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Formal Privacy for
Modern Nonparametric

Statistics

Jordan Awan, Matthew Reimherr, and Aleksandra (Sesa) Slavkovic

odern nonparametric

(NP) statistics is an

increasingly important
and expanding tool set in data
analytics as more large, complex
data are gathered and analyzed.
However, corresponding privacy
concerns that arise require novel
methods to balance privacy guar-
antees with statistical utility. NP
methods present a unique chal-
lenge for privacy because the
resulting summaries can contain
significant amounts of individual-
level information.

Modern NP statistics consists
of tools to analyze data without
assuming the data are distributed
according to some pre-specified
parametric family, such as assum-
ing the data is distributed normally.
Often, the goal of NP statistics is to
estimate a function (e.g., probabil-
ity density or regression function)
with only limited assumptions,
such as the number of derivatives.

Unlike parametric models,
where only a fixed number of
parameters are estimated, the
number of “parameters” to estimate
in NP statistics can be viewed as
infinite, because an arbitrary real-
valued function requires an infinite
amount of data points to specify
fully. (For a general introduction
to NP and related methods, see
All of Nonparametric Statistics by
Larry Wasserman.)

While NP tools are flex-
ible and powerful, they also have
increased privacy risks when
applied to sensitive data. Due to

the infinite-dimensional nature
of the quantities estimated in NP
statistics, estimators often capture
large amounts of individual-level
data, and the value of an outlier
can drastically change the shape of
an estimated density or regression
function (see Figures 1 and 4a).

From another perspective, while
parametric methods generally
estimate global properties, such as
means and variances, NP methods
often work with /ocal information,
giving higher priority to fewer data
points to determine the shape of
the function in a region.

'The leading framework for con-
structing formal privacy methods is
differential privacy (DP), proposed
in Calibrating Noise to Sensitivity
in Private Data Analysis (Dwork,
MecSherry, Nissim, and Smith.
2006), which can be interpreted
as offering plausible deniability to
data contributors. Many versions
of differential privacy differ in vari-
ous aspects now, but generally fit
the intuition that a method that
satisfies DP inserts additional ran-
domness into the computations, so
the probability of any output being
publicly released is similar when
an individual’s data are changed in
the input database. (Dwork and
Roth. 2014.)

For certain quantities, such as
sample means and medians, the
dependence onasingle individual is
small and only a negligible amount
of noise is required to privatize
the estimate. However, the mag-
nitude of the noise required for

privacy grows significantly with
the dimension of the release. This
is less of a problem with paramet-
ric models, since the number of
parameters to estimate is fixed.
With NP methods, the goal is to
estimate an infinite-dimensional
object, and the estimators require
estimating a number of param-
eters that can be viewed either as
growing with the sample size 7 or
as infinite.

Altogether, NP methods pres-
enta challenging setting for formal
privacy methods, because they are
much more sensitive to changes in
an individual’s data, and require
more noise to privatize. The goal
is to optimize the accuracy of the
privatized estimator while offering
formal privacy guarantees, which
sometimes requires using a dif-
ferent approach from common
nonprivate methods.

The issue of satisfying differ-
ential privacy while maintaining
statistical utility can be highlighted
and illustrated by exploring the
problems of density estimation and
nonparametric regression—two
classical NP problems.

There are also some exciting
developing areas of NP statistics
that have unique privacy challenges.

Density Estimation

Density estimation is a classical
area of nonparametric statistics,and
has been tackled using tools as sim-
ple as histogram estimators, as well
as more-sophisticated tools such as
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Figure 1. Sample of size 50 drawn from a mixture of Cauchy(-5, 1) and Cauchy(5, 1) with probabilities 1/3 and
2/3, respectively. Kernel density estimator using normal kernel and bandwidth = 3, and histogram estimator with

bin width 5.

kernel density estimators. Figure 1
provides an example of a histogram
and kernel density estimator.

The typical setup for den-
sity estimation is: Let X,
X be i.i.d. real valued random
variables drawn from a density
f (x); fis known to be a non-
negative valued function that inte-
grates to 1. Often, additional struc-
ture for f'may be assumed, such as
continuity or differentiability.

Histogram estimates are
among the simplest and most-
intuitive estimators for densities,
especially when there are very lim-
ited assumptions. For histogram
estimators, the number of bins

typically increases in n, or con-
versely, the bin width decreases
with 7. Histogram estimators can
be privatized by adding noise to
each bin, appropriately scaled to
obscure the contribution of one
individual. Figure 2 illustrates
a histogram estimator and an
example of a privatized estimator
by adding Laplace noise to each
bin count.

A problem with histogram
estimators is that they always
result in discontinuous estimators.
When the density is assumed to
be smooth, kernel density estima-
tors are often used instead. Let K :
R — R be a function, called a

kernel, that integrates to 1. A ker-
nel density estimator is of the form

fo =1y, 3K (55),

where 4 > 0 is the bandwidth,which
decreases with 7. Intuitively, a ker-
nel density estimator places mass
around each data point X, with

decreasing influence the farther #
is from X; Figure 1 provides an
example using a Gaussian kernel.

Figure 1 illustrates one of the
problems for privacy when using
NP methods: They contain high
amounts of individual-level infor-
mation. Note that the outlying
data points in Figure 1 can be
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(a) Histogram estimator privatized by adding independent Laplace
noise to each bin. Largest features are preserved, but noise results
in some negative counts. Blue circles represent privatized counts.

(b) Post-processing of the privatized histogram in subfigure
(a), where all negative counts are set to zero. Red crosses are
privatized counts. Hisfogram estimator is privatized by adding
independent Laplace noise to each bin.

Figure 2. Privatized histogram without postprocessing. Noise results in some negative counts. Blue circles represent privatized counts.

identified by inspecting the
“bumps” in the tails of the
density estimator. Because one
individual can have a large impact
on the shape of the density estima-
tor, much more noise is required to
protect the privacy of the sample
than is required for parametric
approaches. It is a challenge to
protect privacy while maintaining
statistical utility.

The simplest method of pre-
serving privacy while estimating
a density is to add noise to each
data point. However, this approach
results in excessive noise, since each
data point has high sensitivity.
Rather than adding noise to the
data, it is preferable to add noise
to the resulting estimator.

In multivariate settings, a
Laplace or Gaussian random vec-
tor could be added; in this setting,a

stochastic process, such as a
Gaussian process, can be added
to the resulting estimator.

Techniques to apply Gaussian
processes to privatize function-
valued parameters were developed
in Differential Privacy for Functions
and Functional Data (Hall, Rinaldo,
and Wasserman. 2013) and Formal
Privacy for Functional Data with
Gaussian Perturbations (Mirshani,
Reimherr, and Slavkovic. 2019).
'They discovered a deep connection
between privacy and a space defined
by the covariance function of the
Gaussian process, classically known
as the Cameron-Martin Space,
which can be viewed as a reproduc-
ing kernel hilbert space (RKHS),
whose kernel is given by the corre-
sponding covariance function.

It turned out that it was exactly
in that space that the sensitivity

Function-Valued Parameters: A
parameter is a population quantity
that can be used to specify the
distribution. In nonparametric
statistics, the parameters of
inferest are whole functions

(such as the density function, or
regression function), instead of
finite-dimensional quantities. Such
functionvalued parameters are
inherently infinite-dimensional.

Gaussian Process: A collection of
random variables, indexed by time
or space, is a Gaussian process if
every finite subset of the variables
has a multivariate Gaussian
distribution. As in finite dimensions,
a Gaussian process is characterized
by its mean and covariance.
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(a) Privatized density without postprocessing. (b) Privatized density, sefting negative values to zero.

Figure 3. Data generated as in Figure 1, but with sample size of n = 500. Kernel density estimator using Gaussian kernel is fit to data with
bandwidth of = 2.01, plotted in red. Gaussian process is added to density estimator using exponential kernel so (1, .01)-DP is satisfied,
plotted in black. Bandwidth assumed to be public.

Reproducing Kernel Hilbert Space (RKHS):
Some infinite-dimensional vector spaces

have properties very different from finite-
dimensional Euclidean spaces. A subset of
infinite- dimensional spaces that are much better
behaved are called reproducing kernel Hilbert
spaces [RKHSs). A space is an RKHS if every
evaluation functional is continuous—the functions
in the space are smooth. An RKHS is in one-
foone correspondence with a positive-definite
kernel, which encodes how smooth the functions

are.
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of the estimator had to be com-
puted to ensure differential privacy
was satisfied. At a high level, their
results showed that the Gaussian
process noise must be “rougher”
than the nonprivate estimator to

obscure any personal information

that may be captured in the high
frequencies. Figure 3 illustrates
the use of Gaussian process noise
with the exponential kernel to
privatize the kernel density esti-
mator, resulting in a very rough
density estimator.

Nonparametric
Regression

One of the most-common and
natural questions that scientists
encounter is understanding how
one independent variable or more
affects a dependent variable. This
question is often addressed by the
use of regression techniques. The
classical approach of linear regres-
sion assumes that a linear predictor
function captures the relationship
between the independent/pre-
dictor/covariate and dependent/
outcome variables, and typically
imposes distributional assump-
tions for the errors.

These assumptions are often
either are unreasonable or the sam-
ple size is large enough to explore
deeper relationships between the
variables and, thus, more-flexible
techniques are desirable. Nonpara-
metric regression techniques offer
this increased flexibility.

Suppose that (X, Y)),..., (X,
Y) are i.i.d. bivariate random
vectors so that Y, = f/(X)+e, for
some function f and mean-zero
errors e, The goal is to estimate
the function /. Depending on the
setting, the X could be assumed
to be deterministic in a controlled
experiment, or random such as in
observational studies.

In either case, nonparametric
regression estimators are often /in-
ear smoothers that can be expressed
as:

fey=>u@wy, @
=1
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(b) n = 500. Kernel regression with Gaussian kernel, bandwidth
= .5. Privatized regression estimator using Gaussian process
with exponential kernel, which achieves (1, .01)-DP in dashed
purple. Range of Yi is assumed to be [20, 35], and sensitivity
was numerically estimated. Post-processed curve is in solid blue,
achieved by applying 50 pt moving average to privatized curve.
Nonprivate kernel regression estimator is in red.

(@) n = 30. Red curve is a local quadratic regression and blue
curve is a kernel-smoothing regression. Leftmost x value in both
has great influence on fitted curves.

Figure 4. Example of nonparametric regression methods; y values are produced by equation y, = (r, - 3)(x, + 3.5)(r, + 1/2) + e, where
e, ™ N (0, 4). On left, X ™ U [-4, 4]. On right, X is equally spaced in [-4, 4].

where €, ..., € are real-valued
functions, depending on the data

In most cases, the functions €,
are normalized so that

> i1 4i(t) =1 for all t.

Some examples of linear
smoothers include Nadarya-
Watson kernel regression,
more-general local polynomial
regression, Reproducing Kernel
Hilbert Space regression, and basis
function regression. Kernel regres-
sion has the form

G(t) = K(55) /(20 K(4552))

for a kernel X(*) and bandwidth 4.

Based on Equation (1), there are
a few challenges when it comes to
privatizing these estimators. First,

releasing the nonprivate f(f)
often allows aspects of the original
sample to be reconstructed. As
noted earlier, adding noise to the
X, and Y, before regressing would
satisfy privacy, but introduces an
excessive amount of noise, destroy-
ing statistical utility.

While the problem of pro-
ducing private NP regression
estimators may seem similar
to density estimation, it has an
additional challenge compared to
density estimation. With either
the histogram estimator or the
kernel density estimator, it was
easy to measure the sensitivity of
the estimator; that is, how much
the estimator changed when one
person’s data changed. However,
with regression estimators of
the form (1), calculating the

sensitivity is much more, since
changing one pair (X, Y) and
affects both the contribution to
the sum and the normalization due
to the constraint

S (@) = 1.

This aspect makes it much more
difficult to measure the sensitivity
of the function accurately. An over-
estimate of the sensitivity will result
in an excessive amount of noise.

The literature currently pres-
ents limited methods that have
successfully produced accurate
DP estimates for NP regression
problems. One solution is to sim-
plify the problem by treating the
independent variables as public,
and only protecting the dependent
variable. Figure 4b is an example of
this approach.
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Figure 5. Pairs of RKHS estimates (first, third, fifth) and their sanitized versions (second, fourth, sixth) for three different levels of smoothing.
Images produced by Ardalan Mirshani.
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This approach was employed
in Differentially Private Regression
with Gaussian Processes (Alvarez,
Zwiessele, and Lawrence. 2018)
and enables a tight sensitivity cal-
culation, more similar to that of
a kernel density estimator. They
use a Gaussian process regression,
which treats all independent vari-
ables as public, and the tools of
Hall, Rinaldo, and Wasserman to
privatize the regression function.

This approach applies when
the independent variables are
publicly known (such as spatial
locations), and only the dependent
variables are sensitive. However,
more-sophisticated techniques
are required when all variables are
at risk.

Frontiers of
Nonparametric
Statistics

While the problems of density
estimation and nonparametric
regression tackle a wide variety of
settings, these problems can still
be viewed as working in (infinite-
dimensional) linear spaces. A
significant increase in complexity
arises when working in nonlinear
spaces. Some tools for working on
such problems come from shape
analysis, manifold learning, and
topological data analysis.

To understand these problems,
consider two examples: covariance
matrix estimation and a data set of
3-D images of human faces.

Covariance Estimation: Recall
that for an m-dimensional data
set, the covariance matrix is a
positive-semidefinite symmetric
m x m matrix. Many differential
privacy methods designed for the
release of a privatized covariance
matrix include the addition of
noise to the empirical covariance
estimator. However, a significant
limitation of this approach, espe-
cially in smaller sample sizes, is that
this noise can resultin a matrix that
is no longer positive-semidefinite.

An approach that has yet to be
pursued is to produce a DP family
of distributions on the manifold of
positive-semidefinite matrices. A
manifold is a space that behaves
locally like Euclidean space, but
may not be generally closed under
addition or scalar multiplication.
The space of covariance matrices
is closed under addition, but not
under subtraction or multiplication
by negative scalars.

Another difference between
working in the manifold of cova-
riance matrices and standard
linear spaces is the choice of met-
ric. Typically, standard matrix
norms are used to evaluate the
distance between covariance
matrices. While this metric is of

some use, it may not be the best
choice to truly capture the simi-
larity of two covariance matrices.
When working with manifolds,
there is a natural distance called a
Riemannian metric, which is bet-
ter at capturing the geometry of
the space.

Incorporating tools specifically
designed for manifolds could result
in better-performing DP covari-
ance estimation methods.

Shape Data: An exciting data
set highlights many of the possi-
bilities of privacy tools for complex
data structures. Mark Shriver at the
Pennsylvania State University col-
lected a database of 3-D scans of
human faces, along with extensive
demographic and genomic data.

This data set is inherently
sensitive, with stringent data
management regulations. While
Gaussian processes can be used to
privatize the faces, such noise can
distort the faces so significantly
that they no longer look like real
people (see Figure 5). Here it is
particularly important to be able to
develop privacy tools that remain
in the manifold of faces.

This data set may require the
incorporation of tools from shape
analysis, manifold learning, and
differential geometry, pushing
privacy tools to the frontier of
NP statistics.



Discussion

Nonparametric methods provide
flexible and powerful tools for
scientists and statisticians in work-
ing with complex data structures.
However, these methods have
unique privacy challenges.

One aspect of nonparametric
methods is their dependence on
tuning parameters. Histograms
depend on the bin width, and
both kernel density estimators
and linear smoothers depend on
a bandwidth. In practice, these
parameters are often chosen
based on cross-validation, which
enhances the choice of bandwidth
to optimize the fit. However, for
differential privacy, even these
tuning parameters must be chosen
in a formally private way.

To simplify the examples, it
has been assumed that the tuning
parameters were publicly known,
butin practice, these parameters are
usually data-dependent. While there
have been a few DP mechanisms
to estimate these parameters, this
is an area of research that requires
more attention.

Instead of using a Guas-
sian process to privatize an NP
estimator directly, an alternative
approach is to use \emph{objective
perturbation}. Chaudhuri and
Monteleoni introduced objec-
tive perturbation in Privacy
Preserving Logistic Regression, and
it has been adapted and modified
in several other works. Instead
of adding noise to the resulting
estimator directly, objective per-
turbation mechanisms add noise
to the objective function before
optimizing. This approach has
seen much success for regression
problems, where the estimators
have complex formulae but are the
solutions to a well-behaved objec-
tive function.

Indeed,in the case of local poly-
nomial regression, the objective

function is of a form that allows
for a simple sensitivity calculation.
Formalizing this approach to allow
the release of the full NP regression
function is a matter for future work,
but may be a promising direction.

Another direction for future
work is investigating differ-
ent noise-adding distributions.
The examples in this article use
Gaussian process noise with the
exponential kernel to privatize the
density and regression estimators.
This approach can be modified
slightly by choosing a different
kernel to preserve smoothness
properties of the original estimator.
Future research may quantify the
benefits and drawbacks of differ-
ent noise-generating distributions
in multivariate settings, as well as
function spaces.
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