observations into two independent samples: pre-break
Xi,..., X, and post-break X, 1,...,X;. Consider using a two-sample U-statistic with

kernel

W((X,Y), (X', Y") = (X =Y)T(X" - Y7),

where (X', Y”) is an independent copy of (X,Y’). Then, we have
E[R((X,Y), (X, Y")] = [|E(X) - EY)]5,

which estimates the squared Lo-norm of the mean difference. Indeed, Wang et al. (2019)
constructed an Lo-norm-based retrospective change-point detection statistic by scanning
over all possible m. For the online monitoring problem, we combine this idea with the
approach in Dette and Gosmann (2019) to propose a monitoring statistic. Specifically, at
each time point k, we scan through all possible change-point locations m (n < m < k — 2),
and perform a change-point testing. We take the maximum of these U-statistics over m as
our test statistics at time k. Suppose we get a ratio-consistent estimator of ||X||r learned
from the training sample {X3,..., X}, denoted by H/EH\F Then, our monitoring statistic
at time k =n+3,...,nT is

1 P * *
Tho(k) = == mfnf_fg?xk_QZ > > (K= X5 )Xoyt — X550)
n3|| S| e TS T 1<y i <m mA 1< o<k
1

=——— max Gi(m).
n3[[2 || =Lk
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2.1.2 Asymptotic properties

To calibrate the size of the testing procedure, we need to obtain the asymptotic distribution
of the test statistic under the null. The following conditions are imposed in Wang et al.

(2019) to ensure the process convergence results.
Assumption 1. tr(34%) = o(||Z||3).

Assumption 2. Let Cum(h) =377 | _j cum?(X1yy,..., Xy1y,) < C||X|[}, for h =2,3,4,5,6
and some constant C'. Here cum(-) is the joint cumulant. In general, for a sequence of ran-
dom variables Y7, ..., Y, their joint cumulant is defined as
cum(Yy, ..., Y,) =Y (In| = D=1 ] E (H m) :
™ Ben i€B
where 7 runs through the list of all partitions of {1,...,n}, B runs through the list of all

blocks of partition 7, and 7 is the number of parts in the partition.

Assumption 1 was also imposed in Chen and Qin (2010), who pioneered the use of the
U-statistic approach in the two-sample testing problem for high-dimensional data, and can
be satisfied by a wide range of covariance models. Assumption 2 can be viewed as restrictions
on the dependence structure, which holds under uniform bounds on the moments and “short-
range” dependence-type conditions on the entries of the vector (X1, ..., Xo,). See Wang
et al. (2019) for discussions about these two assumptions. Finally, under the null hypothesis
and these assumptions, we provide the limiting distribution of the proposed monitoring

statistic in Theorem 1.
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Theorem 1. Under Assumptions 1 and 2, we have

D
max T,,2(k) = sup sup G(s,t),
k=n+3,..,nT 2( ) te[1,T] se[1,t] ( )

where

G(s,t) =t(t — s)Q(0,s) + stQ(s,t) — s(t — s)Q(0,1),

and Q) is a Gaussian process with the following covariance structure:

(min(by, by) — max(ay,az))® if max(ay,as) < min(by,by)

Cov(Q(ay, by), Qaz, be)) =

0 otherwise.
In general, we can also consider some nonconstant boundary function w(t), that is,

ng(k’) D G(S, t)
max ———————— — sup sup ————.
k=n+3,...,nT w(k/n - 1) te[1,T] s€[1,t] w(t — 1)

We take the double supremums here to control the familywise error rate. Therefore, we
reject the null hypothesis if 7}, 2(k) > cow(k/n — 1), for some k € {n+3,...,nT}. The size

can be calibrated by choosing ¢, such that

P(Sup sup&’t))>0a>:a.

tep1,1) sl w(t —1

Different choices of w(t) are considered in Dette and Gésmann (2019).
o (T1) w(t) =1,
o (T2) w(t) = (t+ 1)

o (T3) w(t) = (t+1)? max { (ﬁ)lm, 10—10}.
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These w(t) are motivated by the law of the iterated logarithm, and are used to reduce
the stopping delay under the alternative. Based on our simulation results and real-data
applications, the choice of w(t) from the above three candidates does not seem to have a big
impact on the power and detection delay. Thus, in practice, for a closed-end procedure, any
choice would work. Detailed comparisons are shown in the simulation studies in Section 4.

Remark The current method can be generalized to an open-end framework. For an

open-end monitoring procedure, we are interested in testing
EXy) =pfort=1,2,...

against the alternative

0 1<t<t
E(Xy) =

L+ At >t
for some ty > mn. Suppose we use the same Ls-norm-based monitoring statistic at time

k=n+3,..., that is,

1
Tn’Q(k) Sy — max Gk(m)
n3||2||F m=n-+1....k—2

For a suitably chosen boundary function w(-), we expect that

max —Tn’Q(k) =N sup sup —G(S’ t
k=n+3,...,00 w(k/n — 1) te[1,00) s€[l,t] w(t — 1) ’

as n — 0o. The critical value can be determined by

P< sup sup &’t))>ca> = Q.

tef1,00) sef1,g Wt — 1
We reject the null hypothesis if T,,2(k) > cow(k/n — 1), for some k € {n+1,...}. In

practice, we can approximate the critical values ¢, using the procedure for simulating the
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critical values in the closed-end procedure, using a large 7', say 7" = 200. Note that the
boundary function used for open-end monitoring needs to satisfy certain smoothness and
decay rate assumptions, and the above three we used for the closed-end procedure are no
longer applicable; see Assumption 2.4 in Gésmann et al. (2020) and the related discussion.
The following theorem provides a theoretical analysis of the power of the Lo-norm-based

monitoring procedure.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Assume further that the change point

location is at |nr], for some r € (1,T). Then, we have

1. When 284 _, 0,
I=llF

D
max Tn72 k) — sup sup G s,1).
k=n+3,..nT ( ) te[1,T] s€(1,t] ( )

2. When%—)be(OjLoo),

max  T,9(k) DTy = sup sup [G(s,t) + bA(s,t)],
k=n+3,..nT t€[1,T] s€[1,t]

where

Als,t) = {92t —s)2 s>r

0 otherwise

T
3. When "84 — oo,
I=lF

max T, 5(k) D .
k=n+3,..nT

nATA

Theorem 2 implies that, under the local alternative where T=Ne

— 0, the proposed

monitoring procedure has trivial power. For the diverging alternative where % — +00,
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the test has power converging to one. When the strength corresponding to the change falls

in between, the test has power in the range (a, 1).

2.1.3 Recursive computation

One challenge for the proposed monitoring statistic 7}, 2(k) is that it needs to be recomputed
at each given time k. The brute force calculation of the test statistics has O(n'p) time
complexity and O(np) space complexity. In this section, we develop a recursive algorithm
to efficiently update the monitoring statistic, which greatly improves the computational
efficiency for online monitoring. More specifically, we propose a recursive algorithm to
update G (m), which is a major component of computing the monitoring statistic 7;, 2(k),

as follows:

Gr(m) = (k—m)(k —m —1) Z XIX;+m(m—1) Z X'X;

1<i<j<m m+1<i<j<k
m k
T
—m-Dk-m-1)>" > XX
i=1 j=m+1
To compute Gi(m), we need to keep track of two CUSUM processes

t

¢
Bi=> X;and C, =Y X[X;,
i=1 i=1
where B; are still p-dimensional. The partial sum process S(a,b) = >, X/ X; in

Gr(m) can be expressed in terms of functions of B, and C},

S(ah) = 3 XTX;= 5B~ Bt (By— Bat) — (G~ Cua)]

a<i<j<b

The detailed algorithm is stated as follows:
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1. Initialization: Start with the first pair (m, k) = (n+ 1,7+ 3). Record the following
quantities:

BnJrla Bn+2> Bn+3; CnJrla Cn+27 Cn+3-

The first statistic is calculated based on

Gpia(n+1)=2- (Br:zp-i-an—f—l — Chry1)/2
+ (n 4+ 1)n[(Bnys — Boy1)" (Buis = Buyi)

— (Cuts = Cur)]/2 = 1By 1 (Buis = Buga).
2. Increase index from £ to k£ + 1: Fix index m, and compute Bj1; and Cgiq:
Bii1 = By + Xii1, Crp1 = Cp + X X1
The statistic for the pair (m, k + 1) is

Gry1(m) = (k —m +1)(k — m)(B} By — Cy) /2
+m(m — 1)[(Bit1 — Bm)" (Br1 — Bi))

— (Cr — C))/2— (m = 1)(k —m) Y BA (B — Bo).

i=1
3. Increase index from m to m + 1: For fixed index k, all B; and C;, fori =n..., k,

are already recorded. The statistic for the pair (m + 1,k) is

Gr(m +1) = (k —m = 1)(k —m = 2)(By 1 Bins1 — Cni1) /2
+ (m + 1)m[(By, — Bnt1)" (Bk — B1)) = (Ck = Cinsa)]/2

(k= m — 2)mBL, (By — Bui).



Statistica Sinica: Preprint
doi:10.5705/55.202020.0438

Adaptive Change Point Monitoring 15

The algorithm should start with (m, k) = (n + 1,n + 3), increase the second index k first,
and then increase along the first index m. This recursive formulation reduces the time

complexity to O(n?p), with additional space complexity O(np).

2.2 L,-norm-based monitoring statistics

In this section, we generalize the monitoring statistic from the Ljy-norm to the L, -norm.
As shown in the previous analysis, the power of the Ls-norm-based monitoring statistic
depends on the quantity ||All2, which is sensitive to dense alternatives. However, in real
applications, we usually do not know a priori if the mean change is dense or not. As an
approximation, we consider a similar test statistic targeting ||A|l,, for ¢ € 2N. When ¢
is large, we are essentially testing against sparse alternatives. As a special case, if we let

q — 00, limy o0 [|All; = ||Alloo, We only target on the largest element (in absolute value) of

A.

2.2.1 Monitoring statistics

To define the monitoring statistics, we adopt the idea used in Zhang et al. (2021) without
applying self-normalization. Self-normalization requires more extensive computation, and
can be avoided by using the Phase-I data to obtain a ratio-consistent estimator of ||X|],.
Furthermore, as pointed out by Shao (2015), self-normalization can result in a slight loss of

power. Essentially, we can construct an L,-norm-based test statistic at time & = n + ¢ +
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1,...,nT,
1 P * *
Tglh) = —=== _max 55 > 3 (Xar= X (Xi = XG)
||| 120 1<t mig<mm+ 1< jg <k
1

- I m:nrflax k—q Un,fI(kv m)7
n34(|Z]|g -

—_—

where ||X[|¢ is a ratio-consistent estimator of ||X]|¢.

2.2.2 Asymptotic properties

In this subsection, we study the asymptotic properties of the L,-norm-based test statistics.
First, we impose the following conditions in Zhang et al. (2021) to facilitate the asymptotic

analysis.

Assumption 3. Let X; = pu+ Z;. Suppose Z; are independent and identically distributed
(i.i.d.) copies of Z, with mean zero and covariance matrix 3. There exists ¢y > 0 independent

of n such that inf,—y_, Var(Zy,;) > co.

Assumption 4. Zy has up to eighth moments, with sup,.;., E[Z5;] < C, and for h =

2...8, there exist constants C}, depending on h only and a constant r > 2 such that

lcum(Zoy, ..., Zoy,)| < Ch(1V max |l; —1;])7".

1<i<j<h

These assumptions appeared in Zhang et al. (2021), and Wang et al. (2019) showed
that they imply Assumptions 1 and 2 for the case ¢ = 2. Assumption 4 can be implied by
the geometric moment contraction [cf. Proposition 2 of Wu and Shao (2004)], the physical

dependence measure proposed by Wu (2005) [cf. Section 4 of Shao and Wu (2007)], or
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a-mixing. It essentially requires weak cross-sectional dependence among the p components
in the data.
Under the null hypothesis, to obtain the limiting distribution of the monitoring statistic

T, 4, we use the limiting process in Zhang et al. (2021). Thus, we have the following theorem.

Theorem 3. Under Assumptions 3 and 4,

d ~
max T,.,k)—T,:= sup sup G,(s,t),
k=n+q+1,...,nT ’q( ) a te[1,T] s€[1 4] q( )

where
Gy(s,1) = S (=11 | | 572t - 5)°Que(s:0,1)),

and Qq.c(r;[a,b]) is a Gaussian process with covariance structure

C
COU(Q‘LCI (Tl; [alv bl])? Qq,@ (TQ; [an 62])) - C!(q ) C)!(T - A)C(R - T)C_C(b - R)q_c7

c
where A = max(aq, az), ¢ = min(ey, ¢2), C' = max(cy, c2), and b = min(by, by). Two processes

Qqi.er and Qq,.c, are mutually independent if ¢, # g2 € 2N.

The limiting null distribution is pivotal, and its critical values can be simulated based

on the following equation:

Gy(s,t
P(sup supﬂ>ca):a.

tep,1] sefiy W(t —1)

We reject Hy when 1), ,(k) > cqw(k/n — 1), for k = n+q+1,...,nT. We tabulate the
critical values for T' = 2, ¢ = 2,6, and different boundary functions in Table 1. Critical
values under other settings are available upon request.

Finally, we study the power of the L,-norm-based monitoring procedure in Theorem 4.
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Table 1: Simulated critical values for L,-norm-based test, T' = 2

Boundary T1 T2 T3

Quantile L2 L6 LQ L6 L2 L6

90% 0.756 3.235 0.204 0.867 0.141 0.592
95% 1.264 3.711 0.331 0.973 0.232 0.676
99% 2715 4.635 0.706 1.196 0.485 0.837

Theorem 4. Suppose that Assumptions 3 and 4 hold and the change-point location is at

\nr], for some r e (1,T),

q
q

1. When

a/2||A D 5
L ”q/2H — 0, max T, ,(k) = Ty;
1Zlg k=n+q+1,..nT

nd/2||A||2
2. When TIE||||Z/2HQ — v € (0,4+00),

max T .(k) 2 sup sup [Gy(s,t) + 7J,(s;]0,¢])],

Y te[1,T] se[Lf
where )
ri(t—s)? r<s<t
Jo(5:[0,1]) = sit—r)? s<r<t:
0 otherwise
\
72Alg D
3. When “—l2ls — 00, max 1, .,(k) = co.
=113’ k=n+q-+1,...,nT na(k)

Analogous to the ¢ = 2 case, the power of the test depends on ||A||,. Therefore, for

large ¢, the proposed test is sensitive to sparse alternatives.
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2.2.3 Recursive computation

Similarly to the Lo-based-test statistics, we would like to extend the recursive formulation
to the L,-norm-based test statistic. According to Zhang et al. (2021), under the null, the

process U, 4(k,m) can be simplified as

q
q
Ung(k,m) =) (=1)7° prlmepkmeateg,  (m;1,k),

c=0 C

where P} = k!/(k —1)! and
Sng.e(m s, k) Z Z Z HXWH ol
=1 5<i1,0yic<m mA+1<41,...jq— e <k t=1
Because S, ,.(m; 1, k) are the major building blocks of our final test statistic, and need
to be computed at each time k, we need to find efficient ways of calculating them recursively.
A key element is the sum of product terms such as

B(e,m,l) = Z*: ﬁXM, and

1<it,... ic<m t=1

M(c,m, k1) := Z H i

m<ji,.Je <k g=1

When we increase from m to m + 1,

* c * c * c—1
)RS CTED S | CARE SN S | ¥

1<i1,...,ie<m+1 t=1 1<iq,0ic<m t=1 1<i,0yic—1<m t=1

We can derive the following recursive relationship for B(c, k, [):

B(c,m+1,1) = B(e,m,l) + B(c—1,m,1) - Xj41,. (2.1)
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There is a similar recursive relationship for M (c,m, k, 1),
M(e,m+1,k,1) = M(c,m, k1) + Xpi1,M(c— 1,m, k,1). (2.2)
To enable the recursive computation, for each ¢ = 0,...,q, we maintain a matrix to

store the cumulative sums.

1. Initialization: Starting with ¢ =0 and ¢ =1, for all [ = 1,...,p, initialize B(0, k +

1,10),...,B(0,k 4+ ¢,1) = 0 and calculate

k+1 k+q

B(1,k+1,1) = ZX”,..., (Lk+q0) =) X

Then, recursively calculate B(c,i,1), for all ¢ = 0,...,q and ¢ < k + ¢, based on

Equation 2.1.

2. Update from B(c, k,l) to B(c,k+1,0): Let B(0,k+1,1) = B(0,k,l) + Xj41,, and

obtain the result for other B(c,k + 1,1) (¢ < ¢) using Equation 2.1.

3. Update from M (c,m, k,l) to M (c,m+1,k,1): Fixindex k, for any n+1 < m < k—gq,

l=1,...,p, let M(0,m,k,l) =0, and calculate

All other M(c,m,k,l), where ¢ < g and n + 1 < m < k — ¢, can be obtained using
Equation 2.2. Construct the test statistic 7}, ,(k + 1) using B(c, k, 1) and M(c,m, k,1)

and repeat from step 2.

The time complexity of the recursive formulation is O(n%pq), with space complexity O(npq).
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2.3 Combining multiple L,norm-based statistics

In this section, we propose combining multiple L, statistics to detect both dense and sparse
alternatives. Specifically, based on the theoretical results in Zhang et al. (2021), the U-
process for different ¢ are asymptotically independent, which implies that {7}, ,}7Z g1 AT€
asymptotically independent for ¢ € 2N. Therefore, max}” vgr1 b nq(k) are asymptotically
independent for ¢ € I, where I C 2N, say I = {2,6}. Thus, we can combine the monitoring
procedure for different ¢ and adjust for the asymptotic size. In general, if we want to combine
a set of ¢ € I, we can adjust the size of each individual test to be 1 — (1 — )/l given the
asymptotic independence, and reject the null if any of the monitoring statistics exceeds its
critical value. Zhang et al. (2021) provide power analysis for the identity covariance matrix
case,showing that the adaptive test enjoys good overall power.

In practice, there is this issue of which ¢ to use. Based on the recommendation in Zhang
et al. (2021), we set ¢ = 6. As mentioned in the latter paper, using larger ¢ leads to more
trimming and more computational cost. As we demonstrate in the simulations, using ¢ = 6

and combining with ¢ = 2 show a very promising performance; see Section 4 for more details.

3. Ratio-consistent estimator of |3/

Note that the test statistic T, (k) requires a ratio-consistent estimator of || 3||2. For example,
when ¢ = 2, this can be simplified to ||X||%. A ratio-consistent estimator of | X||% is proposed
in Chen and Qin (2010), but it seems difficult to generalize to ||X[|Z. In this section, we

introduce a new class of ratio-consistent estimators of ||X[|? based on U-statistics. We first
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show the result when ¢ = 2, and generalize it to ¢ € 2N later.

Assume {X;}}, € R? are i.i.d. random vectors with mean p and variance ¥. Define

ISIE = ! > tr (X, — X5,) (X, — X5,)" (X5, — X5,)(X5, — X5,)7) (3.1

1)
(4 1<j1<j2<y3<ja<n

as an estimator of ||X[|%.

Theorem 5. Under Assumption 1 and Cum(4)< C||X||% in Assumption 2, |2||% is a ratio-

consistent estimator of | X%, that is |2]|%/(12)% 2 1.

Now, we extend this idea to general ¢ € 2N. We let

p q

Z Z H(Xik»ll - Xjk,h)(Xik,lz - Xjk,lz)7

29(5,)
29/ 11,l2=11<41 <+ <ig<j1 <-+<jg<m k=1

as an estimator for ||X[|Z, for any finite positive even number q. The following proposition

states that the proposed estimator is unbiased.

—

Proposition 1. [|X||g is an unbiased estimator of ||X|2.

Proof of Proposition 1. Because {X;}}~, are i.i.d.,

p

q
E[HEHZ] N (n) Z Z HE[(X%h - Xjk,ll)(Xik,lz - lemlz)]
29/ 1y,lo=11<i1 < <ig<j1 <-<jq<n k=1
1 p q

~ 20(7) lZ > 112200

29/ 1q,lo=11<i1 <+ <ig<j1<<je<n k=1

1 - n
= 5y 2 (30250 = 150

I1,la=1

)

This completes the proof. O

The ratio consistency can be shown under the following assumption.
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Assumption 5. We assume that
1. there exists ¢ > 0 such that inf,—; _,%;; > ¢;
2. there exists C' > 0 and r > 2 such that for h =2,3,4and 1 <[; <--- <[, < p,

’Cum(X()J“ '~'7X0,lh)’ S C(l V (lh — ll))_T.

Note that Assumption 5(2) is required for the ratio consistency, which is weaker than
Assumption 4. The Assumptions 1-5 required for our theory do not state the explicit
relationship between n and p. For example, when Y = [,, which means there is no cross-
sectional dependence, all the assumptions are satisfied and (n,p) can go to infinity freely
without any restrictions. When there is cross-sectional dependence, our assumptions may
implicitly restrict the relative scale of n and p. In general, a larger p is a blessing in our
setting, and it makes the asymptotic approximation more accurate. Furthermore, a larger
n is always preferred, owing to the large-sample approximation. On the other hand, the

computational cost increases when both the dimension and the sample size get large.

—

Theorem 6. Under Assumption 5, ||X||g is a ratio-consistent estimator of ||S||4, that is,

I=13/1=11g = 1.

Note that implementing the above estimator may be time-consuming for large ¢. In
practice, we can always take a random sample of all possible indices and form an incom-
plete U-statistic to approximate. The consistency of the incomplete U-statistic can also be

established, but is not pursued here for simplicity.



Statistica Sinica: Preprint
doi:10.5705/55.202020.0438

24

4. Simulation Results

We compare the monitoring procedures for ¢ = 2,¢ = 6, and ¢ = (2,6) combined. We
consider (n,p) = (100,50) with 7" = 2, where the observations X; ~ N(u;, ¥) are generated

independently over time. We consider four possible choices of X,
% = pll for p=0,0.2,0.5,0.8,

to evaluate the performance of the monitoring scheme for the independent-components set-
ting or under weak and strong dependence between components. All tests have nominal size
a=0.1.

Under the null Hy, there is no change point: p; = 0, for all i. For the alternative, we
consider p; = \/W(lr, 0,—), for i = (|1.25n] + 1),...,nT. Under the dense alternative,
we set (4,7) = (1,p), (2,p). Under the sparse alternative, we set (d,r) = (1,3), (1, 1).

To illustrate the finite-sample performance of our monitoring statistics, we compare
our results with those of Mei (2010) (denoted as Mei) and Liu et al. (2019) (denoted as
LZM), which are similar to the open-end scenario in Chu et al. (1996). Neither method
require Phase-I data, and both were originally designed to minimize the average run length.
Therefore, they do not explicitly control the type-I error. To make a fair comparison with
the current methods, which are proposed under the closed-end monitoring framework, we
generate n independent Gaussian samples from N(0, I,«,), and calculate the Mei and LZM
monitoring statistics. We empirically determine the critical value such that the empirical
rejection rate is 10%, based on 2500 simulated data sets. For Mei’s methods, we need to

specify the distribution after the change point, which we set as the distribution under the
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alternative (0,7) = (1,p). For LZM’s method, we use the same setting in Liu et al. (2019),
and set b =1log(10),p = 0.25,t =4, and s = 1.

Table 2 shows the size of the monitoring procedure for the benchmark methods and the
proposed methods for the three boundary functions T1, T2, and T3 introduced in Section 2.1
under different correlation coefficients p. Note that the size is noticeably worse for p = 0.8.
This is partially due to the poor performance of the ratio-consistent estimator, because its
variance increases as the cross-sectional dependence increases. Furthermore, note that the
size seems to go in different directions for ¢ = 2 and ¢ = 6 as the correlation increases. The
combined test, on the other hand, balances out such distortions. To make sure this is only a
finite-sample behavior, we increase (n,p) from (100, 50) to (200,200), showing that the size
distortion for all tests improved noticeably for almost all settings. The additional results
are available in the Supplementary Material. In contrast, Mei and LZM only achieved the
correct size for the independent-component case, because we select the threshold under the
same setting. However, when there is cross-sectional dependence between data streams, the
size is no longer controlled, and the size distortion is much more severe than it is in the
L,-based tests.

Table 3 provides the power result (left column) and average delay time (ADT) (right
column) for different tests under dense alternatives. As expected, the Lo-based test demon-
strates higher power than that of the Lg-based test. The power of the combined test lies
between and is closer to the power of the Ly-based test. As the correlation increases, the
power of each test decreases, owing to the reduced signal. Of the three different boundary

functions, T2 seems to have the shortest ADT, with a slight sacrifice in power. Mei’s method
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Table 2: Sizes of different monitoring procedures

T1 T2 T3

a=0.1 Mei LZM L2 Lﬁ Comb L2 L6 Comb L2 L6 Comb

p=0 0.0940.105 0.086 0.048 0.067 0.093 0.045 0.071 0.097 0.045 0.070
p=0.2 0.058 0.125 0.083 0.048 0.057 0.082 0.045 0.055 0.083 0.046 0.051
p=0.50.0020.176 0.103 0.048 0.084 0.104 0.048 0.082 0.108 0.048 0.080

p = 0.8 0.000 0.409 0.135 0.028 0.085 0.145 0.027 0.093 0.137 0.026 0.086

is only better than the Lg-based test when there is no strong cross-sectional dependence,
and is generally worse than the other methods and has a relatively longer delay, even when
the distribution under the alternative is correctly specified. Note that when p = 0.8, Mei’s
method loses power completely. LZM, in general, has a slightly shorter detection delay, but
at the cost of much lower power compared with that of the Lo-based test and the combined
test. This means the LLZM is quicker in signaling an alarm when a change point is detected.
Although LZM showed good power for the strong cross-sectional dependence case compared
with the combined test, it comes at the price of a much distorted size. This is because LZM
assumes all data streams are independent.

Table 4 provides the power of different tests under sparse alternatives. The Lg-based
test and the combined test are comparable in terms of power, and the Lo-based test exhibits
inferior power in most settings, as expected. An interesting observation is that for the case

(0,7) = (1,3), the Lo-based test still shows slightly higher power than the Lg-based test when
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Table 3: Power under dense alternatives

Mei

LZM

L,

Lg

Comb

power ADT

power ADT

w(t

)

power ADT

power ADT

power ADT

0.852 72.9

0.628 38.0

T1
T2
T3

0.958 51.9
0.951 44.3
0.953 46.8

0.295 64.6
0.284 63.0
0.286 63.4

0.926 55.0
0.921 47.7
0.921 50.2

0.999 69.3

1.000 15.1

T1
T2
T3

1.000 27.5
1.000 20.4
1.000 22.9

0.919 56.2
0.919 54.3
0.920 54.9

1.000 29.5
1.000 21.9
1.000 24.7

0.740 73.3

0.675 38.2

T1
T2
T3

0.935 51.8
0.930 44.2
0.933 46.7

0.302 64.4
0.291 62.9
0.294 63.5

0.907 54.9
0.906 47.7
0.903 50.3

1.000 69.9

1.000 15.6

T1
T2
T3

1.000 28.0
1.000 20.8
1.000 23.4

0.884 56.6
0.884 54.8
0.883 55.3

1.000 30.0
1.000 22.3
1.000 25.2

0.243 74.1

0.715 34.3

T1
T2
T3

0.844 52.9
0.843 45.2
0.847 47.9

0.274 63.3
0.267 61.5
0.267 62.0

0.796 55.8
0.787 47.9
0.792 50.7

0.932 72.2

1.000 15.7

T1
T2
T3

1.000 30.7
1.000 23.1
1.000 25.7

0.864 55.9
0.861 54.2
0.861 54.8

1.000 33.0
1.000 24.8
1.000 27.8

p =038

(1,p)

0.000 NA

0.803 29.0

T1
T2
T3

0.632 54.6
0.637 46.4
0.642 494

0.165 62.5
0.162 60.9
0.162 61.4

0.560 56.8
0.575 48.6
0.568 51.8

(2,p)

0.001 74.0

0.997 16.1

T1
T2
T3

0.990 38.3
0.990 30.1
0.990 32.7

0.666 56.0
0.663 54.2
0.666 54.9

0.984 40.8
0.983 32.1
0.983 35.4
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p = 0.2, which means that for this particular setting, the change is not “sparse” enough.
As the correlation increases, we observe a noticeable drop in power, which is similar to the
dense alternative setting and is again attributed to the reduced signal size. Of the three
boundary functions, T2 still has the shortest ADT with a slight power loss compared to
the other two boundary functions. Mei’s method has worse power because it is designed
for dense signals and the distribution under the alternative is misspecified. By comparison,
LZM gives consistently good power and short ADTs across all settings. However, the good
power under strong cross-sectional dependence is still offset by the severe size distortion
under the null.

In addition to evaluating the size and power of the monitoring procedure, we compare
the computational cost of the recursive formulation versus that of the brute force approach.
For the case of (n,p) = (100,50), the average run-time of the brute force approach is 12.89
times that of the recursive algorithm under Hy, and is 13.07 times that of the recursive
algorithm under the alternative. The code is implemented in R. This demonstrates the

substantial efficiency gain from the recursive computational algorithm.

5. Data Illustration

5.1 Tonnage dat aset

We first apply the proposed methodology to monitor the multi-channel tonnage profile col-
lected in a forging process in (Lei et al., 2010), where four different strain gauge sensors are

mounted at each column of the forging machine, measuring the exerted force of the press.
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Table 4: Power under sparse alternatives

Power Mei LZM L, Lg Comb

a = 0.1 (4, r)|power ADT|power ADT |w(t) power ADT |power ADT |power ADT

T1 (0.976 51.5] 0.999 37.8| 0.999 40.5
(1,3)] 0.422 74.0/ 0.990 27.4 T2 10.967 43.8/ 0.999 35.9/0.999 38.0
T3 [0.972 46.4] 0.999 36.6| 0.999 39.0

T1]0.961 51.5/0.951 51.0| 0.976 52.2
(1,1)[ 0.400 73.9/ 1.000 23.4| T2 | 0.958 44.1| 0.953 49.5| 0.974 46.3
T3 |0.959 46.4| 0.953 50.0| 0.976 48.7

T1|0.946 52.2) 0.937 51.6/ 0.955 52.6
(1,3)[ 0.274 74.1/0.990 29.1] T2 | 0.939 44.6| 0.935 50.0] 0.955 47.1
T3 |0.943 47.1|0.936 50.5| 0.954 49.2

T1 [ 0.961 52.6] 0.998 37.3| 0.999 40.2
(1,1)] 0.268 74.1| 1.000 23.9 T2 | 0.951 45.3] 0.998 35.4| 0.999 37.7
T3 [ 0.957 47.6] 0.998 36.0| 0.999 38.6

T1|0.871 54.7) 0.881 51.5| 0.887 53.4
(1,3)[ 0.048 74.5/ 0.972 28.2| T2 | 0.856 47.1| 0.878 49.8| 0.884 48.7
T3 | 0.860 49.9/ 0.880 50.4| 0.886 50.6

T1 | 0.880 55.9/ 0.997 38.0| 0.997 40.7
(1,1)[ 0.036 74.3| 1.000 23.2| T2 | 0.871 49.1] 0.997 36.1| 0.997 38.2
T3 | 0.879 51.2| 0.997 36.8| 0.997 39.2

T1 | 0.621 58.9| 0.800 52.9/ 0.808 55.3
(1,3)] 0.000 NA|0.971 24.7 T2 1 0.610 50.6|/ 0.801 51.3| 0.802 51.5
T3 |0.614 53.7] 0.803 51.9| 0.807 53.2

=0.8
P T1]0.602 61.1] 0.998 38.8| 0.997 41.7

(1,1)[ 0.000 NA| 1.000 21.5] T2 | 0.588 53.6| 0.998 36.8| 0.997 39.3
T3 | 0.601 56.8/ 0.998 37.5| 0.997 40.2
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(a) The setup of the forging machine (b) Data collected in the forging machine

Figure 1: Forging machine setup and the collected tonnage data set

The setup of the process is shown in Figure la. The four strain gauge sensors represent
the signature of the product and are used for process monitoring and change detection in
Lei et al. (2010). For example, 10 examples of the signals before the changes and after the
changes are shown in Figure 1b. As mentioned by Lei et al. (2010) and Yan et al. (2018),
the missing part affects only a small region of the signals, making it difficult to detect, as
shown in Figure 1b.

We select a subset of the data with n = 200 observations, where the first 130 observations
are from the normal tonnage sample, and the last 70 observations are abnormal. We project
the data onto a 20-dimensional space by training the anomaly basis on a holdout sample,
as in Yan et al. (2018). The first 100 observations are treated as a Phase-I stage without
any changes, and we learn the 2-norm and ¢-norm of the covariance matrix from them.
The monitoring scheme started at observation 107 (trimming due to ¢ = 6). The Lg¢-based
test stopped at time 137, and estimated the possible change-point location at time 128 by

performing a retrospective test at time 137. The Lo-based test signaled slightly earlier at
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Plot of Ly—based test statistic Plot of Lg—based test statistic

—— Lgbased stats
—— 90% threshold
--  94.87% threshold|

—— Ly—based stats
| —— 90% threshold
-- 94.87% threshold|

(a) Lo based test for tonnage data (b) Lg based test for tonnage data

Figure 2: Testing Statistics for tonnage data

time 135, and also estimated the change at 128. The combined test signaled an alarm at time
135, with the same estimated location. The trajectory of the Ly and the Lg test statistics
are shown in Figure 2a and 2b, respectively. Note that when we set the size of the individual
test to a* = (1 — 0.1)"/2 = 5.13%, the size of the combined test is « = 1 — a*? = 0.1. We

signal an alarm when at least one test statistic exceeds the corresponding threshold.

5.2 Rolling data set

Here, we consider process monitoring in a steel rolling manufacturing process. Surface
defects, such as seam defects, can result in a stress concentration on the bulk, and may
cause failures if the steel bar is used in a product. However, the rolling process is a high-
speed process, with the rolling bar moving at around 200 miles per hour. Thus, providing

real-time online anomaly detection for the high-speed rolling process is very important to
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(a) Normal rolling image (b) Abnormal rolling image

Figure 3: Examples of the rolling images

prevent further product damage.

The data set is collected in the high-speed rolling process. Here, we selected a segment
near the end of the rolling bar, which contains 100 images of the rolling process. To remove
the trend, we have applied a smooth background remover and downsampled the image to
16 x 64 pixels. An example of the normal image and the abnormal image are shown in
Figure 3a and 3b, respectively.

We treated the first 50 observations as the training set and obtained ratio-consistent
estimators m. After performing the change-point monitoring procedure, the Lg-norm-
based test signaled an alarm at time 97, and estimated that the possible change-point
location is at time 89, based on the retrospective test. On the other hand, the L, based test
failed to detect the change within the finite time horizon. The combined test also signaled

an alarm at time 97. We present the rolling image at time 91 in Figure 3b. This shows that
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Plot of L,—based test statistic Plot of Ls—based test statistic
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(a) Lo based test for rolling data (b) Lg based test for rolling data

Figure 4: Examples of the rolling images

after downsampling, the change is still quite sparse. The adaptive monitoring procedure
is still powerful, as long as one test has power. We also present the trajectory of the test
statistic at each time point in Figure 4a and 4b. Note that there is a downshift in the Lo-
based monitoring statistic right after the estimated change. This is because the signal is very
sparse, and the construction of our proposed statistic may admit negative values for a short
period. The negative values here should not be a major concern, because the test statistic
should admit positive values in probability under the alternatives. We confirmed this by
adding an artificial dense change to the data. On the other hand, the Lg-based monitoring
statistics detect the change efficiently, owing to their ability to capture the sparse change in

the system.
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6. Conclusion

In this article, we have proposed a new methodology to monitor a mean shift in temporally
independent high-dimensional observations. Our change point monitoring method targets
the L,-norm of the mean change for ¢ = 2,4,6,--- By combining the monitoring statistics
for different values of ¢ € 2N, the adaptive procedure achieves overall satisfactory power
against both sparse and dense changes in the mean. This can be desirable from a practi-
tioner’s viewpoint, because often we do not have knowledge about the types of alternatives.
Compared with the recently developed methods for monitoring large-scale data streams [e.g.,
Mei (2010), Xie and Siegmund (2013), Liu et al. (2019)], our method is fully nonparametric
and does not require strong distributional assumptions. Furthermore, our method allows for
certain cross-sectional dependence across data streams, which could arise naturally in many
applications.

To conclude, we mention a few interesting directions for future work. First, our focus is
on the mean change, and it is natural to ask whether the method can be extended to monitor
a change in the covariance matrix. Second, many streaming data have weak dependence over
time, owing to their sequential nature. Thus, how to accommodate weak temporal depen-
dence is of interest. Third, in the current implementation, the ratio-consistent estimators are
learned from the training data, and do not change as more observations become available. In
practice, if the monitoring scheme runs for a long time without signaling an alarm, it might
be helpful to periodically update the ratio-consistent estimators to gain efficiency, especially

when the initial training sample is short. However, it may be impractical to update this
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estimator for each k, because there seems no easy recursive way to update this estimator
and the associated computational cost is high. The user might need to determine how often
to update it based on the actual computational resources. Fourth, even though the proposed
algorithm can detect a sparse change, in many applications, it is also an important problem
to identify which individual data stream actually experiences a change. These issues are left

for future research.

Supplementary Material

The online Supplementary Material contains technical proofs for the theoretical results, as

well as additional simulation results.
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