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Anatomically Constrained Deep Learning for
Automating Dental CBCT Segmentation

and Lesion Detection
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Abstract—Compared with the rapidly growing artificial intel-
ligence (AI) research in other branches of healthcare, the pace
of developing AI capacities in dental care is relatively slow.
Dental care automation, especially the automated capability for
dental cone beam computed tomography (CBCT) segmentation
and lesion detection, is highly needed. CBCT is an important
imaging modality that is experiencing ever-growing utilization in
various dental specialties. However, little research has been done
for segmenting different structures, restorative materials, and
lesions using deep learning. This is due to multifold challenges
such as content-rich oral cavity and significant within-label
variation on each CBCT image as well as the inherent difficulty of
obtaining many high-quality labeled images for training. On the
other hand, oral-anatomical knowledge exists in dentistry, which
shall be leveraged and integrated into the deep learning design.
In this article, we propose a novel anatomically constrained
Dense U-Net for integrating oral-anatomical knowledge with
data-driven Dense U-Net. The proposed algorithm is formulated
as a regularized or constrained optimization and solved using
mean-field variational approximation to achieve computational
efficiency. Mathematical encoding for transforming descriptive
knowledge into a quantitative form is also proposed. Our experi-
ment demonstrates that the proposed algorithm outperforms the
standard Dense U-Net in both lesion detection accuracy and dice
coefficient (DICE) indices in multilabel segmentation. Benefited
from the integration with anatomical domain knowledge, our
algorithm performs well with data from a small number of
patients included in the training.

Note to Practitioners—This article proposes a novel deep
learning algorithm to enable the automated capability for cone
beam computed tomography (CBCT) segmentation and lesion
detection. Despite the growing adoption of CBCT in various
dental specialties, such capability is currently lacking. The
proposed work will provide tools to help reduce subjectivity and
human errors, as well as streamline and expedite the clinical
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workflow. This will greatly facilitate dental care automation.
Furthermore, due to the capacity of integrating oral-anatomical
knowledge into the deep learning design, the proposed algorithm
does not require many high-quality labeled images to train. The
algorithm can provide good accuracy under limited training
samples. This ability is highly desirable for practitioners by
saving labor-intensive, costly labeling efforts, and enjoying the
benefits provided by AI.

Index Terms—Biomedical image segmentation, healthcare
automation, machine learning, neural networks.

I. INTRODUCTION

COMPARED with the rapidly growing artificial intelli-
gence (AI) research in other branches of healthcare,

the pace of developing AI capacities in dental care is relatively
slow. Radiographic imaging is commonplace in dental care
to assist clinicians in evaluation, diagnosis, and treatment
planning. An important imaging modality called cone beam
computed tomography (CBCT) is experiencing ever-growing
utilization due to increased spatial resolution and 3-D imaging
capability. CBCT has been used in a variety of dental fields
such as endodontics, orthodontics, implant, oral surgery, and
oral medicine [1].
In the various dental fields using CBCT, it is an important

task for clinicians to accurately segment different structures,
tissues, restorative materials, and lesions on each CBCT
image. However, this capacity is currently lacking. Clinician-
based interpretation of the CBCT images lacks precision,
consistency, and objectivity, and thus suffering from low
interobserver/intraobserver agreement [2]. Existing semiauto-
mated computer-aided diagnosis (CAD) algorithms offer lim-
ited clinical utility as they are heavily dependent on clinicians
for seed placement and manual adjustment to facilitate the
image segmentation [3]–[9]. A significant amount of training
is needed for clinicians to have the needed skill. Even with
extensive training, human errors are common and inevitable.
Also, because CBCT produces 3-D images, the scale of the
data to be processed is overwhelming, which poses obstacles
to the clinical workflow.
AI or deep learning holds great promise to provide a

fully automated capability for CBCT analysis, which can
help reduce subjectivity and errors. This capability can also
help streamline and expedite the clinical workflow. However,
the published work so far has focused on using deep learning
to improve CBCT image quality [10], [11], facilitate recon-
struction [12], and segment teeth [13]. Little research has been
done for segmenting different structures (e.g., bone, teeth),
restorative materials, and lesions. The reason for this gap
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is that CBCT segmentation is very challenging in multiple
aspects: First, the oral cavity presented on each CBCT image is
content-rich, containing different structures, tissues, restorative
materials, and lesions—called labels hereafter in this article.
Also, there is significant within-label variation. For example,
materials can differ significantly in shape, size, intensity,
and texture. Lesions also vary in size, shape, and so on.
Furthermore, to train a deep learning algorithm to recognize
the significant between- and within-label variations, there is
a need for a large number of accurately labeled images by
clinicians.
In general, deep learning algorithms need a large amount

of labeled data to achieve high accuracy. However, in many
healthcare applications, labeled data are limited due to the
availability and cost of clinical experts. Also, high-quality
labeled data may be inherently difficult to obtain due to
the complexity of the problem domain. These are also the
challenges faced by CBCT segmentation using deep learning.
To address label data shortage in healthcare applications,
existing research in deep learning has exploited different
mechanisms such as transfer learning [14] and data aug-
mentation [15]. More recently, research has also been done
to develop semisupervised learning algorithms to incorpo-
rate unlabeled data in training, e.g., developing generative
adversarial networks with semisupervision [16]. An alterna-
tive to these data-driven mechanisms is to integrate domain
knowledge into the model training. Domain knowledge can
be considered an auxiliary, special source of “data” to help
boost the model performance. In addition, integration with
domain knowledge prevents the generation of uninterpretable
or counter-intuitive results.
In this article, we propose to integrate oral-anatomical

knowledge with deep learning for CBCT segmentation and
lesion detection. A commonly used deep learning algorithm
for image segmentation is the U-Net. There have been
some improvements of the traditional U-Net in recent years.
We adopt the FC-Densenet [17] with some modifications as
the baseline due to its parameter efficiency. We call this
baseline network Dense U-Net. We further infuse anatomical
knowledge as regularizations or constraints into the Dense
U-Net design. We call the new algorithm “anatomically-
constrained Dense U-Net.” From oral anatomy, we have the
knowledge regarding the relative locations of different struc-
tures, restorative materials, and specific types of lesions. Some
examples of such knowledge include: a periapical lesion must
be near the root of a tooth; restorative materials cannot be
connected with the bone; since lesions and materials must
attach to some structures or tissues, they cannot be surrounded
by the background of the image. Incorporating anatomical
knowledge has the effect of limiting the search space for the
deep learning algorithm to find the optimal parameters. This
has the potential to produce more accurate, interpretable results
based on limited training data.
The contributions of this article are summarized as follows.
1) Contribution to the Methodology: Integration of domain

knowledge and deep learning is a popular research area.
It has been studied in natural language processing, solving of
partial differential equations (PDEs), neural symbolic systems,

molecular biology, and so on. Section II includes a detailed
review of the existing work in this field. However, no work has
been done for integrating oral-anatomical knowledge with den-
tal image segmentation to our best knowledge. The proposed
anatomically constrained Dense U-Net provides the first-of-
its-kind framework of the integration. The technical novelties
of the proposed method include the following.
1) We propose a regularized optimization framework that

aims to minimize the loss function on training data,
while at the same time striving for the consistency with
oral-anatomical knowledge in expectation.

2) We propose a mathematical encoding of the knowledge,
which is descriptive in its original form, into quantitative
pixel-wise consistency functions. This quantitative form
makes it possible for the knowledge to be integrated with
deep learning.

3) To resolve the computational challenge of incorporating
hundreds of thousands of pixel-wise constraints—equal
to the size of an CBCT image, we propose to use
variational inference and mean-field approximation to
produce a tractable solution for the optimization.

2) Contribution to Dental Care Automation: Our experi-
ment demonstrates that the proposed anatomically constrained
Dense U-Net outperforms the data-driven Dense U-Net in both
lesion detection accuracy and voxel-matching dice coefficient
(DICE) accuracy for each label. Our algorithm can achieve
good performance with data from a small number of patients
included in the training. This demonstrates the value of the
integration with anatomical domain knowledge. This is the first
work that uses deep learning for CBCT multilabel segmenta-
tion and periapical lesion detection. This work demonstrates
the potential of using AI to automate dental care. Given
that CBCT is popularly used in various dental specialties,
developing AI capabilities for CBCT will profoundly impact
dental practices and patient care.
The remainder of this article is organized as follows.

Section II reviews related work. Section III presents the
proposed anatomically constrained Dense U-Net. Section IV
presents the experiment and results. Section V is the
conclusion.

II. RELATED WORKS

From the methodological point of view, this article is related
to the field in deep learning that investigates how to integrate
domain knowledge with data-driven algorithms (Section II-A)
and the field of U-Net and its improvements (Section II-B).
From the application point of view, this article is related to
deep learning applications for CBCT (Section II-C). In what
follows, we will review the existing work related to both the
methodology and applications. Finally, we will point out the
gap in the existing research and the need for the proposed
work (Section II-D).

A. Integration of Domain Knowledge With Deep Learning

Integration of domain knowledge with deep learning algo-
rithms has been mainly investigated for three types of knowl-
edge: relational knowledge, physical knowledge, and logical
knowledge.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 14,2021 at 12:49:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: ANATOMICALLY CONSTRAINED DEEP LEARNING 605

Relational knowledge includes simple relations such as
father and son, as well as more complicated, structured forms
encoded by knowledge graphs or statistical relational models.
The integration of relational knowledge with deep learn-
ing has been mainly investigated in language-related tasks,
including text translation, text comprehension, and knowledge
graphs. Most of the existing work used attention mecha-
nisms [18]–[20], multihop architectures [21], [22], or their
combinations [23] in recurrent neural networks (RNNs). Other
research combined prior knowledge explicitly into RNN. For
example, GRAFT-Net used the knowledge base as a prior
source and a graph representation learning convolutional
neural network (CNN) to infuse the graph-like knowledge base
information into an RNN model [24].
Integrating physical knowledge with deep learning has

mostly been studied within the context of PDEs. Deep
Galerkin method (DGM), a deep learning model inspired by
the Galerkin method of numerically solving PDE, aimed to
use deep neural networks to reach approximate numerical
solutions of PDE [25]. Other research, such as PDE-Net,
aimed to use deep learning algorithms to uncover hidden PDE
formulations [26].
Logical knowledge is a typical form of human knowledge,

which can be coded by first-order logical rules or proba-
bilistic graphical models [27]. Integrating logical knowledge
with deep learning has been done in several ways. Neural
symbolic systems represented a type of integration [28],
in which neural networks were designed on given rules to
perform reasoning, such as KBANN [29] and CILP++ [30].
Grammar variational autoencoder used grammar rules to
encode discrete data, e.g., moleculars, to parse trees [31].
Other than these problem-specific designs, some researchers
tried to make a more general model for the integration by
encoding the knowledge as features or other formats easily
transferred to a neural network. Collobert et al. [32] proposed
an approach to extract extra features from knowledge in texts.
Karaletsos et al. [33] proposed to express similarity rules as
a triplet format and transfer them to a Bayesian latent fac-
tor model. Some researchers used posterior regularization to
infuse domain knowledge to deep learning models [34], [35].

B. U-Net and Its Improvements

In medical image segmentation, one of the most commonly
used algorithms is U-Net [36]. This network is based on
a symmetric encoder–decoder framework and widely used
because of its capability to train with limited data. The most
important advantage of U-Net is the introduction of skip
connection to CNNs, which helped the network to retrieve
spatial information lost in downsampling procedures. Also,
U-Net adopts 2 × 2 transposed convolution operation to per-
form upsampling in the decoder part, which makes the training
of upsampling possible.
The conventional U-Net has been improved by fusing

with other network structures in recent years. For example,
FC-Densenet [17] integrated the idea of dense blocks in
Dense-Net [37] into U-Net design. It changed the convolution
layers at each level to a dense block, which took advantage
of fewer parameters. QuickNAT [38] used the structure of

FC-Densenet with different settings and substituted the trans-
posed convolutional layers with un-pooling layers [39]. Mul-
tiRes U-Net [40] used residual connection [41] at every level
of U-Net and used residual paths to replace skip connection,
which made a deeper network with better performance. With
the same intuition as MultiRes U-Net, U-Net++ [42] used
dense connection layers to replace skip connection, which
retained more spatial information.

C. Deep Learning Applications for CBCT

Deep learning has been used to map CBCT to high-quality
CT images [10], [11]. Research has also been done to facilitate
the image reconstruction process [12]. For image segmenta-
tion, existing work has focused on segmenting and classifying
teeth. For example, Miki et al. [43] proposed to use Alex-Net
to classify teeth to different types. Pavaloiu et al. [44] used
basic neural networks for edge detection. More recently,
Zakirov et al. [45] used V-Net to segment teeth on 3-D images
and used a fully connected neural network (FCNN) to further
classify the teeth.

D. Gaps in the Existing Research

On the application side, little work has been done for
CBCT segmentation and lesion detection using deep learning.
This is due to the multifold challenges of this task, such as
content-rich oral cavity and significant within-label variation
on each CBCT image as well as the inherent difficulty
of obtaining many high-quality labeled images for training.
Integration of domain knowledge about oral anatomy with
deep learning holds great promise to resolve these challenging
issues. However, there is a lack of methodological develop-
ment in deep learning to achieve such integration. This article
aims to bridge this gap.

III. PROPOSED ANATOMICALLY CONSTRAINED

DENSE U-NET

In this section, we will first present our modified design
of the existing FC-Densenet to fit our problem setting,
called Dense U-Net, in Section III-A. Then, we will present
the proposed optimization framework for integrating oral-
anatomical knowledge and Dense U-Net in Section III-B.
In Section III-C, we will present how to mathematically
encode anatomical knowledge. Finally, we will propose an effi-
cient algorithm to solve the optimization framework and obtain
probabilistic label maps for CBCT images in Section III-D.

A. Dense U-Net Design

From several improved U-Net structures, we select the
structure of FC-Densenet [17] due to its parameter efficiency.
However, the original FC-Densenet has over 100 layers, which
still has too many parameters for our small data set and runs
the risk of over-fitting. Thus, we make some modifications to
this structure and call it Dense U-Net. The Dense U-Net design
has five components, such as the initial convolutional layer,
dense blocks, transition down blocks, transition up blocks, and
the output convolutional layer.
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A dense block has several repeated layers. Each layer has
a batch normalization, rectified linear unit (ReLu) activation,
a 3 × 3 convolutional layer, and a dropout layer. The layers in
a dense block have a dense connection, which means that the
input of one layer is a concatenation of outputs of all previous
layers. A dense block has a growth rate k, which represents the
number of output channels of every layer in the dense block.
A transition down block includes batch normalization,

ReLu activation, a 1 × 1 convolutional layer, a dropout layer,
and a 2 × 2 max-pooling layer. It takes the output of a
dense block and performs downsampling. The first part of a
transition-down block before max-pooling can be used to per-
form feature compression, which can significantly reduce the
number of parameters. The second part of a transition-down
block is a max-pooling layer for downsampling.
A transition-up block is a 2 × 2 transposed convolution

with stride 2, which is an upsampling process that can be
trained. The upsampled map is concatenated to the output of
the previous dense block at the same level, which retains the
spatial information.
The workflow of Dense U-Net in use is the following: an

image that is put into Dense U-Net will be processed by
an initial 3 × 3 convolutional layer at first. Then, the output
will be processed by a downsampling path with several dense
blocks and transition down blocks. The upsampling path will
then process the encoded feature map with skip connection
from the output of dense blocks in the downsampling path
at each level. Finally, a 1 × 1 convolutional layer will process
the output of the upsampling path to generate the segmentation
map.

B. Optimization Framework for Integrating Oral Anatomy
and Dense U-Net Using Variational Inference

Let x denote a CBCT image of P pixels, i.e.,
x =

{
x j; j = 1, . . . , P

}
, where x j is the image intensity at

the j th pixel. P = r × c, where r and c are the numbers
of rows and columns of a CBCT image, respectively. Let
y contain the pixel labels with the same size of x, i.e.,
y =

{
y j; j = 1, . . . , P

}
, where y j is the label of the j th pixel.

Assume K possible labels for each pixel. The goal of an image
segmentation task is to train an algorithm to map x to y.
Dense U-Net builds a probabilistic mapping between x and
y, pθ (y|x). θ contains parameters of the Dense U-Net.
To train the parameters of a Dense U-Net, a set of N labeled

images will be used. Denote this training set by Dl . The
parameters are learned to minimize a loss function averaged
over the training samples, i.e., (1/N)

∑
(x,y)∈Dl

L(y, pθ (y|x)).
Commonly used loss functions include the multiclass cross-
entropy loss, the focal loss [48], and the multiclass cross-
entropy loss plus DICE loss [39], [41].
However, the standard Dense U-Net is purely data-driven,

i.e., it does not consider oral-anatomical knowledge. To incor-
porate the knowledge, we propose a regularized loss function
to balance between minimizing the data-driven loss (e.g.,
cross-entropy, focal, and cross-entropy plus DICE losses
as mentioned above) and maximizing the consistency with

knowledge in expectation, i.e.,

min
θ






1
N

∑
(x,y)∈Dl

L(y,pθ(y|x))−

α
1
N

∑
x∈Dl

E pθ (y|x)( f (y))





. (1)

The second term in (1) corresponds to the knowledge. f (y)
is a function of the pixel labels in y for a CBCT image,
which reflects the consistency of the pixel labels with respect
to the knowledge. The definition of this consistency function
f (y) depends on the type of knowledge, which will be
discussed with more detail in Section III-C. Here, we focus
on the general notation in order to better describe the overall
framework. Since f (y) is a random variable, we take the
expectation of it on the conditional distribution of pθ(y|x).
By doing this, we encourage the consistency with knowledge
on an “average” sense. Also, we encourage this consistency
over a set of images. In (1), we assume that this set of images
includes the N labeled images. However, in the general case,
this set can include not only labeled images but also unlabeled
images, because we do not need to know the labels in y but
only the expectation of f (y). α is a tuning parameter.
It is difficult to evaluate the expectation of f (y), because

pθ(y|x) is a joint distribution of the labels for all pixels
on a CBCT image, which has a huge dimension and is
extremely computationally intensive. To resolve this issue,
we propose to borrow the idea from variational inference.
Variational inference was originally developed as an approach
to approximate a difficult-to-compute posterior distribution in
Bayesian statistics, which finds an approximate distribution
in a variational family to minimize the Kullback–Leibler
(KL) divergence to the exact posterior [46]. The variational
family is typically chosen for computational benefits, such as
the commonly used mean-field variational family [47]. Our
problem is not Bayesian, but we borrow the idea of variational
inference and seek an approximate distribution q(y|x) for
pθ(y|x). In our case, q(y|x) is found not only to minimize
the KL divergence with respect to pθ (y|x), like in the original
variational inference, but also to maximize the consistency
with knowledge in expectation, i.e.,

min
q

KL(q(y|x)||pθ(y|x)) − λEq(y|x)( f (y)). (2)

λ is a tuning parameter.
Furthermore, combining (1) and (2), we can get a new

optimization problem, i.e.,

min
θ,q






1
N

∑
(x,y)∈Dl

L(y,pθ (y|x))−

α
1
N

∑
x∈Dl

(
λEq( y|x)( f (Y))−KL(q(y|x)||pθ (y|x))

)





.

(3)

The benefit of introducing the variational distribution q(y|x)
can be better revealed as follows: given θ , (3) becomes (2),
which can be solved in an analytical form, i.e.,

q∗(y|x) = 1
C
pθ(y|x)exp{λ f (y)} (4)
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Fig. 1. Schematic overview of the proposed anatomically constrained Dense U-Net. The workflow is as follows: the network takes a set of labeled images
and anatomical knowledge as input. To initialize, Dense U-Net is first used to produce initial values for the parameters, θ , based on images, and generate
predicted pixel labels, pθ (y|x). Then, two optimizations are iteratively solved between updating θ and q(y|x): 1) given θ , q(y|x) is updated by minimizing
KL-divergence with pθ (y|x) and maximizing consistency with anatomical knowledge and 2) given q(y|x), θ is updated by minimizing the data-driven loss
and KL-divergence with q(y|x). Details of these optimizations are discussed in Section III-D. The output from the network contains segmented images.

where C is a normalizing constant. Furthermore, given q , (3)
becomes

min
θ

×





1
N

∑

(x,y)∈Dl

L(y,pθ(y|x))+α
1
N

∑

x∈Dl

KL(q(y|x)||pθ (y|x))






which can be treated as a new loss function optimized by the
Dense U-Net. Note that this process of iteratively solving the
optimization in (3) avoids the need for evaluating the expecta-
tion of f (y)—a challenge we have mentioned previously to be
computationally intractable. Please see Fig. 1 for a schematic
overview of the proposed optimization framework.
Next, we would like to reveal some insight about the impact

of incorporating knowledge. From (4), we can see that the
data-driven distribution pθ (y|x) is modified by incorporating
the consistency function with knowledge, f (y), to become
q∗(y|x). When y takes on values/labels that yield a larger f (y),
i.e., a higher consistency with knowledge, the corresponding

q∗(y|x) will be increased from pθ (y|x) by a larger factor
to make these values of y more likely. In other words, the
probabilities of different values of y are rearranged in q∗(y|x)
to reflect their respective consistency with knowledge.
Finally, we would like to point out that despite the close-

form solution in (4), it is still difficult to compute q∗(y|x)
due to the high dimensionality of y. Take the images in
our experiment as an example. There are 256 × 256 pixels
on a CBCT image and five labels for each pixel, {“lesion,”
“bone,” “teeth,” “materials,” “background”}. This results in a
total of 5256×256 combinations of pixel labels, which make it
impossible to compute the normalizing constant. To resolve
this issue, we propose to use the mean-field variational family
for q(y|x) to produce a tractable and efficient solution, which
will be discussed with more detail in Section III-C.

C. Mathematical Encoding of Anatomical Knowledge

In Section III-B, we referred to f (y) as a consistency
metric with respect to the anatomical knowledge. In general,
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the definition of f (y) is flexible and depends on the type of
knowledge. In this article, we focus on the knowledge about
the relative position of different labels according to human
oral anatomy. Specifically, we focus on the knowledge stating
that the segment of an image belonging to label k cannot be
in/connect with another segment belonging to label k ′. For
example, since lesions (i.e., label k) must attach to some struc-
ture or tissue, it cannot be in the background (i.e., label k ′).
Restorative materials (i.e., label k) cannot connect with the
bone (i.e., label k ′). In our experiment, we find these two
pieces of knowledge regarding the lesions and materials are
particularly helpful, because these two labels are most difficult
to segment among all the labels in a CBCT image, due to
significant within-label variation in shape, size, intensity, and
texture.
To transform the descriptive knowledge into a quantitative

form, we propose to examine the labels of the pixels that are
neighbors of each other. For example, if a pixel is labeled as
“lesion,” we should penalize the likelihood for the neighboring
pixels to be labeled as “background.” This has the effect of
biasing the model training to be consistent with the knowledge
that a lesion cannot be in the background. To realize this idea
in a mathematical form, we first decompose f (y) into pixel-
wise consistency metrics to facilitate the checking the label of
each pixel against its neighbors, i.e.,

f (y) =
P∑

j=1

f j
(
y j , yNE( j)

)
(5)

where f j (·) corresponds to each pixel in the CBCT image and
only involves the pixel y j and its neighboring pixels yNE( j) =
{yi; i ∈ NE( j)}. Here, the neighborhood of a pixel, NE( j),
is user-defined, which typically includes the four immediate
neighbors but can include more pixels. Furthermore, to encode
the knowledge that the segment belonging to label k cannot
be in/connect with another segment belonging to label k ′,
we further define f j

(
y j , yNE( j)

)
as

f j
(
y j , yNE( j)

)
=






1, y j &= k∏

i∈NE( j)

I
(
yi &=k ′), y j = k. (6)

The meaning of (6) can be understood as follows: if y j

is label k (e.g., “lesion”), the consistency f j
(
y j , yNE( j)

)
is

the maximum with a value of one only when none of the
pixels in the neighborhood is label k ′ (e.g., “background”).
If y j is not label k, f j

(
y j , yNE( j)

)
becomes irrelevant to this

particular knowledge regarding label k and the consistency is
automatically achieved.
Suppose there are $ pieces of knowledge of this kind to

be integrated with deep learning. Let f (k)j

(
y j , yNE( j)

)
, k ∈ $,

be the pixel-wise consistency metric with respect to each piece
of knowledge in $. We can sum these consistency metrics
together to become an overall consistency with respect to the
collective knowledge set, i.e.,

∑

k∈$

λk f
(k)
j

(
y j , yNE( j)

)

where λk is the weight for each piece of knowledge.

D. Efficient Algorithm for Solving the Anatomically
Constrained Dense U-Net Optimization Using the
Mean-Field Approximation

Recall that at the end of Section III-A, we pointed out
the challenge of computing q∗(y|x) in (4) due to the high
dimensionality of y. To resolve this issue, we propose to
choose a specific form of q from the mean-field variational
family [37] to alleviate the computational complexity. The
mean-field family assumes that q can be represented by a
product of pixel-wise distributions q j ’s, i.e.,

q(y|x) =
P∏

j=1

q j
(
y j |x

)
. (7)

Using the q(y|x) in (8), as shown at the bottom of the next
page, and the f (y) specified in Section III-B, the optimization
in (4) becomes The benefit of this optimization formulation is
that given θ , q1, . . . , qP can be solved iteratively. This makes
the computation tractable and efficient. Furthermore, given
q1, . . . , qP , θ can be solved by the standard stochastic gradient
algorithm. These two steps can be iterated to get the final
solution for (8). Next, we discuss the specifics of each step.
Given θ , the optimization in (8) becomes

min
q1,...,qP

1
N

∑

x∈Dl




KL

(∏P
j=1 q j

(
y j |x

)
||pθ (y|x)

)
−

Eq1,...,qP

(∑P
j=1

∑
k∈$ λk f

(k)
j

(
y j , yNE( j)

))





(9)

which can be solved iteratively over q1, . . . , qP according to
Proposition 1.
Proposition 1: Given q(t−1)

1 , . . . , q(t−1)
j−1 , q(t−1)

j+1 , . . . , q(t−1)
P

obtained from the (t − 1)th iteration, the optimization with
respect to q j at the tth iteration, q (t)

j , can be solved by

q(t)
j = 1

c(t)j
pθ

(
y j |x

)
exp

(
∑

k∈$

λkg
(k)
j

(
y j

)
)

where

g(k)j
(
y j

)
=






1, y j &= k∏

i∈NE( j)
q(t−1)
i

(
yi &= k ′), y j = k (10)

and c(t)j is the normalizing constant.
Please see Appendix for the proof and calculation of c(t)j .

Using Proposition 1, q(t)
j can be updated for one pixel at a

time. This makes the normalizing constant easy to compute.
Furthermore, given q1, . . . , qP , (9) becomes

min
θ

L(θ)

! min
θ






1
N

∑
(x,y)∈Dl

L(y,pθ (y|x))+

α
1
N

∑
x∈Dl

KL
(∏P

j=1 q j
(
y j |x

)
||pθ (y|x)

)





(11)

where L(θ) can be treated as a new loss function optimized
by the Dense U-Net and thus can be solved by the standard
stochastic gradient algorithm. Specifically, we can randomly

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 14,2021 at 12:49:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: ANATOMICALLY CONSTRAINED DEEP LEARNING 609

sample a batch of samples from Dl to compute the gradient
of L(θ) to update θ accordingly, i.e.,

θ (t) = θ (t−1) − ∂

∂θ
L(θ). (12)

IV. EXPERIMENT

A. Data Description

Our data set consists of 20 patients with periapical lesions
collected from the School of Dental Medicine, University
of Pennsylvania, Philadelphia, PA, USA. Institutional review
board (IRB) approval was obtained prior to the study. CBCTs
of all the patients were acquired by a Morita Veraviewpocs
3DF40 field of view (FOV) 40 mm at voxel size 125-mm
machine. The CBCT of each patient includes limited FOV
containing roots with at least one lesion.
To prepare labeled data for training, ITK-SNAP was utilized

to assist the clinicians to generate manual segmentation on the
CBCT volumes following protocols established in previous
studies [51]–[53]. From raw volumes, five standardized cate-
gories of image content were labeled: “lesion,” “bone,” “teeth,”
“materials,” “background.” ITK-SNAP uses a semiautomatic
segmentation algorithm, which requires the manual seed selec-
tion to start with. The algorithm will then automatically evolve
the initial seed to the area of interest. After the algorithm
segmentation, the segmentation was reviewed and manually
revised by three reviewers (dental experts). All reviewers were
calibrated and trained in CBCT analysis and segmentation
and included an oral and maxillofacial radiologist (M.M.),
an endodontist (F.C.S.), and a senior graduate student complet-
ing a radiology honors program (K.J.S.). Disagreements were
resolved by joint discussion. Because manual segmentation
is extremely time-consuming (up to several hours per CBCT)
and was, therefore, not carried out by each individual reviewer,
it was a joint review process.
However, we can use lesion detection for an estimate of

the consistency between the three reviewers. Lesion detection
was carried out using the raw CBCT images before any
joint segmentation process. The result is the following: the
initial agreement between the reviewers was 27/29 (or 93.1%
agreement) for roots with lesions and 100% for roots with no
lesions. The 2/29 discrepancies were resolved by joint review
and discussion.
Five slices in the sagittal view from each CBCT were

included in this study, which resulted in a total of 20 × 5 =
100 images to include in the training. Each image contains
256 × 256 pixels.

B. Image Preprocessing

To standardize the contrast across all the images, the con-
trast curve of each image was linearly adjusted to be between

−5000 and 10 000 range of intensity. To fully utilize the
small-size data set and avoid over-fitting, data augmentation
was applied. A random image generator was used, with the
rotation of degree range 0.2, width and height shifting by 5%,
intensity sheared by 5%, zooming by 5%, and horizontal,
vertical flip. All these augmentation processes and parameters
were randomly chosen inside the range in each batch during
the training.

C. Model Setup and Training

The specific Dense U-Net setting used in this study is the
following: at the initial convolutional layer, the network takes
images as input and produces a feature map with 16 channels.
Each dense block consists of four convolutional layers, and
the growth rate k is set to 12. In transition down blocks, there
is a 1∗1 convolution layer for feature compression, with the
compression rate set to be 0.5. The dropout rate of all dropout
layers is set to 0.2 as previous studies [17], which can help
avoid over-fitting.
A fourfold cross-validation was performed on the 20

patients. Each time, the CBCT images of 15 patients were
used in training, and the model was validated on the remaining
five patients. This process was iterated over all the folds.
The model was implemented in TensorFlow using the Keras
module [50]. Batch training was used with two images in a
batch. The Adam optimizer was chosen with a learning rate of
8 × 10−5. The model was initialized with the Glorot uniform
initializer as default in TensorFlow. The model was trained
with 100 epochs, 40 batches in each epoch, and 2 images in
each batch.
Two pieces of anatomical knowledge regarding lesions and

materials were integrated with the data in training: {lesions
cannot be in the background; materials cannot connect with
the bone}. Although other types of knowledge can be included,
we found that these two pieces of knowledge helped the most
because materials and lesions are most difficult to segment.
There are several parameters to tune. Next, we discuss

the detailed procedure and considerations. λ1 and λ2 are
the weights corresponding to the two pieces of knowledge.
To select them in a computationally efficient way, we per-
formed a two-phase grid search. The first phase was a coarse
search between [1, 5] on integer values. The result of this
phase narrowed down the ranges of λ1 and λ2 to [2, 3] and
[1, 2], respectively. The second phase was a fine-scaled search
within the ranges identified in the first phase, which found
λ1 = 2.8,λ2= 1.0 yielded the best performance.
Additionally, considering that the size of each label varies

significantly across different labels, we used different weights
for different labels in the cross-entropy loss to address the
sample imbalance. The weights were roughly chosen to be

min
θ,q1,...,qp






1
N

∑
(x,y)∈Dl

L(y,pθ (y|x))−

α
1
N

∑
x∈Dl




Eq1,...,qP

(∑P
j=1

∑
k∈$ λk f

(k)
j

(
y j , yNE( j)

))−
KL

(∏P
j=1 q j

(
y j |x

)
||pθ(y|x)

)









. (8)
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inversely proportional to the size of each label, i.e., the label
of a smaller size (e.g., lesion) was given a larger weight, while
the label of a larger size (e.g., background) was given a smaller
weight. These weights are used in weighted cross-entropy loss.
For focal loss, its parameter γ is set to 1, as used in [48].
Furthermore, there is a tuning parameter α in the optimiza-

tion in (11), which controls the tradeoff between the cross-
entropy loss on labeled images and the KL divergence between
the distributions q and pθ . The following formula was used
to make α a changing parameter over the training iterations:

α(t) =
{
0, t< 50
min

(
1 − 0.9t−50, 0.5

)
, t ≥ 50

and (11) is adjusted to be

min
θ






(
1 − α(t)

) 1
N

∑
(x,y)∈Dl

L(y,pθ(y|x))+

α(t) 1
N

∑
x∈Dl

K L
(∏P

j=1 q j
(
y j |x

)
||pθ(y|x)

)





.

The reason is as follows: the estimated q distribution is
inaccurate at the beginning of the training. To consider this,
α at the beginning of the training (i.e., small t) will be 0
according to the formula, which accounts less for the KL
divergence. As the training goes on and after a number of
epochs, the estimation for q gets better, the weight of the KL
divergence will rise with increasing epochs and finally reach
0.5 to keep a balance between the impacts of labeled data and
the knowledge.

D. Evaluation Metrics

We compared the results of the proposed anatomically
constrained Dense U-Net with the standard Dense U-Net
under three loss functions: cross-entropy loss, focal loss, and
multiclass logistic loss plus DICE loss. We adopted several
evaluation metrics. The first metric is per-root lesion detection
accuracy. As a periapical lesion is close to the root of a
tooth, we had our clinical collaborators identify the root on
each CBCT image. Then, for each root, if there is a lesion
in both the manual segmentation and the segmentation by
a deep learning algorithm, it is counted as a “match.” A
“match” is also counted if both the manual and the algorithm’s
segmentations agree that there is no lesion for a root. A
“miss” is counted if there is disagreement. In this way, we can
compute a confusion matrix and calculate precision and recall
that reflect lesion detection accuracy for each algorithm.
Furthermore, to evaluate the accuracy of each algorithm

in the segmentation of each label, we computed the DICE
index [49]. DICE has been widely used to evaluate pixel-level
label matching between manual segmentation (considered as
ground truth) and the segmentation by an algorithm. To com-
pute DICE for a label k (e.g., lesion), let Yk and Ŷk be the
sets of pixels on an image belong to label k by manual
segmentation and by an algorithm, respectively. Then, DICEk

is computed by

DICEk =
2
∣∣Yk

⋂
Ŷk

∣∣

|Yk | + |Ŷk |
.

TABLE I

PRECISION AND RECALL OF PER-ROOT LESION DETECTION

Fig. 2. Learning curves of lesion DICE.

E. Results and Discussion

The results of lesion detection accuracy and DICE are
shown in Tables I and II. Fig. 2 shows the learning curves.
Fig. 3 shows several examples of the segmented images.
From Tables I and II, we can observe that the proposed

anatomically constrained Dense U-Net generally improves
lesion detection accuracy and DICE indices. Specifically, from
Table I, we can observe that under all three loss functions (i.e.,
cross-entropy loss, focal loss, and multiclass logistic plus Dice
loss), the proposed anatomically constrained Dense U-Net has
significantly better precision than the data-driven Dense U-
Net. The proposed algorithm also has significantly better recall
under the cross-entropy loss. From Table II, we can conclude
that the proposed anatomically constrained Dense U-Net has
significantly better DICE for lesion, the most important label,
under all three loss functions. The proposed algorithm also
shows better DICE for other labels.
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TABLE II

DICE FOR PIXEL-LEVEL MATCHING ACCURACY

Fig. 3. CBCT images, manual segmentation, and segmentations by two
competing algorithms for (a)–(e) five example cases. White arrows on the
images of Dense U-Net (last column) point to areas where the proposed
anatomically-constrained Dense U-Net outperforms.

Fig. 2 shows the average curves over the four iterations of
the fourfold cross-validation. We compared the learning curves
of the anatomically constrained Dense U-Net and Dense U-Net

under the focal loss. The learning curves under other losses
can be generated in a similar way but skipped due to the
space limit. From Fig. 2, we can draw several observations:
First, no overfitting of the proposed algorithm is observed as
the validation curve keeps growing, and the gap between the
validation and training curves is small. Second, we can see
a clear improvement in the validation curve of the proposed
algorithm at the 50th epoch after the proposed anatomical
constraint-based regularization takes effect, compared with
Dense U-Net.
Among the example segmentation results in Fig. 3, we can

see that in Fig. 3(a), Dense U-Net cannot identify the lesion
and produce a false alarm. Some pixels around the lesion are
labeled as “background” (black in color) by Dense U-Net.
The false lesion has contact with “background,” which is
prohibited by our proposed algorithm. In Fig. 3(b), Dense
U-Net misses one lesion; also, it fails to detect a piece of
materials (green). Our algorithm performs much better in these
regards. In Fig. 3(c), the lesions are very small. Some large
false lesions are reported by Dense U-Net. The lesions are
captured by the proposed algorithm correctly. In Fig. 3(d),
Dense U-Net detects a lesion at a wrong root, while the
proposed algorithm detects only the correct lesion. In Fig. 3(e),
Dense U-Net misses the lesion at the edge of the image. Our
algorithm can detect the correct shape of the lesion and bones.

V. CONCLUSION

Dental care automation is an important area where AI or
deep learning can make a great contribution, especially in
dental practices that use radiographic imaging. CBCT is an
important imaging modality that is experiencing ever-growing
utilization in various dental fields. However, little work has
been done for developing AI or deep learning capabilities
for CBCT segmentation and lesion detection. In this article,
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we proposed a unified framework to combine oral-anatomical
knowledge into the deep learning design. We showed that
the proposed algorithm outperformed the standard Dense U-
Net in both lesion detection precision and DICE indices. Our
algorithm performed well with data from only 20 patients
included in the training.
There are several directions we would like to pursue in

future research. First, while our proposed framework has the
capability of including unlabeled images in training, we did
not explore this capability in this study. An immediate next
step is to compare the performance of the current algorithm
with an extended version of the algorithm that incorporates
unlabeled images. This will extend our algorithm into a
semisupervised learning algorithm. Second, we would like to
develop mathematical encoding to account for other types of
anatomical knowledge such as size, shape, and so on. Third,
we would like to extend the current algorithm that is based
on selected slices of each CBCT volume to a 3-D algorithm
that can take the volumes as input. Last but not least, manual
segmentation results have been used as the ground truth to train
the deep learning algorithm. There could be human errors.
Developing algorithms robust to manual segmentation errors
could be a future direction.

APPENDIX: PROOF OF PROPOSITION 1

We have the Lagrangian objective function as

L(q,λ, γ )

= KL(q(y|x)||pθ(y|x))

−Eq




P∑

j=1

∑

k∈$

λk f
(k)
j

(
y j , yNE( j)

)




+
∑

j

γ j




∑

yj

q
(
y j |x

) − 1



. (13)

For the KL divergence in the objective function, we can
separate it to two parts with one part including q j and another
part including q− j , where q− j = ∏

i &= j qi . That is, the KL
divergence can be written as

KL(q(y|x)||pθ(y|x))
= Eq

[
log q(y | x)

]
− Eq

[
log pθ (y | x)

]

= Eqj

[
log q j

(
y j | x

)]
+Eq− j

[
log q− j

(
y− j | x

)]

−Eqj

[
log pθ

(
y j | x

)]
− Eq− j

[
log pθ

(
y− j | x

)]

= KL
(
q j

(
y j |x

)
||pθ

(
y j |x

))
+KL

(
q− j

(
y− j |x

)
||pθ

(
y− j |x

))
.

(14)

For the expectation part in the objective function, we can
separate the joint expectation over the entire image into three
parts

Eq




P∑

j=1

∑

k∈$

λk f
(k)
j

(
y j , yNE( j)

)




= Eqi /∈NE( j ), j

[
∑

i

∑

k∈$

λk f
(k)
i

(
yi , yNE(i)

)
]

+Eqi∈NE2( j )

[
∑

i

∑

k∈$

λk f
(k)
i∈NE( j)

(
yi , yNE(i)

)
]

+Eqj

[

Eq− j

[
∑

k∈$

λk f
(k)
j

(
y j , yNE( j)

)
]]

. (15)

Here, NE2(i)= NE(NE(i))∪NE(i). The third term in (15) can
be further simplified as

Eq− j

[
∑

k∈$

λk f
(k)
j

(
y j , yNE( j)

)
]

=
∑

k∈$

λk g
(k)
j

(
y j

)
. (16)

In (15), the first term will be zero after taking the derivation
over q j . The second term will be

Eqi∈NE2( j )

[
∑

i

∑

k∈$

λk f
(k)
i∈NE( j)

(
yi , yNE(i)

)
]

=
∑

i

∑

k∈$

λk Eqi∈NE2( j )

[
f (k)i∈NE( j)

(
yi , yNE(i)

)]
(17)

Eqi∈NE2( j )

[
f (k)i∈NE( j)

(
yi , yNE(i)

)]

=
∑

p∈NE( j)

{
qp

(
yp &= k|x

)
+

qp
(
yp = k|x

)
× ∏

i∈NE(p) qi
(
yi &=k ′|x

)
}

∂Eqi∈NE2( j )

[
f (k)i∈NE( j)

(
yi , yNE(i)
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∂q j

=
∑

p∈NE( j)

[
qp

(
yp = k|x)×∏
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(
yi &= k ′|x

)
]

) 1. (18)

Because this second-order term will always be product of
four terms lower than one, which make it considerably lower
than one, while g j

(
y j

)
can be one in many cases. Therefore,

when updating q j , we ignore the second-order term.
Then, we can calculate partial gradient of objective function

as

∂L(q,λ, γ )
∂q j

= log q j
(
y j |x

)+1− log pθ

(
y j |x

)

−
∑

k∈$

λk g
(k)
j

(
y j

)
+γ j= 0 (19)
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(
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(
y j |x
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(
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(21)

Therefore, from (21), the normalizing constant of q
(
y j |x

)

can be obtained as

c j =exp
(
γ j+1

)
=

∑

yj

pθ

(
y j |x

)
exp

(
∑

k∈$

λk g
(k)
j

(
y j

)
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. (22)
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