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Abstract—Computing needs for high energy physics are al-
ready intensive and are expected to increase drastically in the
coming years. In this context, heterogeneous computing, specif-
ically as-a-service computing, has the potential for significant
gains over traditional computing models. Although previous
studies and packages in the field of heterogeneous computing
have focused on GPUs as accelerators, FPGAs are an extremely
promising option as well. A series of workflows are developed
to establish the performance capabilities of FPGAs as a service.
Multiple different devices and a range of algorithms for use in
high energy physics are studied. For a small, dense network, the
throughput can be improved by an order of magnitude with
respect to GPUs as a service. For large convolutional networks,
the throughput is found to be comparable to GPUs as a service.
This work represents the first open-source FPGAs-as-a-service
toolkit.

Index Terms—FPGAs, machine learning, as a service, high
energy physics

I. INTRODUCTION

The breakdown of Dennard scaling [1] in the last decade has

changed the landscape of modern computing [2]. Without the

promise of ever-faster central processing units (CPUs) at a fixed

power consumption, users have been forced to search elsewhere

for solutions to their ever-growing computing needs [3, 4].

Some improvements in processor performance have come

from the advent of multi-core processors. However, there is

growing interest in alternative computing architectures, such

as graphics processing units (GPUs), field-programmable gate

arrays (FPGAs), and application-specific integrated circuits

(ASICs). All of these architectures have been used in the

past for various specialized tasks that make explicit use of

their specific strengths, but a broader range of use cases has

been encouraged in recent years by heterogeneous computing.

Heterogeneous computing denotes systems which make use of

more than one type of computing architecture, typically a CPU

and one of the alternative architectures above. The alternative

architecture is typically referred to as the “coprocessor” or

“accelerator.” The advantage of this computing paradigm is that

each algorithm can be run on the best-suited architecture. Tools

and strategies to simplify the use of heterogeneous computing

solutions have enabled a growing list of applications to take

advantage of alternative architectures.

Implementations of heterogeneous computing can take

various forms. The simplest design is typically to connect

each accelerator to a CPU, and then have each CPU offload

some portion of its work to the accelerator. However, this is

not necessarily the most effective design for a given system.

One alternative paradigm, called computing “as a service”,

consists of separate server and client CPUs [5–7]. Server

CPUs are directly connected to the accelerators, and are

responsible only for managing requests to communicate with

the accelerator. Client CPUs have network connections to the

servers and are responsible for all other parts of the computing

workflow; to use the accelerator they must send requests and

receive replies from the servers. This design separates the

management of the accelerator from rest of the workflow, and

simplifies the integration of the accelerator. Replacing the

accelerated application with a request to and reply from the

server allows the client to remain insensitive to specifics of

the accelerator such as the architecture, physical connections,

transfer protocols, and other details of handling the data.

Heterogeneous workflows involving GPUs have been used

for machine learning (ML) with great success [8], but work-

flows involving FPGAs have been slower to develop. Tradition-

ally, algorithm development for FPGAs has been restricted to

experts well-versed in hardware description languages (HDLs),

greatly limiting the pool of possible developers. Conversely,

high-level synthesis (HLS) compilers are capable of transform-

ing untimed C into applications written in HDL, reducing

the barrier to entry for FPGA algorithm development [9]. For

certain tasks, modern HLS tools are able to achieve performance

comparable to that of handwritten HDL [10].

Despite their relative immaturity as accelerators in hetero-

geneous workflows, FPGAs have many appealing features

from a computing standpoint. Fast algorithms can be run

in nanoseconds, allowing large speedups in comparison to

the same algorithms on CPUs. FPGAs are also capable of

running many smaller operations in parallel, thus allowing

further improvements in speed. Although ASICs are capable

of providing similar or better factors of improvement in terms
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of speed, the ability to customize FPGAs allows them to

be adapted to many different tasks or updated as algorithms

and needs change. FPGAs are also capable of providing this

performance with reduced power consumption when compared

to CPUs or GPUs.

As with GPU-based heterogeneous computing tools, many

tools focused on FPGAs are designed with ML algorithms

in mind, specifically deep neural networks (DNNs). The

characteristics of most ML algorithms, specifically a small

number of inputs and a large number of operations, are well-

suited for as-a-service computing models. The algorithms

considered in our work are all ML algorithms of different

sizes, meant to span a wide range of possible requirements

and design parameters. All of the algorithms explored here

are contenders for integration into heterogeneous workflows

involving FPGAs.

We use a combination of custom and existing tools intended

to target the specific needs of each algorithm. These are

packaged into a cohesive set of implementations that contain

both the server and client code required to deploy both small

and large DNN models, with different NN architectures, on

multiple different hardware platforms. We refer to this as the

FPGAs-as-a-Service Toolkit (FaaST) [11, 12]. The framework

we employ and the server design are capable of supporting

both ML and non-ML algorithms.

The rest of this paper is structured as follows. In Section II,

we review related work. Section III describes the set of tools

and ML models used. In Section IV, we give results for the

FaaST approach and compare it to other approaches with GPUs

and CPUs. Finally, Sections V and VI provide discussion and

outlook.

II. RELATED WORK

As-a-service computing for ML algorithms is a growing

area of development at the intersection of the fields of ML

and on-demand cloud computing [13, 14]. The bulk of the

tools available focus mainly on accelerating inference for large

convolutional neural networks (CNNs) using GPUs. Our work

builds directly on some of these existing platforms.

High energy physics (HEP) workflows typically process an

event using distinct modules, each responsible for executing

a specific algorithm or computing a particular property of

the event. These modules can depend on the output of other

modules, and therefore must be scheduled and in some cases

run in a particular order to process an event successfully [15].

The Services for Optimized Network Inference on Coprocessors

(SONIC) [16] approach is designed with HEP workflows in

mind. With this approach, the client API for a given server is

integrated into an experiment’s C++-based software framework,

specifically the Compact Muon Solenoid (CMS) experiment at

the CERN Large Hadron Collider. Notably, SONIC supports

accelerating generic algorithms using asynchronous, non-

blocking methods. This allows event processing on the CPU to

proceed simultaneous with the accelerated algorithm, making

maximal use of the computing resources.

The feasibility of the as-a-service computing model for HEP

workflows has been previously demonstrated using SONIC

to interact with a GPU-based server for inference [17]. The

server/client design employed within this paper is similar

to previous work, allowing for a direct comparison of the

performance. In addition, the design similarity showcases the

versatility of the SONIC framework to handle both GPU and

FPGA-based coprocessor servers.

Our results utilize multiple DNNs that are all relevant for

HEP. These networks span a range of sizes, use cases, and

constraints. For small networks, the server is implemented using

hls4ml [18, 19] and Vitis Accel (previously SDAccel) [20].

For large networks, the server is implemented using Xilinx

ML Suite [21].

The hls4ml package translates neural network models into

FPGA firmware. The firmware description is generated in an

HLS language and is then compiled into a firmware description

in VHDL/Verilog. hls4ml contains various tunable parameters

to control the resource usage and performance, which are very

useful to maximize the performance of the design. Vitis Accel

is a tool designed by Xilinx to allow for implementation and

acceleration of generic FPGA kernels and their management

from a host CPU. In some of our work, the server and its

communication with the FPGA is written using Vitis Accel,

while the FPGA kernels to perform the inference are created

with hls4ml.

Xilinx ML Suite [21] is a library developed by Xilinx that

can deploy CNNs to Xilinx FPGAs. It contains a utility to

quantize models, a compiler that coverts TENSORFLOW [22]

or CAFFE [23] models to an internal format, a CNN processing

unit implementation on FPGA, and a PYTHON interface.

Azure Machine Learning [24] is a cloud-based environment

developed by Microsoft to train, deploy, and manage ML

models. It provides, among other things, a PYTHON software

development kit to interact with the Microsoft Azure Stack

Edge (ASE) [25], a physical on-premises network appliance

capable of providing several ML models as a service.

III. TOOL DESCRIPTION

We use the SONIC framework to implement the client. The

client employs asynchronous non-blocking gRPC calls to send

requests to the server [26].

In order to perform inference on FPGAs, we use a combina-

tion of commercial and self-developed tools. We design services

for two benchmark networks: FACILE and ResNet-50. These

networks differ dramatically in size and design constraints,

and therefore we use separate methodologies to construct a

service for each. For FACILE, we use hls4ml and Vitis Accel,

while for ResNet-50, we use either Xilinx ML Suite or Azure

Machine Learning Studio.

For both networks, we first use the same formatting for client-

server messages and requests as the Nvidia Triton Inference

Server [27]. This allows the exact same client to be used with

either GPUs or FPGAs as a service with no modifications. In

the case of ResNet-50, we also investigate an alternative server













V. DISCUSSION

We present the FPGAs-as-a-service toolkit (FaaST) for

integrating FPGA-based machine learning (ML) inference as a

service into scientific workflows. We have shown examples of

how FaaST can be used for a broad range of applications and

hardware. A summary of the results for all implementations

are shown in Table I. For large networks, we find that the

throughput of FaaST servers is comparable to or better than

similar GPU as-a-service designs. In the case of small dense

networks, such as FACILE, a FaaST server outperforms GPU as-

a-service implementations by over an order of magnitude. These

results are not contingent on the precise details of the networks

we use as benchmarks. Indeed, we expect similar performance

from FaaST for other network inference applications. FaaST

represents the first open source toolkit intended to make high

performance FPGAs as-a-service available generically.

TABLE I: Summary of the performance of FaaST servers in

terms of events and inferences per second, and bandwidth.

Results for performance on GPUs are taken from Ref. [17].

Algorithm Platform
Number of Batch Inf./s Bandwidth

Devices Size [Hz] [Gbps]

FACILE AWS EC2 F1 1 16,000 36 M 23
FACILE Alveo U250 1 16,000 86 M 55
FACILE T4 GPU 1 16,000 8 M 5.1
ResNet-50 AWS EC2 F1 8 10 1400 6.7
ResNet-50 V100 GPU 8 10 1,700 8.1
ResNet-50 ASE 1 1 460 2.2
ResNet-50 T4 GPU 1 10 250 1.2

For inference on GPUs, performance gains with respect to

CPUs typically occur in tasks that can be run with large batch

sizes. This is due to the ability of the GPU to run many parallel

operations. FPGAs, on the other hand, do not gain exclusively

by using large batches. Rather, FPGAs are able to achieve

low inference latency as a result of their ability to perform

computations significantly faster than CPUs and GPUs. As a

result, for ResNet-50, our FaaST server running on the ASE

with batch 1 almost doubles the throughput when compared to

a T4 GPU running with batch 10. This is especially noteworthy

given that many tasks in high energy physics (HEP) workflows

that require complex algorithms are naturally run with low

batch size. For example, in the case of the top quark tagging

ResNet-50 model used in this work, a batch size of 2 may be

sufficient for most HEP events.

One caveat to the performance of FPGAs with small batches

is that transfers to and from the device are typically more

efficient for large batches. This is because the overhead for

transfers can be quite significant. For a similar network to

FACILE, inference at batch size 1 was found to be only 15

times faster than inference at batch 16,000 [40]. However, not

every ML algorithm should be run at maximum batch; this

latency improvement must be weighed against the additional

resources and infrastructure needed to handle a large number

of concurrent inputs on the FPGA.

We have exclusively used ML applications in this work

because of their widespread and growing use in HEP workflows,

as well as their ability to be parallelized. This makes them very

useful target applications for acceleration. However, the FaaST

server design is highly generic. Provided that an algorithm can

be successfully executed on an FPGA, the FaaST model is

capable of enabling as-a-service acceleration. Any functional

FPGA kernel can be accelerated using Vitis Accel in a similar

manner to FACILE.

VI. OUTLOOK

FPGAs have been traditionally been used for various special-

ized tasks. Their low power consumption and extremely fast

processing make them particularly suited for applications across

industry and high energy physics. Their advantages, however,

are not exclusive to these domains and can be leveraged for

many other high-performance computing tasks. The FPGAs-as-

a-service toolkit we present can assist in the implementation

of FPGAs as a service in a variety of computing workflows

across science.

APPENDIX

A. Artifact Description

We ran tests of the FACILE hardware kernel throughput at

Fermi National Accelerator Laboratory (FNAL) on a Xilinx

Alveo U250 running XRT 2.3.1301 and Vitis 2019.2, with the

hardware installed locally to a Intel Xeon Silver 4210 CPU

@ 2.20GHz running Scientific Linux release 7.8. Tests of the

FaaST server for FACILE v1.0.0 were run using this same

machine for the server and the batch submission nodes at the

FNAL LHC Physics Center (LPC) Computing Cluster for the

clients. Tests of FACILE in a realistic workflow were run using

HEPCloud using an AWS f1.16xlarge instance for the server

and r4.4xlarge instances for the clients. Tests of ResNet-

50 in Xilinx ML Suite were run using our FaaST interface

v0.5.0, with a f1.x16large instance for the FaaST server

and the batch submission nodes at the FNAL LPC Computing

Cluster for the clients. Tests of ResNet-50 with the Azure

Stack Edge were run locally at the FNAL Feynman Computing

Center, using the batch submission nodes at the FNAL LPC

Computing Cluster for the clients.

Our author-created artifacts are given in Ref. [11] and

Ref. [12].

B. Artifact Evaluation

In all cases we ensure that behavior in critical regions (i.e.

high throughput) can be reproduced with slightly different test

settings, thus verifying that the results are both stable and

reliable. We run using a large number of events for all tests to

ensure the accuracy of and reduce statistical uncertainties on our

results. All our results are expected to be generalizable to other

networks and applications with similar performance. They are

cross checked on multiple similar devices whenever possible

to ensure the stability with respect to machine specifications

or device conditions and details. We use monitoring tools for

cloud tests to ensure no significant issues are occurring that

could affect our results. For tests run using FNAL resources

we have good control of the machines and devices in use and



can ensure that there are no transient sources impacting the

results. We also run results over the course of hours or days

such that any intermittent issues should not persist across data

points.
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