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Image-based Process Monitoring via Adversarial Autoencoder with
Applications to Rolling Defect Detection
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Abstract— Image-based process monitoring has recently at-
tracted increasing attention due to the advancement of the sens-
ing technologies. However, existing process monitoring methods
fail to fully utilize the spatial information of images due to
their complex characteristics including the high-dimensionality
and complex spatial structures. Recent advancements in unsu-
pervised deep models such as generative adversarial networks
(GAN) and adversarial autoencoders (AAE) has enabled to
learn the complex spatial structures automatically. Inspired by
this advancement, we propose an anomaly detection framework
based on the AAE for unsupervised anomaly detection for
images. AAE combines the power of GAN with the variational
autoencoder, which serves as a nonlinear dimension reduction
technique. Based on this, we propose a monitoring statistic
efficiently capturing the change of the data. The performance
of the proposed AAE-based anomaly detection algorithm is
validated through a simulation study and real case study for
rolling defect detection.

Index Terms— Statistical Process Control, Profile Monitoring,
Deep Generative Models, Adversarial Autoencoder

I. INTRODUCTION AND LITERATURE REVIEW

Nowadays, image data are widely used in most man-
ufacturing processes and service systems to evaluate the
process performance and product quality due to the low
implementation cost and the rich information it provides.
Real-time image-based process monitoring and online prod-
uct inspection are among the benefits that can be gained from
this advancement.

An example would be steel rolling process inspection
where a high-speed video camera is set up to monitor the
surface of the rolling bars. The camera captures images from
the process as it unfolds. Then, certain areas of the images
are focused on, which could potentially be coming from
an out-of-control behaviour. Figure 1 shows examples these
regions-of-interest, classified as normal or anomaly in the
context of the manufacturing process. The main question we
ask is: if we only have access to data that is produced by
normal process, can we identify with a high accuracy, when
the process is out-of-control.

The challenging part of this problem is that we’re dealing
with image data. First, image data are high-dimensional,
which is susceptible to most problems related to dimension-
ality. Second, a corpus of images can have quite complex
within sample and sample-to-sample variation that is often
very hard to capture using simple models.
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(c) Anomaly 2
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Fig. 1: Normal and abnormal rolling images

Most of the literature on process monitoring techniques for
image data can be divided into the following two categories.
Both categories attack the problems we mentioned above
in different ways. Dimensionality reduction techniques find
lower dimensional manifolds where it’s easier to model
the relationships within the darta. Previous attempts include
classical linear dimensionality reduction techniques such as
principal component analysis (PCA) [17] and independent
component analysis [4]. Furthermore, some variants of the
dimension reduction techniques are developed including
functional PCA methods [9], [19], and tensor decomposition
methods [14], [8]). The major drawback of these methods
that they are constrained to learn linear manifolds which
usually doesn’t hold for image corpuses. A detailed analysis
of this problem can be found in Shi et al. [13]. Consequently,
the efforts move towards nonlinear dimensionality techniques
such as kernel PCA [13] and maximum variance unfolding
projections [12]. The referenced works focus exclusively on
Phase-I monitoring therefore how to extend the methods
to Phase-II is still an open problem. The other category
of approaches are based on functional data analysis. These
methods treat image as continuous functions and analyze
the functional features by transforming the data into certain
feature spaces for feature extraction, such as wavelet trans-
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formation [7], [20], B-spline approximation [2], and func-
tional decomposition-based techniques [15]. Finally, process
monitoring techniques focusing on monitoring the feature
coefficients or residuals [16]. These techniques typically
have very strong assumptions on the image to be applied.
For example, B-spline and kernel methods are designed
for images with smooth background and wavelet is only
designed for wave-form types of spatial structures. Both
cases cannot be applied to more complex variation patterns.
Recently, unsupervised deep learning methods such as
a generative adversarial network (GAN) [5] has been pro-
posed and demonstrated that it can generate very realistic
images. GAN-based approaches can capture the complex
spatial correlation of the images data recently, therefore
has been applied for anomaly detection in medical imaging
[11], [18], [1]. However, these methods lack the ability to
directly map the data into the feature space, which hinder
its use for an efficient and real-time procedure. Recently,
generative adversarial autoencoder (AAE) has been proposed
[6], which combines the power of GAN and the variational
autoencoder to ensure that the encoded features follow the
normal distribution and the features can be directly computed
by encoders. In this paper, we will propose how to use AAE
methods for efficient and real-time process monitoring.

II. METHODOLOGY DEVELOPMENT

Before we dive into the proposed methodology for pro-
cess monitoring, we would like to first briefly review the
generative adversarial network (GAN), generative adversarial
autoencoder (AAE), and how it can be used for efficient
anomaly detection and process monitoring.

A. Review of Generative Adversarial Network

Generative adversarial networks (GAN) [5] has recently
gained much attention due to its ability to learn the complex
high-dimensional distribution by jointly train a generator G
and discriminator D in a zero-sum game. The discriminator
D(x) is normally a trained neural network that computes
the probability that a point x is from the generator G(z) or
the set of real samples. The generator uses a function G(z),
which is typically another neural network, to generate the
samples from the prior p(z) (i.e. usually a multivariate nor-
mal distribution with identity covariance matrix) to generate
the data. The goal is to maximally confuse the discriminator
D(z) so that it cannot tell the differences between whether
the data is generated from the generator G(z) or from the
real samples. In this case, the generator G(z) is identical to
the real data distribution p(z).

The following minimax problem function is used to train
D and G simultaneously [5].

m(}n mg,x E:cwpd(.t) [log D(l)] + Ezwp(z) [log(l - D(G(Z))]

(1
Typically, the training of GAN happens in two stages: (a)
train the discriminator D to distinguish the true samples
and the fake samples. (b) train the generator GG to fool the
discriminator.

However, the major limitation of GAN is that it lacks an
efficient encoder to match the original data back to its fea-
ture. We will discuss how generative adversarial autoencoder
(AAE) is able to solve this problem and how it can be used
for anomaly detection in the next subsection.

B. Adversarial Autoencoder and its Application to Anomaly
Detection

1) Adversarial Autoencoder: In the Phase I analysis, we
can collect a large number of in-control (or normal) samples
to learn the complex high-dimension distributions, where
generative adversarial autoencoder can be used.

Here, we will still use x to represent the high-dimensional
data to be monitored (e.g. signals, images, functional data
from different sensors) and z to be the low-dimensional fea-
tures. AAE is designed by introducing another autoencoder
function ¢(z|x) by taking the input data x to compute the
latent code z. The goal of AAE is to match the aggregated
posterior distribution ¢(z) = [ q(z|z)ps(x)dz to a certain
prior distribution p(z), where pg(z) is the data distribution.
This can also act like a regularization so that the method
would not over-fit. In order to do so, an adversarial network
is trained to guide the ¢(z) to match the p(z) which is the
same as how the adversarial training in GAN is used to match
the generated data distribution to the sample data distribution.

In the original papers, the authors propose three different
types of encoders for g(z|x). In this paper, we will just use
the deterministic posterior where the ¢(z|x) is assumed to
be a deterministic function of = since we have not found
clear differences in terms of performance in other types of
encoders.

Furthermore, in the AAE method, adversarial training is
used to ensure the encoded features can match the Gaussian
prior distribution by introducing the discriminator.

mcén mcgn lrecon + mcgn mgx ladversarial (2)

Finally, the loss function consists of two components: i)
The reconstruction error: The cost function of the reconstruc-
tion error is l,..on. Here, the reconstruction error l,.ccoy, 1S
defined as

Lrecon = prd(l)l(va(Q(Z‘l)) 3)

It’s worth noting that the data likelihood is derived from
the distribution of the data. ii) The discrimination error:
The discriminative error is designed based on the adversarial
training, which leads to the loss function l,4yersariqr Similar
to (1) to match the p(z) and q(z) = [ q(z|x)pa(x)dz. Here
the adversarial 10SS l,gversariar 18 defined as:

ladversarial = EZNp(z) [1Og D(Z)]
+Ex~pd(m)Ez~Q(z|z) [log(l - D(’Z))]

The adversarial 108S l,gpersaria; 1S to ensure that the
latent code would match the aggregated posterior distribution
and prior distribution p(z). After the generator G' and the
discriminator D are trained, we would like to discuss the
way to monitor the data in the next subsection.

“4)
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2) Phase I and Phase Il Analysis: We propose to use
the reconstruction error lyccon(z) = I(x, G(Q(z|z)) as the
monitoring statistics. Here, [(x, G(Q(z|z)) is the likelihood
function, which depends on the probability distribution of
the original data x. For example, if the data is Gaussian
distributed, we can use the sum of squared error between the
input image and the reconstruction image ||z —G(Q(z|x))]|?.
If the data is Bernoulli distributed, the cross entropy loss
can be used, which is defined as ||z log(G(Q(z|x))) + (1 —
2)log(1 - G(Q(z]))) .

In the phase I analysis, we would like to sample a set of
validation data set which belongs to the normal (in-control)
samples but not in the training data set to estimate the
distribution of the I;.ccon(2) and the control limit ¢g. If the
number of the normal samples is large, using the quantile
is normally good enough of one validation data set is often
good enough. However, if the number of the normal samples
is limited, we can also use the cross-validation to compute
the quantile of multiple validation data set as the control limit
co. Finally, cq is often selected such that the type I error is
as a certain number. In this paper, we will set up the control
limit ¢y based on the 5% false positive rate. Finally, in the
Phase II analysis, we propose to use the l,ccon(2) > ¢o to
detect the anomalies.

III. SIMULATION STUDY

A. Simulation Setup

In this section, we generate 32x 32 2D images containing a
circle with different locations and shapes for normal samples
from the following formula:

y=/1—((z1 — z10)/a)? — ((x2 — 220)/b)?,

where T10,T20 ™~ N(0.5,0.052) , a, b ~ N(O.Q, 0.052)
denote pixel locations on an image.

To validate the Phase II process monitoring performance,
we generate four types of abnormal data for performance
evaluation by the following formula:

e Mean Shift:

y=0++/1—((x1 — z10)/a)® — (22 — x20)/b)?,

« Magnitude Change:

y=(1+8)V1—((w1 —10)/a)® — (w2 — x20)/b)?,
« Width Change:

y =1 ((z1 - 210)/(a +9))? = (w2 — 720)/)?,
« Location Change:

y =1 (21 —110)/a)? = ((x2 — 20)/ (b +9))2.

Here § represent the change magnitude, 19, 229 denote
pixel locations on an image, and a,b denote the widths of
the circle. Examples of these generated normal images and
abnormal images (6 = 0.3) are shown in Figure 2.

Normal Magnitude

Width Location

Fig. 2: Normal and abnormal images with § = 0.3 (The
change magnitude is enlarged to show a more clear change
pattern)

B. Results

For the proposed AAE anomaly detection method, we
proposed to use the latest DCGAN architectures [10] for the
encoder and decoder, which combined a set of convolutional
layers, batch normalization, and ReLU activation. We will
compare the different latent dimensions such as 6 and 10
for the AAE method. Furthermore, in order to balance
the generator and discriminator, the generator learning rate
is set to 0.002 whereas the discriminator learning rate is
0.0002. Both use Adam optimizer for the best result. For
the benchmark methods, we propose to compare with the
widely used PCA-based methods with different principal
components (PCs). For AAE, we will use the reconstruction
error as the monitoring statistics. For PCA methods, we
propose to combine the Q-chart and T2 chart for better
performance [3]. Furthermore, to identify the anomaly, we
would like to use the 5% false positive rate for all methods.

For the evaluation, we propose to use the detection power
of Phase II analysis, defined as the percentage of samples that
are correctly detected as anomalies by the algorithms over the
number of anomalous samples. Finally, the detection power
of AAE and PCA with different encoding dimensions and PC
dimensions are shown in Table I, respectively. From Table
I, we can conclude that AAE is more powerful than PCA
in all cases that we tested. For examples, in the non-linear
change such as width and location change, AAE has a very
clear advantage over PCA since PCA is not able to represent
these non-linear change patterns. In the linear change such
as mean-shift, AAE still has some advantage over PCA. We
can also conclude that simply adding the number of PCs
only helps on the linear change patterns such as mean shift,
but doesn’t help too much on the complex nonlinear change
patterns such as the width change and location change.

Furthermore, adding the number of PCs from 50 to 200
may also reduce the performance of PCA methods on the
Width change (i.e. decrease from 18.78 to 18.35). However,
AAE is much more robust to the selection of the latent
dimensions. For example, the performance of AAE with 6
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Fig. 3: A 2D Slice of Learned Manifold in the AAE model

or 10 latent dimensions are similar, and AAE with 6 latent
dimensions works slightly better.

Furthermore, we also plot the detection power with differ-
ent change magnitudes § in Figure 4. From Figure 4, we
can observe that PCA is sensitive to the number of PCs
chosen. Magnitude change is challenging to both models
since it doesn’t change the shape of the original images. We
found PCA can hardly detect the change even when § = 0.3
whereas, AAE is able to reach about 100% accuracy. For the
nonlinear changes such location change and width change,
using AAE with 6 dimensions outperforms PCA with even
up to 200 dimensions.

To understand how AAE detect the change, we would like
to plot the real and reconstructed images in Figure 5. From
this figure, we can conclude that AAE is able to generate
accurate reconstruction images for the normal samples in
Figure 5 (a). PCA with 10 PCs (i.e. PCA 10) cannot get
the clear reconstruction of the original images. Furthermore,
PCA with 200 PCs (i.e. PCA 200) can reconstruct the
original images, but it generates a much noisy result. For
the mean shift in Figure 5 (b), AAE is able to recover
the darker circle and background. The reconstructed images
of PCA with 10 and 200 PCs is largely affected by the
background mean shift. For the magnitude change in Figure
5 (c), the AAE generates much darker reconstruction images
than PCA, which shows that AAE actually learned the right
magnitude for the normal samples, compared to the PCA
methods. Finally, for width change and location change, the
AAE reconstructed images are not affected by the out-of-
control samples, which make the reconstruction error a great
monitoring statistics. However, PCA with 10 PCs generates
very blurry images and PCA with 200 PCs tend to reconstruct
the original images, which makes the Q-chart (i.e. control
chard designed based on residual) not as effective.

Finally, to understand how AAE represent the complex
nonlinear variational patterns, we also plot the 2D manifold
reconstructed from the 2D Ilattice from a slice of 6-D latent
space z in Figure 3. It is clear that the AAE actually learns a
very smooth manifold and the upper-left corner has a much
larger circle than the other corners. This demonstrates the
smoothness of the generated samples from the latent feature

Methods PCA AAE
Dimension 6 [ 10 [ 50 [ 200 6 [ 10
Mean 18.30 | 22.54 | 9690 | 97.66 | 100.0 | 100.0
Magnitude | 37.07 | 34.85 | 32.77 | 32.31 | 97.97 | 97.47
Width 19.54 | 19.75 18.78 18.53 | 96.44 | 90.98
Location 19.72 | 19.95 19.51 19.77 | 96.58 | 91.31

TABLE I: Mean Shift Accuracy (%) Under § = 0.06

Detection Power

L ot
e

015 020 025 030 000 005 010 015
Delta Delta

(c) Width Shift (d) Location Shift
Fig. 4: Sensitivity Analysis of PCA and AAE

IV. CASE STUDY

In this section, we will use real images from the quality
inspection in the rolling manufacturing to illustrate the per-
formance of the proposed AAE anomaly detection procedure.
The dataset is made of metal rolling inspection images that
are potentially defect. The domain engineers have labeled the
images as normal or abnormal samples. Training data is made
of 879 normal images and 294 abnormal images in 3 different
types of abnormal conditions: Anomaly 1, Anomaly 2, and
Anomaly 3. The regular images feature vertical texture or
some minor overfills with black or white lines. The examples
of normal images, Anomaly I, Anomaly 2, and Anomaly 3
are shown in Figure 6 (a), (e), (i), (m), respectively.

We will compare AAE with PCA on the detection power
(percentage of detected samples) with a fixed 5% false posi-
tive rate. We will use the same architecture and optimizer for
the case study. We will use 6 or 10 latent space dimensions
for the AAE method. For PCA, we will investigate to use
2,10, 50,200 PCs for anomaly detection.

As shown in table II, PCA with 2 PCs works the best for
Anomaly 1. The reason is that the change of Anomaly 1 is
quite obvious and the shape looks completely different than
the normal vertical texture and can be fully detected via PCA
with 6 PCs and AAE with 6 latent dimensions. However, for
Anomaly 2 and Anomaly 3, both are much harder to detect
since the anomaly patterns also feature vertical textures. For
AAE, in Anomaly 2 and 3, increasing the latent dimension
to 10 will increase the detection accuracy to 100%. This
is because AAE put the adversarial regularization so it can
control the model complexity. However, for Anomaly 2, PCA
with 50 PCs is optimal and achieves detection accuracy
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Original Original

e

PCA (10)

PCA (200)

PCA (200)

(b) Mean Shift
Original

(a) Normal Images
Original

AAE AAE

PCA (10) PCA (10)

PCA (200) PCA (200)

(c) Magnitude Change (d) Width Change
Original

AAE

PCA (10)

PCA (200)

(e) Location Change

Fig. 5: Original and reconstructed images for AAE and PCA
with encoding dimensions 10 and 200

TABLE II: Detection Power (%)

Methods PCA AAE

Dim 2 6 50 200 2 6 10
Change 1 97.76 100.0 99.25 99.25 94.02 100 100
Change 2 34.72 43.05 59.72 47.22 54.16 86.11 100
Change 3 41.57 20.22 20.22 23.59 51.68 78.65 100

(a) Normal (b) AAE (d) PCA(200)
_ —

(g) PCA(6)  (h) PCA(200)

(k) PCA(6)

(i) AAE

(1) PCA(200)
Ml

(m) Normal (o) PCA(6)

(n) AAE (p) PCA(200)

Fig. 6: Normal and Anomaly images, PCA reconstructed
images (with 6 and 200 PCs), and AAE reconstructed images
(with 10 latent dimension)

around 60%. For Anomaly 3, PCA with 2 PCs works the best.
Further increasing the number of PCs decreases the detection
power. This shows that simply increasing the number of PCs
may lead to over-fitting problems.

Finally, we also plot the normal images, anomaly images,
AAE-reconstructed images, and PCA reconstructed images
with 6 PCs (i.e. PCA 6) and 200 PCs (i.e. PCA 200) in
Figure 6. From Figure 6, we can conclude that AAE can
reconstruct very realistic images with texture details. PCA
with 6 PCs tends to create blurry images without enough
details. On the other hand, PCA with 200 PCs will overfit
and generate exactly the original images.

Finally, we also plot the AAE learned manifold in Figure7.
This figure is generated in a 2D lattice slice of a 10-D latent
space z by the decoder ¢(z|z). This map shows that AAE
actually learns a smooth manifold of all the rolling images.

V. CONCLUSION

Image-based process monitoring and anomaly detection
often deal with complex nonlinear spatial correlation struc-
tures. In this paper, we propose a nonlinear anomaly detec-
tion algorithm based on generative adversarial autoencoder.
The proposed method has shown a largely improved accuracy
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T

Fig. 7: Learned 2D Manifold

over the traditional linear process monitoring method such
as PCA. A simulation study and a real case study from
rolling manufacturing have been added to the original paper
to demonstrate the advantage of the proposed AAE-based
anomaly detection methods.
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