.comp-ph] 16 Oct 2020

1CS

2010.08556v1 [phys

arxiv

FPGAs-as-a-Service Toolkit (FaaST)

Dylan Rankin, Jeffrey Krupa,
Philip Harris
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Maria Acosta Flechas, Burt Holzman,
Thomas Klijnsma, Kevin Pedro,
Nhan Tran

Fermi National Accelerator Laboratory

Scott Hauck, Shih-Chieh Hsu,
Matthew Trahms, Kelvin Lin, Yu Lou
University of Washington
Seattle, WA 98195, USA

Batavia, IL 60510, USA

Ta-Wei Ho
National Tsing Hua University
Hsinchu, Taiwan 300044, R.O.C.

Abstract—Computing needs for high energy physics are al-
ready intensive and are expected to increase drastically in the
coming years. In this context, heterogeneous computing, specif-
ically as-a-service computing, has the potential for significant
gains over traditional computing models. Although previous
studies and packages in the field of heterogeneous computing
have focused on GPUs as accelerators, FPGAs are an extremely
promising option as well. A series of workflows are developed
to establish the performance capabilities of FPGAs as a service.
Multiple different devices and a range of algorithms for use in
high energy physics are studied. For a small, dense network, the
throughput can be improved by an order of magnitude with
respect to GPUs as a service. For large convolutional networks,
the throughput is found to be comparable to GPUs as a service.
This work represents the first open-source FPGAs-as-a-service
toolkit.

Index Terms—FPGAs, machine learning, as a service, high
energy physics

I. INTRODUCTION

The breakdown of Dennard scaling [1] in the last decade has
changed the landscape of modern computing [2]. Without the
promise of ever-faster central processing units (CPUs) at a fixed
power consumption, users have been forced to search elsewhere
for solutions to their ever-growing computing needs [3} |4].
Some improvements in processor performance have come
from the advent of multi-core processors. However, there is
growing interest in alternative computing architectures, such
as graphics processing units (GPUs), field-programmable gate
arrays (FPGAs), and application-specific integrated circuits
(ASICs). All of these architectures have been used in the
past for various specialized tasks that make explicit use of
their specific strengths, but a broader range of use cases has

been encouraged in recent years by heterogeneous computing.

Heterogeneous computing denotes systems which make use of
more than one type of computing architecture, typically a CPU
and one of the alternative architectures above. The alternative
architecture is typically referred to as the “coprocessor” or
“accelerator.” The advantage of this computing paradigm is that
each algorithm can be run on the best-suited architecture. Tools
and strategies to simplify the use of heterogeneous computing

FERMILAB-CONF-20-426-SCD

Javier Duarte
University of California San Diego
La Jolla, CA 92093, USA

Mia Liu
Purdue University
West Lafayette, IN 47907, USA

solutions have enabled a growing list of applications to take
advantage of alternative architectures.

Implementations of heterogeneous computing can take
various forms. The simplest design is typically to connect
each accelerator to a CPU, and then have each CPU offload
some portion of its work to the accelerator. However, this is
not necessarily the most effective design for a given system.
One alternative paradigm, called computing “as a service”,
consists of separate server and client CPUs [5H7]. Server
CPUs are directly connected to the accelerators, and are
responsible only for managing requests to communicate with
the accelerator. Client CPUs have network connections to the
servers and are responsible for all other parts of the computing
workflow; to use the accelerator they must send requests and
receive replies from the servers. This design separates the
management of the accelerator from rest of the workflow, and
simplifies the integration of the accelerator. Replacing the
accelerated application with a request to and reply from the
server allows the client to remain insensitive to specifics of
the accelerator such as the architecture, physical connections,
transfer protocols, and other details of handling the data.

Heterogeneous workflows involving GPUs have been used
for machine learning (ML) with great success [8]], but work-
flows involving FPGAs have been slower to develop. Tradition-
ally, algorithm development for FPGAs has been restricted to
experts well-versed in hardware description languages (HDLs),
greatly limiting the pool of possible developers. Conversely,
high-level synthesis (HLS) compilers are capable of transform-
ing untimed C into applications written in HDL, reducing
the barrier to entry for FPGA algorithm development [9]. For
certain tasks, modern HLS tools are able to achieve performance
comparable to that of handwritten HDL [10].

Despite their relative immaturity as accelerators in hetero-
geneous workflows, FPGAs have many appealing features
from a computing standpoint. Fast algorithms can be run
in nanoseconds, allowing large speedups in comparison to
the same algorithms on CPUs. FPGAs are also capable of
running many smaller operations in parallel, thus allowing
further improvements in speed. Although ASICs are capable
of providing similar or better factors of improvement in terms

of speed, the ability to customize FPGAs allows them to
be adapted to many different tasks or updated as algorithms
and needs change. FPGAs are also capable of providing this
performance with reduced power consumption when compared
to CPUs or GPUs.

As with GPU-based heterogeneous computing tools, many
tools focused on FPGAs are designed with ML algorithms
in mind, specifically deep neural networks (DNNs). The
characteristics of most ML algorithms, specifically a small
number of inputs and a large number of operations, are well-
suited for as-a-service computing models. The algorithms
considered in our work are all ML algorithms of different
sizes, meant to span a wide range of possible requirements
and design parameters. All of the algorithms explored here
are contenders for integration into heterogeneous workflows
involving FPGAs.

We use a combination of custom and existing tools intended
to target the specific needs of each algorithm. These are
packaged into a cohesive set of implementations that contain
both the server and client code required to deploy both small
and large DNN models, with different NN architectures, on
multiple different hardware platforms. We refer to this as the
FPGAs-as-a-Service Toolkit (FaaST) [11)|12]. The framework
we employ and the server design are capable of supporting
both ML and non-ML algorithms.

The rest of this paper is structured as follows. In Section [II}
we review related work. Section describes the set of tools
and ML models used. In Section we give results for the
FaaST approach and compare it to other approaches with GPUs
and CPUs. Finally, Sections[V] and [VI| provide discussion and
outlook.

II. RELATED WORK

As-a-service computing for ML algorithms is a growing
area of development at the intersection of the fields of ML
and on-demand cloud computing [13} [14]. The bulk of the
tools available focus mainly on accelerating inference for large
convolutional neural networks (CNNs) using GPUs. Our work
builds directly on some of these existing platforms.

High energy physics (HEP) workflows typically process an
event using distinct modules, each responsible for executing
a specific algorithm or computing a particular property of
the event. These modules can depend on the output of other
modules, and therefore must be scheduled and in some cases
run in a particular order to process an event successfully [15].
The Services for Optimized Network Inference on Coprocessors
(SONIC) [16] approach is designed with HEP workflows in
mind. With this approach, the client API for a given server is
integrated into an experiment’s C++-based software framework,
specifically the Compact Muon Solenoid (CMS) experiment at
the CERN Large Hadron Collider. Notably, SONIC supports
accelerating generic algorithms using asynchronous, non-
blocking methods. This allows event processing on the CPU to
proceed simultaneous with the accelerated algorithm, making
maximal use of the computing resources.

The feasibility of the as-a-service computing model for HEP
workflows has been previously demonstrated using SONIC
to interact with a GPU-based server for inference [17]. The
server/client design employed within this paper is similar
to previous work, allowing for a direct comparison of the
performance. In addition, the design similarity showcases the
versatility of the SONIC framework to handle both GPU and
FPGA-based coprocessor servers.

Our results utilize multiple DNNs that are all relevant for
HEP. These networks span a range of sizes, use cases, and
constraints. For small networks, the server is implemented using
hls4ml [18}[19] and Vitis Accel (previously SDAccel) [20].
For large networks, the server is implemented using Xilinx
ML Suite [21].

The hls4ml package translates neural network models into
FPGA firmware. The firmware description is generated in an
HLS language and is then compiled into a firmware description
in VHDL/Verilog. h1s4ml contains various tunable parameters
to control the resource usage and performance, which are very
useful to maximize the performance of the design. Vitis Accel
is a tool designed by Xilinx to allow for implementation and
acceleration of generic FPGA kernels and their management
from a host CPU. In some of our work, the server and its
communication with the FPGA is written using Vitis Accel,
while the FPGA kernels to perform the inference are created
with hls4ml.

Xilinx ML Suite [21] is a library developed by Xilinx that
can deploy CNNs to Xilinx FPGAs. It contains a utility to
quantize models, a compiler that coverts TENSORFLOW [22]
or CAFFE [23] models to an internal format, a CNN processing
unit implementation on FPGA, and a PYTHON interface.

Azure Machine Learning [24] is a cloud-based environment
developed by Microsoft to train, deploy, and manage ML
models. It provides, among other things, a PYTHON software
development kit to interact with the Microsoft Azure Stack
Edge (ASE) [25], a physical on-premises network appliance
capable of providing several ML models as a service.

III. ToOL DESCRIPTION

We use the SONIC framework to implement the client. The
client employs asynchronous non-blocking gRPC calls to send
requests to the server [26].

In order to perform inference on FPGAs, we use a combina-
tion of commercial and self-developed tools. We design services
for two benchmark networks: FACILE and ResNet-50. These
networks differ dramatically in size and design constraints,
and therefore we use separate methodologies to construct a
service for each. For FACILE, we use hls4ml and Vitis Accel,
while for ResNet-50, we use either Xilinx ML Suite or Azure
Machine Learning Studio.

For both networks, we first use the same formatting for client-
server messages and requests as the Nvidia Triton Inference
Server [27]. This allows the exact same client to be used with
either GPUs or FPGAs as a service with no modifications. In
the case of ResNet-50, we also investigate an alternative server

Time
e

Fig. 1: Schematic of the task schedule for a DDR buffer size equal to 4 times a single batched input. The scheduling is shown

after the buffers have stabilized after startup.

design (still using gRPC) that runs on the Microsoft Azure
Stack Edge.

In many cases, we find that the server performance is
limited first by the server itself. Specifically, even without
performing any acceleration or explicit processing in the server,
the throughput is limited by the gRPC server’s ability to accept
requests and return replies. In order to remove this limitation,
we employ proxy servers to allow multiple server instances to
run simultaneously while remaining visible to the client as a
single entity.

A. FACILE

FACILE is a small fully-connected neural network trained
to regress the energy of a particle based on time-sequence
data read out from a calorimeter, an experimental apparatus
that measures the energy a particle loses as it passes through
it [28]. The network takes multiple measurements of the energy
deposited in a region of the CMS hadron calorimeter as
input and outputs the incident particle’s energy. This type
of regression task is very common, with many algorithms of
various sizes and different architectures employed across HEP
experiments [29][30]. FACILE is quite compact, consisting of
three hidden layers with widths 31, 11, and 3 and rectified linear
unit (ReLU) activation functions [31]], three batch normalization
layers [32], and 1,001 trainable parameters, and therefore serves
as a useful benchmark for ultrafast accelerated algorithms. The
synthesized FPGA kernel accepts all inputs simultaneously and
produces the output in 34 clock cycles, with a clock frequency
of 300 MHz. This means that the inference result is available
in 104 ns. This application can also be run with a batched input
consisting of all 16,000 channels of the calorimeter. In order to
provide inputs to and receive outputs from the kernel running
on an FPGA, we use Vitis Accel.

Vitis Accel provides a software framework to manage signals
between an FPGA and a CPU. The core of this framework is
a “shell” on the FPGA that connects the programmable logic
to external memories, such as double data rate synchronous
dynamic random-access memory (DDR SDRAM) banks, and
to the CPU via a PCI Express (PCle) connection. The necessity
of implementing the inference kernel inside this framework
places various restrictions on its design. The shell’s design
requires that the FPGA kernels are connected to the CPU only
through the external DDR memory banks. As a result, the
inputs and outputs are not sent directly from the CPU to the

FPGA kernel, but instead are streamed from the CPU to the
DDR SDRAM via PCle, and then from the DDR SDRAM
to FPGA kernel. This design means that the kernel must be
capable of buffering inputs and outputs until they are all present
on the chip for a given inference. Although some computations
necessary for the inference result can proceed without the
full set of inputs available, the overall latency will still be
dictated by the last-arriving input. Further, for small networks
especially, the resources and performance cannot be improved
meaningfully by adapting the kernel design specifically for
streaming inputs.

Vitis Accel also provides a framework for managing the
data transfers (between the CPU and DDR memory) and the
inference execution. This is performed through the use of
execution queues, where the dependence of a given task on
previous tasks can be fully specified. This means that the queue
may contain tasks that are blocking or non-blocking; the call to
place a task in the queue itself is non-blocking. The three main
tasks to queue are, in order, memory migration of the inputs
from the CPU to the FPGA DDR SDRAM, kernel execution,
and memory migration of the outputs from the FPGA DDR
SDRAM to the CPU. The simplest command flow to execute
successfully is to make each of these three calls blocking. The
result is that they execute sequentially, and a new inference
may only begin once the result of the previous inference call
is received.

There are two main improvements that can be made to this
basic command flow. The first is to fully utilize the FPGA
resources. The two chips used in this work are the Xilinx
Virtex UltraScale+ VU9P FPGA via Amazon Web Services
(AWS) Elastic Compute Cloud (EC2) F1 instances, and the
Xilinx Alveo U250 Data Center Accelerator Card. Both of these
chips are large modern FPGAs constructed from multiple super
logic regions (SLRs) with limited connections between SLRs.
As a result, it is significantly simpler to design algorithms
that can be placed on a single SLR. The VU9P comprises 3
SLRs, while the Alveo U250 comprises 4 SLRs. Since the
hls4ml kernel above can be placed on a single SLR, it is
straightforward to place 3 (4) copies of the kernel on a VU9P
(Alveo U250). The copies of the kernel are referred to as
“compute units” (CUs) in the language of Vitis Accel. In order
to avoid the need for crossing SLR boundaries to access the
DDR memory, we must also restrict each CU to access only
the DDR memory connected directly to the SLR on which it

exec_async(job D) | FpGA Runtime

Request, fpga_worker (ML Suite)
Request ID, S
Worker ID S 7y
O
S
Job ID, N
Request ID, g‘?
Worker ID &’
Request, 1 o) v
Request ID-!
. -~ _ FPGA
—> | gRPC workers DI— fpga_waiter (Running 8-bit ImageNet
- -« ResNet-50 provided by Xilinx)
-
Response, Response data,
Request ID Request ID

Fig. 2: Server structure. gRPC workers communicates with the
FPGA waiter waits for the job completion signal.

is placed. By creating multiple CUs, this design can provide
a proportional improvement in the throughput that can be
achieved.

The other improvement that can be made is to make more
effective use of the task queue. This can be done by using a
buffer in each DDR memory bank. Since the total time for the
kernel execution with large batch exceeds the total time for
memory migration from the CPU to the FPGA DDR SDRAM,
we define a region in the DDR memory with size equal to an
integer multiple of the size of a single input batch. Then for
each CU, instead of requiring that the three main tasks are
executed sequentially, we copy inputs such that the DDR buffer
is always full. This allows each CU to execute continuously by
iterating sequentially through the DDR buffer. Some tracking of
the CU completion is still necessary for the memory migration
of outputs from the FPGA DDR SDRAM to the CPU as well
as at startup when the DDR buffer is not yet full. Figure
shows the schedule for a buffer size of four inputs once the
design is running stably. The optimal scheduling for this design
requires that the input buffer always contains an input when the
inference kernel is available. If the ratio of the total transfer
time to the kernel execution time is I, we expect that the
buffer must at least be large enough for R inputs to ensure
that optimal scheduling is possible.

Finally, we find that the gRPC server itself cannot handle
more than approximately 2,000 requests per second. In order
to increase this limit, we spawn 8 threads to handle inference
requests, each listening on a distinct address but sharing the
same task queue for the FPGA. We then use a HAProxy
server [33] to accept requests on a single address and forward
requests in a round-robin fashion to the 8 addresses that
correspond to the threads above. This configuration allows
the FaaST server to fully utilize the FPGA.

Internet. The FPGA worker sends the data to the FPGA. The

B. ResNet-50

ResNets belong to a class of neural network architectures
that use the residual learning technique |34], with ResNet-50
denoting a particular version with 50 layers. While ResNet-
50 was initially designed for natural image classification,
it has been adapted to many other types of problems. In
this work, we use a ResNet-50 model trained to classify
collimated showers of particles, or jets, generated from proton-
proton collisions |35} [36]]. Specifically, the model is trained
to distinguish jets originating from a top quark from other
jets. Similar image-based algorithms have been shown to be
very effective at this particular classification task [37]. Large
networks like ResNet-50 are a useful benchmark in contrast to
FACILE, since they require much longer latencies and therefore
represent a different class of possible as-a-service use cases. To
construct the image used as input, we map the detector’s surface
to a two-dimensional grid and assign each pixel’s value to be
the total transverse momentum detected at the corresponding
position. For this task, after the primary ResNet-50 feature
extractor resulting in 2,048 features, a custom classifier is
added, which comprises one fully connected layer of width
1,024 with ReLU activation and another fully connected layer
of width 2 with softmax activation, whose output represents
the probability of the jet arising from a top quark or not.

1) Xilinx ML Suite: To provide ResNet-50 as a service, we
first used Xilinx ML Suite to quantize and load the model.
We considered Vitis Al, but, at the time of writing, Xilinx
did not officially support Vitis AI on AWS. Although we did
not convert our ResNet-50 model for top quark tagging to
the format used by Xilinx ML Suite, the default ResNet-50
model has a similar number of parameters and operations.
Therefore, we expect that the performance in terms of latency
and throughput should be similar.

ML Suite is used with an asynchronous inference call. Each
inference request to the FPGA is assigned a job ID to identify
the request. We restrict the server so that at most 8 jobs are in
process simultaneously; other requests are queued. To utilize the
asynchronous feature, we create two threads that communicate
with ML Suite. The first thread, called the FPGA worker,
fetches new data from a pending job’s queue and passes it
to the ML Suite runtime as soon as there is an available job
ID. Another thread, called the FPGA waiter, waits for a job’s
completion signal and then fetches the inference result when
it becomes available. Figure shows the workflow inside the
Server process.

As with FACILE, the public gRPC interface is the same as
the Nvidia Triton server. Thus, existing SONIC clients can
connect to this server without any modification.

2) Azure Stack Edge: A second method to provide ResNet-
50 as a service is tested via an ASE. Its main accelerator
component is an Intel Arria 10 FPGA, to which several ML
models may be deployed via the Azure Machine Learning
Studio. No HLS or HDL is necessary, at the cost of not being
able to run arbitrary ML models. Additionally it includes a dual-
core CPU, 12TB storage, four 10/25 GbE network interfaces,
and 128 GB of RAM. The ASE was installed in the Feynman
Computing Center at Fermi National Accelerator Laboratory
and connected to the local network with a 10 GbE connection.
The ASE has a builtin network interface that accepts requests
using the gRPC protocol. Inference requests were sent to the
ASE using the gRPC client implemented in SONIC. To reduce
any effects the networking might have on the latency, we
exclusively used locally-connected CPU nodes for any inference
requests. We deployed the quantized version of the ResNet-50
top quark tagging model as provided in the Azure Machine
Learning Studio software.

IV. RESULTS
A. FACILE

In order to evaluate the maximal theoretical throughput for a
FaaST server running FACILE, we built a custom application
combining the server and client. The values of the inputs for the
test were determined during initialization and left unchanged
throughout the test. This design removes both the transfer and
input preprocessing steps, and ensures that the throughput is
limited only by FPGA inference capabilities. We then use this
application to scan a range of values for the size of the DDR
buffer and number of CUs. The results are shown in Fig.
for both an Alveo U250 and an AWS EC2 FI instance. We
confirm that using more CUs allows higher throughput, and
observe that throughput is maximal for DDR buffer sizes larger
than 4 input batches. This is expected because the ratio of the
total transfer time to the kernel execution time for this design
is roughly 3. We also confirm the expectation that using buffer
sizes larger than this optimal size does not affect the server
performance. These settings motivate our ultimate FaaST server
design that uses a DDR buffer size of 8 inputs (in units of the
batch) and one CU per SLR on the device (3 for the AWS
EC2 Fl1, 4 for the Alveo U250). With these settings we are

able to achieve a throughput of approximately 10,000 events
per second using the Alveo U250 and 6,700 events per second
using the AWS EC2 F1.

12000

Alveo U250
10000}
— o® o °
§ | ™ u
£
@ 8000f-
4qc-)l [] v v v
S v
L
— 6000- g
3
by
[=) LS < 2
S 4000}
g “lye ®
£
|_
@ #ofCUs=1
20004 V #o0fCUs=2[]
B #ofCUs=3
@® #ofCUs=4
0 1 1 1 I I I
0 5 10 15 20 25 30 35
Size of DDR buffer (# of inputs)
(a) Alveo
8000} JAWSIFE
7000
- LN u]
o v v
9 6000} v v
) v
c
@ 5000
3]
= 4000}
=}
2 | o® @ . .
S v
S 3000
o
<
[t 200070
@ #ofCUs=1
1000- ¥V #ofCUs=2|]
B #ofCUs=3
0 L 1 1 1 I T
0 5 10 15 20 25 30 35

Size of DDR buffer (# of inputs)
(b) F1 instance

Fig. 3: Throughput achieved locally for different numbers of
CUs and sizes of the DDR buffer for the Alveo (a) and AWS
EC2 F1 instance (b).

We use these settings to perform two tests of the FaaST server
performance. For the first test, we run a workflow involving
only the SONIC client module, and use a FaaST server running
on an Alveo U250. The clients and server are both located at
Fermi National Accelerator Laboratory. The performance of
the server is measured for varying numbers of simultaneous
clients and the results are shown in Fig. EI We find that the
server is capable of running at a throughput of over 5,000
events per second, or 80 million inferences per second. This
is significantly below the maximal throughput possible for
the Alveo U250 alone. Despite the optimizations included in
the server design, we find that the server CPU still limits the
overall throughput. This is largely a consequence of the small

size (low latency) and large batch for FACILE; we expect that
for most algorithms the CPU should be able to process requests
fast enough to saturate the FPGA kernel.

Alveo U250| -
6000 10
— —_
N + n
&5 oo L 8x10” &
hd) [V}
c 9]
o &
> 4000 5
= L 6x107 %
= =
2 30001 2
< 2
=) | <
) 4x107 5
© 2000 e
< <
[[=
L 2x107
1000 -
|
0

10 50 100 200 325
Simultaneous processes

Fig. 4: Throughput achieved by a FaaST server with a Alveo
U250 for different numbers of simultaneous clients.

This first test is useful for understanding the maximum
throughput possible with a FaaST server running FACILE
since the workflow involves no tasks that can be performed
asynchronously to the accelerated module. However, this is
not representative of most workflows, in which there are many
tasks that either cannot be accelerated or are simply better
performed on the CPU. In this case, the CPU is able to schedule
other tasks while the server processes the requests, thereby
masking some of the latency of the acceleration. Therefore,
the second test examines the feasibility of using FaaST in a
realistic HEP setting, namely the CMS high-level trigger (HLT),
which is the second tier of the trigger system implemented in
software running currently entirely on CPUs. It is responsible
for performing a reconstruction of the full detector, but this
must be done quickly, with latency on the order of 100 ms. This
is therefore a good candidate for usage with FaaST. This second
test is completed by running the full CMS HLT workflow and
bechmarking the default HLT configuration to one with the
hadron calorimeter reconstruction performed using the SONIC
client and FaaST server described above. For reproducibility in
the HLT tests, we use the HEPCloud framework which allows
various experiments to run analysis workloads on demand
in the public cloud as well as some allocation-based high-
performance computing (HPC) sites [38]. We deploy the HLT
client jobs in the form of AWS EC2 r4.4xlarge instances.
These client Virtual Machines are provisioned with 16 High
Frequency Intel Xeon E5-2686 v4 (Broadwell) processors,
122 GiB DDR4 Memory and support for enhanced networking.

We find that a single FaaST server running FACILE is
capable of serving 1500 simultaneous clients without any
increase in processing time. Above 1500 simultaneous clients,
we find that the 25Gbps network bandwidth limit of an
AWS f1.1l6xlarge introduces delays in processing from
the as-a-service model. Based on the results achieved using

— FPGA
== Nominal HLT algorithm
6000 i
o .
E 5000 A
iy i S —— ; _________
] T D= = ST, ,f,-I-
D 4000
—
3000 4
2000

800 1000 1200 1400 1600 1800 2000

Simultaneous processes

400 600
Fig. 5: Total processing time required for running a realistic
HLT workflow using the FACILE FaaST server as a function
of the number of simultaneous clients. The black dashed line
represents the total processing time required for running the
HLT workflow with no as-a-service component. The blue dotted
line displays a piecewise linear fit to the measurements.

an Alveo U250 with a 100 Gbps network bandwidth limit, we
estimate that one FaaST server could serve approximately 3,600
simultaneous HLT processes with no reduction in performance.

B. ResNet-50

1) Xilinx ML Suite: To maximize the throughput achievable
with Xilinx ML Suite, we investigated an alternative to the
nominal gRPC request interface called “StreamlInfer.” In this
type of connection, the server can receive a stream of images
and returns a stream of inference results. We found that this
type of connection is more efficient than the standard “Infer”
requests because it avoids the overhead of reconnecting the
server for every request. On an AWS f1.x16large instance,
the streaming connection’s throughput is 17% higher (487
inference/second using 8 FPGAs) compared to the standard
connections when multiple clients are connected.

Although the Xilinx ML Suite runtime supports connecting
to multiple FPGAs, we found that the server performance does
not increase proportionally with the number of FPGAs. We
found no significant performance gain when connecting to
more than 2 FPGAs simultaneously. Figure |§| shows results
with “StreamInfer” and “Infer” requests when connecting to
various numbers of FPGAs.

We suspect that this poor scalability is caused by the
PYTHON Global Interpreter Lock (GIL), which limits the server
to use only one CPU core at a time. To bypass this limit, we
started 4 server processes on the same machine, each connecting
to only 2 FPGA cards. An Nginx load balancer, also running
on the same machine, is then used to distribute the requests to
each process [39]. Since each inference request is much larger
than that of common use cases for gRPC, we need to increase
Nginx’s buffer size to achieve optimal performance.

600

500

400

300

200

224.9

532.4 519

458.6

Streaminfer
Infer

100

Inference Speed (images/s)

1 2 4 8
Number of FPGAs

Fig. 6: FPGA scaling test using a single ML Suite runtime
instance and a single client. “SteamInfer” denotes a streaming
connection, while “Infer” indicates a standard connection. The
server is run on an AWS f1.x16large instance.

160 | 1600
140 4 L 1400

— [|

n

= —_
9 120 + L1200 @
c]
q) [v)
5 100 - L1000 §
3 il g
5 so0 800 =
s g
O 601 L600 o
> 2
(o] <
& 40 m aoo F
l_

201 L 200
]
0l—— : ! . 0
5 20 50 100 200

Simultaneous processes

Fig. 7: FPGA scaling test result. Simultaneous processes means
the number of client instances running at the same time. Each
event contains a batch of 10 images.

To verify our design’s scalability, we ran a server on an
AWS f1.x16large instance in the us—west region. This
type of instance is connected to 8 FPGAs. We used a cluster
at Fermi National Accelerator Laboratory to issue requests to
the server from multiple instances of SONIC clients. Results
from these tests are shown in Fig. [7| Our design is able to
achieve a 550% improvement in throughput when using 8
FPGAs (1,350 inferences/second) compared to a single FPGA
(220 inferences/second).

2) Azure Stack Edge: In order to measure the achievable
throughput of the ASE providing the ResNet-50 model as a
service, we used 200 CPUs concurrently sending inference
requests via the local network at Fermi National Accelerator
Laboratory. We find that, using SONIC to send the inference
requests of our benchmark ResNet-50 model, the average
throughput of the ASE is 449.2 £ 5.0 inferences/second, with a
maximum achieved throughput of 460.1 inferences/second. Us-
ing less than 200 cores reduces the throughput slightly: with 50

500

400 400

300

w
o
o

atency (ms)

200 200

-

Throughput (inferences/sec)

100

ik

0 25 50 75 100 125 150
Simultaneous processes

175 200

Fig. 8: Throughput (red, left axis) and latency (blue, right axis)
as a function of number of simultaneous processes sending
inference requests of the ResNet-50 model to the Azure Stack
Edge.

cores, the average throughput is 432.0 £ 1.7 inferences/second.
As expected for a fully utilized FPGA, the latency, measured to
be the time difference between the start of the inference request
and the time a response is received, depends approximately
linearly on the number of simultaneous processes sending
inference requests. For 50 (200) cores, we find an average
latency of 99.2 +46.2 ms (412.1 4 82.4 ms). Sending requests
with a single CPU severely underutilizes the FPGA, but yields
a picture of the minimum achievable latency. We find a mean
latency of 23.4£30.0 ms when using a single core, noting that
the latency is not normally distributed but actually strongly
influenced by networking effects. In a minority of inference
requests, the latency jumped to 100 ms or larger, which is solely
attributable to network effects, and unrelated to the inference
time of the ASE. The median of the distribution, which is
less affected by these high-latency outliers, is 12.7 ms. The
throughput and latency as a function of number of simultaneous
processes are shown in Fig.

Finally, the ASE’s own CPU can be used as a client to
perform the inference on the internal FPGA. By sending
inference requests from the internal CPU to the internal FPGA
of the ASE, we find an average throughput of 70 inferences
per second, or 14ms per inference. It should be noted that
we used the Azure Machine Learning PYTHON SDK rather
than SONIC for this test, as it was technically less complex
to deploy on the ASE CPU. The throughput in this test is
largely driven by the extent to which the CPU manages to
utilize the full FPGA. It is nevertheless a helpful comparison
for the large-scale test described above.

V. DISCUSSION

We present the FPGAs-as-a-service toolkit (FaaST) for
integrating FPGA-based machine learning (ML) inference as a
service into scientific workflows. We have shown examples of
how FaaST can be used for a broad range of applications and
hardware. A summary of the results for all implementations
are shown in Table |I| For large networks, we find that the
throughput of FaaST servers is comparable to or better than
similar GPU as-a-service designs. In the case of small dense
networks, such as FACILE, a FaaST server outperforms GPU as-
a-service implementations by over an order of magnitude. These
results are not contingent on the precise details of the networks
we use as benchmarks. Indeed, we expect similar performance
from FaaST for other network inference applications. FaaST
represents the first open source toolkit intended to make high
performance FPGAs as-a-service available generically.

TABLE I: Summary of the performance of FaaST servers in
terms of events and inferences per second, and bandwidth.
Results for performance on GPUs are taken from Ref. [17].

. Number of | Batch Inf./s Bandwidth
Algorithm - Platform Devices | Size [Hzl [Gbps]
FACILE AWS EC2 F1 1 16,000 36 M 23
FACILE Alveo U250 1 16,000 86M 55
FACILE T4 GPU 1 16,000 §M 5.1
ResNet-50 AWS EC2 F1 8 10 1400 6.7
ResNet-50 V100 GPU 8 10 1,700 8.1
ResNet-50 ASE 1 1 460 2.2
ResNet-50 T4 GPU 1 10 250 1.2

For inference on GPUs, performance gains with respect to
CPUs typically occur in tasks that can be run with large batch
sizes. This is due to the ability of the GPU to run many parallel
operations. FPGAs, on the other hand, do not gain exclusively
by using large batches. Rather, FPGAs are able to achieve
low inference latency as a result of their ability to perform
computations significantly faster than CPUs and GPUs. As a
result, for ResNet-50, our FaaST server running on the ASE
with batch 1 almost doubles the throughput when compared to
a T4 GPU running with batch 10. This is especially noteworthy
given that many tasks in high energy physics (HEP) workflows
that require complex algorithms are naturally run with low
batch size. For example, in the case of the top quark tagging
ResNet-50 model used in this work, a batch size of 2 may be
sufficient for most HEP events.

One caveat to the performance of FPGAs with small batches
is that transfers to and from the device are typically more
efficient for large batches. This is because the overhead for
transfers can be quite significant. For a similar network to
FACILE, inference at batch size 1 was found to be only 15
times faster than inference at batch 16,000 [40]. However, not
every ML algorithm should be run at maximum batch; this
latency improvement must be weighed against the additional
resources and infrastructure needed to handle a large number
of concurrent inputs on the FPGA.

We have exclusively used ML applications in this work
because of their widespread and growing use in HEP workflows,

as well as their ability to be parallelized. This makes them very
useful target applications for acceleration. However, the FaaST
server design is highly generic. Provided that an algorithm can
be successfully executed on an FPGA, the FaaST model is
capable of enabling as-a-service acceleration. Any functional
FPGA kernel can be accelerated using Vitis Accel in a similar
manner to FACILE.

VI. OUTLOOK

FPGAs have been traditionally been used for various special-
ized tasks. Their low power consumption and extremely fast
processing make them particularly suited for applications across
industry and high energy physics. Their advantages, however,
are not exclusive to these domains and can be leveraged for
many other high-performance computing tasks. The FPGAs-as-
a-service toolkit we present can assist in the implementation
of FPGAs as a service in a variety of computing workflows
across science.

APPENDIX
A. Artifact Description

We ran tests of the FACILE hardware kernel throughput at
Fermi National Accelerator Laboratory (FNAL) on a Xilinx
Alveo U250 running XRT 2.3.1301 and Vitis 2019.2, with the
hardware installed locally to a Intel Xeon Silver 4210 CPU
@ 2.20GHz running Scientific Linux release 7.8. Tests of the
FaaST server for FACILE v1.0.0 were run using this same
machine for the server and the batch submission nodes at the
FNAL LHC Physics Center (LPC) Computing Cluster for the
clients. Tests of FACILE in a realistic workflow were run using
HEPCloud using an AWS f1.16xlarge instance for the server
and r4.4xlarge instances for the clients. Tests of ResNet-
50 in Xilinx ML Suite were run using our FaaST interface
v0.5.0, with a £1.x161large instance for the FaaST server
and the batch submission nodes at the FNAL LPC Computing
Cluster for the clients. Tests of ResNet-50 with the Azure
Stack Edge were run locally at the FNAL Feynman Computing
Center, using the batch submission nodes at the FNAL LPC
Computing Cluster for the clients.

Our author-created artifacts are given in Ref. [11] and
Ref. [12].

B. Artifact Evaluation

In all cases we ensure that behavior in critical regions (i.e.
high throughput) can be reproduced with slightly different test
settings, thus verifying that the results are both stable and
reliable. We run using a large number of events for all tests to
ensure the accuracy of and reduce statistical uncertainties on our
results. All our results are expected to be generalizable to other
networks and applications with similar performance. They are
cross checked on multiple similar devices whenever possible
to ensure the stability with respect to machine specifications
or device conditions and details. We use monitoring tools for
cloud tests to ensure no significant issues are occurring that
could affect our results. For tests run using FNAL resources
we have good control of the machines and devices in use and

can ensure that there are no transient sources impacting the
results. We also run results over the course of hours or days
such that any intermittent issues should not persist across data
points.

ACKNOWLEDGEMENTS

We acknowledge the Fast Machine Learning collective as
an open community of multi-domain experts and collaborators.
This community was important for the development of this
project. We would like to thank Steven Timm for his support
of our work with HEPCloud.

M. A. F, B. H, T. K,, K. P, and N. T. are supported
by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy (DOE),
Office of Science, Office of High Energy Physics. N. T. is
partially supported by the DOE Early Career Award. K. P. is
partially supported by the High Velocity Artificial Intelligence
grant as part of the DOE High Energy Physics Computational
HEP sessions program. P. H., and D. R. are supported by NSF
grants #1934700, #1931469, and the IRIS-HEP grant #1836650.
J. K. is supported by NSF grant #190444. Cloud credits for
this study were provided by Internet2 managed Exploring
Cloud to accelerate Science (NSF grant #190444). S.-C. H. is
supported by the DOE Early Career Award under the grant
DE-SC0015971. K. L. is supported by NSF grants #1934360.
Cloud credits for this study were provided by Internet2 managed
Exploring Cloud to accelerate Science (NSF grant #190444)
and the Department of Energy Early Career Award. J. D. is
supported by the DOE Office of Science, Office of High Energy
Physics Early Career Research program under Award No. DE-
SC0021187.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Ride-
out, E. Bassous, and A. R. LeBlanc, “Design of ion-
implanted MOSFET’s with very small physical dimen-
sions,” IEEE J. Solid-State Circuits, vol. 9, p. 256, 1974.
doi:10.1109/JSSC.1974.1050511

[2] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankar-
alingam, and D. Burger, “Dark silicon and the end of
multicore scaling,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser.

ISCA ’11. New York, NY, USA: ACM, 2011, p. 365.
doi:10.1145/2000064.2000108

[3] CMS Collaboration, “CMS offline and com-
puting public results,” 2020. [Online]. Avail-

able: |https://twiki.cern.ch/twiki/bin/view/CMSPublic/
CMSOfflineComputingResults

[4] ATLAS Collaboration, “Computing and soft-
ware — public results,” 2020. [Online]. Avail-
able: |https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
ComputingandSoftwarePublicResults

[5] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huber-
man, J. Manley, C. Patel, P. Ranganathan, and A. Veitch,
“Everything as a service: Powering the new information
economy,” Computer, vol. 44, p. 36, 2011.

[6] F. M. Aymerich, G. Fenu, and S. Surcis, “An approach to
a cloud computing network,” in 2008 First International
Conference on the Applications of Digital Information
and Web Technologies (ICADIWT), 2008, p. 113.

[71 K. Bennett, P. Layzell, D. Budgen, P. Brereton,
L. Macaulay, and M. Munro, “Service-based software:
the future for flexible software,” in Proceedings Seventh
Asia-Pacific Software Engineering Conference. APSEC
2000, 2000, p. 214.

[8] S. Mittal and J. S. Vetter, “A survey of CPU-GPU
heterogeneous computing techniques,” ACM Comput.
Surv., vol. 47, 2015. doi:10.1145/2788396

[9] R. Nane et al., “A survey and evaluation of FPGA high-

level synthesis tools,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 35,

p- 1591, 2016.

N. Ghanathe et al., “Software and firmware co-

development using high-level synthesis,” J. Instrum.,

vol. 12, p. C01083, 2017. doi:10.1088/1748-
0221/12/01/C01083
[11] D. Rankin, J. Duarte, K. Pedro, and

B. Holzman, “FaaST: FACILE,” [software], 8
2020. doi 10.5281/zenodo.3992377 v1.0.0 (accessed
2020-08-19). [Online]. Available: |https://github.com/
hls-fpga-machine-learning/FaaST

Y. Lou, “ML Suite gRPC Interface Implementation,”
[software], 2020, v0.5.0 (accessed 2020-08-19). [Online].
Available: https://github.com/LouYu2015/ml-suite/tree/

master/examples/gRPC
[13] M. Armbrust et al., “A view of cloud com-
puting,” Commun. ACM, vol. 53, p. 50, 2010.

doi:10.1145/1721654.1721672

A. Bouguettaya et al., “A service computing manifesto:
The next 10 years,” Commun. ACM, vol. 60, p. 64, 2017.
doi:10.1145/2983528

Intel, “Thread Building Blocks,” [software], 2018,
2018_U1 (accessed 2020-08-14). [Online]. Available:
https://www.threadingbuildingblocks.org

K. Pedro, “SonicCMS,” [software], 2020, v5.2.0
(accessed 2020-07-31). [Online]. Available: https://github.
com/hls-fpga-machine-learning/SonicCMS

J. Krupa et al., “GPU coprocessors as a service for
deep learning inference in high energy physics,” 2020,”
arXiv:2007.10359; submitted to Mach. Learn.: Sci. Tech-
nol.

J. Duarte et al., “Fast inference of deep neural networks
in FPGAs for particle physics,” J Instrum., vol. 13,
p- P07027, 2018. doi:10.1088/1748-0221/13/07/P07027,
arXiv:1804.06913

V. Loncar et al., “hls-fpga-machine-learning/hls4ml:
v0.3.0,” 6 2020. doi:10.5281/zenodo.3969548 V0.3.0
(accessed 2020-08-19).

V. Kathail, “Xilinx Vitis unified software platform,”
in The 2020 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 2020.
doi:10.1145/3373087.3375887

[21] Xilinx, Inc., “Xilinx ML Suite,” [software], 2020,
v1.5 (accessed 2020-07-31). [Online]. Available: https:
//github.com/Xilinx/ml-suite
M. Abadi et al., “TENSORFLOW: Large-scale machine
learning on heterogeneous distributed systems,” 2015.
[Online]. Available: http://download.tensorflow.org/paper/
whitepaper2015.pdf
Y. Jia er al.,, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd
ACM International Conference on Multimedia, ser. MM
14. New York, NY, USA: ACM, 2014, p. 675.
doi:10.1145/2647868.2654889| larXiv:1408.5093
Microsoft Corporation, “Microsoft Al platform
whitepaper,” 2017, accessed: 2020-08-17. [Online].
Available: |https://azure.microsoft.com/en-us/resources/
microsoft-ai-platform-whitepaper/
——, “Azure Stack Edge Datasheet,” 2020, accessed:
2020-08-03. [Online]. Available: https://azure.microsoft.
com/en-us/resources/azure-stack-edge-datasheet/
[26] Google LLC, “gRPC,” [software], 2018, v1.19.0 (accessed
2020-08-14). [Online]. Available: https://grpc.io/
[27] Nvidia, “Triton Inference Server,” [software],
2019, v1.8.0 (accessed 2020-08-14). [On-
line]. Available: https://docs.nvidia.com/deeplearning/
sdk/triton-inference-server- guide/docs/index.html
C. Fabjan and F. Gianotti, “Calorimetry for particle
physics,” Rev. Mod. Phys., vol. 75, p. 1243, 2003.
doi:10.1103/RevModPhys.75.1243
M. Rovere, Z. Chen, A. Di Pilato, F. Pantaleo, and
C. Seez, “CLUE: A Fast Parallel Clustering Algorithm for
High Granularity Calorimeters in High Energy Physics,”
Front. Big Data, 2020. doii10.3389/fdata.2020.591315.
arXiv:2001.09761
A. Massironi, V. Khristenko, and M. D’ Alfonso, “Hetero-
geneous computing for the local reconstruction algorithms
of the CMS calorimeters,” J. Phys. Conf. Ser., vol. 1525,
p- 012040, 2020. doii10.1088/1742-6596/1525/1/012040
A. F. Agarap, “Deep learning using rectified linear units
(ReLU),” 2018,” arXiv:1803.08375.
[32] S. Ioffe and C. Szegedy, ‘“Batch normalization:
Accelerating deep network training by reducing internal
covariate shift,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. ICML’15.
JMLR.org, 2015, p. 448, arXiv:1502.03167| [Online].
Auvailable: http://proceedings.mlr.press/v37/ioffel5
W. Tarreau, “HAProxy,” [software], 2020, v2.0.14
(accessed 2020-08-14). [Online]. Available: https://
haproxy.org
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2016, p. 770. doi:10.1109/CVPR.2016.90
arXiv:1512.03385
G. Kasieczka, T. Plehn, J. Thompson, and M. Rus-
sel, “Top quark tagging reference dataset,” Mar. 2019.
doi:10.5281/zenodo.2603256

[22]

[23]

[24]

[25]

(28]

[29]

[30]

[31]

[33]

[34]

[35]

[36]

J. Duarte et al., “FPGA-accelerated machine learning
inference as a service for particle physics comput-
ing,” Comput. Softw. Big Sci., vol. 3, p. 13, 2019.
doi:10.1007/s41781-019-0027-2. |arXiv:1904.08986

A. Butter er al., “The machine learning landscape
of top taggers,” SciPost Phys., vol. 7, p. 014, 2019.
doi;10.21468/SciPostPhys.7.1.014} arXiv:1902.09914

B. Holzman et al., “HEPCloud, a new paradigm for
HEP facilities: CMS amazon web services investigation,”
Comput. Softw. Big Sci., vol. 1, 2017. doi|10.1007/s41781-
017-0001-9! arXiv:1710.00100

W. Reese, “Nginx: The high-performance web server
and reverse proxy,” Linux J., vol. 2008, 2008. [Online].
Auvailable: https://www.linuxjournal.com/article/10108

N. Tarafdar, G. Guglielmo, P. C. Harris, J. D. Krupa,
V. Loncar, D. S. Rankin, N. Tran, Z. Wu, Q. Shen,
and P. Chow, “Aigean: An open framework for machine
learning on heterogeneous clusters,” in 2020 IEEE 28th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). Los Alami-
tos, CA, USA: IEEE Computer Society, 2020, p. 239.
doi:10.1109/FCCM48280.2020.00072

