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ABSTRACT 1 
 2 
Climate change and sea-level rise are increasingly leading to higher and prolonged high tides, 3 
which, in combination with the growing intensity ofrainfall and storm surges, and insufficient 4 
drainage infrastructure, result in frequent recurrent flooding in coastal cities. There is a pressing 5 
need to understand the occurrence of roadway flooding incidents in order to enact appropriate 6 
mitigation measures. Agency data for roadway flooding events are scarce and resource-intensive 7 
to collect. Crowdsourced data can provide a low-cost alternative for mapping roadway flood 8 
incidents in real time; however, the reliability is questionable. This research demonstrates a 9 
framework for asserting trustworthiness on crowdsourced flood incident data in a case study of 10 
Norfolk, Virginia. Publicly available (but spatially limited) flood incident data from the city in 11 
combination with different environmental and topographical factors are used to create a logistic 12 
regression model to predict the probability of roadway flooding at any location on the roadway 13 
network. The prediction accuracy of the model was found to be 90.5%. When applying this model 14 
to crowdsourced Waze flood incident data, 71.7% of the reports were predicted to be trustworthy. 15 
This study demonstrates the potential for using Waze incident report data for roadway flooding 16 
detection, providing a framework for cities to identify trustworthy reports in real-time to enable 17 
rapid situation assessment and mitigation to reduce incident impact.   18 

Keywords: crowdsourced data, flooding, trustworthiness, logistic regression, incident 19 
management  20 
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INTRODUCTION  1 
In recent years, crowdsourced data has emerged as a low-cost method for data collection in various 2 
fields. In the transportation domain, there are many areas of research which have insufficient or 3 
non-existent agency-provided data, where crowdsourced data shows promise to be a useful 4 
alternative resource for research and analysis in these domains, such as bicycle ridership (1), traffic 5 
analysis, (2), and accident reporting (3). 6 
 One of the domains with very limited agency data is incidences of roadway flooding. 7 
Recurrent flooding as a result of rainfall, high tides, or both is becoming more prevalent in coastal 8 
cities. These flood incidents cause inundation of roadways for up to several hours, which 9 
deteriorates mobility and accessibility of travelers. Over the past six decades, almost thirty coastal 10 
cities in the US have witnessed a spike in the number of annual flood days, with some cities 11 
witnessing as many as 50 extra flood days every year (4). NOAA estimated a 125% increase in the 12 
number of annual flood days in the southeast coast of the US and 75% in the northeast coast 13 
between the years 2010 and 2015 (5). Some city or state agencies may collect these flood incident 14 
data as a part of providing emergency management services on the roadway network. Preemptive 15 
knowledge of reliable flood locations could significantly reduce the duration of flooding and 16 
delays on the roadway network. However, most cities do not collect standardized comprehensive 17 
data of roadway flooding incidents, making it difficult to make data-driven decisions for traffic 18 
rerouting and flood mitigation measures. One promising source for crowdsourced flood incident 19 
data is Google Waze, a GPS navigation app that allows users to report on a multitude of traffic-20 
related incidents, including roadway flooding. While crowdsourced data can be a powerful 21 
alternative to revolutionize data collection where agency data is lacking, such data comes with its 22 
own set of limitations. Since crowdsourced data is not regulated, there can be human error, 23 
technical error, wrongful reporting, among other issues (6). This study explores the trustworthiness 24 
of crowdsourced Waze flood incident data in a case study of Norfolk, Virginia. The City of Norfolk 25 
has been collecting limited roadway flooding data due to the increasing frequency of recurrent 26 
flooding. This study combines the limited city flood report (ground truth) data with publicly 27 
available topographical and environmental data to build a model to assess trustworthiness of the 28 
crowdsourced Waze flood incident reports. 29 
 30 
BACKGROUND AND LITERATURE REVIEW 31 
In the past decade, crowdsourced datasets have become increasingly popular in transportation 32 
applications where traditional data collection methods are cost prohibitive. Waze has emerged as 33 
a popular crowdsourced dataset for transportation research, as the app allows users to enter 34 
location-specific and time-stamped reports of all sorts of traffic-related incidents: road closures, 35 
hazards (including roadway flooding), traffic jams, police presence, crashes, and more. Several 36 
studies have examined the usability of Waze incident data in transportation applications, though 37 
none have examined flood incident data. For example, Hoseinzadeh et al. (7) used independently 38 
collected Bluetooth speed data as ground truth and assessed the quality of Waze speed data. Their 39 
models concluded that the Waze data was more accurate in peak traffic hours, and achieved a 40 
prediction accuracy of almost 85%. Amin-Naseri et al. (8) conducted an analysis to quantify the 41 
potential added coverage of traffic incidents through Waze data, in addition to police reported data. 42 
It was estimated that 34.1% of Waze-reported incidents provide additional information not covered 43 
by any other dataset. Flynn et al. (3) developed machine learning models with spatial and temporal 44 
data which estimated police crash reports with high accuracy, and concluded that Waze could be 45 
a potential data source to quickly identify crashes in real time, enabling faster police response. 46 
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Goodall and Lee (9) compared Waze-reported crashes and disabled vehicle information with video 1 
footage on a roadway segment. They found that 80% of crashes and 50% of the disabled vehicles 2 
were captured by Waze data, implying the potential to leverage Waze incident data to enable faster 3 
response times, shorter incident durations, and better incident information dissipation to the public. 4 
Eriksson (10) proposed a methodology to integrate crowdsourced Waze incident and congestion 5 
data with official traffic data to reduce redundancy, improve reliability, and measure severity of 6 
incidents. As evidenced by these studies, crowdsourced Waze data has potential to greatly expand 7 
and improve existing agency provided transportation data. However, thus far, no study has 8 
examined the value or trustworthiness of Waze flood incident report data.  9 

Using real-time crowdsourced data to analyze impacts of roadway flooding is particularly 10 
appealing since the alternative (installing sensor technology to gain accurate spatially disaggregate 11 
data on rainfall, tide, and flood levels for every roadway link in a city) is cost-prohibitive. 12 
However, as crowdsourced data is not regulated, there could be erroneous reporting due to 13 
misunderstanding, confusion, carelessness, incompetence, or even intent to deceive (11). 14 
Emerging studies in the computer science and electrical engineering domains have considered 15 
asserting trustworthiness to various crowdsourced datasets dealing with environmental conditions 16 
(12, 13). For example, Flanagin and Metzger (14) suggest collaborating geospatial and 17 
environmental knowledge with crowdsourced data to assert credibility of the data. Similarly, a few 18 
studies in the geography domain incorporate topological and environmental characteristics to 19 
assert credibility of crowdsourced incident detection datasets. For example, Ostermann and 20 
Spinsanti (15) used crowdsourced Twitter and Flickr data to conduct a context analysis to identify 21 
hotspots of forest fires in Spain, using forest cover, distance to nearest hotspot, and inhabitant 22 
density in the area as contextual variables. The study concluded that geographic features of 23 
crowdsourced location information (also known as Volunteered Geographic Information, or VGI) 24 
provides a useful approach to filter crowdsourced data. Hung et al. (16) assessed the credibility of 25 
crowdsourced flood incident data by using contextual topological data. A binary logistic regression 26 
model with variables such as elevation and distance-to-flood-risk-zones showed prediction 27 
accuracy of 90% and 80% for training and testing datasets, respectively.  28 

The studies conducted by Hung et al (16) and Ostermann and Spinsanti (15) combined VGI 29 
datasets with other relevant event-specific topographical variables to assert credibility on 30 
crowdsourced datasets. Most of the VGI datasets used in previous studies are very location 31 
specific, and do not have a presence globally. This study uses a similar approach, by using potential 32 
flood-related explanatory variables (environmental and topographic) to assert trustworthiness on 33 
crowdsourced Waze flood report data. Waze data has a much higher global footprint, and with 34 
that, this methodology can be applied to any city with enough Waze users. Also, unlike the 35 
previous studies, the ground truth data set is built from credible but spatially and temporally limited 36 
agency data.  37 
 38 
DATA SOURCES AND PRE-PROCESSING 39 
To build the trustworthiness model, this study uses contextual parameters such as environmental, 40 
topographic, and roadway infrastructure variables to explain the occurrence of a flood incident. 41 
This section explains the different datasets used to build the model. The study period is restricted 42 
by the availability of flood incident data, which ranges from August 2017 to December 2018, 43 
with three weeks excluded due to loss of data. 44 
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Environmental data 1 
The environmental data is composed of rainfall and tide level observations. Hourly tide levels 2 
referenced to the North American Vertical Datum (NAVD88) were obtained from  3 
National Oceanic and Atmospheric Administration’s (NOAA) Sewell’s Point station (17). Hourly 4 
rainfall data was collected from seven Hampton Roads Sanitation District (HRSD) observation 5 
sites. Both of these datasets are publicly available.   6 
 7 
Topographic data 8 
Three topographic features were used as model inputs: elevation, topographic wetness index (TWI) 9 
(18), and depth-to-water (DTW) (19). Elevation information at locations of the Waze flood 10 
incident reports is extracted from the United States Geological Survey (USGS) Digital Elevation 11 
Model (DEM), which has 1-meter horizontal resolution. The most recently published figure of 12 
absolute vertical accuracy of the 3D Elevation Program (3DEP) DEMs within the conterminous 13 
United States, in terms of the National Standard for Spatial Data Accuracy (NSSDA) at 95% 14 
confidence level, is 3.04 meters (27). 15 
 16 

TWI and DTW were also derived using the DEM. TWI accounts for the tendency of any 17 
pixel (smallest grid in a raster file) in the topography to receive water from upstream and its 18 
tendency to drain that water. A high TWI value implies a high potential for accumulation of surface 19 
water runoff. TWI, defined by Beven and Kirkby (18), is a function of 𝛼𝛼, which is the upstream 20 
contributing area per unit contour length at a given pixel and tan β , which is the local slope at that 21 
pixel in the catchment, as shown in Equation 1:  22 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙𝑙𝑙 � 𝛼𝛼
𝑡𝑡𝑡𝑡𝑡𝑡 𝛽𝛽

�     (1) 23 
 24 

DTW, defined by Murphy et al. (19), is a relative measure of soil moisture conditions, 25 
which approximates the elevation difference between a pixel in the topography and the nearest 26 
surface water pixel along the least slope path. DTW is a function of  𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑𝑖𝑖
, which is the slope of a 27 

pixel 𝑖𝑖 in the topography along the least-cost path to the nearest surface water pixel, 𝑎𝑎, which is 28 
either 1 or 20.5 depending on whether the path crosses the pixel parallel to the pixel boundary or 29 
diagonally, and 𝑥𝑥𝑐𝑐, which is pixel size, as shown in Equation 2:  30 

𝐷𝐷𝐷𝐷𝐷𝐷 (𝑚𝑚) = �∑ 𝑑𝑑𝑧𝑧𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖

𝑎𝑎𝑖𝑖� 𝑥𝑥𝑐𝑐    (2) 31 
Topography pixels closer to surface water, in terms of both distance and elevation, tend to 32 

have smaller values of DTW, indicating wetter soil. 33 

Predicted Surface Water Depth 34 
Predicted street-level surface water depth was simulated using a physics-based hydrodynamic 35 
model (TUFLOW: Two-dimensional Unsteady Flow) model. The flood model solves 2D 36 
equations for shallow water and free surface flow to simulate overland flow, and it is coupled with 37 
1D hydrodynamic network software ESTRY (20) to simulate pipe flow. The 1D pipe/2D overland 38 
hydrodynamic flood model described by Shen et al. (21, 22, 26), which provides details on the 39 
model construction, calibration, and evaluation process. The model used in this analysis covers 40 
roughly half the area of the city of Norfolk, VA (56.4 km2). Surface flooding is simulated at one-41 
hour time steps and at a spatial resolution of 2.5 m, which was then used to estimate water depth 42 
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on street segments. TUFLOW is a high-fidelity model which simulates realistic flood depth, 1 
however is very computationally intensive in nature.  2 
 3 
Roadway characteristics data 4 
Roadway characteristics consist of geometric design features like number of lanes, per lane 5 
capacity, intersection (binary variable, based on if the report falls at an intersection or not), and 6 
freeway (binary variable, based on if the report falls on a freeway link or lower functional 7 
classification link). These roadway properties are obtained from the Hampton Roads Regional 8 
Travel Demand Model (HRRTDM). The roadway functional classification categorizes major and 9 
minor freeways as freeways (binary variable = 1), and all other roadway links as non-freeways 10 
(binary variable = 0). For capacity of each roadway link, per lane capacity is multiplied with 11 
number of lanes, both obtained from the HRRTDM. For roads that are not covered in the 12 
HRRTDM network, the number of lanes is obtained from the City of Norfolk’s streets shapefile, 13 
and multiplied with a default per-lane capacity of 650 vehicles per hour per lane (minimum per 14 
lane capacity recorded in the HRRTDM).   15 
 16 
Agency-provided flood incident data 17 
The flood incident data collected by City of Norfolk spanned from January 2017 to December 18 
2018, using city employees’ reported flood locations in a mobile phone application (System to 19 
Track, Organize, Record, and Map [STORM]). The app records the date and location of flooding. 20 
Furthermore, the app user can specify the flood location as an intersection, address, or block. 21 
Duplicate reports (reports occurring on the same day, within 50ft of each other) are eliminated. 22 
Then, several steps are followed in order to geo-tag the flood incident report to a specific location 23 
on the roadway network. In ArcGIS, the intersections named in the dataset are manually matched 24 
to the corresponding intersection, the addresses are relocated to the closest point on the roadway 25 
network, and the block locations are relocated to the lowest elevation point between the upstream 26 
and downstream intersections. These location-corrected reports are henceforth referred to as city 27 
reports. Due to the lack of a timestamp associated with the flood reports (only dates are recorded), 28 
the entire day is initially assumed to be flooded in this analysis. Then, these city reports are checked 29 
against TUFLOW model output to identify the flooded time periods with positive water depth, as 30 
explained in detail in the Methodology section.   31 
 32 
Crowdsourced flood incident data 33 
The mobile navigation application Waze contains a real-time information reporting tool, from 34 
which the crowdsourced flood incident reports are obtained. Waze provides user-reported incident 35 
data via its data sharing program (Waze for Cities), which is available to public entities worldwide. 36 
In this study, Waze incident reports (time-stamped and location-identified) related to roadway 37 
flooding in Norfolk (between August 2017 and December 2018, with three weeks excluded due to 38 
loss of data) are analyzed. Waze flood report data is only as comprehensive as the locations of 39 
road users reporting flooding; however, the spatial coverage is considerably greater than the 40 
agency data available through the City of Norfolk. Figure 1 shows an example of flood reports 41 
from both data sets in August 2018, to represent the coverage disparity between the City and Waze 42 
reporting of floods.  43 
         44 

(a)                                                                        (b) 45 
Figure 1 Flooding reported by (a) City of Norfolk and (b) Waze in August 2018 46 
 47 
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Drainage characteristics data 1 
A record of all the storm water structures (such as bridge drain, gutter basin, floor drain, manhole, 2 
etc.) is provided by the City of Norfolk in a GIS shapefile. This variable is regrouped from 18 3 
structure types to 12 structure categories to combine similar drainage structure types on the 4 
roadway. Each flood report is characterized by the drainage infrastructure that is the closest feature 5 
by distance (in GIS) from the report location.  6 
 7 

In addition to all the datasets described above, an additional parameter called “Proximity” 8 
is calculated. Proximity is a measure of closeness to other flood incident reports: the closer the 9 
other flood incident reports during the same time of day, the higher the proximity value. This score 10 
is assigned to each ground truth city flood report, and is calculated based on Waze- and city-11 
reported flood incidents during the same time period (on the same date), as shown in Equation 3. 12 
Because Proximity can only be calculated for city reports when Waze flood report data is also 13 
available, the study period is defined as August 2017 to December 2018 (when both data sets 14 
overlap). Table 1 summarizes all the datasets used to build the ground truth model. 15 
 16 
TABLE 1 Data inputs in predictive model 17 

Variable 
(unit) 

Explanation Data 
Dimension 

Data Source or Method of 
Derivation 

Date Date of flood report Temporal City of Norfolk or Waze. 
Time period Time period of flood report 

(1: 12:00 to 6:00 am, 
  2: 6:00 to 9:00 am,  
  3: 9:00 am to 3:00 pm, 
  4: 3:00 to 6:00 pm, 
  5: 6:00 pm to 12:00 am) 

Temporal Timestamp obtained from Waze, and 
aggregated to corresponding time 
period. 
No timestamp for City reports, thus 
they are initially assumed to apply for 
all 5 time periods on the report day. 

Latitude and 
longitude 

Location of flood report. Spatial Obtained from geo-located City of 
Norfolk data or directly from Waze. 

Proximity 
score 

Measure of closeness to other 
flood reports on the same date 
and during the same time 
period. Calculated as the sum of 
the squares of inverse distances 
between the current flood report 
and all the other flood reports. 

Spatial and 
temporal 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =  ∑ 1
𝑑𝑑𝑖𝑖𝑖𝑖2

𝐽𝐽
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖            (3) 

Where: 
i: flood report for which proximity 
score is being assigned 
j: other flood reports (city and Waze) 
on the same date and during the same 
time period as i 
dij: bird’s eye distance between 
coordinates of i  and j, in miles 

Rainfall 
intensity 
(in/hr) 

Collected across seven rain 
gauges in the city, and 
interpolated for each flood 
report location. 

Spatial and 
temporal 

Data obtained from HRSD;   
Interpolation done by Inverse 
Distance Weighting (IDW), a spatial 
analysis tool in ArcGIS. 

Elevation (ft) Elevation of each flood report 
location. 

Spatial Obtained from DEM of Norfolk 
(from USGS), and extracted for each 
flood report point. 
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Tide level (ft) Maximum tide level recorded 
during the given time period at 
gauge at Sewell’s Point. 

Temporal Obtained from NOAA Tides and 
Currents 

Depth to 
water index 
(DTW)(m) 

Elevation difference between 
the flood report location and 
closest water body based on 
least slope path 

Spatial Created from rasters of DEM and 
waterbodies (19), and extracted for 
each flood point  

Topographic 
Wetness Index 
(TWI) 

Measure of the tendency of an 
area to accumulate runoff: high 
TWI values imply a high 
potential for runoff 
accumulation 

Spatial Created from rasters of DEM and 
waterbodies (18), and extracted for 
each flood point 

Intersection Binary variable to identify if the 
flood report occurs at an 
intersection  

Spatial Manually obtained from ArcGIS 

Total Capacity Total capacity of the roadway 
segment  

Spatial Obtained from HRRTDM 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

× 𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
Freeway Binary variable to identify if the 

flood report occurs on a 
freeway segment 

Spatial Functional classification obtained 
from HRRTDM 

Drainage Different types of drainage 
structures found closest to the 
report location 

Spatial Obtained from the City of Norfolk 

 1 
DATA PREPARATION & METHODOLOGY 2 
Refining ground truth dataset 3 
Due to the lack of a timestamp on city-reported flood events (and the initial assumption that the 4 
location is flooded for all five time periods of the day), the data undergoes another level of pre-5 
processing before being included as a positive flood report in the ground truth dataset. The physics-6 
based TUFLOW model is simulated on all the reported flood days to provide estimated water depth 7 
for each hour within the model boundary. The city report locations that are present within the 8 
TUFLOW model boundary are checked for maximum water depth within a 24ft buffer (width of 9 
the traveled way on a typical two-lane roadway) to ensure that time periods considered flooded 10 
have a predicted water depth greater than 0.1m (21).  The TUFLOW model is not directly used to 11 
find the trustworthiness of Waze flood incident due to its computationally intensive nature, making 12 
such an approach infeasible for the end goal of using crowdsourced flood reports for real-time 13 
traffic management and flood mitigation. In the 16-month study period, 19 days incurred city flood 14 
reporting, which translated into 95 initial positive flood observations across five time-of-day-15 
periods. When verified against TUFLOW water depth models, 70 ground truth positive flood 16 
observations remained. 17 
 The ground truth dataset also requires negative (non-flood) observations. Since any 18 
location on the roadway network during any time period that is not reported as flooded could be a 19 
potential non-flood observation, a procedure (outlined in Figure 2) was followed for random 20 
selection of negative observations at spatial and temporal scales.  21 
 22 
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Figure 2 Combining spatial and temporal dimensions of negative ground truth observations  1 
 2 

For the random sampling of negative observations, locations within a 2000ft buffer of the positive 3 
ground truth city flood reports were removed. Variable thresholds are also considered in the 4 
random selection process of negative ground truth data to ensure sufficient variation in random 5 
sampling. The spatial parameters (TWI, DTW, elevation) were divided into quartiles, based on 6 
their range of values, shown in Table 2. 10% of the data is randomly selected from each quartile 7 
to have some representation of each level of spatial characteristics. For temporal selection, two 8 
levels of tide (≤ 0 ft, 0 ft<) and three levels of rainfall (0, 0< and ≤0.1, 0.1< in/hr) were chosen to 9 
have a balanced sample of tide and rainfall levels. The non-flood observations were then sampled 10 
to fill a 1:1 of true-to-false flood report ratio in the ground truth dataset for the model. The total 11 
number of negative ground truth observations per variable threshold is shown in Table 2 for the 12 
balanced 1:1 dataset.   13 
  14 
TABLE 2 Negative ground truth observations by environmental and topographic variable 15 
thresholds 16 
 17 

DTW 
Range (index) DTW <1089 1089≤ DTW <2171 2171≤ DTW < 3260 DTW≥3260 

# of Observations 
(1:1) 44 21 4 1 

TWI 
Range (index) TWI < 3.8 3.8 ≤ TWI <8.9 8.9 ≤ TWI <14 TWI ≥ 14 

# of Observations 
(1:1) 16 42 10 2 

Elev-
ation 

Range (m) Elev <-1.5m -1.5m≤ Elev <3.3m 3.3m≤ Elev <8.2m Elev≥8.2m 
# of Observations 

(1:1) 0 45 25 0 

Rainfall 
Range (in/hour) Rain = 0 0< Rain ≤0.1 in/hr Rain > 0.1 in/hr   

# of Observations 
(1:1) 60 3 7   

Tide 
Level 

Range (m) Tide ≤ 0 m Tide > 0 m     
# of Observations 

(1:1) 30 40     

 18 
Trustworthiness modeling 19 
Roadway flooding events are closely related to environmental, topographic, and infrastructure 20 
conditions (as listed in Table 1). Given the same probability of roadway flooding, the probability 21 
of the reporting of a roadway flood event is closely tied to the traffic volume on that roadway 22 
segment during the time period of the flood event (approximated here by the time of day and total 23 
capacity variables, as explained in Table 1). Then, all of these variables can be used to predict the 24 
trustworthiness of a crowdsourced flood report, estimated as the probability of a flood incident 25 
report at a location given the environmental, topographic, roadway, drainage, and time-of-day 26 
characteristics, via a binary logistic regression model. Logistic regression is widely used to study 27 
the effects of explanatory variables on binary outcomes, and the probability of the event occurring 28 
is calculated as shown in Equation 4:  29 

𝑃𝑃 (1|𝑋𝑋1,𝑋𝑋2, … . .𝑋𝑋𝑛𝑛) =  
1

1 + 𝑒𝑒−(𝛼𝛼+ ∑𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)
                                                                 (4) 30 

where,  31 
P  Probability of occurrence of the event (flood report) 32 
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i  Observation 1 
𝛼𝛼  Constant 2 
𝑋𝑋𝑖𝑖  Independent variables (as listed in Table 1) 3 
𝛽𝛽𝑖𝑖  Corresponding coefficient 4 

 5 
A random 70-30 split of the 140 ground truth observations are used, where 70% of the 6 

entire dataset is reserved for training, and remainder 30% for testing the dataset.. Random sampling 7 
of data subsets is performed on the training dataset to fit the samples into a prediction model, while 8 
reducing the total error in the model. Then, the regression model is used to calculate the probability 9 
of a Waze flood event explained by the independent variables.  10 

Note that a classification tree model (which creates partitions in the dataset based on 11 
discrete characteristics) was also tested for this dataset. In the classification tree model, a parent 12 
node in the tree is divided based on an independent variable into two child nodes, such that each 13 
child node is more homogenous (or less impure) than the parent node. However, due to the large 14 
number of independent variables in the dataset, the classification tree model proved to be unstable 15 
(prediction accuracy and important variables varied widely when changing the observations in the 16 
training set). Hence, the logistic regression model is preferred for assessing trustworthiness. 17 

 18 
Model Selection 19 
Several different criteria are used to evaluate the fit of the various logistic regression models. These 20 
criteria and their definitions are listed in Table 3, including a confusion matrix and its associated 21 
criteria (true positive rate [TPR] (Equation 5), true negative rate [TNR] (Equation 6), false 22 
positive rate [FPR] (Equation 7), and false negative rate [FNR] (Equation 8)), Akaike 23 
Information Criterion (AIC), distance to corner (Equation 9), receiver-operating-characteristic 24 
(ROC) curves, and accuracy (Equation 10).  25 
 26 
TABLE 3 Performance measures used for model selection  27 

Performance 
Measure 

Definition Preferred 
value 
directionality 

Equation (if applicable) 

Akaike 
Information 
Criterion 

Estimator of out-of-
sample prediction error, 
or the relative amount 
of information lost by a 
given model 

Smaller  

True Positive Rate 
(Sensitivity) 

Ratio of true positives 
identified to all positive 
ground truth reports 

Higher 𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓

              (5) 

True Negative Rate 
(Specificity) 

Ratio of true negatives 
identified to all ground 
truth negatives reports  

Higher 𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓 + 𝑡𝑡𝑡𝑡

             (6) 

False Positive Rate Ratio of false positives 
identified by the model 
to all truly negative 
reports in the ground 
truth 

Lower 𝑓𝑓𝑓𝑓
𝑓𝑓𝑓𝑓 + 𝑡𝑡𝑡𝑡

             (7) 

False Negative 
Rate 

Ratio of false negatives 
identified by the model 
to all truly positive 

Lower 𝑓𝑓𝑓𝑓
𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓

             (8) 
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reports in the ground 
truth 

Receiver Operating 
Characteristic 
(ROC) Curves (23) 

Plot of Sensitivity vs 1-
Specificity, helps to 
determine the 
diagnostic ability of the 
binary classifiers 

Closer to the 
top left corner 

 

Distance to Corner 
(24, 25) 

Optimal threshold to 
minimize false positive 
and false negative rates 

Lower 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
=  �(1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)2 + (1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)2   (9) 

Accuracy Shows the ratio of 
correctly identified 
reports to all reports. 

Higher 𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡
𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

             (10) 

 1 
RESULTS  2 
 3 
Trustworthiness Model 4 
A prediction model using the binary logistic regression structure was developed to analyze how 5 
well a ground truth report can be explained by the independent environmental, topographic, 6 
infrastructure, and temporal variables. The ground truth dataset was randomly split into 70% for 7 
model training, and the remainder 30% for model testing. First, all the continuous variables 8 
considered (as listed in Table 1) were tested for correlation. The highest correlation was found 9 
between elevation and TWI (-0.52), with all other correlation values less than 0.3. The correlation 10 
between elevation and TWI suggests that areas with lower elevation have a higher tendency to 11 
accumulate runoff (TWI), which is related to topography. Then, different binary logistic regression 12 
models with and without TWI were tested to examine the effect of inclusion of TWI on the tide 13 
level parameter estimate and overall model fit. Due to the relatively small ground truth report 14 
sample size, explanatory variables with p-values less than 0.3 (confidence level 70%) are retained. 15 
Among the different model specifications tested, elevation, TWI, and DTW are always found to 16 
be statistically significant at 95% confidence level. When roadway characteristics are considered, 17 
total capacity was the only variable to emerge as statistically significant (p<0.1 in all three different 18 
model specifications). However, inclusion of the total capacity variable reduced the accuracy of 19 
the model (from 90.5% to 88%) with a higher false positive rate in the model prediction. Thus, 20 
roadway capacity is excluded from the final preferred model. Tide level and rainfall are marginally 21 
significant (0.25 < p-value < 0.3) in the preferred model specification. These variables are retained 22 
due to their effect on the discrete time period variables (which emerge as non-significant if tide 23 
level and rainfall are excluded). Despite the proximity variable being a byproduct of the number 24 
and closeness of other reports in the same time period, it shows a low correlation with tide level 25 
and rainfall. Proximity variable is retained in the preferred model due to its high statistical 26 
significance. The final preferred model is shown in Table 4. 27 
 28 
TABLE 4 Preferred binary logistic regression model results 29 

Variables Estimate Std. Error z value Pr(>|z|) 
(Intercept) 13.54 5.26 2.58 0.01(*) 
Elevation -4.99 1.60 -3.12 0.00(**) 
Tide level 3.35 3.05 1.10 0.27 
Rainfall 6.88 6.54 1.05 0.29 

Period = 2 (6a – 9a) -5.01 2.61 -1.92 0.05 (.) 
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Period = 3 (9a – 3p) -5.45 3.18 -1.71 0.09 (.) 
Period = 4 (3p – 6p) -3.47 2.58 -1.34 0.18 (.) 
Period = 5 (6p-12a) -6.24 2.95 -2.11 0.03(*) 

Proximity 1.30 0.59 2.22 0.03(*) 
TWI -0.52 0.24 -2.13 0.03(*) 
DTW 0.00 0.00 2.31 0.02(*) 

**: significant at 99% confidence level 1 
*  : significant at 95% confidence level 2 
.   : significant at 90% confidence level 3 

In the final preferred model, all time periods are statistically significant at the 90% 4 
confidence level. In the absence of roadway characteristics in the final model, time period can be 5 
considered as a proxy exposure variable (as traffic volumes, and thereby active Waze users, are 6 
highly correlated to time-of-day). Proximity is also highly statistically significant in the preferred 7 
model. This indicates that the presence of other flood reports during the same time period (and 8 
physical proximity to those peer reports) is an important predictor variable. The Root Mean Square 9 
Error (RMSE) values for testing and training subsets of the ground truth datasets were found to be 10 
0.27 and 0.29 respectively, with AIC value of 46.15. 11 

The preferred binary logistic model is then used to find an optimum threshold to separate 12 
trustworthy and untrustworthy reports. To do this, TPR and TNR are calculated at different 13 
thresholds, as shown in Table 5. In Figure 3, additional performance measures are considered for 14 
these thresholds as 1 - sensitivity and 1 – specificity are plotted to display Receiver Operating 15 
Characteristic (ROC) curves (23). ROC curves help to determine the diagnostic ability of binary 16 
classifiers. An optimal threshold is defined as a point on the ROC curve with the value of 1 - 17 
sensitivity and 1 - specificity closest to 0 (i.e. when the FPR and the FNR are the lowest). Thus, 18 
the point on the curve with the shortest distance to the top-left corner of the plot, also known as 19 
distance-to-corner, corresponding to a threshold value of 0.8, is chosen as the threshold to 20 
differentiate trustworthy from untrustworthy crowdsourced reports. The corresponding confusion 21 
matrix for a trustworthiness threshold of 0.8 is shown in Table 6, which yields a model accuracy 22 
of 90.48% on the testing dataset.   23 
 24 
TABLE 5 Performance measures of varying thresholds 25 

  26 
Figure 3 ROC Curve 27 

TABLE 6 Confusion matrix (threshold = 0.8) 28 
N = 42 Predicted True Predicted False 

True Report 16 (tp) 4 (fn) 

Threshold Value 0.60 0.70 0.80 0.85 0.90 0.95 

TPR (Sensitivity) 0.80 0.80 0.80 0.80 0.80 0.75 
TNR 
(Specificity) 0.91 0.95 1.00 1.00 1.00 1.00 
Distance to 
corner squared 
(fpr2 + fnr2) 0.0206 0.0055 0.0000 0.0000 0.0000 0.0000 

Accuracy 85.71% 88.10% 90.48% 90.48% 90.48% 88.10% 
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False Report 0 (fp) 22 (tn) 
 1 

Trustworthiness of Waze data 2 
Figure 4 shows the predicted probability of occurrence of all crowdsourced Waze flood reports 3 
between August 2017 and December 2018 in Norfolk, when the preferred trustworthiness model 4 
is applied. 502 of the 697 reports exceed the threshold value of 0.8, implying 71.7% of the Waze 5 
flood reports can be considered trustworthy based on their topographic, environmental, temporal, 6 
and peer reporting characteristics.   7 
 8 
Figure 4 Waze report incident occurrence probabilities  9 
  10 
Figure 5 Characteristics of trustworthy and untrustworthy reports 11 
 Density plots in Figure 5 show the distribution of independent variable values of 12 
trustworthy (cyan) and untrustworthy (red) reports. In terms of environmental conditions, 13 
untrustworthy flood incident reports tend to cluster around 0 rainfall. Furthermore, flood incident 14 
reports are more likely to be considered trustworthy in higher intensity rainfall periods. For tide 15 
level, untrustworthy reports generally follow the same density plot as trustworthy reports, with 16 
two high density spikes at 0 ft and 0.4 ft. Tide level is not a spatially disaggregate variable as it is 17 
only collected at one point in the city. However, plotting these report locations on a map, there is 18 
a cluster of trustworthy reports (Figure 6[a]) near the Chesapeake Bay coast line in the northern 19 
part of the city, and another cluster of reports near downtown Norfolk (a low elevation area) in the 20 
southwest part of the city. Untrustworthy reports (Figure 6[b]), on the other hand, show far fewer 21 
reports in these locations. Similar to rainfall, untrustworthy reports show a low density of 22 
occurrence at higher tide levels (greater than 0.5 ft). In terms of the topographical variables, 23 
trustworthy reports generally occur at lower elevation compared to untrustworthy reports. When 24 
considering TWI (tendency of a location to accumulate runoff), the distributions are very similar 25 
for trustworthy and untrustworthy reports. On the other hand, trustworthy reports are more likely 26 
to report higher DTW (proximity to the closest water body) values, with the reports at the highest 27 
DTW values related to intense rainfall events. This implies that despite being at locations with 28 
high DTW, flooding does occur in instances of heavy rain. On the other hand, when examining 29 
untrustworthy reports with high DTW values, they occur during time periods with no rainfall. The 30 
proximity score of reports, which is based on the quantity and proximity of peer flood incident 31 
reports, has a large range. Trustworthy reports’ mean proximity value is 6077.32 (log value 2.08) 32 
and untrustworthy reports’ mean proximity value is 2.15 (log value ~ 0), implying that the majority 33 
of untrustworthy reports are either sole reports during the time-of-day period, or had peer reports 34 
very far away, resulting in a very low proximity score.  35 
                36 

(a) Untrustworthy     (b) Trustworthy  37 
Figure 6 Spatial distribution of untrustworthy and trustworthy reports 38 
 39 
Table 7 examines the characteristics of peer flood reports for trustworthy and trustworthy flood 40 
incident reports. Untrustworthy reports are more temporally dispersed (195 reports over 117 41 
unique time-of-day periods) than trustworthy reports (502 reports over 100 unique time-of-day 42 
periods). Additionally, the maximum number of peer flood reports in the same time-of-day period 43 
was found to be 6 for untrustworthy reports and 66 in trustworthy reports, implying the importance 44 
of peer reports in asserting trustworthiness in crowdsourced data. 45 
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TABLE 7 Observations on trustworthy and untrustworthy time periods from Waze  1 
# of reports Trustworthy 

Reports 
Untrustworthy 

Reports 
Total reports 502 195 

Total affected time periods 100 117 
Sole flood report (in the time period) 8.0% 39.4% 

1 peer flood report (in same time period) 8.8% 20.5% 
>1 peer flood report (in same time period) 83.2% 40.1% 

Maximum number of peer reports in a 
single time period 66 6 

 2 
DISCUSSION 3 
The distinguishable characteristics in trustworthy reports were found to be high peer reporting, 4 
lower elevations, high rainfall intensity, and proximity to the coast. These characteristics would 5 
be intuitive for true flood events, and this study provides similar evidence. Additionally, the study 6 
also shows that peer reporting of true events is much higher, implying a higher confidence in 7 
quantity of reporting in Waze as well. This methodology can prove crucial in separating 8 
trustworthy and untrustworthy reports, thereby allowing local agencies to obtain valuable incident 9 
information across the entire city without deploying extensive manpower for incident reporting. 10 
Accessing trustworthy information in near-real time can significantly improve response times for 11 
local agencies to delegate emergency management services, thereby solving flooding related 12 
disruptions at a faster rate. In addition to this, the general framework adopted in this study can be 13 
used for different disruptions with contextual factors as well, enabling a wider range of 14 
applications.  15 
 16 
CONCLUSION 17 
Crowdsourced data has the potential to provide real-time transportation information without the 18 
cost of additional sensors, cameras, or other cost-prohibitive measures. However, since 19 
crowdsourced data is usually unchecked, verification of the data becomes challenging. This study 20 
presents a framework to assess the quality of a subset of Waze incident reporting data related to 21 
roadway flooding in Norfolk, Virginia. Roadway flooding occurs as a combination of 22 
environmental conditions and insufficient drainage infrastructure. Environmental, topographic, 23 
and infrastructure variables which potentially contribute to flooding and flood reporting are used 24 
in this study to build a logistic regression model to estimate the probability of occurrence of a flood 25 
incident report. While this methodology does not directly identify misreports or false reports, it 26 
provides a conservative approach to distinguish crowdsourced flood incident reports with a high 27 
level of trustworthiness. The preferred model developed in this study shows a prediction accuracy 28 
of 90.48% when applied to a subset of ground truth data, implying a high rate of correct 29 
identification of reports. When applying the model to crowdsourced Waze data over a 16-month 30 
study period, 71.7% of the user reported flood incidents were predicted to be trustworthy. Among 31 
the untrustworthy reports, the most notable characteristics included low occurrence of peer 32 
reporting, inland locations with lower tide levels, higher elevation, and lower rainfall intensity in 33 
the reported periods.  34 
 This study has limitations which should be addressed in future research. To start, the 35 
positive ground truth data set utilized in model development has a small sample size, and is biased 36 
towards higher intensity flood events. Within these events, the ground truth data is biased towards 37 
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tidal flooding compared to rainfall-induced flooding, due to the nature of city employees’ data 1 
collection. In addition, the proximity variable defined in this study to account for peer reporting 2 
requires that crowdsourced datasets have high levels of user activity (and incident reporting), in 3 
order to achieve a wide range of proximity values. One of the assumptions used in the study was 4 
to use a default minimum capacity on smaller roads. The capacity variable was found insignificant 5 
in the regression model, and thus removed from the finalized model. However, since capacity of a 6 
roadway is an important characteristic of the roadway network, it would be prudent to test this 7 
variable when applied in different locations. Lastly, ground truth data (however limited) is still 8 
necessary to build a trustworthiness assessment model under this framework. In this study, the city 9 
flood reports (which are then validated by the physics-based TUFLOW model to confirm non-10 
negligible flood depth) is used to build the trustworthiness model. TUFLOW model is 11 
computationally intensive, and not available for an entire city. Zahura et al. developed a random 12 
forest surrogate model (28), which replicates TUFLOW outputs in a fraction of the time. A search 13 
for agency provided flood incident data used in recent research only yielded a handful of cities in 14 
the US (including New York City, NY; Norfolk, VA; Charleston, SC; Miami, FL; Houston, TX; 15 
San Francisco, CA; and Tacoma, WA). This becomes a challenge in transferring the model 16 
framework to other coastal cities without agency flood incident data. Given the increasing research 17 
on crowdsourced flood incident data, there might be a potential for flood prone cities to invest in 18 
data collection during the periods in the year with heavy floods that can act as a ground truth for 19 
further Waze dataset usage. Alternatively, cities could also invest in strategically placing sensors 20 
throughout the city for a short period of time to collect ground truth data. For cities that lack means 21 
of collecting ground truth data, significant static variables from the current work such as 22 
topographic and roadway variables can be used for initial screening flood hotspot locations. Peer 23 
reporting on crowdsourced datasets can then be used for assigning priority to potentially more 24 
vulnerable locations. 25 
 Nonetheless, this study demonstrates the ability to assess trustworthiness of Waze flood 26 
incident reports with limited ground truth availability. This framework could eventually lead to 27 
identification of flooding hotspots in near-real time, allowing cities to deploy dynamic flood 28 
mitigation actions and ensure a faster recovery to normal conditions. The flooding hotspots 29 
identified through this methodology can be used to provide early improvements in addressing the 30 
long-term impacts of sea-level rise. Furthermore, the general methodology utilized in this study is 31 
not limited to assertion of trustworthiness of crowdsourced flood incidents, and can be used in 32 
other applications with available contextual and ground truth data sets. 33 
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