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| Matthew Reimherr

This work considers the problem of fitting functional models with sparsely and irregularly
sampled functional data. It overcomes the limitations of the state-of-the-art methods, which
face major challenges in the fitting of more complex non-linear models. Currently, many of these
models cannot be consistently estimated unless the number of observed points per curve grows
sufficiently quickly with the sample size, whereas we show numerically that a modified approach
with more modern multiple imputation methods can produce better estimates in general. We
also propose a new imputation approach that combines the ideas of MissForest with Local
Linear Forest and compare their performance with PACE and several other multivariate multiple
imputation methods. This work is motivated by a longitudinal study on smoking cessation,
in which the electronic health records (EHR) from Penn State PaTH to Health allow for the

16802.
collection of a great deal of data, with highly variable sampling. To illustrate our approach, we
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explore the relation between relapse and diastolic blood pressure. We also consider a variety of

simulation schemes with varying levels of sparsity to validate our methods.
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1 | INTRODUCTION

Functional data analysis (FDA) is a branch of statistics that models the relationship between functions measured over a particular domain,
such as time or space (Ferraty & Vieu, 2006; Ferraty & Romain, 2011; Horvath & Kokoszka, 2012; Kokoszka & Reimherr, 2018; Ramsay &
Silverman, 1997). There is a rich literature on modelling functions that are densely observed but comparatively less literature on modelling
functions that are sparsely observed, which introduce new challenges. Currently, there are very few imputation methods designed for functional
data (He, Yucel, & Raghunathan, 2011; James, Hastie, & Sugar, 2000; Rice & Wu, 2001), with a mean imputation procedure commonly known as
PACE (Yao, Miiller, & Wang, 2005) being the most common.

Single imputation procedures (like mean imputation or PACE) are useful in general but can't account for the uncertainty induced from the
imputation procedure; once the imputation is done, analysis then typically proceeds as if the imputed values were the truth. This leads to overly
optimistic measures of uncertainty and the potential for substantial bias (Petrovich, Reimherr, & Daymont, 2018). To deal with this and other
problems associated with single imputation methods, we consider multiple imputation methods. Multiple imputation involves filling in the missing
values multiple times, which creates multiple “complete” data sets. The variability among these complete data sets reflects the uncertainty
introduced in the imputation method. Multiple imputation procedures are very versatile and flexible, and they can be used in a wide range of
settings. As multiple imputation involves creating multiple predictions for each missing value, the corresponding statistical analysis takes into
account the uncertainty in the imputations and hence yields a more reliable standard error. In simple terms, if there is less information in the
observed data regarding the missing values, the imputations will be more variable, leading to higher standard errors in the analysis. In contrast,
if the observed data are highly predictive of the missing values, the imputations will be more consistent across the multiple imputed data sets,
resulting in smaller and more reliable standard errors (Greenland & Finkle, 1995).

Longitudinal studies are amenable to FDA and often contain sparse and irregular samples. Such data can be considered as having missing
values, making imputation a natural consideration. Many FDA methods analyze fully or densely observed data sets without any appreciable
missing values. However, this is often not the case when dealing with large medical and biological data. Hence, in such cases, we can either apply
sparse FDA methods (Kokoszka & Reimherr, 2018; Yao et al. 2005) or use imputation to apply more traditional FDA techniques. Several multiple
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imputation techniques have been proposed to impute incomplete multivariate data, including multivariate imputation by chained equations
(MICE) (Van Buuren, 2007) and MissForest (MF) (Stekhoven & Buhlmann, 2011). Though these methods have not been directly applied to
functional data, they have worked well in general. MICE builds a separate model for each variable (that contains missing values), conditioned
on the others, which can be specified based on the data type (continuous, binary, etc.). MF is similar to MICE but uses random forests (FR) for
building the conditional models. In both cases, variables are sequentially imputed until convergence is reached. We use the MICE (van Buuren
& Groothuis-Oudshoorn, 2011) and missForest (Stekhoven, 2013) packages in R to implement these methods. Also, local linear forest (LLF)
(Friedberg, Tibshirani, Athey, & Wager, 2018), which is a modification of RF, is a powerful regression method. Functional data are naturally
smooth, and LLF is equipped to model signals. Taking advantage of this interesting property of LLF, we propose another imputation method
similar to that of MF and MICE using LLF.

Several other imputation methods include K-nearest-neighbor (KNN) (Acuna & Rodriguez, 2004), nonparametric imputation by data depth
(Mozharovskyi, Josse, & Husson, 2017), substantive model compatible fully conditional specification (Bartlett, Seaman, White, Carpenter, & For
the Alzheimer's Disease Neuroimaging Initiative*, 2015), and many more. There have also been studies comparing imputation methods (Ding &
Ross, 2012; Liao et al. 2014; Ning & Cheng, 2012; Waljee et al. 2013) under different scenarios and data types, but for functional data, PACE
has become the “gold standard.” Unfortunately, current methods for imputation in FDA are not designed to handle complex models and do not
allow for consistent estimation unless one assumes that the number of observed points per curve grows sufficiently quickly with the sample size.
Though this is mathematically convenient, it highlights a serious concern when handling sparse functional data. Most of the methods impute
while ignoring the response and subsequent modelling that is to be done with the reconstructed curves, a notable exception being Bayesian
methods (Kowal, Matteson, & Ruppert, 2019; Thompson & Rosen, 2008). This leads to biased estimates with unreliable standard errors and
misleading p values. For these reasons, PACE, which is executed using the fdapace package (Chen et al. 2019), uses an alternative approach to
produce consistent estimates for functional linear models that do not generalize to non-linear models.

Missing data as described by Rubin (2004) can be divided into three categories: (1) Missing completely at random (MCAR), in which the missing
values are independent of the observed data; (2) missing at random (MAR), in which the missing value patterns depend only on the observed
data and are conditionally independent of the unobserved data; and (3) missing not at random (MNAR), also known as non-ignorable missing
data or structural missing data, in which the missing data patterns depend on the observed and unobserved data. Usually, it is assumed that one
is either working with MCAR or MAR to make the problem tractable. We make a similar assumption in our procedure, without formally defining
the missing data mechanism. Many of the recent works in functional data imputation (Crambes & Henchiri, 2018; Ferraty, Sued, & Vieu, 2012;
He et al. 2011; Preda, Saporta, & Mbarek, 2010) have built upon these ideas and adopted a missing data perspective to tackle various forms of
sparsity in functional models. But all these approaches consider either a linear relationship or sparsity in the response, whereas we work with a
completely observed response and sparsely observed covariates, where we can have a non-linear relation between them.

In this work, we explore the performance of several modern imputation procedures with functional data. Also, we propose another imputation
method using LLF. We demonstrate how a simple modification using binning alongside careful initialization can dramatically improve the
imputation and subsequent estimation for both linear and non-linear models. From a missing data perspective, the goal is to do imputation of the

missing data in a way that retains the performance of subsequent statistical modelling.

1.1 | PaTH to health

Electronic health record (EHR) or clinical data often require longitudinal statistical methods, which account for the correlation between repeated
measurements on the same subject. If one also assumes that these are taken from a smooth curve or data generating process, then we can exploit
tools from FDA, which can produce gains in terms of flexibility and statistical power (Carnahan-Craig et al. 2018; Goldsmith & Schwartz, 2017;
He et al. 2011). Since hospital visits can occur both infrequently and irregularly, we can't directly apply many FDA techniques to them. They pose
a challenge to the current methods as well as for imputation. To address these challenges and illustrate the effectiveness of our approach over
the current methods, we wish to apply them to an EHR data set where we predict whether a smoker will relapse or not based on their Blood
Pressure (BP) recordings over a span of 18 months.

The Penn State PaTH to Health provides patient data from multiple sources to further scientific discoveries. The data set describes patient-level
data variables in a standardized manner (i.e., with the same variable name, attributes, and other metadata) along with information on demographics,
encounters, diagnoses, and procedures. More information can be found on their website (https://ctsi.psu.edu/research-support/path/).

While there is a wealth of research related to smoking and blood pressure (BP) (Hansson, Hedner, & Jern, 1996; Primatesta, Falaschetti, Gupta,
Marmot, & Poulter, 2001; Wang et al. 2018), our goal here is not to make deep scientific statements, but rather to illustrate the utility of our
methods, which we hope will prove useful to practitioners. The highest risk of relapse for smokers is during the end of their first and second year
after quitting (Garcia-Rodriguez et al. 2013; Herd, Borland, & Hyland, 2009). We therefore focus on modelling the relapse of the patients based
on monitoring their BP within the first 2 years, which may be useful to the practitioners designing interventions for patients at risk of relapse.

In general, EHR data sets vary significantly with the timing and regularity of the appointments, and clinical measurements are affected by
errors of varying types and degrees (Daymont et al. 2017). Similar challenges apply to measurements in the PaTH data set where we have
various kinds of clinical measurements and information recorded. The ability to characterize trajectories of sparse irregular data has potential

applicability to many clinical questions. Though the term sparsity is somewhat subjective in the context of functional/longitudinal data, many of
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the patients in the Path data set have just two measurements, while the greatest number of measurements for any patient is 17 (after cleaning
and implementing the exclusion criteria). We can see from Figure 1 the modal number of measurements is 2, while relatively few patients had
more than seven clinical visits and almost none had more than 11. Also, from the cumulative observation (Figure A1), we observe that 94% of
the patients had 10 or fewer measurements, 72% had at most five measurements, and 28% had no more than two measurements. On average,
we have around four measurements per patient. Sparsity arises due to many reasons in an EHR setting. Some patients never come back, some
patients are not observed with any uniformity or regularity, etc. Having identified the BP trajectories as both sparse and irregular, we move to
introduce the imputation methods that account for these conditions in a functional framework before revisiting this data in Section 3.

1.2 | Organization

The rest of the paper is organized as follows. In Section 2, we briefly go through PACE and multivariate imputation methods (MICE and MF)
before introducing our proposed method using LLF, and modifications to the multivariate imputation methods using bins and careful initialization,
to better deal with functional data. We present multiple simulations for the linear and non-linear cases under different values of sparsity in
Section 3. This section also includes the EHR data, where we fit a scalar-on-function regression model to determine if a patient (smoker) will
relapse or not at the end of 18 months using BP as the functional predictor. These examples help us to illustrate the limitations of previous
approaches and demonstrate the usefulness of our methodology, which overcomes many of the issues discussed earlier. In Section 4, we present
our concluding remarks and future research directions, which pertain to better understanding of the bins and deeper statistical theory.

2 | METHODS

In this section, we give details of the current imputation methods for the scalar-on-function regression model. In Section 2.1, we define the
necessary notation used in the paper. In Section 2.2, we briefly discuss scalar-on-function regression models. Section 2.3 gives an overview of
PACE and the multivariate imputation method MICE in detail along with their shortcomings. In Section 2.4, we discuss LLF and the multivariate
imputation method MF. We present our new imputation procedure that extends the ideas of MF to LLF, as well as discuss how to use careful

binning and initialization to improve performance.

2.1 | Setup and notation

We assume the data are collected from trajectories that are independent realizations of a smooth random function, with unknown mean function
E(X(t))=pu(t) and covariance function Cx(t, s): = cov(X(s), X(t)). We define the underlying functional covariates as {X;(t) : t € [0, 1]; 1 <i < n}, where
t denotes the argument of the functions, usually time, and i denotes the subject or unit. We assume that these curves are only observed at times
t; (=1, ... ,m;) with some error:

Xjj = X,* (t,) + 50

Let x; = (Xj1, ... ,Xim)' denote the vector of observed values of the function X;. Let Y;, be the outcome, which is a function of X; and some error.
Examples of such relations can be found in the next subsection.
Generally, when integration is written without limits, it is implied to be over the entire domain, usually standardized to [0, 1] for simplicity. The

main focus of this work is to develop tools for consistently estimating the parameters in functional regression models.
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2.2 | Functional models

The scalar-on-function regression model in the linear case is defined as

A common way of estimating the model components is by basis or functional principal component (FPC) expansions, where we simplify the
problem of estimating the parameters by projecting the functions to a finite dimension and then using multiple regression and least squares
(Kokoszka & Reimherr, 2018; Ramsay & Silverman, 1997).

Non-linear modelling becomes very challenging with functional data due to the curse of dimensionality. One popular way of simplifying the
problem is by using the generalized additive model, also known as the continuously additive model (Fan, James, & Radchenko, 2015; Ma &
Zhu, 2016; McLean, Hooker, Staicu, Scheipl, & Ruppert, 2014; Miiller, Wu, & Yao, 2013; Wang & Ruppert, 2015):

Y= / FO(E). tidt + c; 2)

where the bivariate function (x, t) — f(x, t) is smooth but unknown. It is commonly estimated using either basis expansions (Greven, Crainiceanu,
Caffo, & Reich, 2010; Yao et al. 2005) (often with a tensor product basis) or using Reproducing Kernel Hilbert Spaces (Reimherr, Sriperumbudur,
& Taoufik, 2017; Wang & Ruppert, 2015). McLean et al. (2014) developed Functional Generalized Additive Models that enabled non-scalar
response mapping.

Most methods for fitting the models discussed above require densely sampled functional data. For irregular and sparsely sampled data that
are observed with error, estimating the modelling parameters becomes much more challenging. Directly smoothing the x; to plug into a dense
estimation framework seems like a straightforward idea but can result in substantial bias.

2.3 | Imputation methods

PACE (Yao et al. 2005) uses functional principal components (FPC) analysis, in which the FPC scores are imputed using conditional expectations.
In addition to the requirements discussed previously, PACE also relies heavily on the data being Gaussian. The Karhunen-Loéve or principal
component expansion of X;(t) is given by
Xit) = ux(t) + Y &vi(t), (3)
=1

where vj(t) are the eigenfunctions of Cx with eigenvalues 4; > 4, > ... >0. The scores are computed as
&= <Xi — Hx, Vj> . (4)

PACE proceeds by computing the conditional expectation of the scores given the observed data. This conditioning method is straightforward
and tends to work much better than direct smoothing of x;. It provides the best linear unbiased predictors (BLUPs) under Gaussian assumptions
and works in the presence of both measurement errors and sparsity. We can plug the BLUPs values into a dense estimation framework to model
the response.

PACE still suffers from a few major problems. One issue is that the imputation procedure of PACE does not consider the response Y; nor
does it have any consideration for subsequent models that will be fit. This results in a bias while estimating model parameters (Petrovich et al.
2018). In addition, PACE is just a single imputation method and hence the uncertainty in the imputation is not properly propagated when forming
confidence intervals, prediction intervals, or p values. For this reason, the PACE software (Chen et al. 2019) uses an alternative approach for
fitting linear models which does not extend to non-linear models.

After understanding PACE, we now look into some of the standard methods used for imputation in the multivariate case. All of these methods
have proven to work well in the multivariate setting but have never been tested in the functional setting, where the sample sparsity can be
very high.

MICE (Van Buuren, 2007), also known as “fully conditional specification” or “sequential regression multiple imputation,” has emerged in
the statistical literature as one of the principal methods for addressing missing data. MICE performs multiple imputations rather than single
imputation, and hence it can account for the statistical uncertainty. In addition, the chained equations approach is very flexible and can handle
variables of varying types (e.g., continuous or categorical) as well as complexities such as bounds or survey skip patterns. At a high level, the
MICE procedure is a series of models whereby each variable with missing data is modelled conditional upon the other variables in the data. The
MICE procedure is as follows: (1) We start by initialization, wherein we fill in all the missing values with mean imputation. (2) Next, we select the
first variable with missing entries. A model is fit with this variable as the outcome and the other variables as predictors. (3) The missing values of
the current variable are then replaced with predicted (imputed) values from the model in step 2. (4) Step 2 and step 3 are repeated while rotating

through the variables with missing values sequentially. The cycling through each of the variables constitutes one iteration or cycle. (5) At the end
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of one cycle, all of the missing values have been replaced with predictions from the model that reflect the relationships observed in the data. The
cycles are repeated a few times and after each cycle the imputed values are updated.

The number of cycles to be performed is pre-specified and after the last cycle, the final imputations are retained, resulting in one imputed
data set. Generally, 10-15 cycles are performed. The idea is that, by the end of the cycles, the distribution of the parameters governing the
imputations (e.g., the coefficients in the regression models) should have converged, in the sense of becoming stable. Different MICE software
packages vary somewhat in their exact implementation of this algorithm (e.g., in the order in which the variables are imputed), but the general
strategy is the same. Here, we have used the MICE (van Buuren & Groothuis-Oudshoorn, 2011) package in R.

A key advantage of MICE is its flexibility in using different models. Generally, the modelling techniques included in MICE are predictive
mean matching, linear regression, generalized linear models, Bayesian methods, RF, linear discriminant analysis, and many more. Its primary
disadvantage is that it does not have the same theoretical justification as other imputation methods. In particular, fitting a series of conditional
distributions, as is done using the series of regression models, may not be consistent with proper joint distribution, though some research suggests

that this may not be a large issue in applied settings (Schafer & Graham, 2002).

2.4 | Ourapproach

241 | MFandLLF

MF (Stekhoven & Buhlmann, 2011) is a multiple imputation method, which proceeds by training an RF on the observed parts of the data. RF
(Breiman, 2001) is a non-parametric method that is able to deal with mixed data types as well as allow for interactive and non-linear effects.
MF addresses the missing data problem using an iterative imputation scheme by training a RF on observed values in the first step, followed by
predicting the missing values in the next step and then proceeding iteratively. RF works well in high dimensional cases with good accuracy and
robustness. Though the idea of MF is similar to MICE, they differ in the ordering scheme of the columns to be imputed, and MICE requires certain
assumptions about the distribution of the data or subsets of the variables which may or may not be true.

For an arbitrary variable p in X, (p = 1,2, ... m) including missing values at entries i®’mis C{1, ... , n}, we can separate the data set into four
parts: The observed values for variable p, denoted by y(") the missing values for variable p, denoted by y ; the variables other than p with
observations at i®’obs C{1, ... ,n}/i? , denoted by x; and the variables other than p with observations at lffgs, denoted by x?'.

The approach is as follows: We initialize the missing values in X using mean imputation or another imputation method. We then sort the
variables p in X (p = 1, ... ,m) in ascending order of the missing values. For each variable p, the missing values are imputed by first fitting an RF

) ® then predicting the missing values y*’ by applying the trained RF to x(”)

obs obs’ mis mis

with response y*’ and predictors x We sequentially do this for all
variables with missing values; that is one cycle. The imputation procedure is repeated for multiple cycles until a stopping criterion is met.

The advantage of MF is that it can deal with any kind of data. Also, MF is straightforward, as it does not need any tuning of parameters nor
does it require any assumption about distributional aspects of the data. The full potential of MF is deployed when the data include complex
interactions or non-linear relations between variables of different types, which is not possible with PACE. Furthermore, MF can be applied to
high-dimensional data sets with a low sample size and still provide excellent results. MF often outperforms other methods in terms of imputation
(Stekhoven & Bahlmann, 2011), but the method has no smoothing mechanism and hence the imputed values of the curves are not smooth. To
deal with this and to increase model accuracy, we integrate binning into the method as explained in the next subsection.

LLF (Friedberg et al. 2018) uses an RF to generate weights that are used as a kernel for local linear regression, i.e., LLF takes the RF weights
a; (X;) and uses them to solve

n

min " (Yi = = 0= X B) ' (). )
=1

The RF weights «; (x;) are found with the help of the leaf L,(x;) in each tree T, in a forest of B trees as follows:

B

1o 1{Xel,(x))
““‘Eg Lol )

where Z'f;l a; (X)) = 1 and for each i,0 < a; (X;) < 1. Athey, Tibshirani, and Wager (2016) used this perspective to harness RF for solving weighted
estimating equations and gave asymptotic guarantees on the resulting predictions. With the help of the above weights, LLF solves the locally
weighted least squares problem.

LLF is a modification of local linear regression with the help of RF, equipped to model signals and fix bias issues. We use this to our advantage
and propose a modification to the MF method, where we replace the RF with LLF. We refer to this as miss local linear forest (MLLF). This new
approach using LLF for imputation follows the same steps as MF but instead of using RF as the modelling technique to impute the missing values,
we will now use LLF. Since LLF does not inherit the multiple imputation like MF, we generate multiple imputed sets and take an average like in
the case of MICE. MLLF has similar benefits to MF. We update the MF code (Stekhoven, 2013) in R using the grf package (Tibshirani, Athey, &
Wager, 2020) to implement MLLF.
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2.4.2 | Adapting methods to functional data

One of the key features of functional data is the smoothness of the underlying curves. MF and MLLF produce well-imputed curves but are
not smooth. We overcome this problem with the help of binning and careful initialization. We improve the initialization by using PACE instead
of simple mean imputation. These boosted methods using PACE are denoted as MFP for MF and MLLFP for LLF. While this leads to higher
performance in general with slightly smoother imputed curves, it does not directly smooth the imputed curves or resulting model parameters.
Also, this initialization comes with a computational burden as PACE itself is computationally heavy. Another restriction which all of these
imputation methods have, except PACE, is that they need to pass through the observed points, which need not be optimal, especially in the
presence of observation noise.

We overcome the non-smoothness issue and computational problem by the use of bins. Binning (also known as discrete binning or bucketing)
is a data pre-processing method that is used to reduce the effects of minor observation errors and smooth the data. The original data values
which fall in a given small interval, a bin, are replaced by a value representative for that interval, usually the mean value. Binning aggregates the
values into a fixed range. We divide the desired grid of the time points into k bins and impute over the k points before interpolating back to m
time points using b-splines. Here, k is a tuning parameter that acts much like a bandwidth in kernel smoothing. This not only leads to smoother
imputation results but also improves the subsequent modelling. As binning helps in reducing the number of time points (m < k), the overall process
becomes much more computation-friendly. The way bins are defined is as follows:

e The first bin is the first time point of the data.
e The last bin is the last time point of the data.

e The middle (k-2) bins are divided into equal parts and are represented by the mean of all values in that bin.

We denote the methods with the binning as MF_B for MF and MLLF_B for LLF. If we add PACE initialization to it then we denote the methods
as MFP_B for MF and MLLFP_B for LLF. We can see in the next section that this not only leads to much smoother results but also improves
imputations and modelling performance.

3 | SIMULATION AND RESULTS

Throughout this section, we refer to MissForest as MF, MF with PACE initialization as MFP, binning without PACE as MF_B, and binning with
PACE as MFP_B. MLLF uses an analogous naming scheme. In addition to comparing all the methods in simulations, we will compare the results
for the EHR data as well. In the simulation, we compare them in both linear and non-linear scalar-on-function regression settings with a scalar and
binary response, investigating the imputation accuracy, model fit (prediction accuracy), and g estimates (only for the linear case). We compare

across multiple simulated data sets with varying time points observed m, sample sizes n, and sparsity s.

3.1 | Simulation

Linear case:

For the linear case, we simulate n iid random curves {X;(t), ... ,X,(t)} from a Gaussian process with mean O and covariance
ity = — Vvt —s| "K Vit —s|
T T2t » " P ’

which is the Matérn covariance function, and K, is the modified Bessel function of the second kind. We set p = 0.5, v = 5/2 and 62 = 1. These
curves are evaluated at m equally-spaced time points from [0, 1]. We assume that each observed point contains a normal measurement error
with mean zero and variance o‘? = 0.3. We set f(t) = w x sin(2xt), where w is a weight coefficient used to adjust the signal. The response, Y;
(i=1, ... ,n),is computed using the model in Equation (1), where « = 0 and 62 = 1. In the binary response case, we define Y; (i= 1, ... ,n) using
the Bernoulli and logit link function in Equation (1). Finally, for each curve, we assume a percentage (s) of the m time points is unobserved. After
the scores are imputed, we fit a scalar-on-function regression model using these imputed curves.

For the linear case, we simulate the data sets of different sample sizes, n € {200, 500, 1000} (results for n = 200 and n = 1000 are included in the
appendix); different numbers of observations per curve, m € {32, 52}; and different sparsity levels, s € {Medium, High}. For sparsity levels, medium
means 50% of the points are missing for each curve and high means more than 85% of the points are missing for each curve. Also, the values of
m are taken such that they help with the process of binning. Each of these settings is simulated 10 times. Since we are primarily interested in the
accuracy of the final estimates A(t), V(t), and X(t), we report the root mean square error (RMSE), or prediction error, for each of them.

Tables 1 and 2 indicate that, in general, irrespective of the number of points, all the binned methods perform better compared to other methods
for prediction error or RMSE of prediction, g coefficients, and imputation when the sparsity is medium and the sample size is 500. Also, we can
see that the RMSE of imputation for PACE is the same for both the tables. This is because we are using the same sample curves to generate
scalar and binary response. There is no clear winner between MF and MLLF within the binned methods with or without PACE initialization.

Again, for high sparsity, we notice similar behavior as before: Irrespective of the number of points, all the binned methods perform better.
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TABLE1 RMSE of prediction, g coefficients, and imputation of the curves for different methods under linear case

when n = 500 for different time points and sparsity settings

n = 500, s = medium n = 500, s = high
m=32,b=17 m=52,b=27 m=232,b=8 m=52,b=12

Method Pred p Imp Pred ¢ Imp Pred p Imp Pred p Imp

MF 0.136 0.155 0.108 0.227 0.241 0.077 0.267 0.422 0470 0.177 0.307 0.390
PACE 0.170 0.208 0.199 0484 0595 1910 0.376 0432 0.369 0.350 0.388 0.308
MLLF 0.142 0.149 0.070 0.234 0.242 0.023 58010 43721 0.601 69.24 5543 0.508
MICE 3.611 3.612 0.090 0237 0.253 0.089 9.840 5950 0910 3.162 2390 1.073
MFP 0.122 0.144 0.105 0.228 0.250 0.130 0.141 0.289 0.398 0.232 0.310 0.328
MLLFP 0.132 0.153 0.144 0.232 0.246 0.100 0.376 0432 0.364 0.384 0.386 0.302
MF_B 0.122 0.136 0.079 0.173 0.180 0.052 0.117 0.264 0.334 0.152 0.217 0.261
MLLF.B  0.126 0.137 0.082 0.174 0.177 0.053 0.097 0291 0338 0.132 0.203 0.267
MFP_B 0.122 0.138 0.053 0.176 0.182 0.023 0.101 0.263 0.339 0.146 0.219 0.275
MLLFP_B 0.128 0.143 0.059 0.179 0.178 0.023 0.091 0817 0614 0.129 0.214 0.307

Note: Bold values in the table indicate the best values.

TABLE2 Prediction error, RMSE of g coefficients, and RMSE of imputation of the curves for different methods
under linear case with binary response when n = 500 for different time points and sparsity settings

n = 500, s = medium

n =500, s = high

m=232,b=17 m=52,b=7 m=232,b=17 m=52,b=12

Method Pred p Imp Pred p Imp Pred B Imp Pred B Imp

MF 0.268 0.409 0.043 0.280 0.391 0.155 0.317 0.383 0.187 0.251 0.347 0.307
PACE 0.270 0.508 0.199 0.431 0426 1910 0.348 0463 0.369 0.466 0.687 0.308
MLLF 0.364 0.453 0.040 0.532 1376 0.212 0.282 0490 0.309 0.374 2768 1.715
MICE 0.459 1282 0.284 0.589 0.385 0.934 0.543 4.828 1.115 0.672 1814 1.050
MFP 0.260 0.385 0.198 0.282 0.340 0.198 0.258 0.356 0.185 0.260 0.360 0.282
MLLFP 0.274 0.417 0.038 0.364 0.379 0.213 0.360 0462 0.307 0.366 0.372 0.651
MF_B 0.160 0.262 0.036 0.276 0.322 0.132 0.214 0.329 0.174 0.250 0.290 0.261
MLLF_B 0.161 0.235 0.037 0.264 0.378 0.132 0.232 0.346 0.169 0.246 0.271 0.274
MFP_B 0.161 0.249 0.037 0.266 0.321 0.121 0.220 0.309 0.179 0.244 0.296 0.275
MLLFP_B 0.169 0.270 0.036 0.274 0.357 0.121 0.236 0.467 0250 0.252 0.281 0.304

Note: Bold values in the table indicate the best values.
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FIGURE2 Estimated coefficient function for different methods under
linear case with sample size (n = 500), time points (m = 52), sparsity

(s = High), and scalar response

As we increase the sparsity, it seems like MICE and MLLF perform worse. This happens mainly because they do a poor job of imputing the curves,

the effects of which get compounded when estimating the parameters and modelling. Again, binned methods are the best with no clear winner.

The results for the other cases with different sample sizes and scalar response yield similar performance to these tables and can be found in the
Table Al for n = 200 and Table A2 for n = 1000.

We can see from Figure 2 how each method does in estimating the g coefficient. We can observe that most of the MF extensions are catching

the right shape and doing a good job. The plot does not contain PACE, MICE, and MLLF, as their estimates were very poor, which is also reflected
in the RMSE for the g coefficients from Table 1.
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Figure 3 shows an example of imputed curves under different methods for one random sample curve. Here, binning helps in not only doing
better imputation, as seen from Table 1, but also giving much smoother results as compared to the MF methods without the binning. The same
effect can be seen with LLF methods as well. This plot is included in the Figure A2.

Non-linear case:

All simulation parameters are the same as before, except the response Y; (i = 1, ... ,n) is computed using the model in Equation (2), where
fXi(t), t) = 5 * sin(X(t)? * t2). For the non-linear case, we also simulate data sets of sample size n=500 with different numbers of observations per
curve, me {32, 52}, and with different sparsities, s € {medium, high}. Each of these settings is simulated 10 times. Since we are primarily interested
in the accuracy of the final output Y(t) and X(t), we report the RMSE, or prediction error, for each of them. Another non-linear model result can
be found in Table A3.

From Tables 3 and 4, we observe that our proposed approaches are outperforming PACE and MICE for imputation irrespective of the number
of points and sparsity. When it comes to prediction, our methods are still better than PACE and MICE but the gap is not as large compared to
the linear case. Overall, we see the same trend as in the linear case, with the binned methods outperforming every other method under various
simulation settings.

The major takeaway from all the simulations is that our methods perform the best under various settings. This is because our methods impute
smoother curves, resulting in better modelling and smoother estimates of the beta coefficients, irrespective of the relation between the response

and the functional predictors.

3.2 | Electronic health records

New statistical tools are vital for data such as PATH, which are very large and have a great deal of underlying structure. We see the performance
of the developed tools for imputation with this longitudinal/functional data. The electronic medical records contain information about smokers
(patients) who irregularly come for a check-up at the hospital. We have the BP readings along with some other measurement values at each
check-up of the patients. From previous studies, we know that the majority of the relapse among smokers occurs within the first 2 years. For
cleaning the data, the exclusion criteria were based on the number of longitudinal measurements (time points). Patients who had a smoking
history (smoked for at least a year) with fewer than two measurements were excluded. After cleaning, we are left with 122 patients, of whom
61 smokers relapsed and 61 smokers did not, where each smoker is under observation for 18 months. Hence, here the sample size (n) is 122
and the number of time points (m) is 18. The data is sparse naturally, as the patients don't come in for check-ups regularly, and sometimes the

1.00
0.75
Method
0050 — ME
2 — MFP
> MF_B
MFP_B
025 — Truth
0.00
FIGURE3 Comparing imputed curves in non-binned and binned
methods of MF under the linear case for one random sample curve 050 0%e 050 ooe o0
with time points (m = 52) and sparsity (s = high) Grid
TABLE3 RMSE of prediction and imputation of the curves n = 500. s = medium n =500, s = high
for different methods under the non-linear case ’ ’
(FOX(),t) = 5 * sin(X(t)? * t2)) when n = 500 for different m=sRe=ly me=sru=20 m=cllb=b @=cz =il
time points and sparsity settings Method Pred Imp Pred Imp Pred Imp Pred Imp
MF 0.236 0.102 0.223 0.078 0.303 0428 0.355 0.381
PACE 0.328 0.238 0.214 1.253 0431 0659 0.386 0.551
MLLF 0.230 0.066 0.209 0.064 0419 0592 0.351 0.482
MICE 0.334 0812 0.214 0680 0.652 0.892 0.644 1.020
MFP 0.235 0.980 0.210 0.075 0.334 0.379 0.351 0.324

MLLFP 0.276 0.044 0560 0.027 0427 0.357 0.342 0.259
MF_B 0.174 0.045 0.161 0.053 0.293 0.257 0.318 0.275
MLLF_B  0.183 0.045 0.163 0.054 0.335 0.364 0.312 0.282
MFP_B 0.176 0.031 0.160 0.026 0.290 0.257 0.311 0.251
MLLFP_B 0.174 0.031 0.163 0.028 0.328 0.385 0.329 0.308

Note: Bold values in the table indicate the best values.
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n = 500, s = medium n =500, s = high TABLE4  Prediction error and RMSE of imputation of the
curves for different methods under the non-linear case
m=32b=17 m=52b=12 m=32b=17 m=52b=12 with binary response (f(X;(t),t) = 5 * sin(X(t)? = t2)) when
Method Pred Imp Pred Imp Pred Imp Pred Imp n = 500 for different time points and sparsity settings
MF 0.388 0.157 0.390 0.296 0478 0.522 0.306 0.402
PACE 0.405 0.238 0.356 1.253 0.589 0.659 0411 0.551
MLLF 0.386 0.144 0.392 0.274 0.486 2790 0.382 1.490
MICE 0.451 0.154 0.388 0.282 0.641 1262 0.712 2139
MFP 0.388 0.213 0.292 0.238 0492 0573 0.300 0.708
MLLFP 0.382 0.268 0.288 0.276 0.290 0413 0402 1401
MF_B 0.296 0.112 0.262 0.232 0.308 0.374 0.288 0.372
MLLF_B 0.294 0.113 0.262 0.232 0.294 0.369 0.292 0.372
MFP_B 0.294 0.091 0.262 0.221 0.302 0.379 0.290 0.366
MLLFP_B 0.294 0.090 0.262 0.221 0.280 0.550 0.292 0.370
Note: Bold values in the table indicate the best values.
Method MF PACE MLLF MICE MFP MLLFP MF.B MLLF.B MFP_.B MLLFP_B TABLES Prediction error of
. different methods for the EHR
Linear model 0.39 0.42 0.39 0.39 0.36 0.37 0.33 0.35 0.32 0.35 data
CAM 0.36 0.39 0.36 0.38 0.35 0.36 0.28 0.32 0.28 0.31
Note: Bold values in the table indicate the best values.
30
Method
~ PAce
0 20 - MLLF
2 = ML%E
> — MLLFP
MF_B
MLLF_B
FP_B
10 ~ MLLFP_B
0
5 10 15 FIGURE4 Imputation results for one curve
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measurements are missing even though there was a visit, due to unknown reasons. We build a model to predict whether a patient will relapse or

not using the BP measurement over an 18 month period.

We can infer from Table 5 that the binned methods again are outperforming the other methods in prediction, irrespective of linear or non-linear

modelling. Also, since both the model results are so close, the true relation looks linear. This is further supported by Figure 4, where we see only

the binned methods have smooth imputed curves, with the black points denoting the observed values for that patient. Although all the estimated

B coefficients seem to follow the same trend in Figure 5, the methods with binning have much smoother results, leading to better interpretability.

Smoothness is inherent to functional data and that is why binned methods are able to perform so well.
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Also, Figure 5 suggests that patients with low BP or sudden changes in their BP have a higher risk of relapse. Also, the curve isn't constant,
suggesting that acceleration/velocity of the BP curve is important. We did check and found out that the average BP was higher in the control
group (no relapse) than for the cases (relapse). We feel there might be confounding variables and further analysis is needed, which is outside the
scope of the project as we are only interested in demonstrating the efficacy of our methods for imputation and training the model, which results

in better analysis and interpretation.

4 | DISCUSSION AND CONCLUSIONS

In this project, we explored different multivariate imputation methods under sparse and irregular functional data settings. We have proposed a
new imputation method, MLLF, which is a mixture of MF and MICE. Also, we modified this method along with MF to deal with functional data
in a systematic fashion by careful initialization using PACE and smoothing out the results using bins. Our proposed approaches overcome a lot
of the challenges faced by the current methods (like PACE and MICE) to give consistent estimates. They incorporate the response and deal with
complex non-linear relations with multiple imputations. Results under multiple simulation settings also illustrate the value of our approach over
existing methods for fitting scalar-on-function regression models when the functional predictors are irregularly and sparsely sampled irrespective
of the sparsity level, number of points in the curve, and sample size. All the binned methods work equally well with slight variations in some
cases; though there is no clear winner, MF with binning (MF_B) was the most consistent performer.

Our approach is sensitive to the subdivision of the time points into the bins. Different binning strategies were not explored in depth but are
one of the directions for further investigation. Another interesting avenue is defining a relationship between the number of time points (m) and
the number of bins (k), to ease the search for the optimum bin number. Also, even though it looks like the extension of MF performs better than
LLF imputation (MLLF), further analysis is required to differentiate between the methods. Deep learning has become a major research area in
multiple fields and the application of neural networks to the imputation setting might be very interesting, though our initial efforts did not bear
strong results.

Finally, at a high level, there are still many remaining challenges with the imputation of functional data. When evaluating the performance
of future methods, we suggest considering at least three critical points: (1) Do the imputations improve subsequent modelling? (2) Can the
imputations incorporate the assumed underlying smoothness of the curves or at least domain information? and (3) Can the imputations handle
measurement noise in the observed points? A multiple imputation approach seems to be critical for the first point, while the latter two are still
quite open. Our binning approach, while simple, helped a great deal with the second point. However, the third point was basically untouched
in this work. When using methods such as PACE, incorporating observation error is straightforward, but it is unclear how to incorporate it into
more complicated imputation procedures.
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TABLEA1 RMSE of prediction,  coefficients, and imputation of the curves for different methods under the linear case

when n = 200 under different time points and sparsity settings

n = 200, s = medium

n = 200, s = high

m=232,b=17 m=>52,b=27 m=32,b=8 m=>52,b=12

Method Pred B Imp Pred § Imp Pred B Imp Pred B Imp

MF 0.149 0.1656 0.141 0476 0.459 0.117 1.290 1.272 0.573 0.349 0.476 0.529
PACE 0.221 0.332 0.393 0.700 0.667 1.863 0.433 0.461 0.434 0.449 0.456 0.362
MLLF 0.140 0.144 0.085 0.515 0.491 0.025 30.871 20.224 0.663 26.841 20.301 0.583
MICE 0.148 0.191 0.204 0462 0.452 0.172 0.400 0.704 0.939 0.440 0.649 0.961
MFP 0.140 0.158 0.165 0.468 0.455 0.225 0.340 0.483 0.509 0.220 0.354 0.451
MLLFP 0.170 0.188 0.186 0.493 0472 0.196 0434 0461 0.427 0.454  0.459 0.354
MF_B 0.124 0.135 0.89 0.264 0.258 0.078 0.285 0.340 0.395 0.191 0.255 0.312
MLLF_B 0.124 0.132 0.091 0.266 0.260 0.077 0.286 0.313 0434 0.178 0.283  0.301
MFP_B 0.126 0.133 0.071 0.266 0.269 0.037 0.411 0.434 0450 0.211 0.262  0.293
MLLFP_B 0.124 0.135 0.088 0.268 0.265 0.030 0423 0.662 0.652 0.197 0.273 0.345

Note: Bold values in the table indicate the best values.

TABLEA2 RMSE of prediction, g coefficients, and imputation of the curves for different methods under the linear case
when n = 1000 under different time points and sparsity settings

n = 1000, s = medium

n = 1000, s = high

m=232,b=17 m=>52,b=27 m=32,b=7 m=>52,b=27

Method Pred ¢ Imp Pred p Imp Pred B Imp Pred B Imp

MF 0.155 0.163 0.085 0.259 0.265 0.061 3.137 3.070 0.404 0.395 0.455 0.328
PACE 0.176 0.242 0.192 0.125 0.583 0.868 0.412 0.441 0.389 0.326 0.354  0.281
MLLF 0.140 0.144 0.061 0.265 0.272 0.027 51.947 41243 0.545 61.500 51.082 0.476
MICE 0.152 0.168 0.118 0.254 0.262 0.092 0.365 0.660 0.873 0.911 0.838 0.856
MFP 0.151 0.164 0.085 0.251 0.278 0.110 0.198 0.296 0.353 0.288 0.338 0.274
MLLFP 0.167 0.198 0.134 0.0.255 0.284 0.099 0.412 0.441 0.339 0.324 0.357 0.244
MF_B 0.143 0.168 0.071 0.116 0.220 0.046 0.149 0.267 0.357 0.104 0.194 0.263
MLLF_B 0.147 0.153 0.072 0.113 0.208 0.046 0.123 0.293 0.373 0.111 0.265 0.295
MFP_B 0.144 0.165 0.048 0.116 0.221 0.026 0.145 0.273 0.348 0.128 0.219  0.366
MLLFP_B 0.143 0.160 0.051 0.113 0.211 0.031 0.127 0.802 0.644 0.138 0.354  0.475

Note: Bold values in the table indicate the best values.

TABLEA3 RMSE of prediction and imputation of the curves for different methods under the non-linear case
(F(X;(t), t) = cos(X(t)® = t) + 5 = t) when n = 500 under different time points and sparsity settings

n = 500, s = medium n =500, s = high

m=32,b=17 m=52,b=12 m=32,b=7 m=52,b=27
Method Pred Imp Pred Imp Pred Imp Pred Imp
MF 0.180 0.189 0.292 0.112 0.682 0.541 0.832 0.468
PACE 0.147 1.912 0.253 0.549 0.598 0.393 0.557 0.292
MLLF 0.138 0.104 0.239 0.093 25.376 2.586 18.231 1.581
MICE 0.199 0.275 0.448 0.267 0.712 0.837 0.802 1.007
MFP 0.178 0.177 0.237 0.102 0.630 0.434 0.842 0.431
MLLFP 0.320 0.060 0.212 0.091 0.483 0.320 0.570 0.160
MF_B 0.155 0.054 0.189 0.032 0.458 0.178 0.502 0.155
MLLF_B 0.156 0.053 0.184 0.032 0.459 0.179 0.524 0.159
MFP_B 0.154 0.055 0.191 0.030 0.455 0.179 0.502 0.156
MLLFP_B 0.155 0.055 0.183 0.031 0.468 0.206 0.550 0.207

Note: Bold values in the table indicate the best values.
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