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Abstract—Sequential event prediction is a well-studied area
and has been widely used in proactive management, recom-
mender systems and healthcare. One major assumption of the
existing sequential event prediction methods is that similar event
sequence patterns in the historical record will repeat themselves,
enabling us to predict future events. However, in reality, the
assumption becomes less convincing when we are trying to predict
rare or unique sequences. Furthermore, the representation of the
event may be complex with hierarchical structures. In this paper,
we aim to solve this issue by taking advantage of the multi-level
or hierarchical representation of these rare events. We proposed
to build a sequential Encoder-Decoder framework to predict the
event sequences. More specifically, in the encoding layer, we built
a hierarchical embedding representation for the events. In the
decoding layer, we first predict the high-level events and the low-
level events are generated according to a hierarchical graphical
structure. We propose to link the encoding decoding layers with
the temporal models for future event prediction. In this article,
we further discussed applying the proposed model into the failure
event prediction according to the aviation accident reports and
have shown improved accuracy and model interpretability.

Index Terms—event prediction, aviation accident, hierarchical
tree structure, embedding, sequential model

[. INTRODUCTION

Sequential event prediction or sequential pattern mining is
a well-studied topic in the literature. There are a lot of real-
world scenarios where the data is released sequentially. People
believe that there exist repetitive patterns of event sequences
so that we can predict future events. For example, many
companies build their recommender systems to predict the next
possible product for the users according to their purchase his-
tory. The healthcare system discovers the relationships among
patients’ sequential symptoms to mitigate the adverse effect of
a treatment (drugs or surgery). Modern engineering systems
like aviation/distributed computing/energy systems diagnosed
failure event logs and took prompt actions to avoid disaster
when a similar failure pattern occurs.

Most of the applications mentioned above can only make
predictions with simple flat representation. When it comes to
the rare event sequence with a more complex hierarchical
representation, it may lose the prediction power. However,
these complex hierarchical representation is very common in
the following applications. 1) In the recommender system, we
always see that the online store is organized as category —
subcategory. Such a hierarchical structure is frequently ap-
plied in recommendation algorithms. It has been shown that

the recommendation performance would be improved through
incorporating the hierarchical structure since the similarity in
the hierarchical layer means similar properties in items and
similar preferences in users [1]. 2) In the healthcare system,
accurate prediction of patients’ symptoms makes personalized
healthcare possible, and it relies on the large volume of the
medical record. However, most patients only have a limited
number of records [2], and some symptoms are quite rare to
find. To solve this, the patients and symptoms can be grouped
together for better prediction for patients with rare symptoms.
3) In the engineering systems, many maintenance or event logs
exist to describe the repetitive failure event sequence to take
prompt actions [3]. However, failure events tend to be unique
and rare, which makes them hard to predict. Similarly, to tackle
the sparsity issue of the failure events, a proper hierarchical
structure can be built to describe the failure event so that the
failure event can be modeled at different granular levels. In
this work, we focus on building a scalable algorithm for the
hierarchical event prediction problem. Our algorithm is trying
to deal with the problem from three main directions:

o Since the number of the possible events is very large,
representing the event using one-hot-encoding will lead to
a high dimensional vector space. Thus, we represent the
event using hierarchical encoder and decoder embedding
layers for the multi-level events. The result further shows
that the embedding representation is beneficial for the
data sparsity issue since similar events tend to close to
each other in the embedding space.

e Our proposed models combine the hierarchical en-
coder/decoder layers with the sequential dynamic models
such as the Recurrent Neural Network to capture long-
term dependencies between events.

« The proposed algorithm is applied to analyze the aviation
accident report. We have shown both great interpretability
of the learned embedding coefficients and better event
prediction accuracy.

In this article, we will bring our algorithm into a novel appli-
cation for the proactive management of the aviation system.
The aviation event log data is collected by the National Trans-
portation Safety Board (NTSB) [4]. From Table. I, we can
see the hierarchical structure of the accident events. ”Cruise”
denote the phase of flight. ”"Rotor failure/malfunction” further
describes what happened during the cruise phase. ”Rotor drive
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system, tail rotor drive shaft” introduces more details about
the problem with the rotor. Accurate modeling of the event
sequences is important to quantify the risk of aircraft [5].

Phase Occurrence Subject
Cruise Rotor Rotor drive system,
’ failure/malfunction | tail rotor drive shaft
Cruise Rotor Lubricant,
failure/malfunction grease
Des . .
escent Forced landing Autorotation
- emergency
Emergency Hard landing Terrain condition
landing

TABLE I: An example of the event log from NTSB. Each event
can be described using three levels of information. Phase
means the flight phase of the aircraft. Occurrence denotes the
key indicators for the accident. Subject denotes the detailed
description of the occurrence.

Our experiment shows that the proposed method outper-
formed the traditional methods, which can benefit a lot from
the hierarchical representation of failure events with improved
interpretability. This paper is organized as follows. In section
2, we review the traditional method for sequential event pre-
diction, hierarchical event prediction, and the applications in
aviation accident report analysis. In Section 3, we describe the
proposed Hierarchical Tree-based Sequential Event Prediction
model. We further show a case study with the NTSB aviation
accident data in Section 4. Finally, we conclude the paper in
Section 5.

II. RELATED WORK

In this section, we will review related works in the literature.
In particular, we will focus on three different areas, event
sequence prediction, hierarchical event prediction, and their
applications in the aviation accident report analysis.

A. Event Sequence Prediction

Here, we will review the literature related to the event
sequence problem. For example, the association-rule based
methods have been proposed to predict the next event over
time [6]. Network-based method [7] is used to represent the
events pairs as edges and predict the events based on temporal
link prediction algorithm and node ranking. The recurrent
neural network (RNN) is used to combine the event order and
the duration of the event to predict the next event data [8].
Another RNN-based work design a novel component modu-
lator for appending the attributes to the event [9]. However,
all aforementioned methods are not designed for the complex
hierarchical structures of the events, which is common in
many engineering systems. The literature related to incorporate
more complex hierarchical data structure into the sequential
prediction framework will be discussed in the next section.

B. Hierarchical Event Prediction

Due to the flexibility of the neural network architecture,
several deep-learning-based frameworks are developed to learn
the hierarchical embedding for the events and then predict the

future event based on the embedding representation. Hu et
al. proposed a context-aware hierarchical Long Short Term
Memory (LSTM) for the event prediction. The model encodes
different levels of events using a two-level LSTM layer
[10]. Different levels of the products have been incorporated
into the personalized product search [11]. Overall, the deep-
learning-based frameworks have been shown to be powerful
in capturing complex sequential relationships. In this work,
we further show that we can improve the performance of the
aforementioned frameworks by adding the hierarchical tree
structure on the decoding layer.

III. METHODOLOGY

In this section, we will develop the methodology to model
the aviation event sequences. We will start with the problem
formulation and taxonomy for the aviation events in Section
III-A. The entire proposed framework is then discussed in
Section III-B.

A. Hierarchical Taxonomy for Aviation Events and Problem
Formulation

We first would like to define our problem mathematically.
Given the hierarchical structure of the event representation,
we propose to represent each event as a tuple ¢! = (p, of, %),
which each corpus refers to the Phase, Occurrence, Subject.
Some important phases of the aircraft include take-off, cruise,
descent, landing, etc. Given each phase, there may be differ-
ent types of event occurrences, including the loss-of-control,
collision, etc. Finally, the subject-level information is a more
detailed description of the occurrence, such as the different
collision types. However, given that p’, o, s' are the one-hot
encoding representation of the events, the representation of the
aviation event may be high-dimensional and inefficient.

Furthermore, the proposed algorithm can be also gener-
alized to events with more layers of the hierarchy, such as
(e}, eb, -, et), where the e} is the top-level event category,
el is the i*"-level event category. The goal is to predict the
next event e’ ! given the entire event history {e'}i—1 ... 7.

Finally, the goal of the proposed framework is to predict
the next event e!t! given the entire history of event {e!';#' =
1,---,t} considering the event hierarchical representation
el = (eﬁveéa e 761151)'

B. The Proposed Event Prediction with Hierarchical Encoder
Decoder

In this section, we will discuss our method for event predic-
tion. Moreover, we aim to learn the embedding representation
of the failure event sequence consisting these three level of
hierarchy. Here the proposed method would consist three
components:

1) Hierarchical encoder network P(z;|e!;0.) with en-
coder parameter 6., which focuses on compressing the
high-dimensional event representation e; into a lower-
dimensional feature vector z;.

2) Sequential transition model h; 1, ci1 = f(cq, 2¢504r)
with transition parameter 6;., which will be used to
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Fig. 1: Model Architecture

model the dynamic transition of such latent lower-
dimensional feature vector over time

3) Hierarchical tree-based decoder P(e't!|h;,1;04)

with decoder parameter #,, which use the tree structure
of the events hierarchy to predict the future event et*!
given the feature vector hyyi.

Fig. 1 shows the overall architecture that combines the hier-
archical encoder, sequential transition model, and hierarchical
tree-based decoder and how they can work together to predict
the future event ¢'*! from the event history {e’ }, ;.

Finally, these three components will be trained in an
end-to-end manner by maximizing the overall likelihood
function P({e!}l_,;0), where 0 = {0.,0:.,0,} are all
the model parameters. By decoupling the joint likelihood
P({e'}130) = P(e0)P(¢2e’;0) - P(¢T|{e'} 155 0) =
[1, P(e'|{e*' }ti_,;0) and assume that h; represented the
information collected through sequence {e*}!_,, we can
represent the decoder only based on the vector h; as
Ple'[{e"}_,:0) = P(e! i3 0a).

In the following, we will discuss the mathematical details
of the hierarchical encoder network, sequential model, and the
hierarchical tree-based decoder in detail.

1) Hierarchical Encoder : For event at time t, we first
project (pt, o', s?) to their corresponding embedding layer
parameters U € RrexIPl 7 e RreXIOl W e RneXIS| 4¢
pr = o(Uph), 6, = o(Vol), 5, = o(Wst), where |P| is the
number of phases, |O] is the total number of occurrences,
|S] is the total number of subject code, and n. is the size
of the embeddings. Furthermore, these three embedding are
concatenated into v; = [p; 6; §;]. We further add a linear
layer to consider the complex correlation between and within
different levels. An activation layer is added at the end to
incorporate the non-linearity with z; = o(Hv;). Here, we can
use the ReLU layer for the activation function o(-). Here,
the overall framework of the hierarchical encoder is given in
Fig. 2.

2) Sequential Model: To model the transition of event
history, we will use consider the following two different se-
quential models, the Markovian model and the LSTM model.

e Markovian Model: Here, we assume that the future event
e!*! only depends on the encoded feature z;, where

Phase Occurrence Subject

(pt) (ot ) st )
U¥

Ve g 2
' e

|

H

Fig. 2: Hierarchical Encoder

e

P(e'Y)z; 04,.). Moreover, we will model the events such
as the phase, occurrence, and subject given z; separately.

o Long Short Term Memory: LSTM is a kind of Recurrent
Neural Network which is also able to capture the temporal
dependency through a recurrent architecture. Comparing
to the standard RNN, LSTM is able to deal with long term
dependency. In general, LSTM deals with the long term
dependency by adding a cell state and the gating tech-
nique. The cell state keeps all the important information
from past events, and the gate decides which information
is important.

Ct1, Peg1 = fraem(ce, 25 0r),

where fjs1, is the standard LSTM model. ¢; is the
combination of the cell state and memory state in the
LSTM model. h; is the output of the LSTM model at
time ¢ and will be used in the decoder.

3) Hierarchical Tree-based Decoder : After the hidden
state h; is obtained from previous events, we need to
devise a decoding function to predict the failure event in
next stage. Notice that our failure event is composed of
phase, occurrence and subject according to the taxonomy.
Thus, we propose to decouple the joint probability using
the hierarchical tree structure by assuming each layer only
depends on the previous layer as P(pf“, 02“, si,“ |ht; 04) =
P(p?l\ht;Od)P(Og‘H\pZH’ht;9d)P(52+1|0§+1aht59d)
and the probability of each term can be cal-
culated through the Softmax function. Here,
00 = {U' {V/}iz1,. )P, {W/}j=1,-. jo} is the decoder
parameter (i.e., also known as the decoder embedding
parameter), which includes the decoder parameters for phase
U’ € R > decoder parameters for occurrence under phase
ias {V/} iz, p| € R™ *"po.iand decoder parameters for
subject under occurrence j as {W)};—1 .. |0 € R™ X7os.5,
We would like to emphasize that the decoder parameters
for occurrence and subject are different and depend on
the phase ¢ and occurrence j, respectively. This is used to
model the different occurrence events and transition under
different phases and different subject events and transition
under different occurrences. Here, we use n’ to represent
the dimension of the decoder vector and ny, nyo,i, Nos,j 1O
denote the number of phases, the number of occurrences
under phase 4, and the number of subject codes under subject
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j, respectively. pt ofj and s} denote the phase, occurrence,
and subject of flight at time ¢ is the i-th, j-th, and k-th item
in phase corpus, respectively. Since we need to compute the
conditional probability across different levels, we consider
to build different output vectors for same occurrence under
different phases of flight. The intuition behind this is that
under different phases, the same occurrence will have different
impact on the aircraft and lead to different event sequences.
Thus, we need to build a “conditional embedding vector”
Here we use u;,v;j,w}k to represent the i-th column in
the decoder parameters of U ,, j-th column in V; and , k-th
column in Wj.

/T
expu, h
P(p§+1|ht) = 71@7
> expu; hy
t1y b1 expvnght
P(Oj |pi yhe) = ﬁa
d.;expu; it hy
tH1) t+1 expw;kTh,t
P(Sk; ‘Oj 7ht) =

;T
dopexpwl ;T hy

Finally, the decoder parameter 6, will be learned from the data
during the end-to-end training. Here, the overall framework of
the hierarchical decoder is given in Fig. 3.

C. Prediction Using the Hierarchical Information

Here, we would like to discuss how the proposed method
can be used to predict the event at the next time depending
on if the higher level information is given. For example, if
we do not know the phase and occurrence. The algorithm will
need calculate the prediction by the summation of all possible
phase p; and occurrence o; when doing the subject-level
prediction as _ZP(s§€|pi,oj,ht_1)P(oj|pi,h,t_l)P(pi|ht_1).

1,
However, if the] phase-level information is known as p, we
can use this information in the prediction of the subject
level so that the summation over the phase is not needed
as > P(sk|pt, 05, hi—1)P(0;|pt, hi—1) so that the prediction

can Jbe more accurate. In Table II, we would like to give the
prediction algorithms given different scenarios depending on
whether the higher-level information such as the phase and
occurrence are given.

Hidden vector

pttt ||, Phase
ottt | 14|, Occurrence

st | ], g Event

Fig. 3: Hierarchical Tree-based Decoder

IV. EXPERIMENTS

In this section, we will first introduce the NTSB data. Then,
the embedding of the failure events learned from the proposed
model will be discussed with the visualization. Finally, we
showed a comparison of several methods to illustrate the
effectiveness of the proposed event prediction model.
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A. Data Description

1928

In this section, we will introduce the dataset and our
preliminary analysis. The NTSB aviation accident database
recorded information about civil aviation accidents since 1982.
The data are organized in a relational database where several
tables jointly describe a specific accident. Finally, we end
up with 61671 accidents in 62570 aircraft. Each accident is
represented with a sequence of failure events, as described
in Section 3. Fig. 4 shows an example of the taxonomy of
the event data, in which each event data is described using
three levels from the higher level to the lower level, which
are Phase, Occurrence and Subject. In the dataset, there are
about 56 Phases, 58 occurrences, and 1432 subjects event.
Given the large number of possible accident events especially
in the subject level, the embedding algorithm can dramatically
reduce the dimensionality of the event representation. The
sequential failure events provide a summary of what happens
during the accident. In our study, we propose a hierarchical
embedding by representing the failure events from different
levels using continuous vectors. We then compare the predic-
tive performance of discrete representation with the general-
purpose embedding techniques.

B. Model Deployment Procedure

Here, we would like to discuss the procedure for the
proposed algorithm. The algorithm can be derived into the
training and testing phase. Furthermore, we use 50045 data
for training and 12511 data for testing.

During the training phase, the events ¢! = (p!, o, s?)
for t = 1,---,T are fully observed. In this case, we can
use the likelihood function P({e'}[_;60) = [], P(e'|h¢; ).
We assume the conditional probability of the event is given
asP(et|hy; 0) P(pt|he; 0)P(0t|pt, hy; 0) P(st|ot, hy; 0).
Here, the conditional probability P(ot|pt, hs;0) and
P(st|ot, hy;0) requires the hierarchical tree-structured
of the events being estimated from the training data. If any

t
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TABLE II: Prediction Strategy

Phase Occurrence Subject
Prediction Prediction Prediction
Unknown B + t
Phase Pilhi-1) | 32 P(051pis he—1)P(pilhe—1) | 3 P(siIpi, 05, he—1)P(05lps, he—1)P(pilht—1)
1 2]
Known
Phase - P(Oﬁ'lpﬁ:htfl) ZP(SEIP%,Oj,htfl)P(Oﬂpfl,ht,l)
J
Known Lt ot
Occurrence ) ) P(silpi; 05, he—1)
TABLE III: Prediction Accuracy
Prediction One-hot-encoding | Tree Embedding | Word2Vec | Tree Embedding
Condition +Markovian + Markovian + LSTM + LSTM
Phase Phase 0.4142 0.6092 0.5995 0.6287
Unké n Occurrence 0.3767 0.5308 0.5478 0.5497
W Subject 0.2388 0.3063 0.3089 0.3377
Phase Occurrence 0.7518 0.8252 0.7995 0.8297
Known Subject 0.2045 0.3635 0.4196 0.4649

of the training data has transitioned between the two events,
the edge of the tree will be connected.

Here, in the training phase, we apply AdamW as the
optimizer and switch to SGD to ensure a stable learning curve.
We select the same learning rate as 0.001.

During the testing phase, given the future et = (pt, o?, s?) is
often unknown, we need to do the summation of all possible o,
to estimate the subject event s;. One distinct advantage of the
proposed hierarchical model is the ability to use high-level
information, as shown in Table II. More specifically, if the
future information of Phase, Occurrence, the proposed method
is able to take advantage of such information to give a better
prediction in the subject-level.

C. Decoder Embedding Coefficient Visualization

In this section, we would like to visualize some illustrative
results of different the encoder embedding layer coefficients
U, {V'},{W'} for different flight phases, occurrences, and
subject codes. The hierarchical structure implies that there is
only one phase embedding matrix denoted as U’, but there can
be multiple occurrence embedding matrix {V;};—; ... |p|. For
example, here, we like to show the embedding matrix for the
decoder occurrence under the take-off phase and the landing
phase in Fig. 5. Given the embedded dimension is 30, we
propose to project them into two dimensions for visualization.

Fig. 5a shows the decoding phase embedding. Similar
clusters to the encoding embedding can also be found here
like 560-568. We can also find some cluster are not obvious
in the encoding embedding like 501-504 as the standing phase.
520-523 refer to the takeoff phase. In the decoder embedding,
we can see that thefakeoff phase is on the top right of the figure
and the landing phase is at the bottom left of the figure, which
is more meaningful to us since those two phases have very
different transition diagram as illustrated in section 4.A. we
further discover the conditional decoding embedding vector for
occurrence. Fig. 5b denote the occurrence embedding under
takeoff phases and fig. 5S¢ shows the embedding under landing
phases. We can see interesting patterns from the difference
between those two visualizations. For example, we can see

clear cluster for 190-194 (gear collapsed). However, there are
no such clusters in the landing phase. The intuition behind
this observation is that different kinds of gear collapsed will
have a similar impact under fakeoff phase but will have
a very different impact on event sequences under landing
phase. Similarly, 350-353 (loss of engine power) will have
a more consistent impact on aircraft under the landing phase
comparing to the fakeoff phase.

D. Event Prediction Accuracy

In this section, we build a predictive model to evaluate
the performance of different embedding vectors. Here, we
compare four different methods. In general, we compare three
different representations of the failure events, which are one-
hot-encoding, word2vec encoding, and the proposed tree-
based embedding. We further compare two different sequential
models, namely the Markovian model and the LSTM model.
Our results show that, through representing discrete events
with continuous vector, we can improve the prediction ac-
curacy with either Word2Vec or Tree Embedding. Further-
more, LSTM shows a better performance comparing to the
Markovian model, given the hierarchical structure of failure
events. Finally, the tree embedding shows better performance
compared to the general embedding method Word2Vec in our
experiments. In an aviation accident, the phase of aircraft is
usually known ahead of time. Here we also present the results
given the known flight phase. We show that the proposed
method is able to achieve 0.8291 accuracy for occurrence level,
which is a huge improvement from 0.5497.

Here we further investigate the reason we achieve better
results comparing to other benchmarks without considering
the multi-level information.

e The other benchmark methods, such as the Markovian
models, cannot deal with the unseen event sequences.
The aviation accident is usually unique and rare, so it is
important to deal with events that have never occurred
before. The proposed model is able to deal with the
new events according to their similar sequential pattern
calculated according to the event embedding.
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Fig. 5: Decoder Embedding Visualization

o Under different phases, the transition between occur-
rences is very different. The other benchmark methods,
such as the Markovian method or the association rule-
based method, can only follow a simple rule for the
transition, which does not consider the high-level infor-
mation. The proposed model incorporates this multi-level
structure according to the hierarchical decoding layer.
Through building up the conditional embedding vectors,
we are able to capture different transition patterns under
different phases.

The sequential relationship is complex when we are try-
ing to deal with multi-level event sequences. Traditional
methods like association rule or Markovian models will
require a lot of time to make predictions based on past
event sequences. The deep learning-based model provides
an efficient way to propagate the information from the
beginning of the event to the end and capture its complex
sequential relationship at the same time.

V. CONCLUSION

In this work, we focused on leveraging the collection
of event data from the aviation accident report to improve
aviation safety. More specifically, we proposed a way to
predict the possible event sequences so that people are able
to provide effective actions to avoid the accidents. There are
three major contributions to this work. First, we proposed
a hierarchical encoder-decoder framework with the domain
knowledge of the taxonomy of failure event can be used in the
embedding model. Second, we combined the proposed hierar-
chical encoder-decoder framework with the LSTM to capture
the complex temporal relationship among failure events. Our
results show that the hierarchical encoder-decoder combined
with the LSTM has better accuracy comparing to several
benchmark methods for event prediction. Furthermore, the
embedding representation also provides a more meaningful
result. In the future work, we would like to extend the
proposed method to predict not only what type of event may
happen but also when it will happen in the future.
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