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The flow of viscoelastic polymeric fluids through porous media is common in in-
dustrial applications such as oil recovery and ground water remediation. Polymeric
stresses can lead to an elastic induced instability of the flow. Here, we numerically
study the flow of a polymeric fluid in a channel consisting of multiple diverging and
converging physical constraints, mimicking the pore bodies and throats of an or-
dered porous medium. Inertial stresses here are negligible, and instead the flow is
dominated by elasticity and viscosity; their relative effects are characterized by the
Weissenberg number. There is a critical Weissenberg number below which eddies
appear on the top and the bottom of each pore. Above the critical Weissenberg
number, eddies form in different regions of the pores and multiple distinct unstable
flow structures occur. The stretched polymeric chains inside the pore facilitate eddy
formation, whereas relaxed chains lead to eddy free regions. We quantify the eddy
area and correlations between the flow patterns of different pairs of pores, as well as
polymeric stress and pressure drop across the tortuous channel to better understand

the mechanism behind the observed flow patterns.

I. INTRODUCTION

Polymers can impart elastic properties to fluids, producing non-Newtonian spatiotemporal
flow features [1-5]. Understanding polymer flow in porous media is of particular importance
for enhanced oil recovery (EOR)[6] and groundwater remediation [7, 8], where polymer ad-

ditives have improved the displacement of trapped nonaqueous liquids for collection down-



stream [9-14]. The flow of viscoelastic mucus through arrays of pillars (2D porous media) is
also important for the transport of gametes and embryos in the reproductive track [15] and
the trapping of inhaled dust particles in the airways of lungs [16]. In confined geometries, the
surrounding porous matrix strongly affects the spatial and temporal features of the flow [17-
21]. For example, the presence of polymers can induce strong velocity fluctuations, locally
increasing viscous forces, and subsequently promoting the displacement of trapped liquids
[22-26]. Understanding the spatiotemporal details of these flow fluctuations is important
for effective EOR and groundwater remediation, but also for other emerging applications
such as controlling mixing and flow in lab-on-a-chip devices, filtration [27], and extrusion of
polymeric resins during 3-D printing [28, 29]. However, the onset of flow instabilities and
the resulting flow features are highly sensitive to polymer properties, flow geometry, and im-
posed flow conditions [30-32]. This sensitivity challenges experimental observations, leaving

many open questions on how to control the flow structure for fluid recovery [1, 23, 24, 33-39].

Between the solid grains of a porous matrix there are large bodies of fluid-filled void space,
connected to neighboring pore bodies by relatively small throats. These bodies and throats
are often modeled with a series of expansions and constrictions [17, 40-42]. Upstream of
constrictions, persistent recirculating eddies often form [43-48] to minimize the extensional
stresses associated with polymer chain alignment [49-53]. Polymers are elongated by these
curved streamlines, relaxing on a characteristic timescale A. For sufficiently high shear rates
¥, polymers are advected faster than they relax, producing strong flow fluctuations at high
Weissenberg numbers Wi = Ay [54-58]. This fluctuating flow is sometimes called “elastic
turbulence” because its features are often reminiscent of traditional inertial turbulence [55—
57], despite the absence of inertia, characterized by arbitrarily small Reynolds numbers

Re « 1.

Microfluidic experiments have revealed a variety of complex spatiotemporal flow features
produced by these instabilies [45, 46, 59-75]. However, in 3-D porous media—TIike those
encountered in EOR and groundwater remediation—the role of higher connectivity, elevated
disorder, and successive pores are expected to significantly alter the flow [21, 33, 34, 76—
82]. In particular, the accumulation of stresses as polymers traverse successive pores can
produce spatial variation in the dominant flow features [43, 44, 63, 64, 83, 84]. In the
interesting case of dense pores, polymers are advected faster than they relax, kinetically

trapping polymers within each pore. Surprisingly, this trapping can produce a bistability



in the flow, where each pore switches stochastically between two distinct flow structures:
an eddy-dominated structure, and an eddy-free structure [47]. The emergence of multiple
persistent flow structures is consistent with some theoretical predictions [45, 85, 86], and
is hypothesized to occur when polymers within a pore are locally kinetically trapped in an
extended or coiled conformation respectively, and hence when polymers’ advection time scale
is smaller than relaxation time scale. However, the details of how these structures arise are
unclear, and the role of spatial and temporal correlations between pore-scale flow structures
are still largely unknown. Despite advances in imaging single-polymer conformations [2,
64, 87-94], microscopic flow details remain hard to access experimentally in highly unstable
flow.

Here, we uncover the underlying physical mechanisms of this multistability using numeri-
cal simulations. We are able to directly probe the local stress fields, elucidating the physical
mechanisms underlying flow structures. We further observe a new, relatively rare flow struc-
ture, where eddies transiently appear in the center of pores, prompting new experimental
investigations. Finally, we probe spatial correlations on shorter time scales and longer length
scales than possible experimentally, showing that weak positive correlations in flow struc-
tures can persist for many pores. These results help elucidate how the local accumulation
of extensional stresses contribute to the formation of various persistent flow structures in
unstable polymer solution flow. Understanding and controlling these multistable flow struc-
tures may aid the application of these flows to EOR, groundwater remediation, lab-on-a-chip

devices, filtration, and 3-D printing technologies.

II. PROBLEM SETUP

In this work, we investigate the flow of viscoelastic fluid though a pore constriction array
by performing two dimensional numerical simulations. The geometry used in the simulation
to investigate the elastically-induced instability is a channel of width W with wall-centered
pillar obstructions with diameter D (Fig. 1). The center-to-center separation of these pillars
in the x-direction is varied from 1y = W for 10 closely spaced pores (Fig. 1) to ly = 8W
for two widely spaced pore throats (Fig. 5a). We also study the flow behavior in a single
pore throat channel made of a single pair of wall-centered pillars (Fig. 2a). The Reynolds

number (Re) and Weissenberg number (Wi) are the relevant dimensionless numbers. Re
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FIG. 1: The geometry used for numerical simulations. D = 1.6 mm is the diameter of the
pillar and W = 2 mm is the width of the channel. The region enclosed with the square box

depicts a sample pore.

represents the ratio of inertial to viscous stresses and is given as Re = pU;L¢/n, where 7 is
zero-shear rate viscosity, p is fluid density, Uy is the average fluid velocity through the throat
of the pore and length scale Ly is the half-width of the pore throat [95]. Wi represents the
ratio of elastic to viscous stresses and has been defined as Wi = Ny /27, where N is the
first normal stress difference and 7, is the shear stress. To estimate Wi, we use a planar
rectilinear flow of a shear-thinning fluid obeying the FENE-P constitutive model through a
slit of width same as the width of pore throat [95] and calculate Wi corresponding to the
shear stress at the wall of the channel [96]. We use the time required to inject a single pore
throat volume fluid as the characteristic time scale, t,, = V,,/Q, where V,, = DW — 7D?/4
is the pore throat volume per unit depth and Q is the volumetric flow rate per unit depth

of the channel.

III. GOVERNING EQUATIONS

The transient flow behavior of the incompressible fluid is governed by the conservation

of mass and momentum:

V-u=0, (1)

0
p(a—?—i—u-Vu):—vaLV-‘r, (2)

where u, p and 7 are the flow field, pressure field and total stress tensor, respectively. The

stress tensor T consists of solvent stress 7, and polymeric stress 7,, T = 75 +7p. The solvent



stress tensor, Ts, can be obtained as 75 = ns(Vu + VuT), where 7, is the solvent viscosity.
We use the FENE-P constitutive equation to calculated the polymeric stresses [76, 97]:

T + %Xp = a—;Zp(Vu +Vvu') — % (%) AT, + an,1], (3)

where A is the relaxation time of the polymer, 7, is the polymeric contribution to zero-shear
rate viscosity n = 15 + 1, I is identity tensor and D% is the material derivative. Function f

is given as:

L? + %tr('r )
f(r) = —5a— (4)

where a = L?/(L? — 3) and parameter L? = 3R3/R? measures the extensibility of the poly-
mer chains [96, 97]. Ry is the maximum allowable length of the polymeric chain and R,
characterizes the equilibrium length of the chain. A typical range of the parameter L? found
in the literature for FENE-P model is 10-1000 [76, 95, 97, 98] and FENE-P model reduces
into an Oldroyd-B constitutive model in the limit of L? — co. Operator V used in equation

3 represents the upper convective time derivative and is given by:

—7,-Vu-vVu’ -7, (5)

The numerical simulations are performed using a finite volume model using an open-
source framework OpenFOAM [99] integrated with RheoTool [100]. The equations are dis-
cretized using the finite volume method and the log-conformation approach has been used
to calculate the polymeric stress tensor with higher accuracy and robustness. The relation

between the polymeric stress tensor and conformation tensor is given as:
— D (fe® —ar 6
7 = 2 (fe® — a), (6)

where © is the logarithm of conformation tensor. The details of the numerical methodologies
and the code validations can be found here [100, 101]. In our simulations, we change the re-
laxation time () from 0.02s to 0.5s to change Wi, while keeping p = 1 kg/m?, i, = 0.99 Pa.s,
ns = 0.01 Pa.s, L? = 625 and volumetric flow rate per unit depth of the channel Q = 16.8
mm? /s constant throughout the study. The width of the pore throat is 2Ly = 0.4 mm and
the average fluid velocity through the pore throat (Uy) is given as Uy = Q/2L; = 42 mm/s.
These parametric values of fluid lead to Wi ~ 10 — 47. The Deborah number (De = AU, /l;)



can also be defined for 2-throats and 10-pores channels. De ranges from 0.05 — 1.3 for 2-
throats channels and 0.42 — 10.5 for 10-pores channels in the present study. The polymer
chains do not have sufficient time to relax before reaching to the next pore in 10 closely
placed pores as De > 1 for cases with Wi > 18 and hence the interactions among the pores
are expected. The effect of inertia in our study is negligible as Re is very small, Re ~ 107°.
The elasticity number, El = Wi/Re ~ 10°, can be defined to characterise the relative im-
portance of elasticity and inertia. In the present study, the elastic forces dominate over the
inertia as El(~ 10°) is very large. Therefore, the effect of the change in elastic modulus of
fluid due to the change in A does not have any significant effect on the results. We use t,

as the characteristic time scale in the present study. t,, = 0.07s is constant due to the fixed

*
max

0 tmax = thae/tpv = 14 and varies from t* /A = 50 at Wi =10 to tf /A =2 at Wi = 47.

flow rate. We performed simulations for dimensional time t* = 1.0 s, which corresponds
t* is dimensional time and t = t*/tp, is dimensionless time. The flow converges to steady
state for t > 0.2 at Wi = 0.3 (almost Newtonian fluid) and for fluctuating flows instability
becomes fully developed for t > 1 (see Appendix, VII A). We use time interval t = 2 — 14 to
calculate the statistics. Here, the maximum simulation time (tyax ~ 14) is sufficient for the
convergence of the statistics. We use 1/t,, to scale the frequency and viscous stress nU; /Ly
to normalize polymeric stresses and pressure. In the next section, we study the flow field
and elastic-induced instability in the above mentioned geometry (Fig. 1) for three different
cases: a single pore throat (Sec. IV A), two widely separated pore throats (Sec. IV B) and
ten closely spaced pores (Sec. IV C).

IV. RESULTS AND DISCUSSION

A. Single pore throat

To investigate the polymeric flow instability in the porous media, we start our study with
a relatively simple geometry. Therefore, first we consider a channel with a single pore throat
and study the dynamics of polymeric fluid flow in the channel. Eddies appear upstream
of the throat (supplementary video 1). At Wi < Wi, these eddies form in both top and
bottom regions. However, above a threshold Wi strong spatial and temporal fluctuations

in flow velocity occur, leading to fluctuations in the position of eddies. Fluctuations are
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FIG. 2: (a) The streamlines depicting the eddies formation in the upstream of a single
throated channel at Wi = 26. The contour represents the trace of polymeric stress tensor
in the channel. (b) x-component of velocity along the length of channel close to the wall
(at a distance Ay/W = 0.015 from the wall, where Ay is the height of first grid element
next to the wall). (¢) The instantaneous and time-averaged length of eddies at different Wi
in the upstream of a single pore channel. The time is non-dimensionalized with time scale
tpv. (d) Power spectral density (PSD) of the normalized eddies’ length (Leqay/W).

Frequency is normalized with 1/t,.

largely suppressed downstream of the pore throat, and eddy formation is weak [46, 47].
We can link these flow features to underlying polymer conformations by computing the
polymeric stress tensor (Fig. 2a). The trace of polymeric stress tensor (tr(7,)) physically

represents the elongation of the polymeric chains in the solution, where the higher value of



trace corresponds to the larger stretching of the chains. In the high stress regions polymer
chains are highly stretched, obstructing the fluid flow crossing the high stress regions and
facilitating the flow separation (i.e., formation of eddies). In the upstream, the streak of large
tr(7,) are detached from the wall and goes into the middle of the constriction, indicating
high polymer elongation, which drives eddy formation upstream of the constriction. The
low value of tr(7,) within the upstream eddy indicates that eddy formation reduces polymer
stress (Fig. 2a). Polymeric chains inside the channel in the downstream of the throat
are relaxed as the high polymeric stress regions occur close to the walls (Fig. 2a), which
facilitates the divergence of the flow inside the channel and makes downstream region eddy
free. Downstream of the constriction there appear to be waves of higher polymer extension
being advected further downstream. To quantify the length of eddies (Legay) upstream of
the throat, we plot x-component of velocity (Ux) at a distance Ay/W = 0.015 (Ay is the
height of first grid element next to the wall) away from the wall (Fig. 2b). Leqdqy is the length
measured from the first stagnation point (left most of the throat) to the start of the throat
(i.e. x=0). Thus, Leqqy covers all the upstream eddies shown in Fig. 2a. If eddies appear
on both top and bottom regions, Legay = maX(Ltegﬂy, L‘gggtyom). We have plotted Leqqy in the
upstream of the pore throat at different Wi (Fig. 2c). The instantaneous length of eddies
fluctuates with time. However, the time-averaged length of eddies along with the intensity
of fluctuations increases as Wi increases (Fig. 2c). These findings are consistent with the

experimental observations [43, 45, 47, 48, 50-53, 68, 83, 102-105].

The power spectral density (PSD) of the normalized instantaneous eddy length depicts
the strength of variations of Leqqy at different frequencies (Fig. 2d). The dimensionless
frequency spectrum of the fluctuation of Leqqy is in the range of 0-9 (Fig. 2d). The PSD of
smaller frequencies is larger than that of higher frequencies. The PSD of larger frequencies
increases with Wi, which shows the increase of temporal fluctuations of Leqqy with Wi. We
also study the statistics of Leqqy at different Wi in a single throated channel (Fig. 3a and
3b). The probability distribution of eddies’ length (Leqqy) shows that the range of Legdy
increases with Wi (Fig. 3a). We have plotted the mean (u) and standard deviation (o) of
normalized eddies’ length (Leqay/W) to further quantify the range of eddies’ length (Fig. 3b).
The standard deviation monotonically increases with Wi, however the slope of ¢ changes
between Wi = 26 — 30. Therefore, we define Wi., = 28 4+ 2 as the onset of instability in a

single throated channel. Fig. 3b also shows that the mean (u) of Leqqy increases with Wi.



Wi, based on the change in the slope of ¢ is simply a choice made that does not influence
any of the interpretations, and a different choice made by defining Wi, as the change in the

slope of p gives similar Wi, values.
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FIG. 3: (a) Probability density function of dimensionless eddy length (Leqay/W) in a single
throated channel. (b) Mean (1) and standard deviation (o) of normalized eddies’ length.

B. Two widely separated pore throats
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FIG. 4: The instantaneous and time-averaged length of eddies in the upstream of throat-1
and throat-2 at different Wi of a double throated channel. Time is normalized with

volumetric flow time scale t,.
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FIG. 5: (a) Streamlines and trace of polymeric stress tensor in a channel with two throats
at Wi = 34. (b) The correlation between instantaneous eddy lengths of throat-1 and
throat-2 at Wi = 34 in a channel of two pore throats. (c) Instantaneous f; » and
time-average < fj o > value of the correlation function between the eddy of throat 1 and

throat 2 at Wi = 34.

After analyzing the flow dynamics in a channel with a single pore throat, we consider a
channel with two widely separated pore throats (ly = 8W) (video 2). The eddies in front
of each throat are unstable and the strength of fluctuations increases with Wi (Fig. 4).
Similar to the single throat channel, the detachment of a streak of large tr(7,) from the wall
leads to eddy formation in the upstream of each throat, whereas high tr(r,) close to the
wall corresponds to eddy free region downstream of the throat (Fig. 5a). We also observe
the waves of higher polymer extension being advected further downstream of each throat.
We do not find any strong correlation between the length of eddies in the upstream of pore
throats (Fig. 5b). However, we note that the time-averaged length of eddies upstream of

first pore throat is slightly larger than that of the second pore throat (Fig. 4). To quantify
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instantaneous correlation between Legqy of first and second throat, we define a correlation

function f; 5 as:
. 2|(Leddy)1 - (Leddy)2| (7)
maX((Leddy>17 (Leddy)2) ’

where f; 5 — 1 corresponds to similar eddies upstream of both throats, whereas f; , — —1

fia=1

implies maximum difference between the length of eddies (Fig. 5c). The polymeric stress
relaxation downstream of the first throat (except in the region very close to the wall, where
the polymer is strongly stretched) can hinder the eddy formation upstream of the second
throat (Fig. 5a). Due to large separation between the throats (De < 1), the effect of the first
throat on the eddy formation upstream of the second throat is small. This encourages the
study of closely located throats (De > 1), where high polymeric stress regions formed by one
throat can easily interact with that of neighboring throat. As Wi is increased, the enhanced
stretching of polymers leads to the formation of longer eddies. The difference between the
average length of eddies upstream of first and second throats also increases with Wi (Fig.
4), because the high polymeric stress region downstream of first throat has stronger impact

on the eddies upstream of second throat as Wi increases.
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FIG. 6: Power spectral density of normalized eddies’ length (Leqay/W) at (a) Wi = 26, (b)
Wi = 34 and (c) Wi = 42.

We have also plotted the power spectral density of the normalized eddy length in Fig.
5 to visualize the fluctuations frequency spectrum. Similar to the single throated channel,
the PSD of Legqy in the double-throated channel also increases with Wi, which corresponds
to an increase in the fluctuations of Legqqy with Wi. Fig. Ta depicts the probability density
function (PDF) of eddies’ length in the channel of two widely separated throats. We quantify

the standard deviation (o) and mean (u) of Leqqy in Fig. 7b. Both, ¢ and p increase with



12

Wi. We consider Wi, = 28 + 2 as the threshold of the instability as the slope of o changes
between Wi = 26 — 30.
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FIG. 7: (a) Probability density function of dimensionless eddy length in two widely
separated throats channel. (b) Mean (1) and standard deviation (o) of normalized eddies’

length.

C. Ten closely located pores

The study of single and double throated channels reveal the eddy formation on the up-
stream of the throat and the eddy free region downstream of the throat. These two con-
tradictory behaviors compete in the region enclosed between closely located throats (i.e.,
pores) and determine the flow pattern inside the pore. Here, we study the dynamics of flow
of the polymeric fluid inside 10 identical closely (l; = W) interconnected pores (Fig. 1). For
a Newtonian fluid, stable eddies appear on the top and bottom of each pore (Appendix,
VIIB). At Wi < Wi, the flow of polymeric fluid inside the pores forms eddies on the top
and bottom of each pore (see supplementary video 3), whereas at Wi > Wi, the eddy on
the top as well as bottom of the pores collapse and reform (supplementary video 4). At
Wi = 18(< Wiy, ), all the pores in the channel have a similar eddy pattern (Fig. 8a). Fig.
8b depicts the snapshot of streamlines across the pores at Wi = 34(> Wi, ). The pattern
of polymeric fluid flow inside the pore at Wi = 34 can be divided into 4 distinct types (Fig.
8b): (1) eddies on both top and bottom regions of pore (i.e., pore 8), (2) eddy free bottom
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FIG. 8: (a) Instantaneous streamlines in a channel of 10 closely interconnected pores at
Wi = 18 and dimensionless time, t &~ 6. (b) Instantaneous streamlines in a channel of 10

closely interconnected pores at Wi = 34 and dimensionless time, t ~ 10.
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region of pore (i.e., pore 7), (3) eddy free pore (i.e., pore 9) and (4) eddy free top region of
pore (i.e., pore 6). These patterns are unstable and interchange frequently (video 4). Often
the size of eddies at Wi > Wi, when the eddies appear on both top and bottom of the pore
(pore type-1), is different (i.e., pore 2). These coherent flow structures (i.e., multi-stability)
(Fig. 8b), that are persistent in time despite the underlying unstable flow, have been also
reported in experiments [47].

(a) Wi=18t~6
porel pore2  pore3 pore 4 pore 5 pore6 pore7  pore8 pore 9 pore 10

(b) Wi =34,t ~ 10
porel pore2  pore3 pore 4 pore 5 pore6 pore7  pore8 pore 9 pore 10

FIG. 9: The snapshot of the trace of polymeric stress tensor at (a) Wi = 18,t =~ 6 and (b)
Wi = 34,t ~ 10. These plots of trace of polymeric stress correspond to the streamlines

shown in Fig. 8a and Fig. 8b, respectively.

The flow structure in each pore is closely coupled to the underlying polymeric stress field,
which controls the local rheology. For the flow at Wi = 18 < Wi, the two regions of high
polymeric stress in the top and bottom of the pore correspond to the regions where the
flow separated from the wall to form eddies (Fig. 8a and 9a). The polymer stress profile
is similar among the pores at Wi < Wi, (Wi = 18), therefore we see a similar flow pattern
in different pores. At Wi > Wi, both the polymeric stress field and the velocity field are
unstable and vary between pores (Fig. 8b and 9b). The multi-stability of the flow pattern
inside the pores at Wi = 34 (Fig. 8b) can be explained with the help of corresponding high
polymeric stress regions shown in Fig. 9b. There are two high stress regions in the middle
of the eighth pore, which coincide with the formation of eddies on the top and the bottom

of the pore. Everywhere inside the ninth pore, the polymeric chains are unstretched (i.e.,
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the high stress regions only occur close to the walls), and hence the flow diverges in this
pore and we do not see any eddy. High polymeric stress occurs in the top region of the
seventh pore, therefore an eddy appears only in the top region of the pore and the bottom
region is eddy free. Conversely, there is a high stress region in the bottom region of the
sixth pore, and therefore the eddy forms only in the bottom region of the pore. Thus, the
stretched polymeric chains inside the pore lead to eddy formation, while coiled chains lead
to eddy free regions. This explanation also holds for the other pores in Fig. 8b. Similarly,
a streak of high stress has been observed in the wake of a confined cylinder in a complex
fluid [75, 84]. The asymmetric flows of polymeric fluids in cross-slot geometries also exhibit

streaks of high stress [106-109].

Now, we study the time dependent behavior of an individual pore. We quantify the area
occupied by eddies on the top and bottom regions of the second pore separately (Fig. 10a).
At Wi < Wi, we always observe eddies on both the top and bottom regions of the pore
(Fig. 10a). Whereas, the size of both eddies is constant at Wi = 0.3 (Appendix, VIIB). To
visualize the time dependent behavior of high polymeric stress regions, we plot the contours
of trace of polymeric stress tensor across the channel at the center of the second pore (i.e.,
along the red line shown in the inset of Fig. 10a) in Fig. 10b. The peak value of the trace
of polymer stress tensor corresponds to the flow-separation region (i.e., the distance from
the wall of the channel, where streamlines separate from the main flow and form a closed
streamline to make eddies ). The contour of the trace of polymer stress also has two distinct
regions well inside the pore where the maximum value of polymer stress tensor occurs, which
further supports the presence of two distinct regions where flow separation takes place (Fig.
10Db).

The flow pattern inside the pore is transient at Wi > Wi, and each pore can exhibit all
4 kinds of flow patterns discussed earlier. The area of eddies, whether it is in the top region
or bottom region of the pore, fluctuates (Fig. 10c). The transition from one flow pattern
to another can be easily seen in Fig. 10c. There are eddies on the top as well as bottom
regions of the pore in the beginning of the simulation (flow pattern type-1), but the area of
eddies is not identically equal and the difference between the area of eddies increases with
time. Eventually, the eddy in the bottom of the pore completely disappears and a new flow
state with an eddy only on the top region of the pore (type-2) emerges. Next, both eddies
disappear and the pore becomes completely eddy free (type-3). Finally, the eddy in the
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FIG. 10: (a) The ratio of eddy to pore area for “pore 2” as a function of time at Wi = 18.
Acqqy is the area of eddies in a particular half region of the pore, while A, is the total
area of the pore. The streamlines inside the pore represent the flow pattern at Wi = 18.
(b) The contour of the trace of polymeric stress tensor across the channel at the center of
the pore (i.e., along the red line shown in the inset of Fig. 10a). (¢) The ratio of eddy to
pore area for “pore 2”7 as a function of time at Wi = 34. The snapshots of streamlines
inside the pore represent the flow pattern at specific time indicated by red solid circles. (d)
The contour of the trace of the polymer stress tensor across the channel at the center of
the pore. The upper limit of time in these plots (t = 9.5) corresponds to t*/A = 13.4 for
Wi = 18 and t*/A = 3.3 for Wi = 34.

bottom region of the pore again reappears and it leads to the formation of a different flow
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state inside the pore, where the top region of the pore is eddy free and bottom region has
eddy (type-4). Thus, the flow patterns of the polymeric fluid inside the pore are transient.
Other pores in the channel also exhibit similar transitions, though the switching between
flow states does not show any clear pattern. As Wi (> Wi, ) increases, the distinct flow
structures change even more frequently.

The time dependent flow patterns inside the pore at Wi > Wi, (Fig. 10c¢) can be ex-
plained using the trace of polymeric stress tensor across the channel at the center of the pore
(Fig. 10d). Part-I of Fig. 10d depicts that there are two distinct regions, approximately
equidistant from the walls, where maximum values of the trace of polymer stress occur.
This distribution of stress corresponds to a pattern where both top and bottom regions of
the pore have eddies (pore type-1 in Fig. 10c). Part-II has a single region inside the pore
with peak value of trace of polymer stress and it lies on the top region of the pore. The
local peak value of trace of polymer stress in the bottom region of the pore lies close to the
wall and is much smaller than the global maximum. This stress distribution represents the
pattern where top region of the pore has an eddy and bottom region of the pore is eddy free
(type-2 in Fig. 10c). In part-III, the streaks of peak tr(7,) in both top and bottom regions
of the pore are close to the walls and their peak values are much smaller than the global
maximum of tr(7,)(Fig.10d). In this case, the pore exhibits an eddy free flow state (type-3
in Fig. 10c). Part-IV also has a single region where maximum value of trace of polymer
stress occurs, but it lies on the bottom region of the pore. This stress distribution leads to
the pattern where bottom region of the pore has an eddy and the top region of the pore is
eddy free (type-4 in Fig. 10c). Fig. 10d also shows that the eddy free flow state (type-3)
exists for a shorter time compared to other flow states.

We study the correlation between the area of eddies for different pairs of pores. To
quantify the correlation between the area of eddies of two pores, we modify the correlation
function ( equation 7) f;; as:

B 2|<Aeddy/Apore)i - (Aeddy/Apore)j| '
max( (Aeddy /Apore)iu (Aeddy /Apore)j>

The value of correlation function f;; varies from +1 in the case where both the pores

fij=1 (8)

have similar eddy pattern to —1 in the case where one pore has an eddy and the other is
eddy free. The value of f;; varies with time for any given pair of pores, which indicates the

transient nature of the correlation between the pores (Fig. 11a). Therefore, the pattern of
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FIG. 11: (a) Instantaneous f5 ¢ and time-average < f5¢ > values of the correlation function
between pore 5 and pore 6 at Wi = 34. (b) The time average value of correlation function
for different pairs of the pores at Wi = 34. (c) The value of < f;; >, further averaged

across the pores of the same separation, as a function of pore separation at different Wi.

eddies inside the pores exhibits both positive and negative correlations. We use the time
average of f;; (< fi; >) to study the statistics of the correlations between the eddies of two
pores in a long time. Figure 11b depicts the time average value of f;; for different pairs
of pores at Wi = 34. There is a relatively stronger positive correlation between the eddies’
area of the nearby pores and the correlation weakens as the separation between the pores
increases. Conversely, we also notice a relatively weak correlation between pore-8 and pore-9
(< fs9 >= 0.17) and relatively strong correlation between pore-1 and pore-8 (< f; g >= 0.6)
at Wi= 34 (Fig. 11b). To further investigate the effect of Wi and the pores’ separation
on the correlation, we plot < fj; > as the function of pore separation at different Wi,
where < f;; > is the value of < f;; > averaged across the pores of the same separation (Fig.
11c). At Wi < Wig,, the correlation between the flow patterns inside the pores is stronger
compare to Wi > Wi, and < f;; > monotonically decreases as the separation between the
pores increases. For Wi > Wi, irrespective of separation between the pores, the correlation

is weak (i.e., < fi; > < 0.5) (Fig. 1lc).

We have also plotted the probability distribution of the area occupied by eddies inside
each individual pore in the channel of 10 closely located pores at different Wi (Fig. 12a).
The value of Aegay/Apore ranges 0.1-0.25 at Wi = 18, whereas it varies from 0.0 (eddy free
pattern) to 0.5 at Wi =47. The eddy does not disappear in either regions of the pore
at Wi < Wi, while often it disappears at Wi > Wi.,. Thus, the area of eddies and flow
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FIG. 12: (a) PDF of the ratio of eddies to pore area (Acday/Apore) at different Wi for a
channel of 10 closely located pores. Acqqy represents total area occupied by eddies in an
individual pore and A, is the total area of the pore. Above a threshold Wi, there
appears to be multistability, and the eddy areas take on a broad range of values. (b) Mean

(1) and standard deviation (o) of normalized eddies’ area.

pattern inside the pores are highly predictable for Wi < Wi, but not at Wi > Wi.,. We have
calculated the standard deviation (o) and mean (u) of Aegay/Apore in Fig. 12b to quantify
the fluctuation of eddies’ area. The standard deviation of eddies’ area increases with Wi
for Wi > Wi, and the onset of the increase of o lies between Wi = 18 — 22. Therefore,
we consider Wi, = 20 % 2 as the critical Wi of the multistability. The threshold Wi, above
which multistability appears, for the channel of 10 closely located pores (Wi, = 20 £ 2) (Fig.
12b) is smaller than the channel with single or two widely separated throats (Wi, = 28 & 2)
(Fig. 3b and 7b). When the pores are closer to each other, the onset of multistability arises
at lower Wi, due to the advection of polymer stress between the pores. Similar observation
was reported in experiments [47]. We have also noticed that sometime eddies appear even
at the center of the pore with/without eddies on the top or bottom region of the pore at
Wi > Wi, ( Fig. 13). This behavior has not been reported in prior experimental studies.
The pressure drop of the flow inside the porous media is an important macroscopic prop-
erty due to practical application in the field of oil recovery [6] and ground water remediation
[7, 8]. To understand the spatial distribution of pressure, we have plotted the contours of di-

mensionless pressure (p) in Fig. 14a for the flow field shown in Fig. 8b (i.e., Wi = 34, t ~ 10).
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FIG. 13: Eddies at the center of the pore at Wi = 34. (a) Eddy at the center as well as
the top and bottom regions of the pore. Here, the eddy at the center persists in two pores.
(b) Eddies at the center and the top region of the pore, while bottom region is eddy free.
(c) Eddies only at the center of the pore. Top and bottom regions are eddy free.

We have also plotted the pressure profile along the centerline of the channel (i.e, red solid
line in Fig. 14a) (Fig. 14b) and at the center of the pore along the width (i.e., dashed
yellow line in Fig. 14a) (Fig. 14c). The pressure inside the channel does not decrease
monotonically due to the converging-diverging geometry of the channel (Fig. 14b). For the
cross-section at the center of an individual pore, the pressure is maximum at the centerline
(i.e., y = 0) of the channel (Fig. 14c). Instantaneous pressure drop across the channel along
the centerline (Ap in Fig. 14a) is transient due to instability and the fluctuation intensifies
as Wi increases (Fig. 15a). We calculate the time averaged pressure drop (< Ap >) along
with fluctuations across the channel for a fixed volumetric flow rate at different Wi (Fig.
15b). The instability inside the pores facilitates the flow and lowers the hydrodynamic drag,
which leads to a smaller pressure drop across the channel as Wi increases (Fig. 15b). To
further understand the mechanism of hydrodynamic drag reduction with increasing Wi, we
calculate the pressure drop across individual pores along the centerline of the channel (spe-
cially, pore-8 and pore-9 as depicted in Fig. 14a) for the flow state shown in Fig. 8b. The
pressure drop across an eddy free pore is smaller than the pressure drop across the pore
with eddies (Example: Appore—9 = 3.45 for pore-9 shown in Fig. 8b and Appee—s = 4.6 for

pore-8 shown in Fig. 8b). Because, the eddy free pore has larger apparent width involve
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FIG. 14: Dimensionless pressure for the flow field shown in Fig. 8b (i.e., Wi = 34, t = 10):

(a) The contours of pressure field inside the channel. (b) Pressure along the centerline of

the channel (i.e. red solid line in Fig. 14a). (c) Pressure across the channel at the center of

the pore (i.e. dashed yellow line in Fig. 14a).

in the net volumetric flow (i.e., fluid circulates inside an eddy and does not contribute in

any net volumetric flow) and the pressure drop in the channel is inversely related to its

apparent width. The presence of eddy free pores at Wi > Wi, leads to smaller pressure

drop across the channel, in contrast with a channel at Wi < Wi, where all the pores have

eddies. We have also calculated the pressure drop in single and double throated channels

for the length same as the channel of 10 pores. The pressure drop in the single as well as

double throated channel is much smaller due to lesser constriction and it also decreases with

Wi due to instability (Fig. 15b).
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FIG. 15: (a) Instantaneous and time averaged pressure drop across the channel of 10 pores

at Wi = 34. (b) Averaged pressure drop (< Ap >) across the channels at different Wi.

V. CONCLUSIONS

We numerically study the flow of a polymeric fluid in channels consisting of converging
and diverging physical constraints. We use channels with a single pore throat, two widely
separated pore throats and ten closely separated pores to study an elastic-induced flow
instability at different Wi. The channels with either a single pore throat or two widely
separated pore throats have unstable eddies in the upstream of the pore throats whose
average length (Legdy) increases with Wi. In the case of 10 closely placed pores, eddies
appear on both top and bottom regions of the pores at Wi < Wi, whereas the flow exhibits
4 distinct types of patterns inside the pores at Wi > Wi,,. The eddies on both the top
and bottom regions of the pores regularly collapse and reform at Wi > Wi,,. This behavior
of eddies leads to flow patterns where eddies appear in either one region, both regions, or
neither region of the pore (eddy free). The high polymeric stress region inside the pore
induces eddy formation, whereas the high stress region close to the walls leads to eddy
collapse. There is a positive correlation between the eddy areas of neighboring pores in
the long-time statistics, but this correlation weakens as the separation between the pores
increases. The correlation between the pores also weakens as Wi increases. The eddy free
pores also lead to reduced hydrodynamic drag across the channel at Wi > Wi,,. Disorder

of the porous media is expected to play a large role in altering the instability, and would be
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an interesting parameter to consider in a future study [59, 82].
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VII. APPENDIX

A. Start up transient flow

We use pressure drop (Ap) across the channel along the centerline as a simple metric to
characterize the transient start up flow. The flow reaches steady state for t > 0.2 at Wi = 0.3
(almost Newtonian fluid) (Fig. 16a). For fluctuating flows, the meaning of fully developed
flow is that fluctuating quantities have a well-defined mean. The instability becomes fully

developed for t > 1 as Ap fluctuates around a mean for t > 1 (Fig. 16b).
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B. Eddy area at Wi = 0.3 (almost Newtonian fluid)
C. Flow of non-shear thinning fluid (FENE-CR) inside the pores

We have also performed a simulation for non-shear thinning model (FENE-CR) at relax-
ation time \ = 0.2s, viscosity ratio 8 = ns/(ns + 1) = 0.01, L? = 625 and volumetric flow
rate per unit depth of the channel Q = 16.8 mm?/s. These parameters lead to Wi = 16.4 for
FENE-CR model [111]. This model also exhibits multistability similar to FENE-P model
(Fig. 18). Fig. 18a shows eddy free flow state. Fig. 18b has eddy only on the bottom region
of the pore and top region is eddy free. Fig. 18c has eddies on both top and bottom region
of the pore, whereas Fig. 18d represents the flow state where eddy appears only on the top
region of the pore and bottom region is eddy free. Non-shear thinning fluid (FENE-CR)
also exhibits the flow state wherein the eddy appears at the center of the pore (Fig. 18e).

pore 3,t ~ 4.5 pore 3,t = 4.1 pore 4,t = 4.1 pore 5,t ~ 4.1 pore 5,t ~ 5.1
72 - \_‘

FIG. 18: Instantaneous streamlines in a channel of 10 closely interconnected pores at

Wi = 16.4 for FENE-CR constitutive model.
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