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Modern nonparametric 
(NP) statistics is an 
increasingly important 

and expanding tool set in data 
analytics as more large, complex 
data are gathered and analyzed. 
However, corresponding privacy 
concerns that arise require novel 
methods to balance privacy guar-
antees with statistical utility. NP 
methods present a unique chal-
lenge for privacy because the 
resulting summaries can contain 
significant amounts of individual-
level information.

Modern NP statistics consists 
of tools to analyze data without 
assuming the data are distributed 
according to some pre-specified 
parametric family, such as assum-
ing the data is distributed normally. 
Often, the goal of NP statistics is to 
estimate a function (e.g., probabil-
ity density or regression function) 
with only limited assumptions, 
such as the number of derivatives. 

Unlike parametric models, 
where only a fixed number of 
parameters are estimated, the 
number of “parameters” to estimate 
in NP statistics can be viewed as 
infinite, because an arbitrary real-
valued function requires an infinite 
amount of data points to specify 
fully. (For a general introduction 
to NP and related methods, see  
All of Nonparametric Statistics by 
Larry Wasserman.)

While NP tools are flex-
ible and powerful, they also have 
increased privacy risks when 
applied to sensitive data. Due to 
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the infinite-dimensional nature 
of the quantities estimated in NP 
statistics, estimators often capture 
large amounts of individual-level 
data, and the value of an outlier 
can drastically change the shape of 
an estimated density or regression 
function (see Figures 1 and 4a). 

From another perspective, while 
parametric methods generally 
estimate global properties, such as 
means and variances, NP methods 
often work with local information, 
giving higher priority to  fewer data 
points to determine the shape of 
the function in a region.

The leading framework for con-
structing formal privacy methods is 
differential privacy (DP), proposed 
in Calibrating Noise to Sensitivity 
in Private Data Analysis (Dwork, 
McSherry, Nissim, and Smith. 
2006), which can be interpreted 
as offering plausible deniability to 
data contributors. Many versions 
of differential privacy differ in vari-
ous aspects now, but generally fit 
the intuition that a method that 
satisfies DP inserts additional ran-
domness into the computations, so 
the probability of any output being 
publicly released is similar when  
an individual’s data are changed in 
the input database. (Dwork and 
Roth. 2014.)

For certain quantities, such as 
sample means and medians, the 
dependence on a single individual is 
small and only a negligible amount 
of noise is required to privatize 
the estimate. However, the mag-
nitude of the noise required for 

privacy grows significantly with 
the dimension of the release. This 
is less of a problem with paramet-
ric models, since the number of 
parameters to estimate is fixed. 
With NP methods, the goal is to 
estimate an infinite-dimensional 
object, and the estimators require 
estimating a number of param-
eters that can be viewed either as 
growing with the sample size n or 
as infinite.

Altogether, NP methods pres-
ent a challenging setting for formal 
privacy methods, because they are 
much more sensitive to changes in 
an individual’s data, and require 
more noise to privatize. The goal 
is to optimize the accuracy of the 
privatized estimator while offering 
formal privacy guarantees, which 
sometimes requires using a dif-
ferent approach from common  
nonprivate methods. 

The issue of satisfying differ-
ential privacy while maintaining 
statistical utility can be highlighted 
and illustrated by exploring the 
problems of density estimation and 
nonparametric regression—two 
classical NP problems. 

There are also some exciting 
developing areas of NP statistics 
that have unique privacy challenges.

Density Estimation
Density estimation is a classical 
area of nonparametric statistics, and 
has been tackled using tools as sim-
ple as histogram estimators, as well 
as more-sophisticated tools such as 
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kernel density estimators. Figure 1 
provides an example of a histogram 
and kernel density estimator. 

The typical setup for den-
sity estimation is: Let X1, … , 
Xn be i.i.d. real valued random 
variables drawn from a density  
f (x); f is known to be a non- 
negative valued function that inte-
grates to 1. Often, additional struc-
ture for f may be assumed, such as 
continuity or differentiability.

Histogram estimates are 
among the simplest and most-
intuitive estimators for densities,  
especially when there are very lim-
ited assumptions. For histogram 
estimators, the number of bins 

typically increases in n, or con-
versely, the bin width decreases 
with n. Histogram estimators can 
be privatized by adding noise to 
each bin, appropriately scaled to 
obscure the contribution of one 
individual. Figure 2 illustrates 
a histogram estimator and an 
example of a privatized estimator  
by adding Laplace noise to each 
bin count.

A problem with histogram 
estimators is that they always 
result in discontinuous estimators. 
When the density is assumed to 
be smooth, kernel density estima-
tors are often used instead. Let K :  
 →  be a function, called a  

kernel, that integrates to 1. A ker-
nel density estimator is of the form  

where h > 0 is the bandwidth, which 
decreases with n. Intuitively, a ker-
nel density estimator places mass 
around each data point Xi, with 
decreasing influence the farther t 
is from Xi; Figure 1 provides an 
example using a Gaussian kernel.

Figure 1 illustrates one of the 
problems for privacy when using 
NP methods: They contain high 
amounts of individual-level infor-
mation. Note that the outlying  
data points in Figure 1 can be  

Figure 1. Sample of size 50 drawn from a mixture of Cauchy(−5, 1) and Cauchy(5, 1) with probabilities 1/3 and 
2/3, respectively. Kernel density estimator using normal kernel and bandwidth  3, and histogram estimator with 
bin width 5.
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identified by inspecting the 
“bumps” in the tails of the  
density estimator. Because one 
individual can have a large impact 
on the shape of the density estima-
tor, much more noise is required to 
protect the privacy of the sample 
than is required for parametric 
approaches. It is a challenge to 
protect privacy while maintaining 
statistical utility.

The simplest method of pre-
serving privacy while estimating 
a density is to add noise to each 
data point. However, this approach 
results in excessive noise, since each 
data point has high sensitivity. 
Rather than adding noise to the 
data, it is preferable to add noise 
to the resulting estimator. 

In multivariate settings, a 
Laplace or Gaussian random vec-
tor could be added; in this setting, a  

stochastic process, such as a 
Gaussian process, can be added 
to the resulting estimator. 

Techniques to apply Gaussian 
processes to privatize function-
valued parameters were developed 
in Differential Privacy for Functions 
and Functional Data (Hall, Rinaldo, 
and Wasserman. 2013) and Formal 
Privacy for Functional Data with 
Gaussian Perturbations (Mirshani, 
Reimherr, and Slavkovic. 2019). 
They discovered a deep connection 
between privacy and a space defined 
by the covariance function of the 
Gaussian process, classically known 
as the Cameron-Martin Space, 
which can be viewed as a reproduc-
ing kernel hilbert space (RKHS), 
whose kernel is given by the corre-
sponding covariance function. 

It turned out that it was exactly 
in that space that the sensitivity 

Figure 2. Privatized histogram without post-processing. Noise results in some negative counts. Blue circles represent privatized counts.

(a) Histogram estimator privatized by adding independent Laplace 
noise to each bin. Largest features are preserved, but noise results 
in some negative counts. Blue circles represent privatized counts.

(b) Post-processing of the privatized histogram in subfigure 
(a), where all negative counts are set to zero. Red crosses are 
privatized counts. Histogram estimator is privatized by adding 
independent Laplace noise to each bin.

Function-Valued  Parameters: A 
parameter is a population quantity 
that can be used to specify the 
distribution. In nonparametric 
statistics, the parameters of 
interest are whole functions 
(such as the density function, or 
regression function), instead of 
finite-dimensional quantities. Such 
function-valued parameters are 
inherently infinite-dimensional.

Gaussian Process: A collection of 
random variables, indexed by time 
or space, is a Gaussian process if 
every finite subset of the variables 
has a multivariate Gaussian 
distribution. As in finite dimensions, 
a Gaussian process is characterized 
by its mean and covariance.
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of the estimator had to be com-
puted to ensure differential privacy 
was satisfied. At a high level, their 
results showed that the Gaussian 
process noise must be “rougher” 
than the nonprivate estimator to 
obscure any personal information 

that may be captured in the high 
frequencies. Figure 3 illustrates 
the use of Gaussian process noise 
with the exponential kernel to 
privatize the kernel density esti-
mator, resulting in a very rough 
density estimator.

Nonparametric 
Regression
One of the most-common and 
natural questions that scientists 
encounter is understanding how 
one independent variable or more  
affects a dependent variable. This 
question is often addressed by the 
use of regression techniques. The 
classical approach of linear regres-
sion assumes that a linear predictor 
function captures the relationship 
between the independent/pre-
dictor/covariate and dependent/
outcome variables, and typically 
imposes distributional assump-
tions for the errors. 

These assumptions are often 
either are unreasonable or the sam-
ple size is large enough to explore 
deeper relationships between the 
variables and, thus, more-flexible 
techniques are desirable. Nonpara-
metric regression techniques offer 
this increased flexibility.

Suppose that (X1, Y1),…, (Xn, 
Yn) are i.i.d. bivariate random 
vectors so that Yi = f (Xi)+ei for 
some function f and mean-zero 
errors ei. The goal is to estimate 
the function f. Depending on the 
setting, the Xi could be assumed 
to be deterministic in a controlled 
experiment, or random such as in 
observational studies. 

In either case, nonparametric 
regression estimators are often lin-
ear smoothers that can be expressed 
as:

(1)

Figure 3. Data generated as in Figure 1, but with sample size of n = 500. Kernel density estimator using Gaussian kernel is fit to data with 
bandwidth of  2.01, plotted in red. Gaussian process is added to density estimator using exponential kernel so (1, .01)-DP is satisfied, 
plotted in black. Bandwidth assumed to be public.

(a) Privatized density without post-processing. (b) Privatized density, setting negative values to zero.

Reproducing Kernel Hilbert Space (RKHS): 
Some infinite-dimensional vector spaces 
have properties very different from finite-
dimensional Euclidean spaces. A subset of 
infinite- dimensional spaces that are much better 
behaved are called reproducing kernel Hilbert 
spaces (RKHSs). A space is an RKHS if every 
evaluation functional is continuous—the functions 
in the space are smooth. An RKHS is in one-
to-one correspondence with a positive-definite 
kernel, which encodes how smooth the functions 
are.
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where 1, … , n are real-valued 
functions, depending on the data

 

In most cases, the functions i 
are normalized so that  

Some examples of linear 
smoothers include Nadarya- 
Watson kernel  regress ion, 
more-general local polynomial  
regression, Reproducing Kernel 
Hilbert Space regression, and basis 
function regression. Kernel regres-
sion has the form

for a kernel K(·) and bandwidth h.
Based on Equation (1), there are 

a few challenges when it comes to 
privatizing these estimators. First, 

releasing the nonprivate fˆ(x) 
often allows aspects of the original  
sample to be reconstructed. As 
noted earlier, adding noise to the 
Xi and Yi before regressing would 
satisfy privacy, but introduces an 
excessive amount of noise, destroy-
ing statistical utility.

While the problem of pro-
ducing private NP regression  
estimators may seem similar 
to density estimation, it has an 
additional challenge compared to 
density estimation. With either 
the histogram estimator or the 
kernel density estimator, it was 
easy to measure the sensitivity of 
the estimator; that is, how much 
the estimator changed when one 
person’s data changed. However, 
with regression estimators of  
the form (1), calculating the  

sensitivity is much more, since 
changing one pair (Xi, Yi) and 
affects both the contribution to 
the sum and the normalization due 
to the constraint  

This aspect makes it much more 
difficult to measure the sensitivity 
of the function accurately. An over-
estimate of the sensitivity will result 
in an excessive amount of noise.

The literature currently pres-
ents limited methods that have 
successfully produced accurate 
DP estimates for NP regression 
problems. One solution is to sim-
plify the problem by treating the 
independent variables as public, 
and only protecting the dependent 
variable. Figure 4b is an example of 
this approach. 

Figure 4. Example of nonparametric regression methods; y values are produced by equation yi = (xi − 3)(xi + 3.5)(xi + 1/2) + ei, where 
ei 

iid N (0, 4). On left, Xi 
iid U [−4, 4]. On right, Xi is equally spaced in [−4, 4].

(a) n = 30. Red curve is a local quadratic regression and blue 
curve is a kernel-smoothing regression. Left-most x value in both 
has great influence on fitted curves.

(b) n = 500. Kernel regression with Gaussian kernel, bandwidth 
= .5. Privatized regression estimator using Gaussian process 
with exponential kernel, which achieves (1, .01)-DP in dashed 
purple. Range of Yi is assumed to be [20, 35], and sensitivity 
was numerically estimated. Post-processed curve is in solid blue, 
achieved by applying 50 pt moving average to privatized curve. 
Nonprivate kernel regression estimator is in red.

~ ~
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This approach was employed 
in Diff erentially Private Regression 
with Gaussian Processes (Álvarez, 
Zwiessele, and Lawrence. 2018)  
and enables a tight sensitivity cal-
culation, more similar to that of 
a kernel density estimator. Th ey 
use a Gaussian process regression, 
which treats all independent vari-
ables as public, and the tools of 
Hall, Rinaldo, and Wasserman to 
privatize the regression function. 

This approach applies when 
the independent variables are 
publicly known (such as spatial 
locations), and only the dependent 
variables are sensitive. However, 
more-sophisticated techniques 
are required when all variables are 
at risk.

Frontiers of 
Nonparametric 
Statistics
While the problems of density 
estimation and nonparametric 
regression tackle a wide variety of 
settings, these problems can still 
be viewed as working in (infi nite-
dimensional) linear spaces. A 
signifi cant increase in complexity 
arises when working in nonlinear
spaces. Some tools for working on 
such problems come from shape 
analysis, manifold learning, and 
topological data analysis. 

To understand these problems, 
consider two examples: covariance 
matrix estimation and a data set of 
3-D images of human faces.

Covariance Estimation: Recall 
that for an m-dimensional data 
set, the covariance matrix is a 
positive-semidefinite symmetric 
m × m matrix. Many diff erential 
privacy methods designed for the 
release of a privatized covariance 
matrix include the addition of 
noise to the empirical covariance  
estimator. However, a signifi cant 
limitation of this approach, espe-
cially in smaller sample sizes, is that 
this noise can result in a matrix that 
is no longer positive-semidefi nite.

An approach that has yet to be 
pursued is to produce a DP family 
of distributions on the manifold of 
positive-semidefi nite matrices. A 
manifold is a space that behaves 
locally like Euclidean space, but 
may not be generally closed under 
addition or scalar multiplication. 
Th e space of covariance matrices 
is closed under addition, but not 
under subtraction or multiplication 
by negative scalars.

Another difference between 
working in the manifold of cova-
riance matrices and standard 
linear spaces is the choice of met-
ric. Typically, standard matrix 
norms are used to evaluate the 
distance between covariance 
matrices. While this metric is of 

some use, it may not be the best 
choice to truly capture the simi-
larity of two covariance matrices. 
When working with manifolds, 
there is a natural distance called a 
Riemannian metric, which is bet-
ter at capturing the geometry of 
the space. 

Incorporating tools specifi cally 
designed for manifolds could result 
in better-performing DP covari-
ance estimation methods.

Shape Data: An exciting data 
set highlights many of the possi-
bilities of privacy tools for complex 
data structures. Mark Shriver at the 
Pennsylvania State University col-
lected a database of 3-D scans of 
human faces, along with extensive 
demographic and genomic data.

This data set is inherently 
sensitive, with stringent data 
management regulations. While 
Gaussian processes can be used to 
privatize the faces, such noise can 
distort the faces so signifi cantly 
that they no longer look like real 
people (see Figure 5). Here it is 
particularly important to be able to 
develop privacy tools that remain 
in the manifold of faces.

Th is data set may require the 
incorporation of tools from shape 
analysis, manifold learning, and 
differential geometry, pushing 
privacy tools to the frontier of 
NP statistics.

Figure 5. Pairs of RKHS estimates (fi rst, third, fi fth) and their sanitized versions (second, fourth, sixth) for three different levels of smoothing. 
Images produced by Ardalan Mirshani.
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Discussion
Nonparametric methods provide 
flexible and powerful tools for  
scientists and statisticians in work-
ing with complex data structures. 
However, these methods have 
unique privacy challenges.

One aspect of nonparametric 
methods is their dependence on 
tuning parameters. Histograms 
depend on the bin width, and 
both kernel density estimators 
and linear smoothers depend on 
a bandwidth. In practice, these 
parameters are often chosen 
based on cross-validation, which 
enhances the choice of bandwidth 
to optimize the fit. However, for 
differential privacy, even these 
tuning parameters must be chosen 
in a formally private way. 

To simplify the examples, it 
has been assumed that the tuning 
parameters were publicly known, 
but in practice, these parameters are 
usually data-dependent. While there 
have been a few DP mechanisms  
to estimate these parameters, this  
is an area of research that requires 
more attention.

Instead of using a Guas-
sian process to privatize an NP 
estimator directly, an alternative 
approach is to use \emph{objective 
perturbation}. Chaudhuri and  
Monteleoni introduced objec-
tive perturbation in Privacy  
Preserving Logistic Regression, and 
it has been adapted and modified 
in several other works. Instead  
of adding noise to the resulting 
estimator directly, objective per-
turbation mechanisms add noise 
to the objective function before 
optimizing. This approach has 
seen much success for regression 
problems, where the estimators  
have complex formulae but are the 
solutions to a well-behaved objec-
tive function. 

Indeed, in the case of local poly-
nomial regression, the objective 

function is of a form that allows 
for a simple sensitivity calculation. 
Formalizing this approach to allow 
the release of the full NP regression 
function is a matter for future work, 
but may be a promising direction.

Another direction for future 
work is investigating differ-
ent noise-adding distributions. 
The examples in this article use 
Gaussian process noise with the 
exponential kernel to privatize the 
density and regression estimators. 
This approach can be modified 
slightly by choosing a different 
kernel to preserve smoothness 
properties of the original estimator. 
Future research may quantify the 
benefits and drawbacks of differ-
ent noise-generating distributions 
in multivariate settings, as well as 
function spaces.  
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