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We theoretically investigate the forces and moments acting on two nearly touching spheres immersed in a second-order
fluid. We divide the problem into four sub-classes, where each class represents the translational or rotational motion of
the spheres either along the line joining the centers or the axis which is oriented perpendicular to the line joining the
centers. Using a regular perturbation solution methodology with the Deborah number as the small parameter, we obtain
analytical expressions for the hydrodynamic forces and the moments experienced by the spheres for each sub-class
considered. We find that, while the introduction of viscoelasticity does not generate any torques on the spheres, the
viscoelastic contribution to force is non-zero and acts along the line joining the sphere centers for each sub-class. For
asymmetric sub-classes, the presence of viscoelasticity produces a lift force on the spheres. We validate our method with
the reciprocal theorem approach and find our force estimates to be accurate for small sphere separations. The analytical
expressions obtained in this study can be utilized in computational schemes to study the behavior of a suspension of
particles immersed in a viscoelastic fluid.

I. INTRODUCTION

Suspension of particles are encountered in many industrial
applications, biological processes and consumables. In such
systems, particles are generally immersed in a fluid medium
which can exhibit complex rheological behavior such as shear
rate dependent solvent viscosity, viscoelasticity or a combina-
tion of both. Even a marginal deviation of the solvent from
a Newtonian behavior has been shown to affect the dynam-
ics of the suspended particles in non-trivial ways1 and has
been exploited for several particle manipulation and control
applications2–5. Towards successfully predicting the behavior
of a suspension of interacting particles immersed in a complex
fluid, understanding the binary interactions of particles forms
a fundamental building block which demands attention. In
this study, we focus upon the hydrodynamic interaction be-
tween two spherical particles suspended in a viscoelastic fluid
with a shear rate independent viscosity.

For understanding the binary interaction of spheres in a ho-
mogeneous fluid, four classes of problems are studied in the
literature: i) Spheres translating along the line joining their
centers, ii) Spheres rotating along the line joining their cen-
ters, iii) Spheres rotating perpendicular to the line joining their
centers and iv) Spheres translating perpendicular to the line
joining their centers. Figure 1 shows a schematic represen-
tation of such problems. The theoretical analysis consider-
ing the motion of two spheres in a Newtonian fluid for these
classes of problems has received considerable attention in the
literature and several important contributions spanning several
decades have helped us dissect the problem in great detail. We
list some of the important contributions here. Stimson and Jef-
fery6 studied the motion of two spheres moving along the line
joining their centers in the same direction and evaluated the
force acting on the spheres for arbitrary sphere separations.
Using a similar theoretical framework, Brenner and Maude7,8

extended their analysis for spheres approaching each other
along the common axis . Jeffery9 analyzed the problem con-
sidering two spheres rotating about their common axis and
evaluated the torques acting on the spheres. Later, a com-

prehensive theoretical analysis of the asymmetrical motion of
two spheres was also performed10. Although the above stud-
ies provided an analysis which was valid for arbitrary sphere
separations, asymptotic solutions when the spheres were close
to each other were considered valuable which led to focused
efforts in that direction. Cooley and O’Neill11 first used a
method of matched asymptotic expansion to obtain an expres-
sion for the force acting on two close spheres translating in
the same direction. They divided the domain of analysis into
an inner region (neighborhood of the nearest points on the
spheres) and the outer region (rest of the domain) and per-
formed a matching analysis between the solutions obtained in
both regions. Similar methodology involving matched asymp-
totic expansions was used by Hansford12 to determine an ex-
pression for the force acting on two equal spheres which are
approaching each other. The leading order force term scales
as ε−1 in both the cases studied by Cooley and O’Neill and
Hansford11,12, where ε� 1 denotes the non-dimensional dis-
tance between spheres. In their work, Cooley and O’Neill
also noticed that, instead of obtaining the solutions in both the
inner and outer regions, the solution obtained in the gap be-
tween the spheres is sufficient to obtain the singular terms in
the force expression. Using this insight, Jeffrey13 extended
the calculation by Hansford for unequal spheres by using a
lubrication theory approach and calculated the force upto an
order of εlogε . Similar derivations using lubrication theory in
the inner region exist for asymmetric motions of the spheres
for small sphere gaps14,15. The above mentioned works are
displayed in a tabular form in Table Ia.

The contributions related to nearly touching spheres in a
Newtonian fluid have proved invaluable as researchers have
utilized the analytical expressions in computational schemes
involving a suspension of spheres such as Stokesian Dynam-
ics, where computational tractability is of vital importance.
The asymptotic expressions for the forces is a useful alterna-
tive to mesh refinement procedures for small particle separa-
tions while evaluating the properties of a suspension of parti-
cles immersed in a fluid13.

For viscoelastic fluids, theoretical studies include under-
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FIG. 1. Different types of problems involving binary interaction of spheres.

standing the flow past a sphere immersed in a fluid with
weak viscoelasticity and negligible inertia16–18. These stud-
ies however considered an unbounded fluid and neglected any
wall effects. Later the influence of bounded domain was
taken into account, where initially weak wall effects were
considered19–21. Subsequently, several theoretical and numer-
ical studies have focused on particles near a plane wall22–25.
In comparison with Newtonian fluids, there are limited theo-
retical studies involving interaction of particles in a viscoelas-
tic fluid. Brunn26 represented the viscoelastic fluid using a
second-order fluid model and considered the sedimentation
of two spheres for large sphere separations. They found that
the distance between the sphere centers decreases for spheres
sedimenting in a quiescent fluid with their velocity vectors
directed along or perpendicular to the line joining their cen-
ters. Ardekani, Rangel, and Joseph27 studied the motion two
spheres suspended in a free stream of second-order fluid and
evaluated the forces acting on the spheres for arbitrary sphere
separations. In their study, by assuming that, α1 +α2 = 0,
where α1 and α2 are fluid parameters related to first and sec-
ond normal stress coefficients, they predicted the trajectories
of the two spheres for axisymmetric as well as asymmetric
motions. Phillips developed a procedure to evaluate the forces
acting on N spheres suspended in a second-order fluid for
small Deborah numbers28. However, they provided expres-
sions in the form of integrals which is computationally ex-
pensive and not straightforward to include in simulations in-
volving a suspension of spheres. Khair and Squires29 pro-
posed a methodology to measure normal stress coefficients
of a second-order fluid by using reciprocal theorem to calcu-
late the relative force acting between the spheres for spheres
translating parallel and perpendicular to their line of centers.
Biviscous fluid model is also employed to study the lubri-
cation forces between nearly touching particles in complex
fluids30,31. Such models are useful to predict the suspension
rheology for shear-thinning and shear-thickening fluids.

Lubrication theory is applicable for a fluid moving through
a narrow gap between two solid boundaries. Such theories
find application in the mechanical design of bearings to deter-
mine the oil pressure distribution inside the bearing. These lu-
bricants are often classified as viscoelastic due to the addition
of polymers. Consequently, significant theoretical and experi-
mental progress has been made to understand the performance
of viscoelastic lubricants as compared to lubricants with New-
tonian properties. Several models have been used to model

the non-Newtonian properties such as the power-law model32,
Rabinowitsch model33, pseudo-plastic model34, upper con-
vective Maxwell’s model35, Phan-Thien-Tanner model36 and
the Oldroyd-B model37 (please refer to the introduction of Ab-
baspur et al.38, for a detailed review on this topic ). The results
of these studies are however, catered to fluid moving through
a bearing (journal or sliding), where the boundaries are as-
sumed to be flat surfaces. Application of viscoelastic forces
to enable propulsion of swimmers, even at low Deborah num-
bers has received increasing attention recently. For such appli-
cations, the use of analytical force and torque expressions for
co-rotating and counter-rotating spheres immersed in a vis-
coelastic fluid are useful for predicting the swimming speed
and understanding the swimming mechanism39–41. To the best
of our knowledge, there has not been a systematic study to un-
derstand the viscoelastic forces and torques acting on nearly
touching spheres, for all four types of problems outlined in
figure 1 (refer to Table Ib). Towards aiding simulations of
a suspension of interacting spheres and developing a theo-
retical framework, such an analysis is important and would
complement numerical schemes used to understand rheology
of spheres immersed in viscoelastic fluids42–46. In this work,
we study the motion of two nearly touching spheres in a vis-
coelastic fluid for the four cases described in figure 1: i) Un-
equal spheres translating along the line joining their centers,
ii) Unequal spheres rotating about the line joining their cen-
ters, iii) Unequal spheres rotating about the axis perpendicu-
lar to the line joining their centers, and iv) Unequal spheres
translating along the axis perpendicular to the line joining
their centers. Following the approach commonly employed
for binary interaction of spheres in a Newtonian fluid, we are
prescribing the velocities on the surface of the spheres and
determining the hydrodynamic forces and the torques acting
on the spheres. We model the fluid viscoelasticity using a
second-order fluid model. Such a model has been employed
extensively in the literature and is useful to include the ef-
fect of weak fluid elasticity in the absence on any shear thin-
ning effects28. The analysis presented in this manuscript is
valid for weakly viscoelastic fluids with small Deborah num-
bers (∼ 10−2−10−3). For problem type 1, we use two differ-
ent approaches to solve the forces/torques experienced by the
spheres and show that both the approaches lead to the same
result for small sphere separations. The first approach con-
sists of solving the equations of motion explicitly in the gap
between the spheres and then evaluating the analytical expres-
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FIG. 2. Spheres immersed in a second-order fluid, with sphere S1
approaching the stationary sphere S2 with velocity U . The separation
between the spheres is εa, where ε � 1.

sions for forces/torques by integrating the stress tensor on the
surface of the particle. The second approach consists of us-
ing a reciprocal theorem framework, which bypasses the fluid
flow calculations and the contribution of the fluid elasticity to
the force/torque is represented in the form of an integral equa-
tion. The purpose of solving the problem with two different
approaches is to provide a validation for the lubrication theory
solution for viscoelastic fluids and confirm that the outer solu-
tion does not contribute to the forces and torques experienced
by the spheres. Subsequently, for problem types 2, 3 and 4, we
only use the first approach to evaluate the forces and moments
experienced by the spheres.

II. PROBLEM FORMULATION (TYPE 1)

Figure 2 shows a schematic representation of the type 1
problem. The radius of sphere S1 is a, while that of sphere
S2 is a/k. Such a radius choice ensures that substituting k = 0
allows us to obtain insights for sphere near a plane wall as
well. Previous research works highlighted in the introduction
have used the notation of −a/k for the radius of sphere S2,
where k < 0. To avoid any confusion in the sign while inter-
preting the results, we consider the radius of sphere S2 as a/k,
where k > 0. The sphere S1 is approaching with a velocity
U towards sphere S2 which is stationary. Both the spheres
are immersed in a second-order fluid with fluid viscosity µ .
The origin O(z = 0,r = 0) is located on the surface of the sta-
tionary sphere at the closest point of the gap as shown in the
figure. The spheres are separated by a distance of εa, where
ε � 1. We have assumed the fluid inertia to be negligible in
our analysis. Consequently, the momentum and mass conser-
vation equations for a second-order fluid are given as follows,

∇ ·T = 0, ∇ ·u= 0. (1)

Here, u denotes the fluid velocity and T denotes the stress
tensor in the fluid which is given by27,

T =−pI+µγ̇(1)+α1γ̇(2)+α2γ̇
2
(1). (2)

We obtain the above equation by conducting a retarded mo-
tion expansion of the stress tensor. γ̇(1) denotes the rate-of-
strain tensor and γ̇(2) denotes the first convected derivative of
the rate-of-strain tensor. Here p is the fluid pressure, µ is the
zero shear fluid viscosity, α1 =−ψ1

2 and α2 = ψ1+ψ2, where
ψ1,ψ2 are the first and second normal stress coefficients, re-
spectively. Note that, α1 < 0 and α2 can either be positive or
negative47. The tensors γ̇(1) and γ̇(2) are defined as,

γ̇(1) = ∇u+∇uT , (3)

γ̇(2) =
∂ γ̇(1)

∂ t
+u ·∇γ̇(1)+ γ̇(1) ·∇u+∇uT · γ̇(1). (4)

We non-dimensionalize the governing equations of motion us-
ing the following scales: length scale lc = a, velocity scale
uc = U , pressure scale pc = µU/a. Henceforth, we use the
same variables to denote the dimensionless variables. The
non-dimensional form of the stress tensor can be expressed
as follows,

T =−pI+ γ̇(1)−De
(
γ̇(2)+B11γ̇

2
(1)

)
. (5)

Here, De =−α1U/aµ is the Deborah number which signifies
the ratio between the relaxation time scale (−α1/µ) and the
flow time scale (a/U), and B11 = α2/α1. The positive value
of the Deborah number is ensured as the value of α1 is gen-
erally found to be negative47. The values of B11 lie between
−1 and 1. As the Type 1 problem is axisymmetric, we expect
that the velocity and the pressure fields do not vary in the az-
imuthal direction. The velocity field can thus be written as,
u = (ur,0,uz). We express the velocity components in terms
of the stream function as follows,

ur =−
1
r

∂ψ

∂ z
, uz =

1
r

∂ψ

∂ r
. (6)

We now define stretched coordinates in the gap between the
spheres as follows13,15,

R = r/ε
1/2, Z = z/ε.

In this coordinate system, the surface of the moving sphere
(S1) is represented as Z = H1 = 1 + R2/2 + O(ε) and the
surface of the stationary sphere is represented as Z = H2 =
−kR2/2+O(ε). We shall be working in this stretched coor-
dinate system for the following portion of the manuscript.

A. Solution

We use a regular perturbation scheme with the Deborah
number (De) as the small parameter and express the velocity



4

(a)

Work Problem Type Method Distance
Stimson and Jeffery6 1 Bipolar coordinates Arbitrary

Maude8 1 (approaching) Bipolar coordinates Arbitrary
Jeffery9 2 Bipolar coordinates Arbitrary

O’Neill and Majumdar10 3,4 Bipolar coordinates Arbitrary
Cooley and O’Neill11 1 Matched asymptotics small

Hansford12 1 (approaching) Matched asymptotics small
Jeffrey13 1 Lubrication theory small

O’Neill and Majumdar14 3,4 Lubrication theory small
Jeffrey and Onishi15 2,3,4 (approaching) Lubrication theory small

(b)

Work Problem Type Method Distance
Brunn26 1 Regular perturbation large

Phillips, Khair and Squires28,29 2,4 Reciprocal Theorem Arbitrary
Ardekani, Rangel, and Joseph27 1,2,3,4 (free stream) α1 +α2 = 0 Arbitrary

Our work 1,2,3,4 Lubrication Theory small

TABLE I. Summary of previous theoretical works for binary interaction of spheres in (a) Newtonian fluid and (b) Viscoelastic (second-order)
fluid (refer to figure 1 for a visual representation of the problem types).

and the pressure fields as a summation in terms of successive
powers of De as follows,

u= u(0)+Deu(1)+O(De2), p = p(0)+Dep(1)+O(De2).
(7)

Consequently, the stress tensor can be expressed as T =
T (0)+DeT (1)+O(De2) where,

T (0) =−p(0)I+ γ̇(0)
(1) ,

T (1) =−p(1)I+ γ̇(1)
(1) − (γ̇

(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)). (8)

Here, it is important to note that, for the perturbation analy-
sis to be valid, the Deborah number based on the leading or-
der velocity in the gap and the separation between the spheres
(denoted by Deh) , should be small. Since u(0)r ∼Uε−1/2, this
condition can be expressed as follows,

Deh = Deε
−3/2� 1. (9)

The above equation can be used to determine the relative mag-
nitudes of De and ε for which our analysis is valid. For typical
range of ε ∼ 10−1−10−2, we find that our analysis is valid for
weakly viscoelastic fluids with De� 10−2− 10−3. We now
solve the governing equations of motion (refer to equations
(1)) at successive orders of De.

1. Solution at O(1)

The leading order governing equation of motion is given by,

−∇p(0)+∇
2u(0) = 0. (10)

The boundary conditions at the leading order are given by,

u(Z = H1) =−êz, u(Z = H2) = 0. (11)

The leading order solution which satisfies the boundary con-
ditions is obtained by conducting a perturbation analysis with

the small parameter as the minimum gap between the spheres
denoted by ε (detailed solution can be found in Jeffrey13). The
leading order stream function is thus expressed as,

ψ
(0) = εψ

(0)
0 + ε

2
ψ

(0)
1 + ε

3
ψ

(0)
2 +O(ε4). (12)

For sake of completeness, expressions for ψ
(0)
0 ,ψ

(0)
1 and ψ

(0)
2

are provided in Appendix A.

2. Solution at O(De)

The equations of motion at the first order in Deborah num-
ber are given by,

−∇p(1)+∇
2u(1) = ∇ · (γ̇(0)

(2) +B11γ̇
(0)
(1) · γ̇

(0)
(1)). (13)

The boundary conditions at the first order are given by,

u(1)(Z = H1) = 0, u(1)(Z = H2) = 0. (14)

We represent the first order stream function as a perturbation
expansion series with ε as the small parameter. The stream
function is thus written as,

ψ
(1) = ψ

(1)
0 + εψ

(1)
1 + ε

2
ψ

(1)
2 +O(ε3). (15)

The first order pressure field can be expressed as,

p(1) = ε
−3 p(1)0 + ε

−2 p(1)1 + ε
−1 p(1)2 +O(1). (16)

The pressure scaling of ε−3 is driven by the magnitude of the
terms on the right-hand side of equation (13). Substituting the
series expansions for the stream function and the pressure in
equation (13), we obtain governing equations for the pressure
and the stream function at each successive order which will be
described in detail in the next subsections.



5

Solution for ψ
(1)
0 , p(1)0

We write the governing equations and the boundary condi-
tions at the leading order in ε as follows,

−
∂ p(1)0
∂R

+
∂ 3ψ

(1)
0

∂Z3 =H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êr,−7/2

)
,

(17)

−
∂ p(1)0
∂Z

= H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êz,−4

)
. (18)

Here, H( f ,n) denotes the coefficient of εn in the expression
for f . The above equations are subjected to the following

boundary conditions,

ψ
(1)
0 = 0,

∂ψ
(1)
0

∂Z
= 0 at Z = H1, (19)

ψ
(1)
0 = 0,

∂ψ
(1)
0

∂Z
= 0 at Z = H2. (20)

After solving the above equations of motion, we obtain the
following expressions for the leading order stream function
and the pressure.

ψ
(1)
0 =

1
5(−2+(k−1)R2)6 (6(1+B11)R2 (21)

×(2+(k+1)R2−4Z)(2+R2−2Z)2(kR2−2Z)2),

p(1)0 =− 1
5(−2+(k−1)R2)6 72(2(4+(−7−19k+19k2 +7k3)R6)−2((k−1)R4(−27−53k+80Z +80kZ)

+8(k−1)R2(3−20Z +20Z2))+B11(8+(−9−13k+13k2 +9k3)R6−2(k−1)R4(−17−23k+40Z +40kZ))

+B11(4(k−1)R2(7−40Z +40Z2))). (22)

Solution for ψ
(1)
1 , p(1)1

The equations of motion and the boundary conditions at
O(ε) are given by,

∂ p(1)1
∂R

+
∂ 3ψ

(1)
1

∂Z3 +
∂

∂R

(
1
R

∂ 2ψ
(1)
0

∂R∂Z

)
=

H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êr,−5/2

)
, (23)

−
∂ p(1)1
∂Z
− 1

R
∂ 3ψ

(1)
0

∂R∂Z2 =H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êz,−3

)
.

(24)
The above equations are subjected to the following boundary
conditions,

ψ
(1)
1 = 0,

∂ψ
(1)
1

∂Z
=−R4

8
∂ 2ψ

(1)
0

∂Z2 at Z = H1, (25)

ψ
(1)
1 = 0,

∂ψ
(1)
1

∂Z
=−k3 R4

8
∂ 2ψ

(1)
0

∂Z2 at Z = H2. (26)

We solve the above set of equations using the Wolfram
Mathematica software and detailed expressions for ψ

(1)
1 , p(1)1

are not provided here for the sake of brevity. This solution can
be found in the Supplementary Material.

Solution for ψ
(1)
2 , p(1)2

The equations of motion and the boundary conditions at
O(ε2) are given by,

−
∂ p(1)2
∂R

+
∂ 3ψ

(1)
2

∂Z3 +
∂

∂R

(
1
R

∂ 2ψ
(1)
1

∂R∂Z

)
=

H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êr,−3/2

)
, (27)

−
∂ p(1)2
∂Z
− 1

R
∂ 3ψ

(1)
1

∂R∂Z2 −
1
R

∂

∂R

(
R

∂

∂R

(
1
R

∂ψ
(1)
0

∂R

))
=

H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êz,−2

)
. (28)

The above equations are subjected to the following boundary
conditions,

ψ
(1)
2 =

R8

128
∂ψ

(1)
0

∂Z2 ,
∂ψ

(1)
2

∂Z
=−R4

8
∂ 2ψ

(1)
1

∂Z2 (29)

−R6

16
∂ 2ψ

(1)
0

∂Z2 −
R8

128
∂ 3ψ

(1)
0

∂Z3 at Z = H1,

ψ
(1)
2 =k6 R8

128
∂ψ

(1)
1

∂Z2 ,
∂ψ

(1)
2

∂Z
=−k3 R4

8
∂ 2ψ

(1)
1

∂Z2 (30)

−k5 R6

16
∂ 2ψ

(1)
0

∂Z2 − k6 R8

128
∂ 3ψ

(1)
0

∂Z3 at Z = H2.
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Again, due to the lengthy form of the solutions, detailed
expressions for ψ

(1)
2 , p(1)2 are not provided here for the sake

of brevity. Note that, the solutions at all orders were verified
by substituting the expressions obtained back in the governing
equations of motion. Having obtained the velocity and pres-
sure fields in the vicinity of the spheres, we can conduct an
integration of these variables on the surface of the spheres to
evaluate the hydrodynamic force and torque experienced by
the spheres which is explained in the next section.

B. Hydrodynamic force and torque experienced by the
spheres

The hydrodynamic force and the torque experienced by
the spheres are non-dimensionalized with the scales (Fc =

6πµuca) and (Gc = 8πµuca2), respectively, and can be writ-
ten as a series expansion with Deborah number (De) as the
small parameter as follows,

Fi = F
(0)
i +DeF (1)

i +O(De2), (31)

Gi =G
(0)
i +DeG(1)

i +O(De2). (32)

Here, i = 1,2 denotes spheres S1 and S2, respectively. The
expressions for the leading order force and torque experienced
by the spheres are provided by13 as follows,

F
(0)
i =±

(
1

ε(1+ k)2 −
1+7k+ k2

5(1+ k)3 logε− 1+18k−29k2 +18k3 + k4

21(1+ k)4 εlogε +O(1)
)
êz. (33)

G
(0)
i = 0. (34)

The ± sign signifies the equal and opposite repulsive forces
acting on both the spheres. We can obtain the viscoelastic
contribution to the force and torque by substituting the veloc-
ity and pressure fields in the first order stress tensor (refer to
T (1) in equation (8)) and evaluating the following integrals on
the surface of the sphere,

F
(1)
i =

∫
Si

(
T (1) ·n

)
dS, (35)

G
(1)
i =

∫
Si

(
r×T (1) ·n

)
dS. (36)

Here n is the unit normal vector on the surface of the sphere
and r is the vector oriented from the sphere center to the sur-
face of the sphere. We evaluate the above integrals and obtain
the following expressions for the first order force and torque
experienced by the spheres,

F
(1)
i =±

(
3π(8+3B11)

5(1+ k)2ε2 +
K(k,B11)

ε
+L(k,B11)

logε

ε

)
ez,

(37)

G
(1)
i = 0. (38)

Here,

K(k,B11) =
3(k+1)3(143+8k+B11(8k+98))

350(k+1)4 , (39)

and

L(k,B11) = 3(4B11(k+1)2(13k2−19k+13)

+5(14k4−5k3 +4k2−5k+14))/(350(k+1)3). (40)

Note that, the leading order viscoelastic force contribution
scales as De/ε2 and acts along the line joining the centre of
the spheres. Since the type 1 problem is axisymmetric, we
expect that the first order hydrodynamic torque exerted on
the spheres is zero as seen from equation (38). The con-
tribution of viscoelasticity to the hydrodynamic stress ten-
sor is given by T (1), which is expressed as T (1) = −p(1)I +
γ̇
(1)
(1) − (γ̇

(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)). We can extract the leading or-

der contribution to the first order viscoelastic force acting in
the z−direction by evaluating the expression êz ·T (1) · êz on
the surface of either spheres. The individual terms contribut-
ing to the viscoelastic force can be associated with a first or-
der pressure component p(1), first order viscous stress compo-
nent γ̇(1)

(1)zz = êz · γ̇(1)
(1) · êz, and the polymeric stress component

Qzz = êz · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êz. We now calculate the or-

der of magnitude for each term in the force expression with an
intention to elucidate the key contributions to the viscoelastic
force and obtain the following,

p(1)∼ ε
−3, γ̇

(1)
(1)zz ∼ ε

−2 1
R

∂ 2ψ
(0)
0

∂Z2 (41)

Qzz ∼ ε
−3(2+B11)

1
R2

(
∂ 2ψ

(1)
0

∂Z2

)2

From the above analysis, we find that the first order pressure
and the polymeric stress component vary with the gap be-
tween the spheres as ε−3, while the first order viscous stress
component varies as ε−2. This indicates that the leading or-
der viscoelastic force contribution is only from the first order
pressure and the polymeric stress component and not the first
order viscous stress component. Additionally, the order of
magnitude analysis of the polymeric stress component reveals
that it is the variation of the leading order radial velocity in
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FIG. 3. a) Variation of the leading contribution to the first order
pressure with the radial coordinate R for different values of B11, b)
Variation of the leading contribution to the first order pressure with
the radial coordinate R for different values of k and c) Variation of
the leading contribution to the polymeric stress component (denoted
by Qzz in the manuscript) with the radial coordinate R for different
values of k for the type 1 problem.

the gap between the spheres which is the dominant part of this
component. We also note that, both the first order pressure and
the polymeric stress component vary linearly with B11 (refer
to equations (22) and (41))which is manifested in the force
expression as well (refer to equation (37)).

Since the first order pressure and the polymeric stress in the
gap between the spheres are responsible for the leading order
viscoelastic force, we focus on the spatial variation of these
parameters on the surface of sphere S1. From figure 3a, we
observe that the first order pressure is maximum at the point

on the sphere surface which lies on the common axis of the
spheres. The pressure further decreases and reaches a mini-
mum at a radial distance ∼ 0.5−1ε1/2a before attaining val-
ues close to zero. Figure 3b shows the influence of the radius
difference in the spheres on the first order pressure distribu-
tion. We infer that the radius of the spheres influenced by their
spherical geometry has a significant influence on the pressure,
which implies that considering the spheres as flat surfaces for
obtaining lubrication forces approximates would result in in-
accurate force estimates. More precisely, we find that increas-
ing the size of sphere S2 (decreasing value of k), increases
the magnitude of first order pressure distribution in the gap
between the spheres. Interestingly, the polymeric stress plot-
ted in figure 3c reaches a maximum at radial distances greater
than R = 0, with the radial location for the maximum poly-
meric stress increasing with increasing size of the sphere S2.
The polymeric stress responsible for the type 1 viscoelastic
force can be expressed in a simplified form as follows,

Qzz ∼ ε
−3(2+B11)

2R
((k+1)R2 +2)4 . (42)

The radial distance at which the polymeric stress attains max-
imum can be evaluated by solving the equation, ∂Qzz

∂R = 0. We

find that R =
√

2
3(k+1) , corresponds to the radial distance at

which the polymeric stress is maximum. As the size of sphere
S2 increases (decreasing value of k) and consequently the
polydispersity of the system increases, the polymeric stress
increases in magnitude as noticed from equation (42) and the
radial location for the maximum polymeric stress moves fur-
ther away from the common axis of the spheres. From figure
3a and equation (42), we also infer that increasing the value of
B11 increases the magnitude of the pressure maximum, pres-
sure minimum and the polymeric stress in the gap between the
spheres.

For a sphere approaching a wall in a second-order fluid, we
find the force by substituting k = 0 to be as follows,

F
(1)
wall ∼

3π(8+3B11)

5ε2 ez. (43)

For viscoelastic fluids, −1 < B11 < 1. Consequently, from
equation (37), we infer that the direction of the leading order
viscoelastic force for sphere S1 is in the positive z− direction
which indicates a repulsive force. Table II shows the value
of B11 and the corresponding viscoelastic force contribution
for different viscoelastic models used in the literature47. As
noted in equation (9), the results of this study are valid if the
condition, De� ε3/2 is satisfied. This limits the utility of
this study in practice. However, there are practical scenarios
where the results of this study are valid. In numerical sim-
ulation schemes such as Stokesian Dynamics, it is common
to apply a hard core repulsion potential between the spheres,
for radial distances larger than the hydrodynamic radius of the
spheres. This becomes pertinent for systems with charge sta-
bilization such as charged colloids, where the repulsion forces
emerge from the overlap of the electric double layers. Another
example concerns rough colloidal particles, where the particle
roughness places a lower limit on the interparticle separation.
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Model B11 DeF1
1

FENE Dumbbells 0 24π

20
De
ε2

Multibead rod (N = 2) -0.28 21.48π

20
De
ε2

Multibead rod (N = 6) 0.016 24.5π

20
De
ε2

Multibead rod (N = 70) 0.17 25.5π

20
De
ε2

Bead-rod chain polymer melt 0.34 27π

20
De
ε2

TABLE II. Comparison of leading order viscoelastic force magnitude
for different viscoelastic fluid models47, for spheres of equal sizes
(k = 1).

FIG. 4. First order non-dimensional force acting on the sphere S1 as
a function of the separation distance between the spheres, evaluated
using the reciprocal theorem approach.

In such examples, the radial distance is restricted from assum-
ing values lower than a specific value due to constraints im-
posed by the system. The results of this study are valid for
such examples and can be used to study the dynamics of in-
teracting particles placed in a viscoelastic fluid. Additionally,
we note that, the viscoelastic force expressions obtained in
this study can provide an alternative repulsive term for non-
colloidal spheres immersed in weakly viscoelastic matrices
with potential applications in computational methods used to
predict the shear rheology of suspensions. For example, the
hydrodynamic force expression obtained for the type 1 prob-
lem can be used to model the interparticle repulsive forces
which are essential in discontinuous shear thickening (DST)
model of Newtonian suspensions. The effect of this residual
viscoelasticity can become important at very low separations.

C. Reciprocal theorem approach

Here, we use the Lorentz reciprocal theorem to determine
the first order force acting on the sphere S1. This method
involves the calculation of the desired integrated quantities
without requiring the full description of primary variables
such as velocity and pressure48. Hence, by applying the re-
ciprocal theorem for our problem, the knowledge of the flow
field induced by two approaching spheres in a Newtonian fluid
will be sufficient to determine the first order viscoelastic con-
tribution to the force and torque. By comparing the results

obtained from this approach, we seek to validate the method
outlined in the previous sections. For applying the reciprocal
theorem, we choose the auxillary problem to be that of sphere
S1 moving towards the stationary sphere S2 in a Newtonian
fluid. The solution of this problem is given by Brenner7. Af-
ter applying the reciprocal theorem, we obtain the following
integral expressions for the first order force acting on sphere
S1 (derivation is provided in Appendix A).

F1 =
∫

V f

(
B(0)+B11A

(0) ·A(0)
)

: ∇u(0)êz. (44)

Here, u(0) denotes the fluid velocity field for two approach-
ing spheres in a Newtonian fluid as given by Brenner7 and
Vf is the fluid volume enclosed by the two spheres. We note
that the above expression can be used to evaluate the force
acting on spheres with arbitrary separation. We substitute the
velocity field and evaluate the above integral in a bispherical
coordinate system, similar to the one used in Brenner7. Figure
4 shows the variation of the first order viscoelastic contribu-
tion to the force with the spheres separation. Table III shows
a comparison between the force acting on the spheres by the
two methods described in the manuscript for various values
of the separation distance between the spheres for spheres of
same sizes and spheres of unequal sizes with the radius dif-
fering by a factor of 2. We observe that the lubrication the-
ory provides better estimates as the separation between the
spheres reduces, as expected. For spheres separated less than
0.001 times the sphere radius, the error is less than 0.001% for
spheres of equal sizes, while it is less than 0.06% for spheres
of unequal sizes. We thus conclude that the lubrication the-
ory provides accurate force estimates and the results of our
work can be used to support computer simulations dedicated
to solving problems involving interaction of multiple spheres
immersed in a viscoelastic fluid. The lubrication method uti-
lized in this study assumes that for small sphere gaps, only
the flow field within the thin gap between the spheres (i.e, the
inner solution) contributes to the hydrodynamic forces. The
reciprocal theorem approach, however, considers the contri-
bution of the entire fluid bounded by the spheres (i.e, the in-
ner and outer solutions). Hence, this validation also confirms
that, for a non-Newtonian fluid with weak viscoelasticity and
small separation between the spheres, only the inner solution
contributes to the viscoelastic force and the outer solution con-
tribution can be neglected. Here, we note that, even if the
outer solution does not contribute to the hydrodynamic forces
and torques, the contribution of the outer solution to the flow
field might be useful for other physical applications, such as
propulsion of swimmers immersed in a viscoelastic fluid at
low Deborah numbers39.

III. PROBLEM FORMULATION (TYPE 2)

Figure 5 shows sphere S1 rotating with an angular veloc-
ity Ω about the line joining the centers of both the spheres
and sphere S2 stationary. We use the same variables as before
to denote the radius of the spheres and the distance between
the spheres. We note that, the governing equations for this
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(a)

ε Lubrication Reciprocal error %
0.5 5.667 7.049 24.3
0.1 96.25 101.425 5.3

0.05 359.154 365.958 1.89
0.01 8414.91 8425.51 0.12
0.005 33346.3 33358.5 0.03
0.001 826923 826939 0.001

(b)

ε Lubrication Reciprocal error %
0.5 9.00 8.57 4.7
0.1 165.74 161.22 2.72
0.05 627.75 616.15 1.8
0.01 14906 14817.6 0.5

0.005 59174.6 58975.4 0.3
0.001 1469000 1468000 0.06

TABLE III. Comparison of the vertical force |F (1)|/2π acting on the spheres by two different methods for the type 1 problem (using lubrication
theory and using reciprocal theorem) for(a) spheres of equal sizes (k = 1) and (b) spheres of unequal sizes (k = 1/2).

problem are the same as that of the type 1 problem (refer to
equations (1)). We use the velocity scale uc = Ωa to non-
dimensionalize the equations of motion. We solve the equa-
tions of motion in the stretched coordinates (R,Z) as demon-
strated for the type 1 problem.

A. Solution

Here, we again use the regular perturbation scheme to ex-
press the velocity and the pressure fields in terms of the Deb-
orah number as follows,

u= u(0)+Deu(1)+O(De2), p = p(0)+Dep(1)+O(De2).
(45)

We now proceed in a manner similar to the one adopted for the
type 1 problem and solve for the velocity and pressure fields
upto the first order in De.

1. Solution at O(1)

The leading order governing equation of motion is given by,

−∇p(0)+∇
2u(0) = 0. (46)

The boundary conditions at the leading order are as follows,

u(Z = H1) = êz×r, u(Z = H2) = 0. (47)

Here, r is the position vector from the center of the sphere
to the sphere surface. The leading order solution which satis-
fies the boundary conditions is obtained by using a lubrication
theory approach for ε � 1 as follows15,

u(0) = ε
1/2 (RZ− kR3/2

)
(H1−H2)

−1êθ . (48)

2. Solution at O(De)

The equations of motion at the first order in Deborah num-
ber are given as follows,

−∇p(1)+∇
2u(1) = ∇ · (γ̇(0)

(2) +B11γ̇
(0)
(1) · γ̇

(0)
(1)). (49)





   

 
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





FIG. 5. Spheres immersed in a second-order fluid, with sphere S1
rotating with an angular velocity Ωêz and sphere S2 stationary

The tensors γ̇(1), γ̇(2) are obtained by substituting the leading
order solution described in equation (48). The boundary con-
ditions are given by,

u(1)(Z = H1) = 0, u(1)(Z = H2) = 0. (50)

After substituting the leading order solution in equation (49),
we find that the surface stresses have components only in the
radial and the vertical directions which causes the azimuthal
component of the first order velocity to be zero. Hence, due
to the expected azimuthal symmetry of the first order flow, we
can express the velocity field in terms of the stream function
(refer to equation (6)). We express the stream function and the
pressure as a perturbation expansion series in ε as follows,

ψ
(1) = ε

3
ψ

(1)
0 +O(ε4) (51)

p(1) = ε
−1 p(1)0 +O(1). (52)
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Solution for ψ
(1)
0 , p(1)0

We write the governing equations and the boundary condi-
tions at the leading order in ε as follows,

−
∂ p(1)0
∂R

+
∂ 3ψ

(1)
0

∂Z3 =H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êr,−1/2

)
,

(53)

−
∂ p(1)0
∂Z

= H
(

∇ · (γ̇(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)) · êz,−1

)
. (54)

As mentioned previously, H( f ,n) denotes the coefficient of
εn in the expression for f . The above equations are subjected
to the following boundary conditions,

ψ
(1)
0 = 0,

∂ψ
(1)
0

∂Z
= 0 at Z = H1. (55)

ψ
(1)
0 = 0,

∂ψ
(1)
0

∂Z
= 0 at Z = H2. (56)

We solve the above equations and obtain the expressions for
the stream function and the pressure for the Type 2 problem
are obtained as follows,

ψ
(1)
0 =− 1

60)(−2+(k−1)R2)5 R2(2+R2−2Z)2(kR2−2Z)2k4R6 + k2R2(R2(8−3Z)−14(Z−1))

+2B11(−4−4(k−1)R2 +(k−1)2R4)(−2−R2 + k2R2 + k(Z−3)−Z)+ k3R4(Z−2R2−12)

−(R4 +14R2−8)(2+R2 +Z)+ k(44+2R6−8Z +R4(20+3Z)+R2(6+28Z))), (57)

p(1)0 =
4−6(k−1)R2 +B11(8−6R2(k−1))

(k−1)(−2+R2(k−1))2 . (58)

We now proceed to evaluate the first order viscoelastic contri-
bution to the hydrodynamic force and torque experienced by
the spheres for the type 2 problem.

B. Hydrodynamic Force and Torque experienced by the
spheres

We express the hydrodynamic force and the torque experi-
enced by the spheres as a series expansion with Deborah num-
ber (De) as the small parameter as follows,

Fi = F
(0)
i +DeF (1)

i +O(De2), (59)

Gi =G
(0)
i +DeG(1)

i +O(De2). (60)

For the type 2 problem, the leading order force and torque
experienced by the spheres are provided by13 as follows,

F
(0)
i = 0. (61)

G
(0)
1 =−8π

(
P(3,(1+ k)−1)

(1+ k)3 − 1
2(1+ k)2 εlogε

)
êz +O(ε),

(62)

G
(0)
2 =−8π

(
k3P(3,1)
(1+ k)3 −

k3

2(1+ k)2 εlogε

)
êz +O(ε).

(63)

Here, the function P(a1,b1) is defined as,

P(a1,b1) =
∞

∑
n=0

(n+b1)
−a1 . (64)

We obtain the first order force and torque by substituting the
velocity and pressure fields in the first order stress tensor and
evaluating the surface integrals written in equations (35) and
(36). The following are the obtained expressions,

F
(i)
1 =±

(
(1−B11)

(k+1)2 logε +O(εlogε)

)
êz. (65)

G
(1)
i = 0. (66)

The± sign indicates that the spheres experience equal and op-
posite forces. Since the value of B11 lies between −1 and 1,
the first order viscoelastic forces experienced by the spheres
are always repulsive in nature. This observation agrees with
the study by Binagia and Shaqfeh39 which noted that, a model
swimmer consisting of two counter-rotating nearly touching
spheres immersed in a viscoelastic fluid experiences equal and
opposite forces on both the spheres. The viscoelastic force
varies as Delogε , which grows slowly with decreasing ε as
compared to the De/ε2 variation observed for the type 1 prob-
lem. An order of magnitude analysis reveals that only the first
order pressure and the polymeric stress component contribute
to the leading order viscoelastic force, and not the first order
viscous stress component. Based on this analysis, the lead-
ing contribution to the vertical component of the stress tensor
acting on sphere S1 can be written as follows,

êz ·T (1) · êz =−
De
ε

(
p(1)0 +(2+B11)

R
H1−H2

)
. (67)
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FIG. 6. a) Variation of the leading contribution to the first order
pressure with the radial coordinate R for different values of B11, b)
Variation of the leading contribution to the first order pressure with
the radial coordinate R for different values of k and c) Variation of
the leading contribution to the polymeric stress component (denoted
by Qzz in the manuscript) with the radial coordinate R for different
values of k for the type 2 problem.

From the above equation, we observe that, the first order pres-
sure and the polymeric stress vary as ε−1 in the gap between
the spheres and are responsible for the viscoelastic force. The
first order pressure is independent of the vertical coordinate
(refer to equation (58)) and is only dependent on the radial
distance away from the common axis of the spheres. Figure
6a shows the variation of the first order pressure with the radial
coordinate on the surface of sphere S1. We observe a mono-
tonic trend for the pressure variation which is in stark contrast
with the pressure variation for the type 1 problem (refer to

3a). As B11 varies from -1 to 1, we observe that the pressure
changes sign from positive to negative. Additionally, the pres-
sure magnitude increases with the value of B11 and also as the
size of the sphere S2 is increased (refer to figures 6a and 6b).
The polymeric stress in the gap between the spheres is shown
in figure 6c and can be written in a simplified form as follows,

Qzz ∼ ε
−1(2+B11)

2R
((k+1)R2 +2)2 . (68)

Interestingly, we note that the functional form of the poly-
meric stress responsible for the viscoelastic forces are similar
for the type 1 and the type 2 problem (refer to equation (42)),
the only difference being in the exponent of the denominator.
We evaluate the radial location at which the polymeric stress

is maximum to be R =
√

2
k+1 .

For a sphere rotating close to a plane wall in a direction
which is perpendicular to the wall, the force is obtained by
substituting k = 0 as follows,

F
(1)
wall ∼ (1−B11)logεêz (69)

For the type 2 problem, reciprocal theorem was also used
to determine the force acting on the spheres. This approach
is outlined in detail in appendix B. However, for small sphere
separations (ε � 1), the integral did not converge and hence
the results are not documented in this manuscript.

IV. PROBLEM FORMULATION (TYPE 3)

Figure 7 shows a schematic representation of the type
3 problem. Sphere S1 rotates with an angular velocity Ω

about an axis perpendicular to the line joining the centers
and passing through the sphere center, while the sphere S2
is stationary. We use the velocity scale uc = Ωa to non-
dimensionalize the equations of motion and solve the equa-
tions in the stretches coordinates (R,Z) as defined in the previ-
ous sections. We again use a perturbation series solution with
the Deborah number (De) as the small parameter and evalu-
ate the velocity and the pressure fields in the vicinity of the
spheres. As the motion of the spheres for this problem type is
asymmetric, a stream function approach cannot be used and
the continuity equation has to be solved explicitly. For the
sake of brevity, we first provide the leading order solution here
and proceed directly to the force calculation part without writ-
ing the governing equations and boundary conditions for the
first order solution as the methodology remains similar to that
outlined for the previous two types of problems.

A. Solution

The leading order velocity field for the type 3 problem, can
be expressed in the cylindrical coordinate system as u(0) =
(U (0)+O(ε),V (0)+O(ε),ε1/2W (0)+O(ε3/2)). The expres-
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FIG. 7. Spheres immersed in a second-order fluid, with sphere S1
rotating with an angular velocity Ωêr and sphere S2 stationary

sions for U (0),V (0) are given by14 as follows,

U (0) =
1

5(−2+(−k−1)R2)3 (5k3R6 + k2R4(2+R2 +28Z)

−4kR2(−8+R4 +2Z−9Z2−R2(2+5Z))+

4Z(16−2R4−6Z +R2(4+9Z))), (70)

V (0) =
1

5(−2+(−k−1)R2)2 (5k2R4 +4Z(2+R2 +3Z)

+2kR2(2+R2 +8Z)), (71)

The expression for W (0) can be derived by using the above
expressions14. The first order solution u(1) is obtained using a
similar methodology as outlined in the previous sections, the
derivation of which is not provided here to avoid repetition of
text. Next, we solve for the force and the torque experienced
by the spheres for the type 3 problem.

B. Hydrodynamic force and torque experienced by the
spheres

The expressions for the leading order hydrodynamic force
and torques acting on the spheres is given by O’Neill and Ma-
jumdar10 as follows,

F
(0)
1 =

(
2
15

1+4k
(1+ k)2 logε +O(1)

)
êr. (72)

F
(0)
2 =−

(
2

15
k2(1+4k)
(1+ k)2 logε +O(1)

)
êr. (73)

G
(0)
1 =−

(
2
5

1
(1+ k)

logε +O(1)
)
êr. (74)

G
(0)
2 =

(
1

10
k2

(1+ k)
logε +O(1)

)
êr. (75)

The viscoelastic contribution to the first order force and the
torque is obtained by integrating the stress tensor on the sur-
face of the sphere using equations (35) and (36) as follows,

F
(1)
1 =−

(
28(2+B11)π

5(1+ k)ε
+O(1)

)
êz. (76)

F
(1)
2 =−

(
4(2+B11)π

5(1+ k)ε
+O(1)

)
êz. (77)

G
(1)
i = 0. (78)

Note that, the introduction of viscoelasticity gives rise to a lift
force which is perpendicular to the direction of motion of the
spheres. We also find that the lift force on sphere S1 acts in the
negative z− direction which implies that the viscoelastic lift
forces on the spheres are attractive in nature. Additionally, the
viscoelastic contribution to the torque acting on the spheres is
zero. For sphere S1 rotating along an axis parallel to a plane
wall, the force scales as following,

F
(1)
wall ∼−

28(2+B11)π

5ε
êz. (79)

For asymmetric problems with small sphere separations, the
use of reciprocal theorem to evaluate the forces acting on the
spheres is computationally intractable owing to the increasing
complexity of the explicit expression of the velocity field sur-
rounding the spheres with decreasing sphere separations. For
the sake of completeness, we have provided the force expres-
sion obtained using the reciprocal theorem in Appendix B for
both the type 3 and type 4 problems.

V. PROBLEM FORMULATION (TYPE 4)

Figure 8 shows the schematic representation of the Type 4
problem. Sphere S1 is translating with a velocity U which is
oriented perpendicular to the line joining the centers, while
the sphere S2 is stationary.

A. Solution

The leading order velocity for the type 4 problem can
be expressed in the cylindrical coordinate system as u(0) =
(U (0)+O(ε),V (0)+O(ε),ε1/2W (0)+O(ε3/2)). The expres-
sions for U (0),V (0) are given by14 as follows,

U (0)=
1

5(−k−1)(−2+(−k−1)R2)3 (5k4R6 +

4Z(4+7R4 +R2(16−9Z)+6Z)+2k3R4(1+3R2 +14Z)

+2k(7R6 +4(8−3Z)Z +2R4(8+3Z)+R2(4+52Z))

+k2(15R6 +2R4(23+6Z)+4R2(8−2Z +9Z2))), (80)
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FIG. 8. Spheres immersed in a second-order fluid, with sphere S1
translating with a velocity U êr and sphere S2 stationary

V (0) =
1

(−k−1)5(−2+(−k−1)R2)2 (5k3R4

+4Z(8+4R2−3Z + k2R2(4+7R2 +16Z)

+4k(2R4 +2R2(2+Z)+Z(2+3Z))).

For the sake of brevity, we now directly proceed to the force
calculation without explicitly writing the solution for the first
velocity velocity and pressure.

B. Hydrodynamic force and torque experienced by the
spheres

The expressions for the leading order hydrodynamic force
and torque acting on the spheres is given by O’Neill and Ma-
jumdar14 as follows,

F
(0)
1 =−

(
4
15

2+ k+2k2

(1+ k)3 logε +O(1)
)
êr. (81)

F
(0)
2 =

(
|k| 4

15
2+ k+2k2

(1+ k)3 logε +O(1)
)
êr. (82)

G
(0)
1 =

(
1

10
1+4k
(1+ k)2 logε +O(1)

)
êr. (83)

G
(0)
2 =−

(
|k| 1

10
4+ k

(1+ k)2 logε +O(1)
)
êr. (84)

The viscoelastic contribution to the first order force and the
torque is obtained as follows,

F
(1)
1 =−

(
4(2+B11)(1+2k+7k2)π

5(1+ k)3ε
+O(1)

)
êz. (85)
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FIG. 9. Variation of the leading contribution to the polymeric stress
component (denoted by Qzz in the manuscript) with the azimuthal
coordinate θ for different values of k for the a) type 3 problem and
b) type 4 problem

F
(1)
2 =−

(
4(2+B11)(7+2k+ k2)π

5(1+ k)3ε
+O(1)

)
êz. (86)

G
(1)
i = 0. (87)

We again find that the first order torque experienced by
both the spheres is zero and the introduction of viscoelastic-
ity causes the spheres to experience a lift force. The leading
order viscoelastic force varies as ∼ De/ε , which is similar to
that observed for the type 3 problem. Additionally, the force
acts in the negative z-direction for sphere S1, which signifies
an attractive first order viscoelastic force. For sphere S1 trans-
lating parallel to a plane wall, the force scales as following,

F
(1)
wall ∼−

4(2+B11)π

5ε
êz. (88)

For the type 3 and the type 4 problem, we note that only the
polymeric stress contribution is responsible for the leading or-
der viscoelastic lift forces acting on the spheres since the first
order viscous stress component and the first order pressure are
an order of magnitude smaller than the polymeric stress. The
polymeric stress component responsible for the viscoelastic
force acting on the sphere S1, for the type 3 problem can be
expressed in a simplified form as follows,

Qzz = ε
−2(2+B11)( f (R)+g(R)cos2θ). (89)
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The functional form of the above equation remains the same
for the type 4 problem, with the functions f (R),g(R) repre-
sented as f1(R),g1(R). The above expression reveals that the
polymeric stress varies with the azimuthal angle as ∼ cos2θ .
This explains the zero first order hydrodynamic torque experi-
enced by the sphere at this order, sinceQzz(θ) =Qzz(θ +π),
which results in equal and opposite torques due to the poly-
meric stress in the two half planes canceling each other. Fig-
ures 9a and 9b show the variation of the polymeric stress with
the azimuthal angle θ for the type 3 and the type 4 problems,
respectively. We infer that, for both the asymmetric problem
types,

∫ R
0 QzzdR > 0 which implies that the radially averaged

polymeric stress experienced by sphere S1 is non-zero which
consequently explains the existence of a non-zero viscoelastic
lift force for both type 3 and type 4 problems.

VI. CONCLUSION

In this work, we theoretically investigate the hydrodynamic
forces and moments acting on two spheres which are im-
mersed in a second-order fluid. The spheres are separated
by a distance which is much smaller than the radius of ei-
ther spheres. We use a regular perturbation approach with the
Deborah number (De) as the small parameter in our study. The
analysis presented in this manuscript is valid for weakly vis-
coelastic fluids with small Deborah numbers (∼ 10−2−10−3).
We show that even for weakly viscoelastic fluids, the effect
of the viscoelasticity becomes important for low interparticle
separations by contributing to the hydrodynamic force experi-
enced by the particles.

We divide the problem at hand into four sub-classes, where
each class is dedicated towards studying translation or rota-
tional motion of the spheres either along the line joining the
centers or the axis which is oriented perpendicular to the line
joining the centers. For each of the sub-classes, we solve for
the first order velocity and pressure fields in the gap between
the spheres. Subsequently, we use the first order solution to
obtain the viscoelastic contribution to the force and the torque
experienced by the spheres. We provide the first order force
and torque expressions for all the sub-classes, where the lead-
ing order contribution contains terms which are singular with
respect to the sphere separation. We find that introduction of
viscoelasticity does not generate any additional torque, how-
ever the viscoelastic force is non-zero and acts along the line
joining the centers of both the spheres. Table IV shows the
summary of the first order forces acting on the sphere for all
the sub-classes. An important conclusion which can be drawn
from this table is that, the magnitude of the viscoelastic force
is maximum for the type 1 problem, where the force scales as
De/ε2. For the axisymmetric problems, the first order pres-
sure and the polymeric stress are responsible for the leading
order viscoelastic force acting on the spheres. The polymeric
stress is maximum at a radial coordinate which is away from
the common axis from the spheres and is dependent on the
radius ratio of the two spheres. Both the pressure and the
polymeric stress increase as the viscoelastic parameter B11,
which depends on the first and second normal stress coeffi-

cients, is increased. The viscoelastic force varies as De/ε2

for spheres approaching each other and as Delogε for spheres
rotating about their common axis. For asymmetric problems,
only the polymeric stress is responsible for the leading order
viscoelastic force acting on the spheres. The polymeric stress
causes a viscoelastic lift force to act on the spheres. The lift
force varies as De/ε for both the cases of spheres translating
and rotating perpendicular to their common axis.

Additionally, we validate our method with the reciprocal
theorem approach for the type 1 axisymmetric sub-class, and
find the force estimates to be accurate for small sphere sep-
arations. For problems involving suspension of spheres in a
viscoelastic fluid, the force expressions for small sphere sep-
arations are valuable due to the computational difficulties en-
countered in this regime. We thus propose that, the solutions
provided in this manuscript be supplemented with the relevant
computational technique to accurately capture the dynamics
of spheres suspended in a viscoelastic fluid.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete expres-
sions of ψ

(1)
1 and p(1)1 .
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Appendix A: For Type 1 problem

Leading order solution:
The leading order solution for the stream function for the
type 1 problem can be expressed as ψ(0) = εψ

(0)
0 + ε2ψ

(0)
1 +

ε3ψ
(0)
2 +O(ε4), where ψ

(0)
0 ,ψ

(0)
1 and ψ

(0)
2 are given by,

ψ
(0)
0 = A0Z3 +B0Z2 +C0Z +D0, (A1)

ψ
(0)
1 =− 1

10
Z5YA0−

1
6

Z4Y B0 +A1Z3 +B1Z2 +C1Z +D1,

(A2)

ψ
(0)
2 =

1
280

Z7Y 2A0 +
1

120
Z6Y 2B0−

1
10

Z5(YA1 +
1

12
Y 2C0)

−1
6

Z4(Y B1 +
1
4

Y 2D0)+A2Z3 +B2Z2 +C2Z +D2. (A3)

Here A0,B0,C0,D0,A1,B1,C1,D1,A2,B2,C2,D2 are functions
of R and Z, the detailed form of which is provided in Jeffrey13

and the operator Y is defined as ∂ 2

∂R2 − 1
R

∂

∂R .

Application of reciprocal theorem to find the first order
force:
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1 32 4

Type Viscoelastic force Direction Sphere S1 near wall
Sphere S1 Sphere S2

1 3Deπ(8+3B11)
5(1+k)2ε2

3Deπ(8+3B11)
5(1+k)2ε2 Repulsive 3Deπ(8+3B11)

5ε2

2 (1−B11)
(1+k)2 Delogε

(1−B11)
(1+k)2 Delogε Repulsive (1−B11)Delogε

3 − 28De(2+B11)π
5(1+k)ε − 4De(2+B11)π

5(1+k)ε Attractive − 28De(2+B11)π
5ε

4 − 4De(2+B11)(1+2k+7k2)π
5(1+k)3ε

− 4De(2+B11)(7+2k+k2)π
5(1+k)3ε

Attractive − 4De(2+B11)π
5ε

TABLE IV. Viscoelastic contribution to the force acting on the spheres immersed in a second- order fluid along with their direction. Note that
the force acts along the line joining the sphere centers.

For applying the reciprocal theorem, we define the auxillary
problem to be that of the sphere S1 approaching the stationary
sphere S2 with a unit velocity. We define the corresponding
stress field and velocity fields by S∗,v∗, respectively. We
begin by writing the following equation which uses the
divergence free property of the stress tensors T (1) and S∗,∫

V f

(
v∗ · (∇ ·T (1))−u(1) · (∇ ·S∗)

)
dV = 0, (A4)

Consequently, we can write the following,∫
V f

∇·
(
v∗ ·T (1)−u(1) ·S∗

)
dV =∫

V f

(
T (1) : ∇v∗−S∗ : ∇u(1)

)
dV, (A5)

We now use the divergence theorem to convert the volume
integral on the left to a surface integral and use the boundary
conditions on the sphere surfaces as well the definition of the
surface stress tensor T (1)(refer to equation (8)) to obtain the
force acting on the sphere S1 as follows,

F1 =
∫

V f

(
γ̇
(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)

)
: ∇u(0)êz. (A6)

For the type 1 problem, we evaluate the above expression by
substituting the velocity field obtained for sphere S1 translat-
ing towards a stationary sphere S2, with both the spheres im-
mersed in a Newtonian fluid7.

Appendix B: For Type 2,3,4 problems

Application of reciprocal theorem to find the first order force:

For applying the reciprocal theorem for the type 2,3 and
4 problems, we choose the auxillary problem to be that of
sphere S1 translating with a velocity of −êz and sphere S2

stationary. The solution of this problem is given by Brenner7

and is denoted by u(0). After applying the reciprocal theorem,
we obtain the following expression for the force acting on the
sphere S1,

F1 =
∫

V f

(
γ̇
(0)
(2) +B11γ̇

(0)
(1) · γ̇

(0)
(1)

)
: ∇u(0)êz. (B1)

Here, the expression inside the round brackets is evaluated
by substituting the relevant solutions for sphere S1 immersed
in a Newtonian fluid and rotating with an angular velocity
of êz, rotating with an angular velocity of êr and translat-
ing with a linear velocity of êr for type 2, 3 and 4 problems,
respectively15,49.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are avail-
able within the article.

1L. Leal, “Particle motions in a viscous fluid,” Annu. Rev. Fluid Mech. 12,
435–476 (1980).

2A. Karimi, S. Yazdi, and A. Ardekani, “Hydrodynamic mechanisms of cell
and particle trapping in microfluidics,” Biomicrofluidics 7, 021501 (2013).

3H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small
devices: microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech. 36,
381–411 (2004).

4D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous iner-
tial focusing, ordering, and separation of particles in microchannels,” Proc.
Natl. Acad. Sci. 104, 18892–18897 (2007).

5A. Raffiee, A. Ardekani, and S. Dabiri, “Numerical investigation of elasto-
inertial particle focusing patterns in viscoelastic microfluidic devices,” J
Nonnewton Fluid Mech 272, 104166 (2019).

6M. Stimson and G. Jeffery, “The motion of two spheres in a viscous fluid,”
Proc. R. Soc. Lond. 111, 110–116 (1926).

7H. Brenner, “The slow motion of a sphere through a viscous fluid towards
a plane surface,” Chem.Eng.Sci. 16, 242–251 (1961).

8A. Maude, “End effects in a falling-sphere viscometer,” Br. J. Appl. Phys.
12, 293 (1961).

9G. Jeffery, “On the steady rotation of a solid of revolution in a viscous
fluid,” PLMS 2, 327–338 (1915).



16

10M. O’Neill and S. Majumdar, “Asymmetrical slow viscous fluid motions
caused by the translation or rotation of two spheres. part i: The determi-
nation of exact solutions for any values of the ratio of radii and separation
parameters,” Zeitschrift für angewandte Mathematik und Physik ZAMP 21,
164–179 (1970).

11M. Cooley and M. O’Neill, “On the slow motion generated in a viscous fluid
by the approach of a sphere to a plane wall or stationary sphere,” Mathe-
matika 16, 37–49 (1969).

12R. Hansford, “On converging solid spheres in a highly viscous fluid,” Math-
ematika 17, 250–254 (1970).

13D. Jeffrey, “Low-reynolds-number flow between converging spheres,”
Mathematika 29, 58–66 (1982).

14M. O’Neill and S. Majumdar, “Asymmetrical slow viscous fluid motions
caused by the translation or rotation of two spheres. part ii: Asymp-
totic forms of the solutions when the minimum clearance between the
spheres approaches zero,” Zeitschrift für angewandte Mathematik und
Physik ZAMP 21, 180–187 (1970).

15D. Jeffrey and Y. Onishi, “The forces and couples acting on two nearly
touching spheres in low-reynolds-number flow,” Zeitschrift für angewandte
Mathematik und Physik ZAMP 35, 634–641 (1984).

16F. M. Leslie and R. I. Tanner, “The slow flow of a visco-elastic liquid past
a sphere,” Q. J. Mech. Appl. Math. 14, 36–48 (1961).

17B. Caswell and W. H. Schwarz, “The creeping motion of a non-newtonian
fluid past a sphere,” J.Fluid.Mech. 13, 417–426 (1962).

18M. D. Chilcott and J. M. Rallison, “Creeping flow of dilute polymer solu-
tions past cylinders and spheres,” J .Nonnewton .Fluid .Mech 29, 381–432
(1988).

19B. Caswell, “The effect of finite boundaries on the motion of particles in
non-newtonian fluids,” Chem.Eng.Sci. 25, 1167–1176 (1970).

20B. Caswell, “The stability of particle motion near a wall in newtonian and
non-newtonian fluids,” Chem.Eng.Sci. 27, 373–389 (1972).

21B. Ho and L. Leal, “Migration of rigid spheres in a two-dimensional uni-
directional shear flow of a second-order fluid,” J.Fluid.Mech, 76, 783–799
(1976).

22L. E. Becker, G. H. McKinley, and H. A. Stone, “Sedimentation of a sphere
near a plane wall: weak non-newtonian and inertial effects,” J .Nonnewton
.Fluid .Mech 63, 201–233 (1996).

23J. Feng, P. Huang, and D. Joseph, “Dynamic simulation of sedimentation
of solid particles in an oldroyd-b fluid,” J.Non-Newton.Fluid. 63, 63–88
(1996).

24P. Singh and D. Joseph, “Sedimentation of a sphere near a vertical wall in
an oldroyd-b fluid,” J.Non-Newton.Fluid. 94, 179–203 (2000).

25A. Ardekani, R. Rangel, and D. Joseph, “Motion of a sphere normal to a
wall in a second-order fluid,” J.Fluid.Mech. 587, 163–172 (2007).

26P. Brunn, “Interaction of spheres in a viscoelastic fluid,” Rheol.Acta 16,
461–475 (1977).

27A. Ardekani, R. Rangel, and D. Joseph, “Two spheres in a free stream of a
second-order fluid,” Phys. Fluids 20, 063101 (2008).

28R. Phillips, “Dynamic simulation of hydrodynamically interacting spheres
in a quiescent second-order fluid,” J.Fluid.Mech. 315, 345–365 (1996).

29A. Khair and T. Squires, “Active microrheology: a proposed technique to
measure normal stress coefficients of complex fluids,” Phys.Rev.Lett. 105,
156001 (2010).

30A. Vázquez-Quesada and M. Ellero, “Analytical solution for the lubrication
force between two spheres in a bi-viscous fluid,” Phys.Fluids 28, 073101

(2016).
31A. Vázquez-Quesada, N. J. Wagner, and M. Ellero, “Normal lubrication

force between spherical particles immersed in a shear-thickening fluid,”
Phys.Fluids 30, 123102 (2018).

32R. Tanner, “A short-bearing solution for pressure distribution in a non-
newtonian lubricant,” J. Appl. Mech-T. ASME. (1964).

33Y. Hsu, “Non-newtonian flow in infinite-length full journal bearing,” J.
Lubr. Technol-T. ASME. (1967).

34S. Wada and H. Hayashi, “Hydrodynamic lubrication of journal bearings
by pseudo-plastic lubricants: part 1, theoretical studies,” Bull.JSME. 14,
268–278 (1971).

35J. Tichy, “Non-newtonian lubrication with the convected maxwell model,”
J. Trib. (1996).

36F. T. Akyildiz and H. Bellout, “Viscoelastic lubrication with phan-thein-
tanner fluid (ptt),” J. Trib. 126, 288–291 (2004).

37D. Gwynllyw and T. Phillips, “The influence of oldroyd-b and ptt lubricants
on moving journal bearing systems,” J.Non-Newton.Fluid. 150, 196–210
(2008).

38A. Abbaspur, M. Norouzi, P. Akbarzadeh, and S. A. Vaziri, “Analysis
of nonlinear viscoelastic lubrication using giesekus constitutive equation,”
Proc. Inst. Mech. Eng. J , 1350650120944280 (2020).

39J. P. Binagia and E. S. Shaqfeh, “Self-propulsion of a freely suspended
swimmer by a swirling tail in a viscoelastic fluid,” Phys.Rev.Fluids 6,
053301 (2021).

40J. A. PPuente-Velázquez, F. A. Godínez, E. Lauga, and R. Zenit, “Vis-
coelastic propulsion of a rotating dumbbell,” Microfluid. Nanofluidics 23,
1–7 (2019).

41O. S. Pak, L. Zhu, L.and Brandt, and E. Lauga, “Micropropulsion and
microrheology in complex fluids via symmetry breaking,” Phys.Fluids 24,
103102 (2012).

42M. Yang and E. S. Shaqfeh, “Mechanism of shear thickening in suspensions
of rigid spheres in boger fluids. part i: Dilute suspensions,” J.Rheol 62,
1363–1377 (2018).

43M. Yang and E. S. Shaqfeh, “Mechanism of shear thickening in suspensions
of rigid spheres in boger fluids. part ii: Suspensions at finite concentration,”
J.Rheol 62, 1379–1396 (2018).

44D. Alghalibi, L. Lashgari, I.and Brandt, and S. Hormozi, “Interface-
resolved simulations of particle suspensions in newtonian, shear thinning
and shear thickening carrier fluids,” J.Fluid.Mech. 852, 329–357 (2018).

45A. Vázquez-Quesada, P. Español, R. I. Tanner, and M. Ellero, “Shear thick-
ening of a non-colloidal suspension with a viscoelastic matrix,” Journal of
Fluid Mechanics 880, 1070–1094 (2019).

46G. D’Avino, F. Greco, M. A. Hulsen, and P. L. Maffettone, “Rheology of
viscoelastic suspensions of spheres under small and large amplitude oscil-
latory shear by numerical simulations,” J.Rheol. 57, 813–839 (2013).

47R. B. Bird, R. C. Armstrong, and O. Hassager, “Dynamics of polymeric
liquids. vol. 1: Fluid mechanics,” (1987).

48H. Masoud and H. Stone, “The reciprocal theorem in fluid dynamics and
transport phenomena,” J.Fluid.Mech. 879 (2019).

49A. J. Goldman, R. G. Cox, and H. Brenner, “The slow motion of two iden-
tical arbitrarily oriented spheres through a viscous fluid,” Chem.Eng.Sci.
21, 1151–1170 (1966).


