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ABSTRACT
Multivariate functional data from a complex system are naturally high-dimensional and have a complex
cross-correlation structure. The complexity of data structure can be observed as that (1) some functions
are strongly correlated with similar features, while some others may have almost no cross-correlations with
quite diverse features; and (2) the cross-correlation structure may also change over time due to the system
evolution. With this regard, this article presents a dynamic subspace learning method for multivariate
functional datamodeling. In particular, we consider that different functions come fromdifferent subspaces,
and only functions of the same subspace have cross-correlations with each other. The subspaces can be
automatically formulated and learned by reformatting the problem as a sparse regression. By allowing but
regularizing the regression change over time, we can describe the cross-correlation dynamics. The model
can be efficiently estimated by the fast iterative shrinkage-thresholding algorithm, and the features of
each subspace can be extracted using the smooth multi-channel functional principal component analysis.
Some theoretical properties of the model are presented. Numerical studies, together with case studies,
demonstrate the efficiency and applicability of the proposed methodology.
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1. Introduction

1.1. Background

Multivariate functional data, which arise from a collection of
simultaneous recordings of several time courses for many sub-
jects or units, are increasingly common and important in var-
ious applications. One concrete motivating example we intro-
duce here is human gesture tracking (Gabel et al. 2016). In
particular, the movements of a human subject are tracked by
capturing real-time positions of 18 body joints using a Kinect
pose estimation pipeline. Its data acquisition rate is 30 Hz with
2 cm accuracy in joint positions. Every joint is recorded as
a point in a three-dimensional Cartesian coordinate system.
Treating every coordinate of every joint as one function, we
totally have 18 × 3 functions. The subject is instructed to
conduct two gestures “bow up” and “throw” sequentially within
total 248 frames captured. Figure 1 shows eight selected frames
during these two gestures. The values of these 54 functions
observed at these 248 time points are also shown in Figure
A.4 in the supplementary materials. Clearly, some functions
share very similar features (such as Functions 18, 21, and 24 in
Figure 2(a)), indicating that they are strongly correlated. This
is because these joints move in similar ways, such as the six
joints on the two arms. In contrast, some other functions have
quite diverse features with each other (such as Functions 33, 51,
and 45 in Figure 2(b)), indicating that they are not correlated
with each other. This is because these joints move in different
ways, such as one joint on the arm and another joint on the
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leg. With this regard, we may infer that these functions can be
naturally clustered into different groups. Equivalently, we can
say that these functions lie in different subspaces. Another thing
to be noted is that their cross-correlation structure changes
over time. For example, Functions 33 and 21 only share similar
patterns in the first 110 time points. Then their cross-correlation
disappears. On the contrary, Functions 51 and 21 have quite
diverse patterns in the first 110 time points, but then they begin
to move similarly in the subsequent 138 time points. This is
because the first 110 time points are from the “bow up” gesture,
while the last 138 points are from the “throw” gesture. Because
for different gestures, the joints are required to cooperate and
move in different ways, their cross-correlation structure would
change.

In addition to the example shown above, multivariate func-
tional data exist in many other applications. For example,
in traffic monitoring, many traffic variables such as vehicle
speed, flow rate, occupancy, etc., are continuously recorded
for anomaly detection. In semiconductor manufacturing sys-
tems, hundreds of sensors are installed in a chamber to
real-time monitor different process variables (e.g., tempera-
ture, pressure, electronic flows, etc.). In electroencephalogra-
phy tests, multiple electrodes are placed at different places
to record the brain activity over a certain time period for
epilepsy signal detection. Therefore, there is a pressing need
to model and analyze those multivariate functional data with
consideration of their complex cross-correlation structure and
dynamics.

© 2020 American Statistical Association and the American Society for Quality
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Figure 1. Snapshots of the joints at time point (a) t25, (b) t50, (c) t75, (d) t100, (e) t125, (f ) t150, (g) t175, (h) t200. Specifically, the first four time points (a)–(d) belong to the
first gesture “bow up,”and the second four time points (e)–(h) belong to the second gesture “throw.”

Figure 2. (a) Functions 18, 21, and 24, with the corresponding joints (denoted in red); (b) Functions 33, 51, and 45 with the corresponding joints (denoted in red).

1.2. Literature Review

We first review the current methodologies on the correlation
analysis of multivariate functional data. In the literature, there
are pioneer works focusing on bivariate functional data model-
ing, by developingmeasures to quantify their cross-correlations,
such as the canonical correlation analysis (Leurgans, Moy-
eed, and Silverman 1993), the dynamical correlation analysis
(Dubin and Müller 2005), and the functional singular value
decomposition (Yang, Müller, and Stadtmüller 2011). As to
multivariate functional data analysis (i.e., for more than two
functions), for linear cross-correlations, Pan and Yao (2008)
proposed a dynamic factor model to extract common factors
from multiple functional data. Di et al. (2009), Chiou, Chen,
and Yang (2014), and Paynabar, Zou, and Qiu (2016) intro-
duced several multi-channel functional principal component
analyses (MFPCA) methods to describe the within-function
and between-function correlations. Chiou and Müller (2016)
proposed a pairwise interaction model based on the cross-
covariance surfaces between functions. For nonlinear cross-
correlations, Chiou and Müller (2014) used a functional mani-
fold model to regularize the functional features and character-
ize the cross-correlations. Besides dimension reduction tech-
niques, other works include adapting the traditional paramet-
ric random-effects models (Fieuws and Verbeke 2006), and
the nonparametric kernel smoothing approach for individual
function modeling (Xiang, Qiu, and Pu 2013). However, one
common limitation of all the aforementioned methods is that
they assumemultivariate functions are strongly correlated since
each function is assumed to be a linear combination of all
the extracted features. This assumption leads these methods
to fail to recover correct functional features and fail to model

the multivariate functions accurately when they have diverse
features with sparse cross-correlations, that is, come from dif-
ferent clusters.

To deal with the sparse cross-correlations, illustrated by
sparse coding, Zhang et al. (2018b) proposed a sparse MFPCA
which constrained the scores of functional PCA to be sparse, to
restrict the unrelated basis functions to have zero weights. Con-
sequently, different functions have nonzero weights on various
bases, and can be weakly cross-correlated. Because it assumes
the bases should be orthogonal with each other, this method
may lose efficacy when the function space becomes complex,
and the total number of basis functions increases. As a more
intuitive way to deal with sparse cross-correlations, Zhang et
al. (2018a) proposed to first cluster different functions by for-
mulating the distance matrix directly using the correlations of
different functions, and then used MFPCA of Paynabar, Zou,
and Qiu (2016) for dictionary learning. However, since the
correlation matrix is calculated by treating different time points
as independent samples, the clustering resultmay bemisleading,
and consequently, the extracted principal components cannot
guarantee accuracy. Furthermore, all the aforementionedmeth-
ods cannot tackle functions with dynamic cross-correlations.

As a more powerful tool to describe conditional dependence
structures between different random variables, recently graph-
ical models are proposed for multivariate functional data anal-
ysis. In particular, Qiao, Guo, and James (2019) extended the
graphical lasso (Yuan and Lin 2007) to multivariate functional
data by constructing a penalized log-Gaussian likelihood on
the functional PCA scores. Zhu, Strawn, and Dunson (2016)
proposed a Bayesian framework by first implementing the func-
tional PCA and then applying the Markov distributions and
hyper Markov laws on the extracted PCA scores for graph
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decomposition. Li and Solea (2018) proposed a nonparametric
graphical model based on the additive conditional dependence.

Considering that functional data in most real applications
are sampled over a grid of time points, one possible approach
to handle dynamic cross-correlations is to construct separate
graphs for every time point and regularize these graphs to
be temporally consistent. Specifically, Kolar and Xing (2012)
proposed to use a group lasso with l2 penalty to regularize the
change of graphs. Zhou, Lafferty, and Wasserman (2010) and
Kolar andXing (2011) proposed to construct the dynamic graph
using a nonparametric kernel smoothing approach on the pre-
cision matrix. Qiao, Qian, and James (2020) further proposed
a class of doubly functional graphical models by capturing the
smooth evolution of the correlation matrix as another function.
However, the methods usually give too much flexibility on the
graphdynamics, by either causing the entire graph to restructure
at specific time points or leading to more estimated change
points than actual existence. Their model estimations for every
time point with kernel smoothing also require extremely heavy
computation, and hence hinder their application in cases with
large sample size or high dimensions. Furthermore, because
they typically assume that every variable (dimension) follows a
Gaussian distribution (or Gaussian process), they have limited
description power for general functional data. Last, dynamic
graphical models mainly target at modeling and visualizing the
dependence structure of different variables instead of modeling
data for representation. Consequently, their performances for
node representation are limited.

Motivated by the broad applications of multivariate or even
high-dimensional functional data with sparse and dynamic
cross-correlations, and the infancy of reasonable models to
describe them, this article further explores this field. Consid-
ering that functional data o%en exist strong within-function
correlations (or autocorrelations), all the functions actually lie
in a low-dimensional subspace instead of being uniformly dis-
tributed across the ambient space. As such, recovering low-
dimensional subspace in the functional data helps not only
reduce the computational cost and memory requirements of
algorithms, but also reduce the effect of the noise in the high-
dimensional space. As to multivariate or high-dimensional
functional data, they may lie in different low-dimensional sub-
spaces.

As such, in this article, we propose a dynamic func-
tional subspace-based framework for functional data modeling.
Related to the subspace structure, our core idea is that different
functions belong to different subspaces. Functions from the
same subspace have strong cross-correlations with each other,
while functions from different subspaces have weak or no cross-
correlations. In this way, we can describe the complex cross-
correlation structure of multivariate or high-dimensional func-
tional data. Related to the dynamic structure, we assume that the
subspace structure can change over time, and hence can capture
the dynamics of the cross-correlations in real applications. In
particular, we model the dynamic subspace structure by the so-
called self-representation matrix. Based on it, we detect both
change points of subspaces and the subspace structures simul-
taneously. We would like to further learn the structure of each
subspace in each time segment, that is, the basis functions, by
a smooth functional PCA. Finally, the function data in each

subspace can be represented by the corresponding bases. To
our best knowledge, our method is the first that can model
multivariate functions with both dynamic and sparse cross-
correlation structures. In contrast, other existing methods of
functional data modeling cannot be extended to this scenario
trivially. Furthermore, our method is also the first to extend
sparse subspace learning to dynamic cases for jointly spatiotem-
poral segmentation.

The remainder of the article is organized as follows. Section 2
introduces our proposed dynamic functional subspacemodel in
detail. Section 3 discusses the model inference procedure. Sec-
tion 4 talks about subspace segmentation and basis learning in
detail. Section 5 uses some numerical studies to demonstrate the
advantages of the proposed model by comparing it with some
other state-of-the-art methods. Section 6 applies the developed
methods into two real-data examples fromhuman gesture track-
ing experiments and manufacturing systems. Finally, Section 7
concludes this article with remarks. Some additional figures,
tables, numerical studies, and technical details are provided in
the supplementary materials.

2. Dynamic Functional Subspace Learning

We first review the work on the static sparse subspace learning
and provide a straightforward extension to model sparse cross-
correlations of multivariate functions in Section 2.1. We then
extend this framework to the dynamic correlation structurewith
the proposed dynamic functional subspace learning (DFSL) via
the fused lasso penalty in Section 2.2. Finally, we study the
theoretical properties of the proposed DFSL in Section 2.3.

2.1. ModelingMultivariate Functions via Static Functional
Subspace Learning (SFSL)

ConsiderN p-dimensional (e.g., p channels) functional samples
with the ith sample defined as Yi(t) =

[
Yi1(t), . . . ,Yip(t)

]
, i =

1, . . . ,N, where t is on a compact interval T = [0,T], such that∫
T E

[
Yij(t)2

]
dt < ∞ for j = 1, . . . , p. In particular, we assume

Yij(t) = Xij(t)+ εij(t), (1)

where Xij(t) is the signal function and εij(t)(j = 1, . . . , p)
are independent noise functions with mean E(εij(t)) = 0
and homoscedastic variance var[εij(t)] = E[εij(t)2] = σ 2

0 .
We assume that the noise-to-signal ratio can be bounded as
σ 2 =

∫
T E[εij(t)2]dt/

∫
T Xij(t)2dt. The noise can also have

nonzero autocorrelation #j(t, s) = E
[
εij(t), εij(s)

]
/σ 2

0 . Fur-
thermore, we assume that these p signal functions Xi(t) =[
Xi1(t), . . . ,Xip(t)

]
can be partitioned into L different sub-

spaces, Sl(l = 1, . . . , L). The functions in the same subspace
have strong cross-correlations, while the functions in different
subspaces have no cross-correlations. Here, we will modify the
basic assumptions of the traditional sparse subspace learning
(Wang and Xu 2016) to model multiple multivariate functional
samples as follows:

Assumption 1 ((A1) Subspace assumption). Each subspace Sl
is defined as the set of all functions that can be repre-
sented by the linear combination of dl basis functions !l =
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[φl1(t), . . . ,φldl(t)], that is,

Sl !




X(t)|X(t) =
dl∑

q=1
αqφlq(t),αq ∈ R




 . (2)

In this article, we consider orthogonal basis functions, that is,∫
T φlq(t)φlm(t)dt = 0, for all q,m = 1, . . . , dl, q $= m.

In particular, we assume that the subspace affiliation of X·j(t)
is fixed for all samples, that is, the subspacemembership ofXij(t)
is the same for all i = 1, . . . ,N. However, their basis coefficients
αij = [αij1, . . . ,αijdl ] can be different for different samples, that
is, sampled at random from the unit sphere inRdl×1 for different
samples. In addition, denote that Xl = {X·j(t)|X·j(t) ∈ Sl, j =
1, . . . , p} with the cardinality pl. We have

∑L
l=1 pl = p.

Assumption 2 ((A2) Self-expressive assumption). If there are
sufficient functions from each subspace, which means (1) pl >
dl for l = 1, . . . , L, and (2) for these pl functions, no dl functions
are spanned on the same dl−1 basis functions, thenXij(t) is self-
expressive, which means for every Xij(t) ∈ Xl, we have

Xij(t) =
∑

Xir(t)∈Xl ,r $=j
bjrXir(t). (3)

This means that ifXij(t) is a function inXl, it can be represented
as a linear combination of the other pl −1 functions in the same
subspace. It should be noted that the above equation is a general
formula, and it does notmean that all bjr from the same subspace
as Xij(t) should always have nonzero values.

With this assumption, Xij(t) can be recovered as a sparse
solution of the multilinear regression equation Xij(t) = Xi(t)bj,
with the regression coefficients bj ∈ Rp×1 that have bjr $= 0
only for {r|Xir(t) ∈ Xl, r $= j}, and bjr = 0 otherwise. Notably,
for a system with equations such as (3), bj may have infinite
number of solutions. Similar to the sparse subspace learning,
we can obtain the optimal solution by minimizing the objective
function with the lq-norm of the solution, that is,

min||bj||q, (4)
subject to Xij(t) = Xi(t)bj, bjj = 0.

Different choices of q have different effects on the obtained solu-
tion. Typically, by decreasing the value of q frompositive infinity
toward zero, the sparsity of the solution increases. The extreme
case of q = 0 corresponds to the general NP-hard problem
of finding the sparsest representation of the given functions.
Because we are interested in efficiently finding the nontrivial
sparse representation of Xij(t) in the dictionary Xi(t), we con-
sider minimizing the tightest convex relaxation of the l0-norm,
that is, the l1-norm, which can be solved efficiently using convex
programming tools. To handle noisy Yij(t), a natural extension
is to relax the equality constraint in (4) and solve the following
unconstrained minimization problem instead (Elhamifar and
Vidal 2013; Wang and Xu 2016) as

min
bj

λ||bj||1 +
1
2

N∑

i=1
||Zij||2#j , (5)

subject to Zij(t) = Yij(t) − Yi(t)bj, bjj = 0,

for j = 1, . . . , p. Following Berrendero, Bueno-Larraz, and
Cuevas (2020), here || · ||2#j

is defined as

||Zij||2#j =
∞∑

l=1

∫
T Zij(t)el(t)dt

λl
, (6)

where {el, λl}l=1,...,∞ are the eigenfunctions and the correspond-
ing eigenvalues of #j(t, s). When Yi(t) are densely sampled at
an equally spaced grid, according to Theorem 10 of Wang and
Xu (2016), if λ is well tuned, with a very high probability, the
solution of (5) will only have nonzero values for functions from
the same subspace as Yij(t). This indicates that solving (5) can
recover the true subspaces. More details about this property can
be found in the supplementary materials. Herea%er we denote
the learning system with (5) as the static functional subspace
learning (SFSL).

It should be noted that only when Zij is in the RKHS space
of #j, which is defined asH(#j) = {

∫
T |x(t)|2dt < ∞ : x(t) =∑∞

l=1 al
√

λlel(t), for
∑∞

l=1 a2l ≤ ∞}, (6) has bounded value.
Otherwise, when Zij /∈ H(#j), (6) goes to infinity, and the
problems would be ill-defined and we need to follow the refined
Mahalanobis functional distance in Berrendero, Bueno-Larraz,
and Cuevas (2020) instead of (6) as

||Zij||2a+#j =
∞∑

l=1

λl
(λl + a)2

∫

T
Zij(t)el(t)dt, (7)

where a is a small positive value. Actually, (7) is the l2 norm of
Zij(t) in the RKHS space expanded by #j + aI, which is always
invertible (Gohberg and Goldberg 2013, Theorem 8.1, p. 183).

With the obtained bj, j = 1, . . . , p by the static model in
(5), define the stacked estimated matrix B =

[
b1, . . . , bp

]
∈

Rp×p. It can be regarded as a representation of the cross-
correlation structure of the p-dimensional functions. Actually,
when Yij(t), t ∈ [0,T], degenerates to a scalar, if Yij(t) follows a
Gaussian distribution, B = [b1, . . . , bp] is an approximate esti-
mation of the sparse inverse covariance matrix (concentration
matrix) in graphical lasso (Yuan and Lin 2007, Lemma 4). It is
only an approximation solution since B does not incorporate
the symmetry and positive definiteness constraint, so an addi-
tional step is needed to transfer B to the exact graphical lasso
solution. Yet this approximation is proved to be very computa-
tionally attractive for estimating graphical lasso in sparse high-
dimensional graphs (Meinshausen and Bühlmann 2006).

2.2. Dynamic CorrelationModeling via Fused Lasso

In this subsection, we consider that the cross-correlations
between different functions can change over time t, which is
very common in reality. For many systems (as the example in
Section 1), their cross-correlation structure generally remains
constant for a certain time period, and then changes to another
constant state when the system undergoes some typically exter-
nal disturbance. In another word, the cross-correlations only
have stepwise changes at certain time points. Assume there are
totally S−1 change points inside T with S time segments T s(s =
1, . . . , S). For every time segment, we have

Ys
ij(t) = Xs

ij(t)+ εij(t), t ∈ T s, (8)
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where Xs
ij(t) is a function in the subspace Ss

l (l = 1, . . . , Ls).
For different segments s = 1, . . . , S, the subspace that the
jth function belongs to can change (but is consistent for all
the samples). The subspace number Ls and structures Ss

l (l =
1, . . . , Ls) can also be different, with the corresponding X s

l =
{Xs

ij|Xs
ij ∈ Ss

l , j = 1, . . . , p} and cardinality psl . The distribution
of εij(t) is consistent for all the time segments, without changes.
In reality, the change points and changed subspace structures are
usually unknown. To describe this dynamic system of (8) using
a similar way as SFSL, bjr(j, r = 1, . . . , p) should be dynamic
over time, as bj(t) =

[
bj1(t), . . . , bjp(t)

]′ for t ∈ T . Then
B(t) =

[
b1(t), . . . , bp(t)

]
, t ∈ T would eventually capture the

dynamic cross-correlations. However, this naive relaxation gives
too much flexibility on the change of bj, which could lead to
the severe overfitting. With this in mind, to better regularize
the dynamics, we consider penalizing the change of bj(t), that
is, dbj(t)/dt, to encourage its local constancy by borrowing the
idea from the fused lasso (Tibshirani et al. 2005). In particular,
we get bj(t) as the solution of the following problem, that is,

min
bj(t)

λ1

∫

T
||dbj(t)/dt||1dt

+ λ2

∫

T
||bj(t)||1dt +

1
2

N∑

i=1
||Zij||2#j , (9)

subject to Zij(t) = Yij(t) − Yi(t)bj(t), bjj(t) = 0, t ∈ T ,

for j = 1, . . . , p, separately. In (9), the second term encourages
sparsity in the regression coefficients with the tuning parameter
λ2. The first term encourages sparsity in their differences, that
is, the flatness of the coefficient functions bj(t), with the tuning
parameter λ1.

As introduced earlier, in practice, Yi(t) are densely recorded
at a grid of discrete points. In this article, we assume that the
grid points are dense and equally spaced at n points, that is,
t1 < · · · < tn and tj−tj−1 = tj+1−tj for all j, and the grid points
are the same for all the samples. The time segment points are
denoted as tτs(s = 1, . . . , S − 1). Then we have Yi,Xi ∈ Rn×p.
We further denote the kth row of Yi ∈ Rn×p as Yi(tk) ∈ R1×p,
with Yi(tk) = [Yi1(tk), . . . ,Yip(tk)]′, and the jth column of Yi
as Yij ∈ Rn×1 with Yij = [Yij(t1), . . . ,Yij(tn)]. Similarly, we
set the kth row of Xi ∈ Rn×p as Xi(tk) and the jth column of
Xi as Xij ∈ Rn×1. In this article, we consider the normalized
model with ||Xij||2 = 1. With the noise-to-signal assumption,
we have εij ∈ Rn×1 with E[εij(t)] = 0, var [εij(t)] = σ 2/n
and E[εijε′

ij]/ var[εij(t)] = $j. Then (9) can be reformulated in
terms of bj(tk) for k = 1, . . . , n as

min
bj(tk),k=1,...,n

λ1

n∑

k=2
||bj(tk) − bj(tk−1)||1 (10)

+ λ2

n∑

k=1
||bj(tk)||1 +

1
2

N∑

i=1
Z′
ij$

−1
j Zij,

subject to Zij(tk) = Yij(tk) − Yi(tk)bj(tk),
bjj(tk) = 0, for k = 1, . . . , n.

Herea%er, we name the learning system with (10) as DFSL.
Based on (10), we can estimate the change points for function

Yij(t) as those {τ̂s, s = 1, . . . , Ŝ − 1|bjr(tτ̂s) − bjr(tτ̂s−1) $=
0, for any r = 1, . . . , p} where Ŝ− 1 is the number of estimated
change points (Ŝ is the number of estimated time segments).

2.3. Theoretical Properties

Now we detail the assumptions of the proposed DFSL, under
which its theoretical properties can be better established. In
particular, it is assumed that there are S − 1 cross-correlation
change points 1 < τ1 < · · · < τS−1 < n in the n-length
functional data with τ0 = 1 and τS = n + 1. For every time
segment T s = [τs−1, τs), the true constant cross-correlations
can be represented by

[
β1,s, . . . ,βp,s

]
where β j,s = bj(tk), k ∈

T s. Except for Assumptions (A1) and (A2), we list the additional
assumptions here.

2.3.1. Other Assumptions
(A3) The minimum coefficient change ξmin =

min1≤s≤S−1
j=1,...,p

||β j,s+1 − β j,s||2 has a lower bound.
(A4) The maximum coefficient change ξmax =

max1≤s≤S−1
j=1,...,p

||β j,s+1 − β j,s||2 has an upper bound.

This and (A3) are to constrain that the model is in the
identifiable region, since too small a dynamic change
cannot be identified (leading to a slower convergence rate
of estimated change points), while too large a dynamic
change may lead to unbounded estimation.

(A5) The sequence {δnN}N≥1,n≥1 is a nonincreasing and positive
sequence tending to zero as eitherN or n tends to infinity,
that is, δnN → 0 as n → ∞ and δnN → 0 as N →
∞. It further satisfies NnδnN(ξmin)2/ log(N) → ∞, as
either n → ∞ or N → ∞. This is used to bound the
convergence rate of the estimated change points.

(A6) The minimum interval length *min =
min0≤s≤S−1 |τs+1 − τs| satisfies *min ≥ nδnN . This is
to guarantee that each time segment should be long
enough for correct recovery. Actually, this assumption is a
restriction for n. When N is limited with a not very small
δnN , given S − 1 fixed change points on T , only if n is not
very small, we can guarantee this assumption is satisfied.

(A7) The noise εij follows the normal distribution with mean 0
and covariancematrix σ 2$j/n. This is to bound the noise-
to-signal ratio. Too large the noise would lead to the false
identification.

(A8) The affinity between two subspaces Sl and Sr is defined as

aff(Sl,Sr) =
√
cos2(θ (1))+ · · · + cos2(θ (dl∧dr))

dl ∧ dr
, (11)

where θ (1), . . . , θ (dl∧dr) are principal angles between the
two subspaces of dimension dl and dr , and are recursively
defined by

cos(θ (k)) = max
φli(t)∈Sl

max
φrj(t)∈Sr

∫
T φli(t)φrj(t)dt√∫

T φ2
li(t)dt

∫
T φ2

rj(t)dt
.

(12)
When φli(t)(i = 1, . . . , dl) and φrj(t)(j = 1, . . . , dr) are
sampled at a discrete grid and denoted as !l and !r , the
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affinity can be reformulated as ||!′
l!r||F where || · ||F is

the Frobenius norm of the matrix. We assume

max
s=1,...,S
l,r=1,...,Ls

aff(Ss
l ,S

s
r)√

max(dsl , dsr)
≤ κ0/ log p, (13)

where κ0 is a constant. This assumption is to regularize the
distance between different subspaces. If two subspaces are
too close to each other and the noise further conceals their
difference, it would be very hard to distinguish them from
each other.

Theorem 1. Under Assumptions (A1)–(A7), the change points
{τ̂s, s = 1, . . . , Ŝ − 1} estimated by bj(tk) in (10) satisfy that, if
Ŝ = S, with probability tending to one:

P( max
1≤s≤S−1

|τ̂s − τs| ≤ nδnN) → 1, as N → ∞, or n → ∞,

(14)

when λ1 and λ2 satisfy (NnδnNξmin)−1λ1 → 0 and
(Nξmin)−1λ2 → 0 as either N → ∞ or n → ∞.

The proof of Theorem 1 is given in the supplementary mate-
rials. Theorem 1 states that when the number of time seg-
ments is known or correctly estimated, the estimated time seg-
ments recover the true ones consistently as the sample size N
increases. Furthermore, given a certain N, when we have more
densely sampled functional data, that is, n → ∞, we have
P(max1≤s≤S−1

1
n |τ̂s − τs| ≤ δnN) → 1. Then since δnN → 0

as n → ∞, this indicates that more accurate “relative” time
segmentations, that is, smaller 1

n |τ̂s − τs|, would be guaranteed
for more densely sampled data.

Theorem 2. Based on Theorem 1, assume Assumption (A8) also
holds. Suppose Ys

ij ∈ X s
ls for time segment T s. We have as either

N → ∞ or n → ∞, the probability that the solution of (10)
can have and only have nonzero values for functions from the
same subspace as Ys

ij(tk) in every time segment T s is at least
1 − c1/ps2l − c2 exp(−*minω2/8). Here ω is a positive constant
satisfies

√
1+ ω ≤

1+ σ 2 −
√
24 log psl (maxr,l=1,...,Lg

g=1,...,S

aff(Sg
r ,S

g
l )√

max(dgr ,d
g
l )
) − 2c0σ

√
24 log psl√

psl
σ + 2c0σ 2

, (15)

with 0 < c0 < 1. λ1 and λ2 should satisfy λ1/λ2 → 0 as either
N → ∞ or n → ∞, λ2/

√
N logN → ∞ as N → ∞, and

λ2nδnN/
√
n → ∞ as n → ∞. c1 and c2 are two fixed positive

constants.

The proof of Theorem 2 is provided in the supplementary
materials. There are multiple ways to set δnN , λ1, and λ2. For
example, if δnN = (log n)1.5(logN)1.5

nN , one possible choice of {λ1, λ2}
that meets the requirements of Theorems 1 and 2 would be
λ1 =

√
(log n)(logN)

(nN) , and λ2 = N0.8
√

log n
n0.5 .

Then built upon Theorem 1, Theorem 2 states that for each
estimated time segment, the probability that the estimated bsj
only has nonzero values for functions from the same subspace
as the output function Yij is guaranteed to be bigger than a

threshold. Here ω is an intermediate variable. It depends on the
affinity of different subspaces, that is, aff(Ss

r ,Ss
l ), the cardinality

psl of the subspace l, and the noise-to-signal ratio σ 2. Note that

only if 1+ σ 2 −
√
24 log psl (maxr,l=1,...,Lg

g=1,...,S

aff(Sg
r ,S

g
l )√

max(dgr ,d
g
l )
)− 2c0σ −

√
24 log psl√

psl
σ −2c0σ 2 > 0, the right side of (15) can be guaranteed

to be bigger than 1 and ω has feasible solution. Therefore, we
need to bound aff(Ss

r ,Ss
l ) and σ . Larger values of them lead

to smaller (or even infeasible) ω, and hence a smaller (or even
unguaranteed) probability of correct bsj identification. As to the
influence of psl , a larger psl leads to decrease of c1/ps2l , but its
influence on ω is complicated and depends on aff(Ss

r ,Ss
l ) and

σ . Generally, as psl increases, the decrease of the first part is
faster than the change of the second part, so a larger psl would
still guarantee a larger probability of correct bsj identification.
Furthermore, according to Assumption (A6), as n → ∞, we
have *min → ∞, and the part c2 exp(−*minω2/8) = 0. This
indicates the spatial subspace identification would also be better
guaranteed. Last, note that Theorem 2 shows the guarantee of
correct bsj identification for each function Yj(t). From it, we can
get the system-level guarantee by applying the union bound for
all Yj(t).

3. Model Inference

In this section, we will first introduce an efficient estimation
method for the proposed DFSL model in Section 3.1. Then we
will talk about its tuning parameter selection in Section 3.2.

3.1. Optimization via Fast Iterative
Shrinkage-Thresholding Algorithm

Equation (10) is a convex problem including two parts: the
smooth part for bj, that is,

f (bj) =
1
2

N∑

i=1
Z′
ij$

−1
j Zij,

and the non-smooth part for bj, that is,

g(bj) = λ2

n∑

k=1
||bj(tk)||1 + λ1

n∑

k=2
||bj(tk) − bj(tk−1)||1.

Several categories of first-order methods have been developed
to optimize this kind of composite function. Among them,
the most popular one is in the class of iterative shrinkage-
thresholding algorithm (ISTA). The pillar of ISTA-based meth-
ods is to construct the following model to approximate the
composite objective function based on a searching point sj as

QLj(bj, sj) := f (sj)+ 〈bj − sj,∇f (sj)〉 +
Lj
2
||bj − sj||2 + g(bj),

(16)
where Lj is a constant bigger than the Lipschitz constant of ∇f .
With (16), we can develop the following gradient descent-like
method for solving (10) by iteratively minimizing (16), that is,

bk+1
j = argmin

bj
QLj(bj, skj ), (17)
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where k is the iteration step, and skj is the searching point for the
current step.

Proposition 1. For the objective function of (10), (16) and
(17) can be derived and decomposed for every bjr =
[bjr(t1), . . . , bjr(tn)] for r = 1, . . . , p, r $= j separately, as

bk+1
jr = min

bjr

1
2
||bjr − zjr||22 + sj2||bjr||1 + sj1||Dbjr||1, (18)

where zjr = skjr− 1
Lj

∑N
i=1 diag(Ỹij)(Ỹij−

∑
r $=j diag(Ỹir)skjr)with

Ỹij = $
− 1

2
j Yij for j = 1, . . . , p, i = 1, . . . ,N; D ∈ R(n−1)×n is

the first-order differencematrix that hasDkk = −1,Dk(k+1) = 1
for k = 1, . . . , n − 1, and other components equal to 0.

Equation (18) is the exact form of the fused lasso
signal appropriator (FLSA) function with Lj = ||ϒ−j||22
where ϒ−j =

[
ϒ ′

1(−j), . . . ,ϒ
′
N(−j)

]′
and ϒ i(−j) =

[diag(Ỹi1), . . . , diag(Ỹi(j−1)), diag(Ỹi(j+1)), . . . , diag(Ỹip)],
for i = 1, . . . ,N. sj1 and sj2 are scaled λ1 and λ2 by Lj.
Consequently, Proposition 1 indicates that the objective
function of (10) could be decomposed and solved efficiently
using the FLSA estimators. Here we adopt the method in Liu,
Yuan, and Ye (2010).

In particular, the searching point skjr in every iteration is
defined as

skjr = bkjr + ρk(bkjr − bk−1
jr ),

where ρk = (
√
1+ 4ρ2

k−1)/2 is an iteratively chosen coefficient.
This is the fast ISTA (FISTA) algorithm (Nemirovski 2005)
which employs the approximation model not only based on
the previous iteration, but rather on the previous two itera-
tions. FISTA generally has the convergence rate ofO(1/k2). The
detailed algorithm of solving (10) based on FISTA is shown in
Algorithm 1.

Data: Yi, i = 1, . . . ,N, ρ0,$j, Lj, b0jr , r = 1, . . . , p, r $= j
Result: Estimated bjr = bk+1

jr , r = 1, . . . , p, r $= j
initialization
Initialize b1jr = b0jr for r = 1, . . . , p, r $= j
Estimation
while

∑
r $=j ||bkjr − bk−1

jr ||22 > e1 do
Set ρk = (

√
1+ 4ρ2

k−1)/2
Set skjr = bk−1

jr + ρk(bkjr − bk−1
jr ) for r = 1, . . . , p, r $= j

for r = 1, . . . , j − 1, j+ 1, . . . , p do
zjr =
skjr − 1

Lj
∑N

i=1 diag(Ỹij)
[
Ỹij −

∑
r $=j diag(Ỹir)skjr

]

Solve
bk+1
jr = minbjr 1

2 ||bjr−zjr||22+sj2||bjr||1+sj1||Dbjr||1
using FLSA

end
Set k = k+ 1

end
Algorithm 1: Solving bjr(r = 1, . . . , p, r $= j) based on FISTA

It should be noted that {#j(t, s), σ }may be unknown in prac-
tice.σ maybe even relaxed to be different for j = 1, . . . , p. In this
case, we need to estimate {$j, σj} as well. Then (10) becomes no
longer convex. As such, wemay use the block coordinate descent
(BCD) algorithm to estimate bjr(r = 1, . . . , p, r $= j) and 'j =
σ 2
j $j/n separately and iteratively, for j = 1, . . . , p. The detailed

algorithm is shown in Algorithm A.1 in the supplementary
materials.

3.2. Tuning Parameter Selection

In general, the selection of optimal tuning parameters for a
given model can be a difficult task, which is further compli-
cated as the number of tuning parameters increases. Here, we
propose to follow the tuning procedure for the fused lasso in
Nowak et al. (2011) to reduce the computation. Specifically, to
simplify the search for the optimal tuning parameters, given
the sample size N, we reparameterize λ1 and λ2 in terms of
λ0 and ρ ∈ (0, 1) (here without confusion, we omit N in
the later notation for conciseness), such that λ1 = ρλ0 and
λ2 = (1 − ρ)λ0. We can think of λ0 as an overall tuning
parameter with ρ determining how much emphasis is placed
on sparsity versus smoothness. By fixing the possible values
that ρ can take, we effectively reduce the search over λ1 and
λ2, to a search over one parameter λ0. In particular, we ini-
tially fix the possible values of ρ (e.g., {0.1, 0.3, 0.5, 0.7, 0.9},
the values would depend on n and N by using the results of
Theorems 1 and 2). For each value of ρ, we find the value of
λ0 that results in each estimated variable to be 0, and denote
this value by λmax

0,ρ . Then we chose a fixed number of can-
didate values for λ0 from the interval (0, λmax

0,ρ ). The optimal
values of ρ and λ0 are selected by searching over this two-
dimensional grid for the value that minimizes the following
criterion:

(Nn)
p∑

j=1
log

(∑N
i=1 Z′

ij$
−1
j Zij

Nn

)

+ log(Nn)
p∑

j=1

∑

r $=j
kρ,λ0(bjr).

(19)

Here, kρ,λ0(bjr) is the number of nonzero elements in bjr
given the current ρ and λ0. The term of

∑p
j=1 kρ,λ0(j) rep-

resents the complexity of the model, with larger values indi-
cating greater complexity. This criterion is similar to the
Bayesian information criterion. Its rational is that by mini-
mizing (19), we attempt to find an appropriate model with-
out overfitting the data. The first term will tend to be smaller
for complex models, whereas the second term will tend to
be smaller for simple models. For computational reasons,
we prefer this approach for selecting the optimal tuning
parameters.

4. Subspace Segmentation and Representation

Based on the estimated DFSL model, we first discuss how to
identify the time segments and spatial segments in Section 4.1,
and then discuss how to infer each subspace structure, that is, its
corresponding basis functions and do function representation
in Section 4.2.
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4.1. Spatiotemporal Segmentation and Subspace
Identification

In particular, we define
cjk =

∑

r $=j
|b̂jr(tk) − b̂jr(tk−1)|, k = 2, . . . , n, j = 1, . . . , p,

(20)
where b̂jr(tk) is the solution of (10) solved by Algorithm 1
or Algorithm A.1 in the supplementary materials. According
to Theorem 1, we know that under limited sample size N
and unknown number of change points S, the estimated bj(t)
still has probability to change at nonchange points, which is
false change point identification. As such, when cjk of (20) is
directly used to identify the potential change points for function
Xj(t), the identified change points are probabilistic to be false.
Therefore, we use cj0 to control the false alarm rate and define
the change points as Tj = {k|cjk > cj0}. This is similar
to setting control limit for control charts in statistical process
control. In practice, for a real system, the setting of cj0 can
be determined by the pre-specific false alarm rate and domain
knowledge. It is not meant to be subjective, but is actually
case-specific combined with system background. Similarly, for
each time point tk, we calculate Ck = ∑p

j=1 I(tk ∈ Tj),
and use Ck(1 ≤ k ≤ n) for system-level change point
decision-making.

A%er we have identified totally S − 1 change points τ̂s(s =
1, . . . , S − 1). For every time segment, we calculate the average
DFSL coefficient b̄sj ∈ Rp×1 where b̄sjr = ∑τ̂s−1

k=τ̂s−1
|b̂jr(tk)|

for r $= j and b̄sjj = 0. Define B̄s =
[
b̄s1, . . . , b̄sp

]
. Then

similar to the procedure of Elhamifar and Vidal (2013) and
Bahadori et al. (2015), we can define the symmetric affinity
matrix As = B̄s + B̄s′, and apply the spectral clustering (Ng,
Jordan, and Weiss 2001) on As for subspace clustering. We will
not detail too much about the spectral clustering. One thing
to be noted is that we allow the number of subspaces or the
subspace basis functions to change for different time segments.
When the number of subspaces is unknown in advance, it can
be estimated as the number of eigenvalues of Ls whose value are
close to zero based on the spectral graph theory. Here the Ls
is the Laplacian matrix of the graph based on similarity matrix
As. Of course, other unsupervised clustering methods, such as
hierarchical clustering and K-means can be used for subspace
identification as well.

4.2. Basis Function Extraction andData Representation

A%er segmenting functional data from spatiotemporal perspec-
tive, suppose for the time segment s, there are Ls subspaces
identified, and the lth subspace Ss

l has the cardinality psl and
the function set Ys

i(l) = {Ys
i1, . . . ,Ys

ipsl
}, where Ys

ij are the
signals of Yij in the sth time segment, that is, Ys

ij(tk)(k =
τs−1, . . . , τs − 1, j = 1, . . . , psl ). Then we can estimate the basis
functions of Ss

l using the MFPCA (Paynabar, Zou, and Qiu
2016). However, since here we assume that the basis functions
are smooth, we optimize the loss function of MFPCA together
with a smoothness regularization. In particular, our objective
function is

min
αs
iq,φ

s
lq,q=1,...,dsl

N∑

i=1
||Ys

i(l) −
dsl∑

q=1
φs
lqα

s′
iq||2F

+ λ3

dsl∑

q=1

ns∑

k=2
(φs

lq(tk) − φs
lq(tk−1))

2, (21)

subject to ||φs
lq||2 = 1,φs′

lqφ
s
lr = 0, for all

q, r = 1, . . . , dsl , q $= r,

where φs
lq ∈ Rns×1 with ns = τs−τs−1 is the qth basis function,

and αs
iq ∈ Rpsl×1 are the projections of Ys

i(l) on φs
lq. We chose

dsl such that the explained cumulative percentage of the sample
variance by the first dsl MFPCA loadings is 95%. With this dsl ,
the penalty parameter λ3 can be tuned by the cross-validation
algorithm and (21) can be efficiently solved, following the simi-
lar procedure as Huang, Shen, and Buja (2008). A%er extracting
the features, we can represent Yi = [Yi1, . . . ,Yip] as a segment-
wise linear decomposition, that is, Ys

i(l) = ∑dsl
q=1 φs

lqα
s′
iq for

l = 1, . . . , Ls, s = 1, . . . , S.

5. Numerical Studies

To evaluate the effectiveness of DFSL, we perform some
numerical experiments using synthetic data generated from
the assumed subspace model described in Section 2.2. We will
first illustrate the description power of DFSL for multivariate
functional data and the efficiency of the proposed estimation
algorithm. Then we will compare DFSL with some state-of-the-
art methods. Some sensitivity analyses of DFSL are also shown
in the supplementary materials.

5.1. Synthetic Data Experiments

We assume every function sample has in total n equally spaced
sampling time points. Among them there are S − 1 correlation
change points τs(s = 1, . . . , S − 1) with a total of S time
segments, that is, n = ∑S

s=1 ns. For every time segment,
we assume that there exist Ls subspaces Ss

l (l = 1, . . . , Ls).
Then for every sample i, we can denote its functional data in
the sth time segment as Ys

i =
[
Ys
i(1), . . . ,Ys

i(Ls)

]
with the lth

subspace data Ys
i(l) ∈ Rns×psl . We generate Ys

i(l) = !s
lA

s
i(l) +

Esi(l)(l = 1, . . . , Ls), for s = 1, . . . , S. Esi(l) =
[
εsi1, . . . , εsipsl

]

is the noise function, which is also time-segmented with the
autocorrelation matrix $s

j . !s
l ∈ Rns×dsl are the basis functions

for Ss
l , and As

i(l) ∈ Rdsl×psl is the weight matrix with the (q, j)
component as the weight of the qth basis function φs

lq on the
jth function. We further consider that As

i(l) can be decomposed
into two parts, that is, As

i(l) = Rs
i(l)V

s
l , where V

s
l ∈ Rms

l×psl is
the variation matrix, with every row orthogonal to each other
indicating one variation pattern; Rs

i(l) ∈ Rdsl×ms
l is the variation

coefficientmatrix, with every row rsiq(q = 1, . . . , dsl ). Here in our
simulation below, psl , d

s
l , m

s
l , L

s and the subspace that Yij(j =
1, . . . , p) belongs to are temporarily assumed to be unchanged
for different time segments. Hence, we omit the superscript s
herea%er (however, in practice, these parametersmay vary as the
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case studies show in Section 6). Then we consider the following
two models.

• Model (I): We consider p = 8, n = 40, S = 2, τ1 = 21,
and L = 2. The first four functions come from the B-spline
space with d1 = 3, that is, φs

1q(q = 1, 2, 3) are the 1st, 4th,
and 7th B-spline basis functions of order 3 with a grid of
ns equally spaced knots in [0, 1] for s = 1, 2, respectively.
The second four functions come from the Fourier space with
d2 = 3, that is, φs

2q(tk) = cos((q+ 1)π tk − (q+ 1)π/2)(q =
1, 2, 3) with a grid of ns equally spaced time points t1, . . . , tns
in [0, 1] for s = 1, 2, respectively. We assume ml = 2
with rsiq following a two-dimensional multivariate normal
distribution with mean vector 0 and the same covariance
matrix ' whose (')uv = 0.5|u−v|(u, v = 1, 2), for q =
1, 2, 3, l = 1, 2, and s = 1, 2. For $s

j , we set it the same for
all j = 1, . . . , p with ($s)uv = 0.2|u−v|(u, v = 1, . . . , ns)
for s = 1, 2.

• Model (II): We consider p = 12, n = 128, S = 3, τ1 =
33, τ2 = 65, and L = 3. The first four functions come
from the B-spline space, and the second four functions come
from the Fourier space, both of which has the same setting
as Model (I). The last four functions come from the wavelet
space, with d3 = 3, that is, φs

3q(q = 1, 2, 3) are the qth

Vaidyanathan basis functions. rsiq and $s
j are generated in the

same way as Model (I).

For each model, we generate N = 500 samples Yi(i =
1, . . . , 500) from the corresponding model with the noise stan-
dard deviation σ0 = 0.05, and use them to estimate bj and
$j(j = 1, . . . , p) for DFSL. As shown in Figure 3, for every
estimated b̂j, only the functions in the same subspace asYij have
nonzero regression coefficients (such as the first four functions
from the B-spline subspace and the second four functions from
the Fourier subspace). They keep constant over time and only
have a step-wise change at t21. The estimated $̂j for Model
(I) are jointly shown in Figure 4. Clearly, $̂j approximates to
the true $j = diag($1

j ,$2
j ) with a standardized norm error

||$̂j − $j||2/||$j||2 = 0.02, demonstrating the efficiency of
the proposed estimation method. Similar results also appear for
Model (II).We further demonstrate the self-expression results of
DFSL by evaluating its curve of Yi(t)bj(t)(j = 1, . . . , p) for two
selected functions in Figure 5. For comparison, we also plot the
self-expression results of SFSL. Clearly, DFSL can self-express
the multivariate functions very well, while unsurprisingly SFSL
fails since it does not capture the dynamic cross-correlations.
Based on the estimated model, we further use the smooth

Figure 3. Estimated b̂j(j = 1, . . . , p) for Model (I).

Figure 4. Estimated $̂j of Model (I).
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Figure 5. Self-expression results for two selected functions by DFSL and SFSL for Model (I) and Model (II).

Figure 6. Modeling results for Model (I).

MFPCA for subspace inference, and compare the extracted
basis functions !̂

s
l with the true ones !s

l . Then the extracted
basis functions for the three subspaces in the time segment
t ∈ [t65, t128] of Model (II) are shown in Figure A.3 in the
supplementary materials. They match the true basis functions
very well.

5.2. ComparisonWith State-of-the-Art Methods

To better evaluate the performance of DFSL, besides SFSL, we
have also made comparison of DFSL with some other state-of-
the-art models introduced in Section 1, including the MFPCA
of Paynabar, Zou, and Qiu (2016), the functional PCA-based
sparse graph model of Qiao, Guo, and James (2019) (denoted
as FPCAGra), and the kernel based graphical lasso of Kolar and
Xing (2011) (denoted as KerGra).

First, we test the detection capability of cross-correlation
change of DFSL and KerGra, which is the only baseline able
to describe dynamic dependence structures. In particular, for
DFSL, we set the threshold as cj0 = 3× std(cjk) and identify the
change points Tj of Yj. Then we calculate Ck(k = 1, . . . , n) and
identify the system-level change points as those tk with Ck ≥ 1.
1 For KerGra, we use the similar identification procedure by
simply changing bjr(tk) in (20) as the smoothed partial cross-
correlation of Yj and Yr at time tk. In this way, cj0 is expected to
filter out some noisy dynamics caused by the kernel smoothing.
For the identified change points of DFSL and KerGra, only the

1In the numerical studies, since the data are generated synthetically, we
want to be most conservative to identify all the false alarms for model
performance evaluation. As such, we set {k|Ck > 0} as the system-
level change points. However, in real-world data analysis, we recommend
{k|Ck > 3 × std(Ck)}.

change identifications occurred close to the true change points,
that is, in the set {τs−1, τs, τs+1}(s = 1, . . . , S − 1), are accurate
change point detections, while the other change point identifi-
cations are regarded as false detections. We run the experiment
for 100 replications for different noise magnitudes for Model
(I) and Model (II). The average false change point detection for
Model (I) is reported in Figure 6(a). It shows that DFSL almost
has no false change point detection for small noise magnitudes.
As the noise magnitude increases, the false detection increases,
but is still satisfactorily small. Furthermore, DFSL has much
less false change point detection than KerGra, especially for
cases with large noise magnitudes, indicating the robustness of
DFSL. This can be better observed in Figure 7(a) for Model (II),
where DFSL has no false change point detection for all noise
magnitudes, while KerGra still performs very unsatisfactorily.
As to miss change point detection, since DFSL has constant
zero miss detection for all the simulation settings, we do not
report the result here. However, KerGra does have nonzeromiss
detection, further demonstrating the superiority of DFSL.

We then compare DFSL with SFSL, FPCAGra, and KerGra
in terms of the expected number of false subspace identifica-
tion. (Though SFSL and FPCAGra cannot track dynamics of
dependence structure since in our experiment the subspace
membership of each function does not change over time, we
can still test their expected number of false subspace identi-
fication using the subspace identification results based on the
whole time duration.) In particular, for SFSL, for the estimated
bj(j = 1, . . . , p) in every replication, we test if any function
not belonging to the subspace of Yij has nonzero coefficients.
If so, we conclude that Yij is falsely identified. For DFSL, we
use the average b̄j =

∑n
k=1 bj(tk)/n for the test, following the

same procedure as SFSL. As to the two graphical models KerGra
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Figure 7. Modeling results for Model (II).

and FPCAGra, we test whether two functions from different
subspaces have an edge. If so, considering that the graph is
undirected, we treat both of these two functions as falsely iden-
tified. Then we calculate the average number of false subspace
identification for different models using 100 simulation replica-
tions. As Figure 6(b) of Model (I) shows, DFSL has the smallest
average number of false subspace identification for different
noise magnitudes. Though KerGra follows DFSL closely for
smaller noisemagnitudes, as the noise increases, their difference
becomes larger. It is noted that for Model (II), the advantage of
DFSL over other methods is more significant since DFSL has no
false identification all the way for different noise magnitudes.
In addition, it is very interesting to see that in contrast to the
other threemodels, the false identification of FPCAGra becomes
larger as the noise magnitude decreases. Intuitively, as noise
decreases, the correlation of different nodes should be better
estimated. However, on the one hand, since FPCAGra treats the
correlations of different functions static, as long as two functions
have correlations in one segment, FPCAGra tends to treat them
as correlated and connects an edge between each other, finally
leading to over-connected graphs. On the other hand, FPCAGra
prefers a sparser graph when the cross-correlation structure of
different functions becomes weaker, which is precisely the case
with increased independent noise.

A%er we segment the functional data from both spatial and
temporal perspectives and identify each subspace’s structure,
we use SMFPCA of (21) for basis function estimation. We also
implement SMFPCA on the identified subspaces for SFSL. Then
we test the modeling power of DFSL and SFSL by calculating
their representation mean square error (MSE) for additional 50
samples for each experiment replication. We further compare
their performance with the other two functional PCA based
algorithms, that is, MFPCA and FPCAGra. Their implemen-
tations follow their algorithms in the literatures, respectively.
(It is notable that we do not involve KerGra in our compari-
son, since KerGra is not targeted at data representation.) The
results based on 100 replications for different noise magnitudes
are shown in Figure 6(c) for Model (I) and Figure 7(c) for
Model (II). As expected, the representation MSEs of all the
four models increase with the noise magnitude. When the noise
standard deviation grows close to the magnitude of the signal,
that is, σ0 = 0.5, all the models lose their inference accu-
racy. Among these models, DFSL consistently has the smallest
MSE, indicating its superiority. As to the other models, they
lose the modeling power due to their no account of dynamic

cross-correlations. In particular, SFSL performs second best,
since it can still identify correct subspaces. Its extracted basis
functions combining all the time segments together would still
be tolerable to capture the features of different time segments.

Furthermore, comparing the results of Model (I) and Model
(II), it is notable that the performance of Model (II) is generally
better than that of Model (I). This is because for Model (II), the
number of sampling points of each time segment is bigger than
that ofModel (I). Consequently for each segment, we havemore
data to estimate the self-expression matrix Bs, and can achieve
more accurate spatiotemporal segmentations with almost zero
false change point detection and false subspace identification.
Consequently, the estimated basis functions for each subspace
would be more precise, leading to smaller representationMSEs.
This phenomenon is also consistent with Theorems 1 and 2. In
addition, all the values shown in Figures 6 and 7 are average of
results (i.e., representation MSE, false subspace identification,
and false change point detection) from running the experiments
for 100 replications. For better illustration and comparison, we
also calculate their standard deviations in Tables A1–A4 in the
supplementary materials. It shows that the estimated results
have quite small standard deviations, demonstrating that the
performance difference of these methods is statistically signif-
icant.

6. Case Studies

6.1. Motion Tracking

Now we reconsider the human gesture tracking experiments
introduced in Section 1. In the experiment, this subject repeats
the two gestures for nine times. Each of them is one sample
Yi(tk) = [Yi1(tk), . . . ,Yi54(tk)] (k = 1, . . . , ni), where ni is the
number of frames (i.e., the time length) of sample i. Because for
different samples ni can be different, we first remove this non-
synchronization among multiple samples using the dynamic
time warping method (Keogh 2002) andmake their time length
equal to each other. Then we use eight of the nine samples for
model training (including spatiotemporal subspace segmenta-
tion and basis function extraction), and use the last one for
testing in terms of representation MSE).

Based on the training set, we can get the estimated b̂j(j =
1, . . . , 54) via DFSL. Figure A.5 in the supplementary materials
shows the self-expressed curve of one training sample. Then
we can calculate Ck(1 ≤ k ≤ n) and estimate the potential
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Figure 8. (a) Number of identified change points; (b) the joint clustering results for the motion 1 (first segment) at t25; (c) the joint clustering results for the motion 2
(second segment) at t125. In particular, the joints of the same cluster are drawn in the same color and marker.

change points of the cross-correlations of the 54 functions, as
shown in Figure 8(a). By defining the system potential change
points as those {k|Ck > 3 × std(Ck)}, k = 111, which is
exactly the change point of these two gestures, is identified. Then
we do subspace clustering for each of these two time segments
separately. One thing to be noted is that if we cluster the 54
coordinates directly for this application, it is very possible to
cluster the three coordinates of one joint into different clusters
(subspaces), which is unreasonable to some degree. As such,
here we do further operation on Bs = [b̄s1, . . . , b̄sp] ∈ R54×54

where b̄sjr = ∑τ̂s−1
l=τ̂s−1

|b̂jr(tl)| for s = 1, 2. In particular, we
integrate Bsjk for coordinates of the same joint together and get
B̄s ∈ R18×18 with B̄sJ1J2 =

∑
j∈J1

∑
k∈J2 b̄jk for J1, J2 ∈ 1, . . . , 18.

Thenwe use B̄s, which demonstrates the affinitymatrix of differ-
ent joints for spectral clustering, as discussed in Section 4. It is to
be noted this integrationmethodmaynot be optimal to combine
results of coordinates of different joints together. Because we
just use the case study to demonstrate the efficacy and efficiency
of the proposed method on real datasets, further explorations
on better integration method of coordinates for gesture analysis
are not our emphasis in this article, and might be le% as future
work. Finally, we achieve six clusters for the first time segment
and five clusters for the second one. The clustering results for
the two segments are visualized in Figures 8(b) and (c), where
the joints from different clusters are denoted by differentmarker
styles and colors. In particular, for the first segment, the six
joints on the two arms are clustered together, since every three
joints on each arm are connected together and the two arms
move in the same way in this “bow up” gesture. Similarly, the
six joints on the trunk are clustered together. As to the four
joints on the kicks and feet, each of them is identified as one
single subspace. This is because, as shown in the video, the
kicks have some “swing” movements, which yet do not appear
in the movements of arms or trunks. As to the feet, they are not
required to move as other joints, but only have some random
fluctuation signals, that is, random noises (as shown in Figure
A.6 in the supplementarymaterials). Therefore, the functions of
the two joints on the feet (joint 15 and 18) cannot be predicted
well by other functions, and their bj(t) are almost zero for all
the components. As such, the two joints are identified as two
individual “falsely defined” functional subspaces. Strictly speak-
ing, this situation does not satisfy Assumption 2, and should
be treated as a special case. It demonstrates that even if there

are some noisy functions in the system, the proposed algorithm
can still identify them separately and will not cluster them into
other well-defined subspaces. As to the second segment, since
this gesture requires the trunk, the right leg and the le% arm to
twist in the same way, these 12 joints are clustered together. The
right arm is responsible for the “throw” action, so its joints are
clustered together. As to the le% leg, its two joints are identified as
individual subspaces due to the same reason as the first segment.

For better evaluating the performance of DFSL, we further
compare it with the baselines in Section 5. Specifically, we do
the experiment for in total nine times. For the ith replication,
we select the i sample as the testing sample and the others as
training samples. The average number of false change point
detection and representation MSEs of the nine replications
together with the standard deviations are shown in Table 1. (We
do not compare the number of false subspace identification due
to its unknown ground truth.) Similar to the performance in
Section 5, DFSL has the best performance with the smallest
representationMSE and the fewest number of false change point
detection.

6.2. Manufacturing ProcessMonitoring

Now we consider another example from an advanced manufac-
turing system. In the system, seven sensors are used to mon-
itor different process variables during the fabrication of every
product sample. For simplification purpose, we denote these
sensors as S1–S7. Figure A.8 in the supplementary materials
illustrates their functional data for one product sample. It is
clearly observed that some functions are quite similar with each
other (such as S5–S7), demonstrating their strong correlations.
Some other functions have quite diverse features (such as S1
and S5), indicating their weak cross-correlations. Furthermore,
during the fabrication, there is an on-off operation at t =
35, which artificially changes the process variables, and conse-
quently influences their correlation structure. In the dataset, we
totally have N = 46 samples. Similar to the previous example,
the profile length of different samples is different due to the
fabrication inherent fluctuations. Therefore, we first remove the
non-synchronization effect for different samples and set their
time length as n = 92. We use 40 out of the 46 samples as
the training set for subspace identification and basis function
learning, and use the last six samples as the testing set for
representation performance evaluation.
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Table 1. Average false change point detection and average representation MSE of different models for case studies (with standard deviations in the parentheses).

False change point Representation MSE (×10−4)

Case study DFSL KerGra DFSL SFSL MFPCA FPCAGra KerGra

6.1 0.11(0.11) 6.08(0.35) 15.1(10.0) 37.3(4.21) 124(19.4) 30.5(6.34) 42.1(17.0)
6.2 0(0) 2(0) 0.26(0.07) 0.28(0.07) 0.66(0.17) 0.52(0.13) 21.5(7.86)

Figure 9. (a) The number of identified change points for every time point; (b) the affinity matrix for the manufacturing system data.

The estimated self-expression coefficients bj(j = 1, . . . , 7)
are reported in Figure A.7, with the self-expressed curve for one
sample shown in Figure A.8 in the supplementary materials.
We can see that the coefficients are quite sparse, and most of
them have a jump at around k = 38. Similar to Section 6.1, we
calculate Ck for every time point. As shown in Figure 9(a), most
of the identified change points are concentrated around k = 38.
This delay is caused by the system operation delay itself, that is,
most process variables do not respond to the on-off operation
until k = 38. Then we use the spectral clustering algorithm for
sensor clustering. The affinity matrix is shown in Figure 9(b),
and the clustering result is quite consistent with engineering
evaluations. The first four sensors belong to one subspace, and
the other three belong to another subspace, demonstrating the
efficiency of the proposed model once again.

Similar to Section 6.1, we compare DFSL with the other
baselines. Here we run the experiments for a total of 7 times. For
the ith replication, we select the 6i−5 to 6i samples as the testing
set and the others as the training set for evaluation. The results
shown in Table 1 are consistent with Sections 5 and 6.1. The
representation MSEs of DFSL and SFSL are very similar. There
aremainly two reasons for this small difference: (i) In the second
segment t ∈ [35, 92], the first four functions have 0 values all the
time, so even if we use B1 (or any other self-regression matrix)
for self-representation, the representation results will still be 0.
(ii) As to the other three functions, their B2 and B1 are close
to each other. Consequently, SFSL can achieve a satisfactory
performance as DFSL.

7. Concluding Remarks

This article proposes a dynamic functional subspace learning
method for multivariate functional data modeling. In partic-
ular, our model considers that different functions come from

different subspaces. Only functions from the same subspace
have nonzero cross-correlations with each other, while func-
tions from different subspaces have no cross-correlations at all.
Furthermore, we allow the subspace structure to change over
time but regularize its change flexibility. Consequently, we can
describe the cross-correlation dynamics and also avoid over-
parameterization. We also discuss the model inference in detail
in terms of parameter estimation based on the fast iterative
shrinkage-thresholding algorithm, parameter tuning, and sub-
space recovering based on the smoothmulti-channel functional
PCA. Finally, some numerical studies together with two real
case studies demonstrate the efficiency and applicability of the
proposed methodology.

Along this research direction, there are several potential
valuable extensions. First, as shown in those two case studies,
different functional samples may have different time lengths, or
even irregular sampling time points. This is the common mis-
alignment (deformation) problem. In these cases, the current
proposed model cannot be applied directly. Furthermore, this
misalignment may introduce additional noise and functional
dissimilarity into the data. To eliminate these problems, some
transformations with data alignment techniques need to be
incorporated into the model. Second, in this article, we tem-
porarily assume dl < pl for every subspace. When this assump-
tion is violated for a certain subspace, it becomes unidentifiable.
Thenhow to tackle this scenario deservesmore research. Finally,
how to use the proposed model to construct a statistical mon-
itoring scheme to detect outlier functional samples is another
future work direction.

Supplementary Materials

The supplementary files contain additional simulations results, figures,
tables, algorithms, proofs of theorems, as well as the MATLAB code of
DFSL.
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