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ABSTRACT

Climate change and sea-level rise are increasingly leading to higher and prolonged high tides,
which, in combination with the growing intensity ofrainfall and storm surges, and insufficient
drainage infrastructure, result in frequent recurrent flooding in coastal cities. There is a pressing
need to understand the occurrence of roadway flooding incidents in order to enact appropriate
mitigation measures. Agency data for roadway flooding events are scarce and resource-intensive
to collect. Crowdsourced data can provide a low-cost alternative for mapping roadway flood
incidents in real time; however, the reliability is questionable. This research demonstrates a
framework for asserting trustworthiness on crowdsourced flood incident data in a case study of
Norfolk, Virginia. Publicly available (but spatially limited) flood incident data from the city in
combination with different environmental and topographical factors are used to create a logistic
regression model to predict the probability of roadway flooding at any location on the roadway
network. The prediction accuracy of the model was found to be 90.5%. When applying this model
to crowdsourced Waze flood incident data, 71.7% of the reports were predicted to be trustworthy.
This study demonstrates the potential for using Waze incident report data for roadway flooding
detection, providing a framework for cities to identify trustworthy reports in real-time to enable
rapid situation assessment and mitigation to reduce incident impact.

Keywords: crowdsourced data, flooding, trustworthiness, logistic regression, incident
management
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INTRODUCTION

In recent years, crowdsourced data has emerged as a low-cost method for data collection in various
fields. In the transportation domain, there are many areas of research which have insufficient or
non-existent agency-provided data, where crowdsourced data shows promise to be a useful
alternative resource for research and analysis in these domains, such as bicycle ridership (1), traffic
analysis, (2), and accident reporting (3).

One of the domains with very limited agency data is incidences of roadway flooding.
Recurrent flooding as a result of rainfall, high tides, or both is becoming more prevalent in coastal
cities. These flood incidents cause inundation of roadways for up to several hours, which
deteriorates mobility and accessibility of travelers. Over the past six decades, almost thirty coastal
cities in the US have witnessed a spike in the number of annual flood days, with some cities
witnessing as many as 50 extra flood days every year (4). NOAA estimated a 125% increase in the
number of annual flood days in the southeast coast of the US and 75% in the northeast coast
between the years 2010 and 2015 (5). Some city or state agencies may collect these flood incident
data as a part of providing emergency management services on the roadway network. Preemptive
knowledge of reliable flood locations could significantly reduce the duration of flooding and
delays on the roadway network. However, most cities do not collect standardized comprehensive
data of roadway flooding incidents, making it difficult to make data-driven decisions for traffic
rerouting and flood mitigation measures. One promising source for crowdsourced flood incident
data is Google Waze, a GPS navigation app that allows users to report on a multitude of traffic-
related incidents, including roadway flooding. While crowdsourced data can be a powerful
alternative to revolutionize data collection where agency data is lacking, such data comes with its
own set of limitations. Since crowdsourced data is not regulated, there can be human error,
technical error, wrongful reporting, among other issues (6). This study explores the trustworthiness
of crowdsourced Waze flood incident data in a case study of Norfolk, Virginia. The City of Norfolk
has been collecting limited roadway flooding data due to the increasing frequency of recurrent
flooding. This study combines the limited city flood report (ground truth) data with publicly
available topographical and environmental data to build a model to assess trustworthiness of the
crowdsourced Waze flood incident reports.

BACKGROUND AND LITERATURE REVIEW

In the past decade, crowdsourced datasets have become increasingly popular in transportation
applications where traditional data collection methods are cost prohibitive. Waze has emerged as
a popular crowdsourced dataset for transportation research, as the app allows users to enter
location-specific and time-stamped reports of all sorts of traffic-related incidents: road closures,
hazards (including roadway flooding), traffic jams, police presence, crashes, and more. Several
studies have examined the usability of Waze incident data in transportation applications, though
none have examined flood incident data. For example, Hoseinzadeh et al. (7) used independently
collected Bluetooth speed data as ground truth and assessed the quality of Waze speed data. Their
models concluded that the Waze data was more accurate in peak traffic hours, and achieved a
prediction accuracy of almost 85%. Amin-Naseri et al. (8) conducted an analysis to quantify the
potential added coverage of traffic incidents through Waze data, in addition to police reported data.
It was estimated that 34.1% of Waze-reported incidents provide additional information not covered
by any other dataset. Flynn et al. (3) developed machine learning models with spatial and temporal
data which estimated police crash reports with high accuracy, and concluded that Waze could be
a potential data source to quickly identify crashes in real time, enabling faster police response.
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Goodall and Lee (9) compared Waze-reported crashes and disabled vehicle information with video
footage on a roadway segment. They found that 80% of crashes and 50% of the disabled vehicles
were captured by Waze data, implying the potential to leverage Waze incident data to enable faster
response times, shorter incident durations, and better incident information dissipation to the public.
Eriksson (10) proposed a methodology to integrate crowdsourced Waze incident and congestion
data with official traffic data to reduce redundancy, improve reliability, and measure severity of
incidents. As evidenced by these studies, crowdsourced Waze data has potential to greatly expand
and improve existing agency provided transportation data. However, thus far, no study has
examined the value or trustworthiness of Waze flood incident report data.

Using real-time crowdsourced data to analyze impacts of roadway flooding is particularly
appealing since the alternative (installing sensor technology to gain accurate spatially disaggregate
data on rainfall, tide, and flood levels for every roadway link in a city) is cost-prohibitive.
However, as crowdsourced data is not regulated, there could be erroneous reporting due to
misunderstanding, confusion, carelessness, incompetence, or even intent to deceive (11).
Emerging studies in the computer science and electrical engineering domains have considered
asserting trustworthiness to various crowdsourced datasets dealing with environmental conditions
(12, 13). For example, Flanagin and Metzger (14) suggest collaborating geospatial and
environmental knowledge with crowdsourced data to assert credibility of the data. Similarly, a few
studies in the geography domain incorporate topological and environmental characteristics to
assert credibility of crowdsourced incident detection datasets. For example, Ostermann and
Spinsanti (15) used crowdsourced Twitter and Flickr data to conduct a context analysis to identify
hotspots of forest fires in Spain, using forest cover, distance to nearest hotspot, and inhabitant
density in the area as contextual variables. The study concluded that geographic features of
crowdsourced location information (also known as Volunteered Geographic Information, or VGI)
provides a useful approach to filter crowdsourced data. Hung et al. (16) assessed the credibility of
crowdsourced flood incident data by using contextual topological data. A binary logistic regression
model with variables such as elevation and distance-to-flood-risk-zones showed prediction
accuracy of 90% and 80% for training and testing datasets, respectively.

The studies conducted by Hung et al (16) and Ostermann and Spinsanti (15) combined VGI
datasets with other relevant event-specific topographical variables to assert credibility on
crowdsourced datasets. Most of the VGI datasets used in previous studies are very location
specific, and do not have a presence globally. This study uses a similar approach, by using potential
flood-related explanatory variables (environmental and topographic) to assert trustworthiness on
crowdsourced Waze flood report data. Waze data has a much higher global footprint, and with
that, this methodology can be applied to any city with enough Waze users. Also, unlike the
previous studies, the ground truth data set is built from credible but spatially and temporally limited
agency data.

DATA SOURCES AND PRE-PROCESSING

To build the trustworthiness model, this study uses contextual parameters such as environmental,
topographic, and roadway infrastructure variables to explain the occurrence of a flood incident.
This section explains the different datasets used to build the model. The study period is restricted
by the availability of flood incident data, which ranges from August 2017 to December 2018,
with three weeks excluded due to loss of data.
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Environmental data

The environmental data is composed of rainfall and tide level observations. Hourly tide levels
referenced to the North American Vertical Datum (NAVDS88) were obtained from

National Oceanic and Atmospheric Administration’s (NOAA) Sewell’s Point station (17). Hourly
rainfall data was collected from seven Hampton Roads Sanitation District (HRSD) observation
sites. Both of these datasets are publicly available.

Topographic data

Three topographic features were used as model inputs: elevation, topographic wetness index (TWI)
(18), and depth-to-water (DTW) (19). Elevation information at locations of the Waze flood
incident reports is extracted from the United States Geological Survey (USGS) Digital Elevation
Model (DEM), which has 1-meter horizontal resolution. The most recently published figure of
absolute vertical accuracy of the 3D Elevation Program (3DEP) DEMs within the conterminous
United States, in terms of the National Standard for Spatial Data Accuracy (NSSDA) at 95%
confidence level, is 3.04 meters (27).

TWI and DTW were also derived using the DEM. TWI accounts for the tendency of any
pixel (smallest grid in a raster file) in the topography to receive water from upstream and its
tendency to drain that water. A high TWI value implies a high potential for accumulation of surface
water runoff. TWI, defined by Beven and Kirkby (718), is a function of a, which is the upstream
contributing area per unit contour length at a given pixel and ¢tan 8, which is the local slope at that
pixel in the catchment, as shown in Equation 1:

TW1=ln( « ) (1)

tan B

DTW, defined by Murphy et al. (19), is a relative measure of soil moisture conditions,
which approximates the elevation difference between a pixel in the topography and the nearest

surface water pixel along the least slope path. DTW is a function of %, which is the slope of a

pixel i in the topography along the least-cost path to the nearest surface water pixel, a, which is
either 1 or 2%° depending on whether the path crosses the pixel parallel to the pixel boundary or
diagonally, and x., which is pixel size, as shown in Equation 2:

DTW (m) = |2 @i x, @)

Topography pixels closer to surface water, in terms of both distance and elevation, tend to
have smaller values of DTW, indicating wetter soil.

Predicted Surface Water Depth

Predicted street-level surface water depth was simulated using a physics-based hydrodynamic
model (TUFLOW: Two-dimensional Unsteady Flow) model. The flood model solves 2D
equations for shallow water and free surface flow to simulate overland flow, and it is coupled with
1D hydrodynamic network software ESTRY (20) to simulate pipe flow. The 1D pipe/2D overland
hydrodynamic flood model described by Shen et al. (21, 22, 26), which provides details on the
model construction, calibration, and evaluation process. The model used in this analysis covers
roughly half the area of the city of Norfolk, VA (56.4 km?). Surface flooding is simulated at one-
hour time steps and at a spatial resolution of 2.5 m, which was then used to estimate water depth



O JON DN W

[UST NG T NG T NG T NG T NG T NG I NS T NG T NG T N i e e e e N e T e N
OOV WN—R, OOV DN WND—O O

W W
N —

AP, DOWUWLWWLWWW
NN N WO, OOV Nk~ W

on street segments. TUFLOW is a high-fidelity model which simulates realistic flood depth,
however is very computationally intensive in nature.

Roadway characteristics data

Roadway characteristics consist of geometric design features like number of lanes, per lane
capacity, intersection (binary variable, based on if the report falls at an intersection or not), and
freeway (binary variable, based on if the report falls on a freeway link or lower functional
classification link). These roadway properties are obtained from the Hampton Roads Regional
Travel Demand Model (HRRTDM). The roadway functional classification categorizes major and
minor freeways as freeways (binary variable = 1), and all other roadway links as non-freeways
(binary variable = 0). For capacity of each roadway link, per lane capacity is multiplied with
number of lanes, both obtained from the HRRTDM. For roads that are not covered in the
HRRTDM network, the number of lanes is obtained from the City of Norfolk’s streets shapefile,
and multiplied with a default per-lane capacity of 650 vehicles per hour per lane (minimum per
lane capacity recorded in the HRRTDM).

Agency-provided flood incident data

The flood incident data collected by City of Norfolk spanned from January 2017 to December
2018, using city employees’ reported flood locations in a mobile phone application (System to
Track, Organize, Record, and Map [STORM)]). The app records the date and location of flooding.
Furthermore, the app user can specify the flood location as an intersection, address, or block.
Duplicate reports (reports occurring on the same day, within 50ft of each other) are eliminated.
Then, several steps are followed in order to geo-tag the flood incident report to a specific location
on the roadway network. In ArcGIS, the intersections named in the dataset are manually matched
to the corresponding intersection, the addresses are relocated to the closest point on the roadway
network, and the block locations are relocated to the lowest elevation point between the upstream
and downstream intersections. These location-corrected reports are henceforth referred to as city
reports. Due to the lack of a timestamp associated with the flood reports (only dates are recorded),
the entire day is initially assumed to be flooded in this analysis. Then, these city reports are checked
against TUFLOW model output to identify the flooded time periods with positive water depth, as
explained in detail in the Methodology section.

Crowdsourced flood incident data

The mobile navigation application Waze contains a real-time information reporting tool, from
which the crowdsourced flood incident reports are obtained. Waze provides user-reported incident
data via its data sharing program (Waze for Cities), which is available to public entities worldwide.
In this study, Waze incident reports (time-stamped and location-identified) related to roadway
flooding in Norfolk (between August 2017 and December 2018, with three weeks excluded due to
loss of data) are analyzed. Waze flood report data is only as comprehensive as the locations of
road users reporting flooding; however, the spatial coverage is considerably greater than the
agency data available through the City of Norfolk. Figure 1 shows an example of flood reports
from both data sets in August 2018, to represent the coverage disparity between the City and Waze
reporting of floods.

(a) (b)
Figure 1 Flooding reported by (a) City of Norfolk and (b) Waze in August 2018



1  Drainage characteristics data

2 Arecord of all the storm water structures (such as bridge drain, gutter basin, floor drain, manhole,

3 etc.) is provided by the City of Norfolk in a GIS shapefile. This variable is regrouped from 18

4  structure types to 12 structure categories to combine similar drainage structure types on the

5  roadway. Each flood report is characterized by the drainage infrastructure that is the closest feature

6 by distance (in GIS) from the report location.

7

8 In addition to all the datasets described above, an additional parameter called “Proximity”

9  is calculated. Proximity is a measure of closeness to other flood incident reports: the closer the
10 other flood incident reports during the same time of day, the higher the proximity value. This score
11 is assigned to each ground truth city flood report, and is calculated based on Waze- and city-
12 reported flood incidents during the same time period (on the same date), as shown in Equation 3.
13 Because Proximity can only be calculated for city reports when Waze flood report data is also
14 available, the study period is defined as August 2017 to December 2018 (when both data sets
15  overlap). Table 1 summarizes all the datasets used to build the ground truth model.

16
17 TABLE 1 Data inputs in predictive model
Variable Explanation Data Data Source or Method of
(unit) Dimension | Derivation
Date Date of flood report Temporal | City of Norfolk or Waze.
Time period Time period of flood report Temporal | Timestamp obtained from Waze, and
(1: 12:00 to 6:00 am, aggregated to corresponding time
2:6:00 to 9:00 am, period.
3: 9:00 am to 3:00 pm, No timestamp for City reports, thus
4: 3:00 to 6:00 pm, they are initially assumed to apply for
5:6:00 pm to 12:00 am) all 5 time periods on the report day.
Latitude and | Location of flood report. Spatial Obtained from geo-located City of
longitude Norfolk data or directly from Waze.
Proximity Measure of closeness to other Spatial and | proximity; = Z§ e LZ (3)
score flood reports on the same date | temporal T dij
and during the same time Where: . o
period. Calculated as the sum of i: flood report for which proximity
the squares of inverse distances score is being assigned
between the current flood report j: other flood reports (mty and Waze)
and all the other flood reports. on the same date and during the same
time period as i
dj: bird’s eye distance between
coordinates of i and j, in miles
Rainfall Collected across seven rain Spatial and | Data obtained from HRSD;
intensity gauges in the city, and temporal Interpolation done by Inverse
(in/hr) interpolated for each flood Distance Weighting (IDW), a spatial
report location. analysis tool in ArcGIS.
Elevation (ft) | Elevation of each flood report Spatial Obtained from DEM of Norfolk
location. (from USGS), and extracted for each
flood report point.




Tide level (ft) | Maximum tide level recorded Temporal | Obtained from NOAA Tides and
during the given time period at Currents
gauge at Sewell’s Point.
Depth to Elevation difference between Spatial Created from rasters of DEM and
water index the flood report location and waterbodies (19), and extracted for
(DTW)(m) closest water body based on each flood point
least slope path
Topographic | Measure of the tendency of an | Spatial Created from rasters of DEM and
Wetness Index | area to accumulate runoff: high waterbodies (18), and extracted for
(TWI) TWI values imply a high each flood point
potential for runoff
accumulation
Intersection Binary variable to identify if the | Spatial Manually obtained from ArcGIS
flood report occurs at an
intersection
Total Capacity | Total capacity of the roadway Spatial Obtained from HRRTDM
segment Total Capacity = number of lanes
X per lane capacity
Freeway Binary variable to identify if the | Spatial Functional classification obtained
flood report occurs on a from HRRTDM
freeway segment
Drainage Different types of drainage Spatial Obtained from the City of Norfolk
structures found closest to the
report location
1
2 DATA PREPARATION & METHODOLOGY
3 Refining ground truth dataset
4 Due to the lack of a timestamp on city-reported flood events (and the initial assumption that the
5 location is flooded for all five time periods of the day), the data undergoes another level of pre-
6  processing before being included as a positive flood report in the ground truth dataset. The physics-
7  based TUFLOW model is simulated on all the reported flood days to provide estimated water depth
8  for each hour within the model boundary. The city report locations that are present within the
9  TUFLOW model boundary are checked for maximum water depth within a 24ft buffer (width of
10 the traveled way on a typical two-lane roadway) to ensure that time periods considered flooded
11 have a predicted water depth greater than 0.1m (21). The TUFLOW model is not directly used to
12 find the trustworthiness of Waze flood incident due to its computationally intensive nature, making
13 such an approach infeasible for the end goal of using crowdsourced flood reports for real-time
14 traffic management and flood mitigation. In the 16-month study period, 19 days incurred city flood
15  reporting, which translated into 95 initial positive flood observations across five time-of-day-
16  periods. When verified against TUFLOW water depth models, 70 ground truth positive flood
17  observations remained.
18 The ground truth dataset also requires negative (non-flood) observations. Since any
19  location on the roadway network during any time period that is not reported as flooded could be a
20  potential non-flood observation, a procedure (outlined in Figure 2) was followed for random
21  selection of negative observations at spatial and temporal scales.
22
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Figure 2 Combining spatial and temporal dimensions of negative ground truth observations

For the random sampling of negative observations, locations within a 2000ft buffer of the positive
ground truth city flood reports were removed. Variable thresholds are also considered in the
random selection process of negative ground truth data to ensure sufficient variation in random
sampling. The spatial parameters (TWI, DTW, elevation) were divided into quartiles, based on
their range of values, shown in Table 2. 10% of the data is randomly selected from each quartile
to have some representation of each level of spatial characteristics. For temporal selection, two
levels of tide (< 0 ft, O ft<) and three levels of rainfall (0, 0< and <0.1, 0.1< in/hr) were chosen to
have a balanced sample of tide and rainfall levels. The non-flood observations were then sampled
to fill a 1:1 of true-to-false flood report ratio in the ground truth dataset for the model. The total
number of negative ground truth observations per variable threshold is shown in Table 2 for the
balanced 1:1 dataset.

TABLE 2 Negative ground truth observations by environmental and topographic variable
thresholds

Range (index) DTW <1089 | 1089<DTW <2171 | 2171< DTW <3260 | DTW=>3260
DTW i
# of Observations 44 11 4 1
(1:1)
Range (index) TWI<3.8 3.8 <TWI<8.9 8.9 <TWI<14 TWI> 14
TWI i
# of Observations 16 4 10 2
(1:1)
Elev- Range (m) Elev <-1.5m | -1.5m< Elev <3.3m | 3.3m< Elev <8.2m Elev>8.2m
ation # of O?lsir;/atlons 0 45 25 0
Range (in/hour) Rain =0 0< Rain <0.1 in/hr Rain > 0.1 in/hr
Rainfall i
ainfa # of Observations 60 3 7
(1:1)
Tide Range (m) Tide <0 m Tide > 0 m
Level # of O?lsir;/ations 30 40

Trustworthiness modeling

Roadway flooding events are closely related to environmental, topographic, and infrastructure
conditions (as listed in Table 1). Given the same probability of roadway flooding, the probability
of the reporting of a roadway flood event is closely tied to the traffic volume on that roadway
segment during the time period of the flood event (approximated here by the time of day and total
capacity variables, as explained in Table 1). Then, all of these variables can be used to predict the
trustworthiness of a crowdsourced flood report, estimated as the probability of a flood incident
report at a location given the environmental, topographic, roadway, drainage, and time-of-day
characteristics, via a binary logistic regression model. Logistic regression is widely used to study
the effects of explanatory variables on binary outcomes, and the probability of the event occurring
is calculated as shown in Equation 4:

P (1|X1,X2, . 'XTL) =

1
1 + e~ (a+ X BiX;) (4)

where,
P Probability of occurrence of the event (flood report)

9
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i Observation

a Constant
X; Independent variables (as listed in Table 1)
Pi Corresponding coefficient

A random 70-30 split of the 140 ground truth observations are used, where 70% of the
entire dataset is reserved for training, and remainder 30% for testing the dataset.. Random sampling
of data subsets is performed on the training dataset to fit the samples into a prediction model, while
reducing the total error in the model. Then, the regression model is used to calculate the probability
of a Waze flood event explained by the independent variables.

Note that a classification tree model (which creates partitions in the dataset based on
discrete characteristics) was also tested for this dataset. In the classification tree model, a parent
node in the tree is divided based on an independent variable into two child nodes, such that each
child node is more homogenous (or less impure) than the parent node. However, due to the large
number of independent variables in the dataset, the classification tree model proved to be unstable
(prediction accuracy and important variables varied widely when changing the observations in the
training set). Hence, the logistic regression model is preferred for assessing trustworthiness.

Model Selection

Several different criteria are used to evaluate the fit of the various logistic regression models. These
criteria and their definitions are listed in Table 3, including a confusion matrix and its associated
criteria (true positive rate [TPR] (Equation 5), true negative rate [TNR] (Equation 6), false
positive rate [FPR] (Equation 7), and false negative rate [FNR] (Equation 8)), Akaike
Information Criterion (AIC), distance to corner (Equation 9), receiver-operating-characteristic
(ROC) curves, and accuracy (Equation 10).

TABLE 3 Performance measures used for model selection

Performance Definition Preferred Equation (if applicable)
Measure value
directionality
Akaike Estimator of out-of- Smaller
Information sample prediction error,
Criterion or the relative amount
of information lost by a
given model
True Positive Rate | Ratio of true positives Higher tp (5)
(Sensitivity) identified to all positive tp+ fn
ground truth reports
True Negative Rate | Ratio of true negatives | Higher tn 6)
(Specificity) identified to all ground fr+tn
truth negatives reports
False Positive Rate | Ratio of false positives | Lower fr
identified by the model fp+tn ™
to all truly negative
reports in the ground
truth
False Negative Ratio of false negatives | Lower fn
Rate identified by the model tp+ fn ®
to all truly positive

10




reports in the ground

truth
Receiver Operating | Plot of Sensitivity vs 1- | Closer to the
Characteristic Specificity, helps to top left corner

(ROC) Curves (23) | determine the
diagnostic ability of the
binary classifiers

Distance to Corner | Optimal threshold to Lower Distance to Corner

(24, 25) minimize false positive = /(1 = Sensitivity)? + (1 — Specificity)? (9)
and false negative rates

Accuracy Shows the ratio of Higher tp + tn (10)
correctly identified all reports

reports to all reports.

RESULTS

Trustworthiness Model

A prediction model using the binary logistic regression structure was developed to analyze how
well a ground truth report can be explained by the independent environmental, topographic,
infrastructure, and temporal variables. The ground truth dataset was randomly split into 70% for

O JN N BN

[\ T NG T NG T N i NS T NG T NG T NS T NG i N R e e e e T e e T
OO0 AN NP WD, OWOVWOIOWUM PN WN—=OO

model training, and the remainder 30% for model testing. First, all the continuous variables
considered (as listed in Table 1) were tested for correlation. The highest correlation was found
between elevation and TWI (-0.52), with all other correlation values less than 0.3. The correlation
between elevation and TWI suggests that areas with lower elevation have a higher tendency to
accumulate runoff (TWI), which is related to topography. Then, different binary logistic regression
models with and without TWI were tested to examine the effect of inclusion of TWI on the tide
level parameter estimate and overall model fit. Due to the relatively small ground truth report
sample size, explanatory variables with p-values less than 0.3 (confidence level 70%) are retained.
Among the different model specifications tested, elevation, TWI, and DTW are always found to
be statistically significant at 95% confidence level. When roadway characteristics are considered,
total capacity was the only variable to emerge as statistically significant (p<0.1 in all three different
model specifications). However, inclusion of the total capacity variable reduced the accuracy of
the model (from 90.5% to 88%) with a higher false positive rate in the model prediction. Thus,
roadway capacity is excluded from the final preferred model. Tide level and rainfall are marginally
significant (0.25 < p-value < 0.3) in the preferred model specification. These variables are retained
due to their effect on the discrete time period variables (which emerge as non-significant if tide
level and rainfall are excluded). Despite the proximity variable being a byproduct of the number
and closeness of other reports in the same time period, it shows a low correlation with tide level
and rainfall. Proximity variable is retained in the preferred model due to its high statistical

significance. The final preferred model is shown in Table 4.

TABLE 4 Preferred binary logistic regression model results

Variables Estimate | Std. Error z value Pr(>|z)
(Intercept) 13.54 5.26 2.58 0.01(*)
Elevation -4.99 1.60 3.12 0.00(**)
Tide level 3.35 3.05 1.10 0.27

Rainfall 6.88 6.54 1.05 0.29

Period =2 (6a—9a) | _501 2.61 -1.92 0.05 (.)

11
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27
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Period =3 (9a-3p) | _545 3.18 171 0.09 (.)
Period =4 (3p—6p) | 347 2.58 -1.34 0.18 (.)
Period =5 (6p-12a) | ¢4 2.95 211 0.03(*)
Proximity 1.30 0.59 2.22 0.03(*)
TWI -0.52 0.24 2.13 0.03(%)

DTW 0.00 0.00 2.31 0.02(%)

**: significant at 99% confidence level
* : significant at 95% confidence level
. significant at 90% confidence level

In the final preferred model, all time periods are statistically significant at the 90%
confidence level. In the absence of roadway characteristics in the final model, time period can be
considered as a proxy exposure variable (as traffic volumes, and thereby active Waze users, are
highly correlated to time-of-day). Proximity is also highly statistically significant in the preferred
model. This indicates that the presence of other flood reports during the same time period (and
physical proximity to those peer reports) is an important predictor variable. The Root Mean Square
Error (RMSE) values for testing and training subsets of the ground truth datasets were found to be
0.27 and 0.29 respectively, with AIC value of 46.15.

The preferred binary logistic model is then used to find an optimum threshold to separate
trustworthy and untrustworthy reports. To do this, TPR and TNR are calculated at different
thresholds, as shown in Table 5. In Figure 3, additional performance measures are considered for
these thresholds as 1 - senmsitivity and I — specificity are plotted to display Receiver Operating
Characteristic (ROC) curves (23). ROC curves help to determine the diagnostic ability of binary
classifiers. An optimal threshold is defined as a point on the ROC curve with the value of / -
sensitivity and [ - specificity closest to 0 (i.e. when the FPR and the FNR are the lowest). Thus,
the point on the curve with the shortest distance to the top-left corner of the plot, also known as
distance-to-corner, corresponding to a threshold value of 0.8, is chosen as the threshold to
differentiate trustworthy from untrustworthy crowdsourced reports. The corresponding confusion
matrix for a trustworthiness threshold of 0.8 is shown in Table 6, which yields a model accuracy
01 90.48% on the testing dataset.

TABLE 5 Performance measures of varying thresholds

Threshold Value 0.60 0.70 0.80 0.85 0.90 0.95
TPR (Sensitivity) | g 0.80 0.80 0.80 0.80 0.75
TNR

(Specificity) 0.91 0.95 1.00 1.00 1.00 1.00

Distance to
corner squared
(fpr? + fnr?) 0.0206 0.0055 0.0000 0.0000 0.0000 0.0000

Accuracy 85.71% 88.10% 90.48% 90.48% 90.48% 88.10%

Figure 3 ROC Curve

TABLE 6 Confusion matrix (threshold = (0.8)
N=42 Predicted True | Predicted False
True Report 16 (tp) 4 (fn)
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Trustworthiness of Waze data

Figure 4 shows the predicted probability of occurrence of all crowdsourced Waze flood reports
between August 2017 and December 2018 in Norfolk, when the preferred trustworthiness model
is applied. 502 of the 697 reports exceed the threshold value of 0.8, implying 71.7% of the Waze
flood reports can be considered trustworthy based on their topographic, environmental, temporal,
and peer reporting characteristics.

Figure 4 Waze report incident occurrence probabilities

Figure 5 Characteristics of trustworthy and untrustworthy reports

Density plots in Figure 5 show the distribution of independent variable values of
trustworthy (cyan) and untrustworthy (red) reports. In terms of environmental conditions,
untrustworthy flood incident reports tend to cluster around 0 rainfall. Furthermore, flood incident
reports are more likely to be considered trustworthy in higher intensity rainfall periods. For tide
level, untrustworthy reports generally follow the same density plot as trustworthy reports, with
two high density spikes at 0 ft and 0.4 ft. Tide level is not a spatially disaggregate variable as it is
only collected at one point in the city. However, plotting these report locations on a map, there is
a cluster of trustworthy reports (Figure 6[a]) near the Chesapeake Bay coast line in the northern
part of the city, and another cluster of reports near downtown Norfolk (a low elevation area) in the
southwest part of the city. Untrustworthy reports (Figure 6[b]), on the other hand, show far fewer
reports in these locations. Similar to rainfall, untrustworthy reports show a low density of
occurrence at higher tide levels (greater than 0.5 ft). In terms of the topographical variables,
trustworthy reports generally occur at lower elevation compared to untrustworthy reports. When
considering TWI (tendency of a location to accumulate runoff), the distributions are very similar
for trustworthy and untrustworthy reports. On the other hand, trustworthy reports are more likely
to report higher DTW (proximity to the closest water body) values, with the reports at the highest
DTW values related to intense rainfall events. This implies that despite being at locations with
high DTW, flooding does occur in instances of heavy rain. On the other hand, when examining
untrustworthy reports with high DTW values, they occur during time periods with no rainfall. The
proximity score of reports, which is based on the quantity and proximity of peer flood incident
reports, has a large range. Trustworthy reports’ mean proximity value is 6077.32 (log value 2.08)
and untrustworthy reports’ mean proximity value is 2.15 (log value ~ 0), implying that the majority
of untrustworthy reports are either sole reports during the time-of-day period, or had peer reports
very far away, resulting in a very low proximity score.

(a) Untrustworthy (b) Trustworthy
Figure 6 Spatial distribution of untrustworthy and trustworthy reports

Table 7 examines the characteristics of peer flood reports for trustworthy and trustworthy flood
incident reports. Untrustworthy reports are more temporally dispersed (195 reports over 117
unique time-of-day periods) than trustworthy reports (502 reports over 100 unique time-of-day
periods). Additionally, the maximum number of peer flood reports in the same time-of-day period
was found to be 6 for untrustworthy reports and 66 in trustworthy reports, implying the importance
of peer reports in asserting trustworthiness in crowdsourced data.
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TABLE 7 Observations on trustworthy and untrustworthy time periods from Waze

# of reports Trustworthy Untrustworthy
Reports Reports
Total reports 502 195
Total affected time periods 100 117
Sole flood report (in the time period) 8.0% 39.4%
1 peer flood report (in same time period) 8.8% 20.5%
>1 peer flood report (in same time period) 83.2% 40.1%
Maximum number of peer reports in a
. . . 66 6
single time period

DISCUSSION

The distinguishable characteristics in trustworthy reports were found to be high peer reporting,
lower elevations, high rainfall intensity, and proximity to the coast. These characteristics would
be intuitive for true flood events, and this study provides similar evidence. Additionally, the study
also shows that peer reporting of true events is much higher, implying a higher confidence in
quantity of reporting in Waze as well. This methodology can prove crucial in separating
trustworthy and untrustworthy reports, thereby allowing local agencies to obtain valuable incident
information across the entire city without deploying extensive manpower for incident reporting.
Accessing trustworthy information in near-real time can significantly improve response times for
local agencies to delegate emergency management services, thereby solving flooding related
disruptions at a faster rate. In addition to this, the general framework adopted in this study can be
used for different disruptions with contextual factors as well, enabling a wider range of
applications.

CONCLUSION
Crowdsourced data has the potential to provide real-time transportation information without the
cost of additional sensors, cameras, or other cost-prohibitive measures. However, since
crowdsourced data is usually unchecked, verification of the data becomes challenging. This study
presents a framework to assess the quality of a subset of Waze incident reporting data related to
roadway flooding in Norfolk, Virginia. Roadway flooding occurs as a combination of
environmental conditions and insufficient drainage infrastructure. Environmental, topographic,
and infrastructure variables which potentially contribute to flooding and flood reporting are used
in this study to build a logistic regression model to estimate the probability of occurrence of a flood
incident report. While this methodology does not directly identify misreports or false reports, it
provides a conservative approach to distinguish crowdsourced flood incident reports with a high
level of trustworthiness. The preferred model developed in this study shows a prediction accuracy
of 90.48% when applied to a subset of ground truth data, implying a high rate of correct
identification of reports. When applying the model to crowdsourced Waze data over a 16-month
study period, 71.7% of the user reported flood incidents were predicted to be trustworthy. Among
the untrustworthy reports, the most notable characteristics included low occurrence of peer
reporting, inland locations with lower tide levels, higher elevation, and lower rainfall intensity in
the reported periods.

This study has limitations which should be addressed in future research. To start, the
positive ground truth data set utilized in model development has a small sample size, and is biased
towards higher intensity flood events. Within these events, the ground truth data is biased towards
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tidal flooding compared to rainfall-induced flooding, due to the nature of city employees’ data
collection. In addition, the proximity variable defined in this study to account for peer reporting
requires that crowdsourced datasets have high levels of user activity (and incident reporting), in
order to achieve a wide range of proximity values. One of the assumptions used in the study was
to use a default minimum capacity on smaller roads. The capacity variable was found insignificant
in the regression model, and thus removed from the finalized model. However, since capacity of a
roadway is an important characteristic of the roadway network, it would be prudent to test this
variable when applied in different locations. Lastly, ground truth data (however limited) is still
necessary to build a trustworthiness assessment model under this framework. In this study, the city
flood reports (which are then validated by the physics-based TUFLOW model to confirm non-
negligible flood depth) is used to build the trustworthiness model. TUFLOW model is
computationally intensive, and not available for an entire city. Zahura et al. developed a random
forest surrogate model (28), which replicates TUFLOW outputs in a fraction of the time. A search
for agency provided flood incident data used in recent research only yielded a handful of cities in
the US (including New York City, NY; Norfolk, VA; Charleston, SC; Miami, FL; Houston, TX;
San Francisco, CA; and Tacoma, WA). This becomes a challenge in transferring the model
framework to other coastal cities without agency flood incident data. Given the increasing research
on crowdsourced flood incident data, there might be a potential for flood prone cities to invest in
data collection during the periods in the year with heavy floods that can act as a ground truth for
further Waze dataset usage. Alternatively, cities could also invest in strategically placing sensors
throughout the city for a short period of time to collect ground truth data. For cities that lack means
of collecting ground truth data, significant static variables from the current work such as
topographic and roadway variables can be used for initial screening flood hotspot locations. Peer
reporting on crowdsourced datasets can then be used for assigning priority to potentially more
vulnerable locations.

Nonetheless, this study demonstrates the ability to assess trustworthiness of Waze flood
incident reports with limited ground truth availability. This framework could eventually lead to
identification of flooding hotspots in near-real time, allowing cities to deploy dynamic flood
mitigation actions and ensure a faster recovery to normal conditions. The flooding hotspots
identified through this methodology can be used to provide early improvements in addressing the
long-term impacts of sea-level rise. Furthermore, the general methodology utilized in this study is
not limited to assertion of trustworthiness of crowdsourced flood incidents, and can be used in
other applications with available contextual and ground truth data sets.
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