2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Decode-and-Compare: An Efficient Verification
Scheme for Coded Edge Computing

Mingjia Fu', Jin Wang'*, Jianping Wang?, Kejie Lu®, Admela Jukan* and Fei Gu!
! School of Computer Science and Technology, Soochow University, P.R.China
! Collaborative Innovation Center of Novel Software Technology and Industrialization
2 Department of Computer Science, City University of Hong Kong
3 Department of Computer Science and Engineering, University of Puerto Rico at Mayagiiez
4 Technische Universitit Carolo-Wilhelmina zu Braunschweig, Germany

Abstract—Edge computing is a promising technology that
can fulfill the requirements of latency-critical and computation-
intensive applications. To further enhance the performance,
coded edge computing has emerged because it can optimally
utilize edge devices to speed up the computation. In this paper,
we tackle a major security issue in coded edge computing: how
to verify the correctness of results and identify attackers. Specifi-
cally, we propose an efficient verification scheme, namely Decode-
and-Compare (DC), by leveraging both the coding redundancy
of edge devices and the properties of linear coding itself. To
design the DC scheme, we conduct a solid theoretical analysis
to show the required coding redundancy, the expected number
of decoding operations, and the tradeoff between them. To
evaluate the performance of DC, we conduct extensive simulation
experiments and the results confirm that the DC scheme can
outperform existing solutions, such as homomorphic encryption
and computing locally at the user device.

I. INTRODUCTION

Edge computing can utilize computing facilities at the
edge of networks to support latency-critical and computation-
intensive applications, such as big data analytics, machine
learning and virtual/augmented/mixed reality (VR/AR/MR)
[1]. However, in edge computing, since edge devices are less
reliable than typical computing devices in a cloud data center,
they may not return the desired results on time. To address
this issue, coded edge computing has been proposed to solve
the computing stragglers by leveraging coding redundancy, in
which the edge devices operate directly on coded data and
send the intermediate results to the user [2]-[4].

In addition to the computing delay issue, another main
concern is security. Since edge devices may not be trustworthy,
coded computing schemes have been designed to provide
confidentiality of the computing data such that edge devices
cannot obtain the information from the coded data [5]-[8].

*Corresponding author: Jin Wang, wjin1985@suda.edu.cn.

This work was supported in part by the National Natural Science Foun-
dation of China (No.61672370), National Science Foundation (NSF) under
grant CNS-1730325, “Six Talent Peak” Project of Jiangsu Province (No.
XYDXX-084), Hong Kong Research Grant Council (No. GRF 11211519),
Science Technology and Innovation Committee of Shenzhen Municipality
(No. JCYJ20170818095109386), Tang Scholar of Soochow University, the
Priority Academic Program Development of Jiangsu Higher Education Insti-
tutions (PAPD) and Postgraduate Research & Practice Innovation Program of
Jiangsu Province (No. SJCX18_0845, SICX19_0800).

978-1-7281-6887-6/20/$31.00 (©2020 IEEE

978-1-7281-6887-6/20/$31.00 ©2020 IEEE

Besides confidentiality, verifiable computing has always
been an important topic in outsourced computing or distributed
computing area. In coded computing, a single modified in-
termediate result can screw up the final result. However, the
verifiable computation problem of coded computing has not
been fully investigated. Specifically, most existing verification
schemes for outsourced computation are based on interactive
proof, computation replication or homomorphic encryption
[9]-[15]. Firstly, interactive proof schemes are based on a
garbled circuit [9]. The pre-processing process of the circuit
design is directly proportional to the function complexity and
scale [10]. Secondly, most computation replication schemes
are designed to detect Byzantine faults via certain consensus
schemes, which lead to high computational overhead. For
instance, to tolerate ¢ faults for one computation task, a typical
scheme is 3t replication® [11]-[13]. Thirdly, to verify comput-
ing results, homomorphic encryption schemes can be applied,
which not only need a key distribution infrastructure to share
the keys [10], [14], but also have very high computation
complexity [10], [14], [15].

To enhance the security and reliability of coded edge com-
puting, in this paper, we will focus on a verification problem,
i.e., how to verify the correctness of computing results and
then further identify the set of faulty edge devices (attackers)
that return incorrect results. In our study, we will take matrix
multiplication, which is a fundamental building block of many
distributed machine learning algorithms, as the representative
computation task [2]-[7].

For the verification problem, we propose an efficient ver-
ification scheme, namely, Decode-and-Compare (DC), by
leveraging the coding redundancy from edge devices and
the properties of linear coding itself without sharing any
encryption key. Certainly, if no edge devices return incorrect
intermediate results, then the same final result can be obtained
by different sets of k intermediate results. On the other hand,
if one edge device returns an incorrect intermediate result,
with high probability, a certain subset of final results will be
incorrect and appear differently. Based on the main idea, we
will design the DC verification scheme in this paper. Firstly,
compared with the traditional replication verification schemes,

*This case is shown in Remark 1 of Theorem 1 when £k =1 and 8 = %

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2021 at 13:32:32 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

to ensure the correctness of the computation result, the lower
bound of the DC scheme redundancy rate can be reduced.
Secondly, including the integrity, the confidentiality of the
data can also be provided, because the proposed DC scheme
can well compatible with the existing secure coded distributed
computing scheme. Thirdly, with sufficient coding redundancy,
it is possible to not only distinguish the correct final result
from incorrect ones, but also identify the attackers or nodes
with abnormal behavior at the cost of higher verification
complexity. In this paper, we will systematically investigate
these issues in the design of the DC verification scheme.
Specifically, we will analyze the relationship between the
coding redundancy and the verification complexity.

The rest of the paper is organized as follows. First, we
give the system model and the attack model in Sec. II.
Next, we present the design of the DC verification scheme
in Sec. III-A, and then conduct solid theoretical analysis in
Sec. III-B. Finally, in Sec. IV, we conduct extensive simulation
experiments, before concluding the paper in Sec. V.

II. PROBLEM MODELING

In this section, we will introduce the coded edge computing
model and the attack model considered in this paper.

A. System Model

In this paper, we focus on the coded edge computing and we
take matrix multiplication as an example [2]-[7]. Specifically,
we consider the same computation model as studied in [4], [6],
[17]-[21], in which a user device wants to obtain the result
Y by multiplying a data matrix A € F**", e.g., a trained
model stored in the cloud, with an input matrix X € IF'[;” for
a sufficiently large finite field FF,,.

To utilize the distributed computation power of edge de-
vices, the cloud encodes data matrix A and distributes the
coded data blocks to edge devices. Specifically, it first equally
divides A by k row partitions, i.e., A can be expressed as
block matrix A = [A],---,A;]", 1 < k < m, in which
each row partition A; has dimension 5* X n. When k = 1, the
scheme becomes computation replication. Next, the cloud can
determine an encoding matrix [2]-[7], [17]-[20], i.e., the ¥’ x k
dimensional matrix B = [B],--- ,B},]T, where k' > k. We
note that the proposed DC verification scheme is compatible
with most of existing coded distributed computing system [2]—
[7], [17]-[20], because it does not need to modify the existing
coded computing schemes including the coding matrix B.

Definition 1. (Block matrix multiplication ®) Assume that
b; ;j is the element located in the i-th row j-th column of matrix
B, the operator ® is defined as follows:
k
P,=B,®A=> b;;A;Vie{l, - K},
j=1

P=BaA=[P/, - ,P.]".

The cloud then encodes the data matrix A into k' coded
blocks: P=[P;",--- P "]T =B ®A, in which each P; =
B, ®A is allocated to an edge device, Vi € {1,--- ,k'}, and B;

is called as the encoding vector of P; [2]-[7], [17]-[20]. Let
a = ’% be the coding redundancy ratio. We note that such
data encoding and distribution process is only needed to be
done once for the computation tasks of multiplying the same
data matrix A with different input matrices. Next, we explain
the computing process. Without loss of generality, we assume
that P; is allocated to edge device w;, Vi € {1,--- ,k’}. After
the user device uploads the input matrix X to all the involved
edge devices, each edge device w; computes the intermediate
results I, = P;X, Vi € {1,--- ,k’} and sends it to the user.

Finally, we explain the decoding process. Here we first note
that, to exploit the diversity of the coded data blocks and
intermediate results in edge devices, the cloud can determine
B such that every k rows of B can form a full rank k& x &
matrix [2]-[7], [17]. In this manner, as soon as the user device
receives k intermediate results, it can decode and recover the
final result Y = AX. Specifically, suppose that I’ is the matrix
composed by k intermediate results as its row partitions and
I'= (B ®A)X =B'®Y, in which matrix B’ is composed by
the k encoding vectors of the k£ coded blocks for computing
the k intermediate results. Since every k encoding vectors in
B can form a full rank matrix, in the case that B is already
known, once receiving k intermediate results, the user can
decode and obtain the final result Y =B ' @ I'.

B. Attack Model

In this paper, we focus on the pollution attacks in which
each intermediate result I; may be modified by a malicious
edge device or an incorrect intermediate result is given by a
faulty edge device. Specifically, in this paper, we study the
case that these edge devices cannot collude with each other.

Let 3 be the attacker ratio, 8 > 0, i.e., there are Sk’ edge
devices being attackers and thus Sk’ intermediate results are
incorrect. In the non-collusion case, we consider the attack
model that each intermediate result may be independently and
randomly modified by each edge device to any matrix with
the same dimension.

III. AN EFFICIENT VERIFICATION SCHEME:
DECODE-AND-COMPARE (DC)

In this section, we firstly give the design of the DC veri-
fication scheme. We then conduct a solid theoretical analysis
to show the required coding redundancy and the number of
decoding rounds to obtain the correct final result.

A. The Main Idea

In this subsection, we describe the main ideas of the DC
verification scheme.

Let I be the set of intermediate results {Iy,--- I/} re-
ceived by the user device. Let I be the set of correct
intermediate results and I”* be the set of incorrect intermediate
results. We have I =1V UT™ and IV NI* = (). To verify the
final result, the main idea of our DC verification scheme is
shown as follows: When k£’ > k, the user can decode and
obtain multiple final results according to different groups of
k intermediate results, called verification groups. If all the

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2021 at 13:32:32 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

intermediate results in two verification groups have not been
maliciously modified, then the two final results obtained based
on them must be the same. Otherwise, since each intermediate
result may be independently and randomly modified by each
edge device, the obtained final results are different with very
high probability!. Therefore, we repeatedly select different
verification groups from I to decode the final results and then
compare them to determine the correct final result. Once we
obtain two identical final results, we can determine that this
final result is correct. Since “decode” and “compare” are the
main procedures in our scheme, we name it as decode-and-
compare verification scheme. The details of the algorithm to
obtain the correct final result are shown in Algorithm 1.

The DC verification scheme may not successfully verify the
correct final result in the following two cases: (1) the number
of correct intermediate results 1| < k, ie. [I*] > k' — k,
because at least two groups of k correct intermediate results
are needed to decode and compare, or (2) two incorrect final
results are the same. For the first case, since |IV| = (1—-8)k’ =
(1 — B)ak, when given 8 and k', we can reduce the number
of blocks divided from the data matrix A, i.e., k, to make
sure [IY| > k. When given 3 and k, we can increase the
coding redundancy ratio, i.e., o, to make sure |Iv| > k. For the
second case, the probability will approach to 0, when the size
of matrices, e.g., A and X, and the size of the finite field are
sufficiently large. We note that the proposed DC verification
scheme does not need to modify the existing coded computing
schemes [2]-[7], [17]-[20] except the verification on the user.
After the user obtains the correct final result, with sufficient
coding redundancy, it is possible to distinguish the incorrect
intermediate results and further identify the attackers or nodes
with abnormal behavior at the cost of higher verification
complexity. Due to the space limit, we will discuss this issue
in our future work.

To make sure the obtained result is correct, the user can lo-
cally computes AX. In this case, the computational complexity
is O(mnl). In the proposed DC verification scheme, to verify
the correct final result, the computational complexity on the
user device is O(N, (k®+kml)), in which N,, is the decoding
rounds and O(k® + kml) is the computational complexity of
a single round.

We note that the decoding complexity to verify the correct
final result is irrelevant to the column size of A, ie., n.
The number of blocks divided from data matrix A, i.e., k,
is less than the number of involved edge nodes, i.e., k/, which
is at most in tens in practice. Clearly, compared with m
and n, which may be tens of thousands in the data matrix
[2], [22], [23], k is much less than n. Therefore, compared
with centralized computation at the user, the proposed DC
verification scheme can significant reduce computation time
when m and n are very large. Moreover, N, is highly related

TThe probability will approach to 1, when the size of matrices, e.g., A
and X, and the size of the finite field are sufficiently large. In practice, the
parameters m, [and g for machine learning based applications are usually
very large. Due to the space limit, we will formally present the theoretical
analysis of the probability in our future work.

Algorithm 1: DC Verification Scheme Part 1: Final Result
Verification

Input: I, B k, k&
Output: Y, IV
1 1=0,Y= (Z) i=1;

2whllez<()do

3 Select a new verification group I; = {Io,, -+ ,1., } ¢ L in
which I, e LVh € {1,--- ,k}:

4 | I=TUu{L}

5 B/_[Bcla"' BI}T,

6 1’—[1‘;,..-,12k]kr;

7 Y. =B 'el; //block matrix multiplication;

8 if 3Y; € Y,Y; = ¥; then

9 Y = Yi;

10 IY = il U If;

1 return Y and I';

12 else

13 Y=YU{Y;};

14 1=1+1;

15 return false;

to the coding redundancy ratio «, the attacker ratio /3, and the
number of blocks k. We will show in Theorem 3 that NV, can
be reduced by adjusting the parameters k£ and o even when
the attacker ratio § is sufficiently large.

B. Theoretical Analysis of the DC Verification Scheme

In this subsection, we show the theoretical analysis of
the DC verification scheme. We firstly derive the sufficient
and necessary condition that the DC verification scheme can
distinguish and obtain the correct final result on the required
coding redundancy ratio.

Theorem 1. The DC verification scheme can distinguish and
obtain the correct final result, iff coding redundancy ratio o >
(1 1) , in which (3 is the attacker ratio.

Proof. If the user can distinguish the correct final result,
there exist at least two groups of k correct intermediate
results. Therefore, there are at least £+ 1 correct intermediate
results, ie., (1 —)k > k + 1 Since k' = ak, we have
(1-PBak>k+1,ie, a>

(1 B)k
If the coding redundancy ratio o = k— > +Bl 7. we have
the number of correct intermediate results 1-Pk =(01-

B)ak > k + 1. Therefore, there exist two groups of k correct
intermediate results, based on which, the user can find that
the two obtained final results are the same and figure out the
correct final result. O

Remark 1. From the above theorem, we know that (1)
compared with computation replication verification scheme
(the same as the DC verification when k =1), the required
redundancy ratio can be reduced from =) ,8) to 1 /3 = (2)
when the attacker ratio (8 is large, high coding redundancy
can be used to make sure the DC verification can find the
correct final result; (3) when the data matrix is divided into
more blocks, the required coding redundancy can be reduced.

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2021 at 13:32:32 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Next, the following two theorems show the lower bound
and the upper bound of N,, i.e., the rounds of decoding to
determine the correct results.

Theorem 2. 2 < N, < min () = () +2, ()., in which
v= 1" = (1 - B)ak.

Proof. Firstly, to determine if the decoding result is correct,
the user needs at least two decodings for comparison, i.e.,
N, > 2. Specifically, in the optimal case that the two
verification groups in the first two decodings do not contain
incorrect intermediate results, i.e., (I; Ulz) CIY and N,, = 2.

When v > k + 1, ie, a > (1";%, in the worst case,
before the user finds two correct final results, it has decoded
all the verification groups, each of which contains at least one
incorrect intermediate result, i.e., the rounds of decoding is
("2) — (})- It also performs two additional rounds of decoding
on two verification groups, each of which only contains correct
intermediate results. Therefore, in the worst case, the number
of decodings is (’Z) —(}) +2

On the other hand, when v < k, there do not exist
two verification groups, each of which only contains correct
intermediate results, which is not sufficient to compared and
distinguished the correct final result. In this case, the number

of decoding rounds is NV,, = (]Z/) O

Remark 2. From Theorem 2, when v < k, the DC verification
scheme cannot determine the correct final result and the
number of decoding rounds is N, = (]Z/) On the other hand,
when v > k—+1, the correct intermediate result can be verified,
the number of decoding rounds N, < (]Z) - (Z) + 2.

Finally, we analyze the expected decoding rounds in the DC

verification scheme when v > k + 1, i.e., a > (1114/31%

Theorem 3. When v > k41, the expected number of decoding
rounds in the DC verification scheme is

O -0-i (-1
<’:>]-11(() —i-1)<k/>—i+1)'

k

()-(R)+2
E(Ny)=>" (i(i -1
=2
Proof. 1f the DC verification scheme requires ¢ rounds of
decoding, the first ¢ — 1 rounds of decoding must obtain only
one correct final result and the i-th round of decoding obtains
another correct final result. As a correct result can be at any
round of decoding. There are 7 — 1 possible cases.

The probability that a correct final result is obtained in a
(,f/) . The probability
that the final results obtained from other i — 2 rounds of
()= (2)—i+1
, (%)

. k v -
which equals to H;;%(%) The probability that the
k

last decoding obtains a correct result is

particular number of decoding rounds is

. . L T2
decoding are incorrect final results is H;Zl

7(5/3)_11 From The-
k —1

orem 2, if v>k+1,2<i < () = (?) + 2. We have

() ﬁ(@’)(g)j) () -1)

(%) —i+1

()=()+2
E(Ny) =Y (i(i -1)

=2

O

Remark 3. Theorem 3 shows the expected number of decoding
rounds in the DC verification scheme. We note that there
exists a tradeoff between the coding redundancy ratio o and
the expected number of decoding rounds N,, i.e., a higher
a, leading to the higher total computational overheads on
edge devices, will reduce N,), leading to the lower verification
complexity at the user.

IV. SIMULATIONS

In this section, we conduct two groups of experiments.
To compare with the homomorphic encryption based verifica-
tion schemes, we use Helib homomorphic encryption library
developed by IBM [24]. We note that the proposed DC
verification scheme does not need to modify the existing coded
computing schemes [2]-[7], [17]-[20] except the verification
on the user. Therefore, in this experiment, we only focus on
the verification process of the user. Specifically, we perform
matrix multiplication involved in the coded computing based
on C++. The schemes are evaluated on a computer with Intel
Core 15-6400 CPU 2.71GHz.

First, we compare the time consumptions of (1) the ho-
momorphic decryption on the final result Y, which is a key
component of the homomorphic encryption/decryption based
verification schemes, (2) the centralized computation, which
means the user locally computes AX instead of outsourcing
computation, and (3) the decode-and-compare verification
scheme with different parameters related to matrix size. Then,
we show the time consumptions of the centralized computation
and the decode-and-compare verification scheme.

In this simulation, we consider six parameters as follows.

e m: the number of rows of matrices A and Y.

e n: the number of rows of matrix X.

e [: the number of columns of matrices X and Y.
¢ «a: coding redundancy ratio, o = ’%

e [3: attacker ratio, i.e., there are Sk’ attackers.

e k’: the number of involved edge devices, i.e., the total

number of received intermediate results.

We note that in the DC verification scheme, the user needs
to process N,, rounds of decoding on N, verification groups to
find the correct final result. It means that the time consumption
of the DC verification scheme is N, times that of coded edge
computing without verification consideration. Therefore, in
this experiment, instead of comparing with the coded edge
computing without verification consideration, we show the
rounds of decoding, i.e., N,, in Fig. 2.

A. Simulation results

In the first group of the simulations, we compare the
time consumptions of homomorphic decryption, centralized
computation, and the DC verification when the computation
scale parameters m,n,l continuously increase. As shown in
Fig. 1, homomorphic decryption takes the longest time, which
is 103 times higher than the other two schemes. Therefore, we
use the axis on the right to express its time consumption.

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2021 at 13:32:32 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

3
12 : ‘ : 48010
~120 WHomomorphic decryption(right axis) 80—
g£105 ; ; ; M20 £
E 199 s Centralized computation(left axis) £
dé 90 BDC verification(left axis) 360 dé
=75 300 =
§ 60 240 §
= =
8 45 4180 &
g— 30‘ 1120 g—
CE> 15 160 CE>
o o) L L L L L L L L L 0 o
500 600 700 800 900 1000 1100 1200 1300 1400 1500
m
a) Computation time (ms) when n. = 2000,1 = 10, k¥’ = 20,
a=2,8=0.2.

03
,‘;’\1200 #Homomorphic decryption(right axis) I I I . 1;205 b
§1050 * Centralized computation(left axis) __‘f" 12800 £
© 900 ©DC verification(left axis) AT 32400 o
= 750 " 42000 =
§ 600 {1600 §
= =
S 450 41200 &
5 5
2 300 w00 2
o 1 o
S 150 & 400 3§

0 0
10 20 30 40 50 60 70 80 20 100

b) Computation time (ms) when m = 1000, n = 2000, k¥’ = 20,

a=28=0.2.

240 , , ‘ , , ‘ , ‘ ; 32010
m A A A A A A A A A m
€210 - - " — 1280 g
= AHomomorphic decryption(right axis) =
g 180 s Centralized computation(left axis) 1240 “é
= 150 ©DC verification(left axis) 1200 =
S120f #1160 §
S 90 L {120 8
2 60 180 2

&
(]

830<a---e--o—-0--0--9-—0-—9—-0——9——040

0 0
2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
n

¢) Computation time (ms) when m = 1000, = 10, ¥’ = 20,
a=2,=0.2.

Fig. 1. The time consumptions of homomorphic decryption, centralized
computation and DC verification schemes when changing the matrix size
parameters m, [, n.

As shown in Fig. 1 a) and b), the time consumptions of
the three schemes increase with the increases of m and I.
According to the computation complexity analysis shown in
Sec. III-A, the ratio between the computation complexities
of DC verification scheme and the centralized computation is
N,k/n. According to Theorem 3, N, is only related to k,
k" and v. Since k = k'/a and v = (1 — B)k’. Therefore, in
Fig. 1 a) and b), the ratio between the time consumptions of
them is almost the same when m and [increase because the
parameter k', and 3 are fixed. However, the gap between
them increases with the increase of m and [because the gap
between the computation complexities of them increases.

In Fig. 1 c), the time consumptions of homomorphic de-
cryption and DC verification scheme almost do not change
with the increase of n. The reason is that the computational
complexity of homomorphic decryption is only related to the
size of Y, i.e., m x[. According to the computation complexity
analysis shown in Sec. III-A, the computation complexity of
DC verification scheme is also irrelevant to n while that of
the centralized computation increases with the increase of n.

In the second group of the simulations, we compare the
time consumptions of the centralized computation and the DC
verification scheme when the system parameters «, 8 and
k' increase. We use the right axis to represent the expected

Centralized computation(left axis) 40

Expected rounds of decoding(right axis 50
.
DC verification(left axis)

a) Computation time (ms) and expected rounds of decoding N
0when m = 1000, n = 2000,1 = 10,k’ = 20,8 = 0.2.0
7 ‘ : : : ‘ ‘ ‘ ‘ 7

@°

E60g........ e B PN PR $eeeae B PR PO 60

250 — - 150

E 7" [mExpected rounds of decoding(right axis)

‘E 40 |#Centralized computation(left axis) 40

.‘% 30/@DC verification(left axis) 530 Nn

ézo r . 20

610 W= — g 10
0.005 0.03 0.055 0.08 0.105 0.13 0.155 0.18 0.205 0.23

B
b) Computation time (ms) and expected rounds of decoding Ny,
. when m = 1000, n = 2000, = 10, k" = 20, = 2.

7 T T T T T T T 70
I
éGO: PYTOre Trr il S S S S S e SR sy)
250 n - . 150
E " mExpected rounds of decoding(right axis LN PN
E 40 |#Centralized computation(left axis) LA \;I40
.% 30@DC verification(left axis) ,I 8. .®. 130Nn
g ;e)
E.ZO’ e R S 120
G 10} Ay - g a GO0Og 110
S Eae-gre-ome? |

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

&
c) Computation time (ms) and expected rounds of decoding N,
when m = 1000, n = 2000,! = 10,x = 2,3 = 0.2.

Fig. 2. The time consumptions of centralized computation and DC verification
schemes, and expected rounds of decoding N, when changing system
parameters «, 3 and k’.

number of decoding rounds in the DC verification scheme.

In Fig. 2 a)-c), the time consumption of centralized compu-
tation is almost the same because the user locally computes
AX in the centralized computation scheme, which is not
affected by «, § and k’. On the other hand, in Fig. 2 a),
the time consumption of the DC verification decreases with
the increase of a. According to Theorem 3, the rounds of
decoding, i.e., Ny, decreases with the increase of «e. Moreover,
when k' and 8 are fixed and « increases, & decreases.
Therefore, according to the verification complexity analysis
shown in Sec. III-A, the computation time (complexity) of the
DC verification decreases with the increase of o.

In Fig. 2 b), the time consumption of the DC verification
increases with the increase of 3 because more attackers
involved in the system leads to larger rounds of decoding, i.e.,
Ny,. In Fig. 2 ¢), the time consumption of the DC verification
also increases with the increase of k’. The reason is that when
a and S are fixed and k' increases, k increases. As opposed
to the reason of Fig. 2 a), in this case, both IV,, and the time
consumption of the DC verification increases.

B. Simulation Conclusion

From above simulations, we have the following conclusions.
e The computation time of homomorphic decryption is
about 103 times higher than the other schemes, which

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2021 at 13:32:32 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

shows that it is not suitable for large-scale computation
tasks in edge computing for real-time applications.

The proposed DC verification scheme can achieve a good
performance when the number of involved edge devices
k' < 20, coding redundancy ratio o > 2, attacker
ratio 8 < 0.2. As shown in Fig. 2 b), even when 23%
edge devices are attackers, the computation time of the
proposed DC verification scheme is more than 45% lower
than that of centralized computation, i.e., the user locally
computes AX. Moreover, according to Theorem 3, in
practice, we can reduce N, by adjusting the parameters k&
and « even when the attacker ratio (3 is sufficiently large.
Although the user can locally computes AX to make sure
the obtained result is correct, the computation complexity
is directly proportional to the parameter n, i.e., the num-
ber of columns of data matrix A. However, n has no im-
pact on the computation time (verification complexity) of
the user when using the proposed DC verification scheme.
Therefore, compared with the centralized computation,
the proposed DC verification scheme can significantly
reduce computation time when n is very large.

In the proposed DC verification scheme, once the system
can identify the attackers, it will not further allocate
computation tasks to them, which will decrease the
attacker ratio and further reduce the computation time
(complexity) of DC verification scheme.

V. CONCLUSION

In this paper, we have studied the problem of verifiable
coded edge computing, by leveraging coding redundancy of
edge devices and the properties of linear coding itself, under
the case that the intermediate results can be maliciously mod-
ified by edge devices. Specifically, we proposed an efficient
DC verification scheme. We also conducted a solid theoretical
analysis to show the rounds of decoding to obtain the correct
final result. Finally, we conducted extensive simulation exper-
iments to show the effectiveness of the proposed scheme.

[1]

[2]

[3]

[4]

[5]

REFERENCES

W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, “Edge Computing: Vision and
Challenges”, IEEE Internet of Things Journal (I10T), vol. 3, no. 5, pp.
637-646, 2016.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes”, IEEE
Transactions on Information Theory (TIT), vol. 64, no. 3, pp. 1514-
1529, 2018.

S. Li, M. A. Maddah-Ali, Q. Yu, A. S. Avestimehr, “A Fundamen-
tal Tradeoff between Computation and Communication in Distributed
Computing”, IEEE Transactions on Information Theory (TIT), vol. 64,
no. 1, pp. 109-128, 2018.

Q. Yu, M. A. Maddah-Ali, A. S. Avestimehr, “Straggler Mitigation
in Distributed Matrix Multiplication: Fundamental Limits and Optimal
Coding”, in Proc. of International Symposium on Information Theory
(ISIT), pp. 2022-2026, 2018.

R. Bitar, P. Parag, S. E. Rouayheb, “Minimizing Latency for Secure
Distributed Computing”, in Proc. of International Symposium on Infor-
mation Theory (ISIT), pp. 2900-2904, 2017.

H. Yang, J. Lee, “Secure Distributed Computing with Straggling Servers
Using Polynomial Codes”, IEEE Transactions on Information Forensics
and Security (TIFS), vol. 14, no. 1, pp. 141-150, 2019.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

C. Cao, J. Wang, J. Wang, K. Lu, J. Zhou, A. Jukan and W. Zhao,
“Optimal Task Allocation and Coding Design for Secure Coded Edge
Computing”, in Proc. of the 39th IEEE International Conference on
Distributed Computing Systems (ICDCS), pp. 1083-1093, 2019.

R. Zhao, J. Wang, K. Lu, J. Wang, X. Wang, J. Zhou, C. Cao, “Weakly
Secure Coded Distributed Computing”, in Proc. of the 15th IEEE
International Conference on Ubiquitous Intelligence and Computing, pp.
603-610, 2018.

V. Vu, S. Setty, A. J. Blumberg, M. Walfish, “A Hybrid Architecture
for Interactive Verifiable Computation”, in Proc. of the 34th IEEE
Symposium on Security and Privacy, pp. 223-237, 2013.

X. Yu, Z. Yan, A. V. Vasilakos, “A Survey of Verifiable Computation”,
Mobile Networks and Applications, vol. 22, no. 3, pp. 438-453, 2017.
Y. Zhang, Z. Zheng, M. Lyu, “BFTCloud: A Byzantine Fault Tolerance
Framework for Voluntary-Resource Cloud Computing”, in Proc. of the
4th IEEE International Conference on Cloud Computing, pp. 444-451,
2011.

P. L. Aublin, S. B. Mokhtar, V. Quema, “RBFT: Redundant Byzantine
Fault Tolerance”, in Proc. of the 33rd IEEE International Conference
on Distributed Computing Systems (ICDCS), pp. 297-306, 2013.

R. Garcia, R. Rodrigues, N. Preguica, “Efficient Middleware for Byzan-
tine Fault Tolerant Database Replication”, in Proc. of the 6th European
Conference on Computer Systems (EuroSys), pp. 107-122, 2011.

R. Gennaro, G. Craig, P. Bryan, “Non-interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers”, in Proc. of the 30th
Annual Cryptology Conference, pp. 465-482, 2010.

W. Song, B. Wang, Q. Wang, C. Shi, W. Lou, Z. Peng, “Publicly
Verifiable Computation of Polynomials over Outsourced Data with
Multiple Sources”, IEEE Transactions on Information Forensics and
Security (TIFS), vol. 12, no. 10, pp. 2334-2347, 2017.

S. Halevi, V. Shoup, “Faster Homomorphic Linear Transformations
in HElb”, in Proc. of Annual International Cryptology Conference.
Springer, Cham, pp. 93-120, 2018.

Q. Yu, M. A. Maddah-Ali, A. S. Avestimehr, “Polynomial Codes: An
Optimal Design for High-Dimensional Coded Matrix Multiplication”,
in Proc. of the 31st Neural Information Processing Systems (NIPS), pp.
4403-4413, 2017.

S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A Scalable
Framework for Wireless Distributed Computing”, IEEE/ACM Transac-
tions on Networking, vol. 25, no. 5, pp. 2643-2654, 2017.

M. Kiamari, C. Wang, A. S. Avestimehr, “On Heterogeneous Coded
Distributed Computing”, in Proc. of IEEE Global Communications
Conference, pp. 1-7, 2017.

M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, P. Grover,
“On the optimal recovery threshold of coded matrix multiplication”, in
Proc. of IEEE Conference on Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pp. 1264-1270, 2017.

Q. Yu, S. Li, M. A. Maddah-Ali, A. S. Avestimehr, “How to optimally
allocate resources for coded distributed computing?”, in Proc. of IEEE
International Conference on Communications (ICC), pp. 1-7, 2017.

Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded Elastic Computing”, in Proc. of 2019 IEEE International
Symposium on Information Theory (ISIT), pp. 2654-2658, 2019.

L. Tang, K. Konstantinidis, A. Ramamoorthy, “Erasure Coding for
Distributed Matrix Multiplication for Matrices With Bounded Entries”,
IEEE Communication Letters, vol. 23, no. 1, pp. 8-11, 2019.

S. Halevi, V. Shoup, “Algorithms in HElib”, in Proc. of the 34th Annual
Cryptology Conference, pp. 554-571, 2014.

Authorized licensed use limited to: University of Puerto Rico - Mayaguez. Downloaded on August 31,2021 at 13:32:32 UTC from IEEE Xplore. Restrictions apply.

