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This work considers the problem of fitting functional models with sparsely and irregularly

sampled functional data. It overcomes the limitations of the state-of-the-art methods, which

face major challenges in the fitting of more complex non-linear models. Currently, many of these

models cannot be consistently estimated unless the number of observed points per curve grows

sufficiently quickly with the sample size, whereas we show numerically that a modified approach

with more modern multiple imputation methods can produce better estimates in general. We

also propose a new imputation approach that combines the ideas of MissForest with Local

Linear Forest and compare their performance with PACE and several other multivariate multiple

imputation methods. This work is motivated by a longitudinal study on smoking cessation,

in which the electronic health records (EHR) from Penn State PaTH to Health allow for the

collection of a great deal of data, with highly variable sampling. To illustrate our approach, we

explore the relation between relapse and diastolic blood pressure. We also consider a variety of

simulation schemes with varying levels of sparsity to validate our methods.
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1 INTRODUCTION

Functional data analysis (FDA) is a branch of statistics that models the relationship between functions measured over a particular domain,

such as time or space (Ferraty & Vieu, 2006; Ferraty & Romain, 2011; Horváth & Kokoszka, 2012; Kokoszka & Reimherr, 2018; Ramsay &

Silverman, 1997). There is a rich literature on modelling functions that are densely observed but comparatively less literature on modelling

functions that are sparsely observed, which introduce new challenges. Currently, there are very few imputation methods designed for functional

data (He, Yucel, & Raghunathan, 2011; James, Hastie, & Sugar, 2000; Rice & Wu, 2001), with a mean imputation procedure commonly known as

PACE (Yao, Müller, & Wang, 2005) being the most common.

Single imputation procedures (like mean imputation or PACE) are useful in general but can't account for the uncertainty induced from the

imputation procedure; once the imputation is done, analysis then typically proceeds as if the imputed values were the truth. This leads to overly

optimistic measures of uncertainty and the potential for substantial bias (Petrovich, Reimherr, & Daymont, 2018). To deal with this and other

problems associated with single imputation methods, we consider multiple imputation methods. Multiple imputation involves filling in the missing

values multiple times, which creates multiple ‘‘complete’’ data sets. The variability among these complete data sets reflects the uncertainty

introduced in the imputation method. Multiple imputation procedures are very versatile and flexible, and they can be used in a wide range of

settings. As multiple imputation involves creating multiple predictions for each missing value, the corresponding statistical analysis takes into

account the uncertainty in the imputations and hence yields a more reliable standard error. In simple terms, if there is less information in the

observed data regarding the missing values, the imputations will be more variable, leading to higher standard errors in the analysis. In contrast,

if the observed data are highly predictive of the missing values, the imputations will be more consistent across the multiple imputed data sets,

resulting in smaller and more reliable standard errors (Greenland & Finkle, 1995).

Longitudinal studies are amenable to FDA and often contain sparse and irregular samples. Such data can be considered as having missing

values, making imputation a natural consideration. Many FDA methods analyze fully or densely observed data sets without any appreciable

missing values. However, this is often not the case when dealing with large medical and biological data. Hence, in such cases, we can either apply

sparse FDA methods (Kokoszka & Reimherr, 2018; Yao et al. 2005) or use imputation to apply more traditional FDA techniques. Several multiple
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imputation techniques have been proposed to impute incomplete multivariate data, including multivariate imputation by chained equations

(MICE) (Van Buuren, 2007) and MissForest (MF) (Stekhoven & Búhlmann, 2011). Though these methods have not been directly applied to

functional data, they have worked well in general. MICE builds a separate model for each variable (that contains missing values), conditioned

on the others, which can be specified based on the data type (continuous, binary, etc.). MF is similar to MICE but uses random forests (FR) for

building the conditional models. In both cases, variables are sequentially imputed until convergence is reached. We use the MICE (van Buuren

& Groothuis-Oudshoorn, 2011) and missForest (Stekhoven, 2013) packages in R to implement these methods. Also, local linear forest (LLF)

(Friedberg, Tibshirani, Athey, & Wager, 2018), which is a modification of RF, is a powerful regression method. Functional data are naturally

smooth, and LLF is equipped to model signals. Taking advantage of this interesting property of LLF, we propose another imputation method

similar to that of MF and MICE using LLF.

Several other imputation methods include K-nearest-neighbor (KNN) (Acuna & Rodriguez, 2004), nonparametric imputation by data depth

(Mozharovskyi, Josse, & Husson, 2017), substantive model compatible fully conditional specification (Bartlett, Seaman, White, Carpenter, & For

the Alzheimer's Disease Neuroimaging Initiative*, 2015), and many more. There have also been studies comparing imputation methods (Ding &

Ross, 2012; Liao et al. 2014; Ning & Cheng, 2012; Waljee et al. 2013) under different scenarios and data types, but for functional data, PACE

has become the ‘‘gold standard.’’ Unfortunately, current methods for imputation in FDA are not designed to handle complex models and do not

allow for consistent estimation unless one assumes that the number of observed points per curve grows sufficiently quickly with the sample size.

Though this is mathematically convenient, it highlights a serious concern when handling sparse functional data. Most of the methods impute

while ignoring the response and subsequent modelling that is to be done with the reconstructed curves, a notable exception being Bayesian

methods (Kowal, Matteson, & Ruppert, 2019; Thompson & Rosen, 2008). This leads to biased estimates with unreliable standard errors and

misleading p values. For these reasons, PACE, which is executed using the fdapace package (Chen et al. 2019), uses an alternative approach to

produce consistent estimates for functional linear models that do not generalize to non-linear models.

Missing data as described by Rubin (2004) can be divided into three categories: (1) Missing completely at random (MCAR), in which the missing

values are independent of the observed data; (2) missing at random (MAR), in which the missing value patterns depend only on the observed

data and are conditionally independent of the unobserved data; and (3) missing not at random (MNAR), also known as non-ignorable missing

data or structural missing data, in which the missing data patterns depend on the observed and unobserved data. Usually, it is assumed that one

is either working with MCAR or MAR to make the problem tractable. We make a similar assumption in our procedure, without formally defining

the missing data mechanism. Many of the recent works in functional data imputation (Crambes & Henchiri, 2018; Ferraty, Sued, & Vieu, 2012;

He et al. 2011; Preda, Saporta, & Mbarek, 2010) have built upon these ideas and adopted a missing data perspective to tackle various forms of

sparsity in functional models. But all these approaches consider either a linear relationship or sparsity in the response, whereas we work with a

completely observed response and sparsely observed covariates, where we can have a non-linear relation between them.

In this work, we explore the performance of several modern imputation procedures with functional data. Also, we propose another imputation

method using LLF. We demonstrate how a simple modification using binning alongside careful initialization can dramatically improve the

imputation and subsequent estimation for both linear and non-linear models. From a missing data perspective, the goal is to do imputation of the

missing data in a way that retains the performance of subsequent statistical modelling.

1.1 PaTH to health

Electronic health record (EHR) or clinical data often require longitudinal statistical methods, which account for the correlation between repeated

measurements on the same subject. If one also assumes that these are taken from a smooth curve or data generating process, then we can exploit

tools from FDA, which can produce gains in terms of flexibility and statistical power (Carnahan-Craig et al. 2018; Goldsmith & Schwartz, 2017;

He et al. 2011). Since hospital visits can occur both infrequently and irregularly, we can't directly apply many FDA techniques to them. They pose

a challenge to the current methods as well as for imputation. To address these challenges and illustrate the effectiveness of our approach over

the current methods, we wish to apply them to an EHR data set where we predict whether a smoker will relapse or not based on their Blood

Pressure (BP) recordings over a span of 18 months.

The Penn State PaTH to Health provides patient data from multiple sources to further scientific discoveries. The data set describes patient-level

data variables in a standardized manner (i.e., with the same variable name, attributes, and other metadata) along with information on demographics,

encounters, diagnoses, and procedures. More information can be found on their website (https://ctsi.psu.edu/research-support/path/).

While there is a wealth of research related to smoking and blood pressure (BP) (Hansson, Hedner, & Jern, 1996; Primatesta, Falaschetti, Gupta,

Marmot, & Poulter, 2001; Wang et al. 2018), our goal here is not to make deep scientific statements, but rather to illustrate the utility of our

methods, which we hope will prove useful to practitioners. The highest risk of relapse for smokers is during the end of their first and second year

after quitting (García-Rodríguez et al. 2013; Herd, Borland, & Hyland, 2009). We therefore focus on modelling the relapse of the patients based

on monitoring their BP within the first 2 years, which may be useful to the practitioners designing interventions for patients at risk of relapse.

In general, EHR data sets vary significantly with the timing and regularity of the appointments, and clinical measurements are affected by

errors of varying types and degrees (Daymont et al. 2017). Similar challenges apply to measurements in the PaTH data set where we have

various kinds of clinical measurements and information recorded. The ability to characterize trajectories of sparse irregular data has potential

applicability to many clinical questions. Though the term sparsity is somewhat subjective in the context of functional/longitudinal data, many of
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FIGURE 1 Histogram of the number of
observations for BP per patient, ranging from 1
to 18

the patients in the Path data set have just two measurements, while the greatest number of measurements for any patient is 17 (after cleaning

and implementing the exclusion criteria). We can see from Figure 1 the modal number of measurements is 2, while relatively few patients had

more than seven clinical visits and almost none had more than 11. Also, from the cumulative observation (Figure A1), we observe that 94% of

the patients had 10 or fewer measurements, 72% had at most five measurements, and 28% had no more than two measurements. On average,

we have around four measurements per patient. Sparsity arises due to many reasons in an EHR setting. Some patients never come back, some

patients are not observed with any uniformity or regularity, etc. Having identified the BP trajectories as both sparse and irregular, we move to

introduce the imputation methods that account for these conditions in a functional framework before revisiting this data in Section 3.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we briefly go through PACE and multivariate imputation methods (MICE and MF)

before introducing our proposed method using LLF, and modifications to the multivariate imputation methods using bins and careful initialization,

to better deal with functional data. We present multiple simulations for the linear and non-linear cases under different values of sparsity in

Section 3. This section also includes the EHR data, where we fit a scalar-on-function regression model to determine if a patient (smoker) will

relapse or not at the end of 18 months using BP as the functional predictor. These examples help us to illustrate the limitations of previous

approaches and demonstrate the usefulness of our methodology, which overcomes many of the issues discussed earlier. In Section 4, we present

our concluding remarks and future research directions, which pertain to better understanding of the bins and deeper statistical theory.

2 METHODS

In this section, we give details of the current imputation methods for the scalar-on-function regression model. In Section 2.1, we define the

necessary notation used in the paper. In Section 2.2, we briefly discuss scalar-on-function regression models. Section 2.3 gives an overview of

PACE and the multivariate imputation method MICE in detail along with their shortcomings. In Section 2.4, we discuss LLF and the multivariate

imputation method MF. We present our new imputation procedure that extends the ideas of MF to LLF, as well as discuss how to use careful

binning and initialization to improve performance.

2.1 Setup and notation

We assume the data are collected from trajectories that are independent realizations of a smooth random function, with unknown mean function

E(X(t))=𝜇(t) and covariance function CX(t, s):= cov(X(s), X(t)). We define the underlying functional covariates as {Xi(t) ∶ t ∈ [0,1];1 ≤ i ≤ n}, where

t denotes the argument of the functions, usually time, and i denotes the subject or unit. We assume that these curves are only observed at times

tij (j = 1, … ,mi) with some error:

xij = Xi

(
tij

)
+ 𝛿ij.

Let xi = (xi1, … , xim)⊤ denote the vector of observed values of the function Xi. Let Yi, be the outcome, which is a function of Xi and some error.

Examples of such relations can be found in the next subsection.

Generally, when integration is written without limits, it is implied to be over the entire domain, usually standardized to [0, 1] for simplicity. The

main focus of this work is to develop tools for consistently estimating the parameters in functional regression models.
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2.2 Functional models

The scalar-on-function regression model in the linear case is defined as

Yi = 𝛼 + ∫ 𝛽(t)Xi(t)dt + 𝜀i. (1)

A common way of estimating the model components is by basis or functional principal component (FPC) expansions, where we simplify the

problem of estimating the parameters by projecting the functions to a finite dimension and then using multiple regression and least squares

(Kokoszka & Reimherr, 2018; Ramsay & Silverman, 1997).

Non-linear modelling becomes very challenging with functional data due to the curse of dimensionality. One popular way of simplifying the

problem is by using the generalized additive model, also known as the continuously additive model (Fan, James, & Radchenko, 2015; Ma &

Zhu, 2016; McLean, Hooker, Staicu, Scheipl, & Ruppert, 2014; Müller, Wu, & Yao, 2013; Wang & Ruppert, 2015):

Yi = ∫ f(Xi(t), t)dt + 𝜖i, (2)

where the bivariate function (x, t)→ f(x, t) is smooth but unknown. It is commonly estimated using either basis expansions (Greven, Crainiceanu,

Caffo, & Reich, 2010; Yao et al. 2005) (often with a tensor product basis) or using Reproducing Kernel Hilbert Spaces (Reimherr, Sriperumbudur,

& Taoufik, 2017; Wang & Ruppert, 2015). McLean et al. (2014) developed Functional Generalized Additive Models that enabled non-scalar

response mapping.

Most methods for fitting the models discussed above require densely sampled functional data. For irregular and sparsely sampled data that

are observed with error, estimating the modelling parameters becomes much more challenging. Directly smoothing the xij to plug into a dense

estimation framework seems like a straightforward idea but can result in substantial bias.

2.3 Imputation methods

PACE (Yao et al. 2005) uses functional principal components (FPC) analysis, in which the FPC scores are imputed using conditional expectations.

In addition to the requirements discussed previously, PACE also relies heavily on the data being Gaussian. The Karhunen-Loéve or principal

component expansion of Xi(t) is given by

Xi(t) = 𝜇X(t) +
∞∑

j=1

𝜉ijvj(t), (3)

where vj(t) are the eigenfunctions of CX with eigenvalues 𝜆1 ≥ 𝜆2 ≥ … ≥0. The scores are computed as

𝜉ij =
⟨

Xi − 𝜇X , vj

⟩
. (4)

PACE proceeds by computing the conditional expectation of the scores given the observed data. This conditioning method is straightforward

and tends to work much better than direct smoothing of xij. It provides the best linear unbiased predictors (BLUPs) under Gaussian assumptions

and works in the presence of both measurement errors and sparsity. We can plug the BLUPs values into a dense estimation framework to model

the response.

PACE still suffers from a few major problems. One issue is that the imputation procedure of PACE does not consider the response Yi nor

does it have any consideration for subsequent models that will be fit. This results in a bias while estimating model parameters (Petrovich et al.

2018). In addition, PACE is just a single imputation method and hence the uncertainty in the imputation is not properly propagated when forming

confidence intervals, prediction intervals, or p values. For this reason, the PACE software (Chen et al. 2019) uses an alternative approach for

fitting linear models which does not extend to non-linear models.

After understanding PACE, we now look into some of the standard methods used for imputation in the multivariate case. All of these methods

have proven to work well in the multivariate setting but have never been tested in the functional setting, where the sample sparsity can be

very high.

MICE (Van Buuren, 2007), also known as ‘‘fully conditional specification’’ or ‘‘sequential regression multiple imputation,’’ has emerged in

the statistical literature as one of the principal methods for addressing missing data. MICE performs multiple imputations rather than single

imputation, and hence it can account for the statistical uncertainty. In addition, the chained equations approach is very flexible and can handle

variables of varying types (e.g., continuous or categorical) as well as complexities such as bounds or survey skip patterns. At a high level, the

MICE procedure is a series of models whereby each variable with missing data is modelled conditional upon the other variables in the data. The

MICE procedure is as follows: (1) We start by initialization, wherein we fill in all the missing values with mean imputation. (2) Next, we select the

first variable with missing entries. A model is fit with this variable as the outcome and the other variables as predictors. (3) The missing values of

the current variable are then replaced with predicted (imputed) values from the model in step 2. (4) Step 2 and step 3 are repeated while rotating

through the variables with missing values sequentially. The cycling through each of the variables constitutes one iteration or cycle. (5) At the end
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of one cycle, all of the missing values have been replaced with predictions from the model that reflect the relationships observed in the data. The

cycles are repeated a few times and after each cycle the imputed values are updated.

The number of cycles to be performed is pre-specified and after the last cycle, the final imputations are retained, resulting in one imputed

data set. Generally, 10–15 cycles are performed. The idea is that, by the end of the cycles, the distribution of the parameters governing the

imputations (e.g., the coefficients in the regression models) should have converged, in the sense of becoming stable. Different MICE software

packages vary somewhat in their exact implementation of this algorithm (e.g., in the order in which the variables are imputed), but the general

strategy is the same. Here, we have used the MICE (van Buuren & Groothuis-Oudshoorn, 2011) package in R.

A key advantage of MICE is its flexibility in using different models. Generally, the modelling techniques included in MICE are predictive

mean matching, linear regression, generalized linear models, Bayesian methods, RF, linear discriminant analysis, and many more. Its primary

disadvantage is that it does not have the same theoretical justification as other imputation methods. In particular, fitting a series of conditional

distributions, as is done using the series of regression models, may not be consistent with proper joint distribution, though some research suggests

that this may not be a large issue in applied settings (Schafer & Graham, 2002).

2.4 Our approach

2.4.1 MF and LLF

MF (Stekhoven & Búhlmann, 2011) is a multiple imputation method, which proceeds by training an RF on the observed parts of the data. RF

(Breiman, 2001) is a non-parametric method that is able to deal with mixed data types as well as allow for interactive and non-linear effects.

MF addresses the missing data problem using an iterative imputation scheme by training a RF on observed values in the first step, followed by

predicting the missing values in the next step and then proceeding iteratively. RF works well in high dimensional cases with good accuracy and

robustness. Though the idea of MF is similar to MICE, they differ in the ordering scheme of the columns to be imputed, and MICE requires certain

assumptions about the distribution of the data or subsets of the variables which may or may not be true.

For an arbitrary variable p in Xn×m (p = 1,2, … m) including missing values at entries i(p)mis⊆ {1, … , n}, we can separate the data set into four

parts: The observed values for variable p, denoted by y(p)
obs

; the missing values for variable p, denoted by y(p)
mis

; the variables other than p with

observations at i(p)obs⊆ {1, … , n} / i(p)
mis

, denoted by x(p)
obs

; and the variables other than p with observations at i(p)
mis

, denoted by x(p)
mis

.

The approach is as follows: We initialize the missing values in X using mean imputation or another imputation method. We then sort the

variables p in X (p = 1, … ,m) in ascending order of the missing values. For each variable p, the missing values are imputed by first fitting an RF

with response y(p)
obs

and predictors x(p)
obs

, then predicting the missing values y(p)
mis

by applying the trained RF to x(p)
mis

. We sequentially do this for all

variables with missing values; that is one cycle. The imputation procedure is repeated for multiple cycles until a stopping criterion is met.

The advantage of MF is that it can deal with any kind of data. Also, MF is straightforward, as it does not need any tuning of parameters nor

does it require any assumption about distributional aspects of the data. The full potential of MF is deployed when the data include complex

interactions or non-linear relations between variables of different types, which is not possible with PACE. Furthermore, MF can be applied to

high-dimensional data sets with a low sample size and still provide excellent results. MF often outperforms other methods in terms of imputation

(Stekhoven & Búhlmann, 2011), but the method has no smoothing mechanism and hence the imputed values of the curves are not smooth. To

deal with this and to increase model accuracy, we integrate binning into the method as explained in the next subsection.

LLF (Friedberg et al. 2018) uses an RF to generate weights that are used as a kernel for local linear regression, i.e., LLF takes the RF weights

𝛼i (xi) and uses them to solve

min
𝜇,𝛽

n∑
i=1

(
Yi − 𝜇 − (x − xi)′𝛽

)2
𝛼i (xi) . (5)

The RF weights 𝛼i (xi) are found with the help of the leaf Lb(xi) in each tree Tb in a forest of B trees as follows:

𝛼i (xi) =
1
B

B∑
b=1

1 {Xi ∈ Lb (xi)}|Lb (xi)| , (6)

where
∑n

i=1 𝛼i (xi) = 1 and for each i,0 ≤ 𝛼i (xi) ≤ 1. Athey, Tibshirani, and Wager (2016) used this perspective to harness RF for solving weighted

estimating equations and gave asymptotic guarantees on the resulting predictions. With the help of the above weights, LLF solves the locally

weighted least squares problem.

LLF is a modification of local linear regression with the help of RF, equipped to model signals and fix bias issues. We use this to our advantage

and propose a modification to the MF method, where we replace the RF with LLF. We refer to this as miss local linear forest (MLLF). This new

approach using LLF for imputation follows the same steps as MF but instead of using RF as the modelling technique to impute the missing values,

we will now use LLF. Since LLF does not inherit the multiple imputation like MF, we generate multiple imputed sets and take an average like in

the case of MICE. MLLF has similar benefits to MF. We update the MF code (Stekhoven, 2013) in R using the grf package (Tibshirani, Athey, &

Wager, 2020) to implement MLLF.
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2.4.2 Adapting methods to functional data

One of the key features of functional data is the smoothness of the underlying curves. MF and MLLF produce well-imputed curves but are

not smooth. We overcome this problem with the help of binning and careful initialization. We improve the initialization by using PACE instead

of simple mean imputation. These boosted methods using PACE are denoted as MFP for MF and MLLFP for LLF. While this leads to higher

performance in general with slightly smoother imputed curves, it does not directly smooth the imputed curves or resulting model parameters.

Also, this initialization comes with a computational burden as PACE itself is computationally heavy. Another restriction which all of these

imputation methods have, except PACE, is that they need to pass through the observed points, which need not be optimal, especially in the

presence of observation noise.

We overcome the non-smoothness issue and computational problem by the use of bins. Binning (also known as discrete binning or bucketing)

is a data pre-processing method that is used to reduce the effects of minor observation errors and smooth the data. The original data values

which fall in a given small interval, a bin, are replaced by a value representative for that interval, usually the mean value. Binning aggregates the

values into a fixed range. We divide the desired grid of the time points into k bins and impute over the k points before interpolating back to m

time points using b-splines. Here, k is a tuning parameter that acts much like a bandwidth in kernel smoothing. This not only leads to smoother

imputation results but also improves the subsequent modelling. As binning helps in reducing the number of time points (m< k), the overall process

becomes much more computation-friendly. The way bins are defined is as follows:

• The first bin is the first time point of the data.

• The last bin is the last time point of the data.

• The middle (k-2) bins are divided into equal parts and are represented by the mean of all values in that bin.

We denote the methods with the binning as MF_B for MF and MLLF_B for LLF. If we add PACE initialization to it then we denote the methods

as MFP_B for MF and MLLFP_B for LLF. We can see in the next section that this not only leads to much smoother results but also improves

imputations and modelling performance.

3 SIMULATION AND RESULTS

Throughout this section, we refer to MissForest as MF, MF with PACE initialization as MFP, binning without PACE as MF_B, and binning with

PACE as MFP_B. MLLF uses an analogous naming scheme. In addition to comparing all the methods in simulations, we will compare the results

for the EHR data as well. In the simulation, we compare them in both linear and non-linear scalar-on-function regression settings with a scalar and

binary response, investigating the imputation accuracy, model fit (prediction accuracy), and 𝛽 estimates (only for the linear case). We compare

across multiple simulated data sets with varying time points observed m, sample sizes n, and sparsity s.

3.1 Simulation

Linear case:

For the linear case, we simulate n iid random curves {X1(t), … ,Xn(t)} from a Gaussian process with mean 0 and covariance

CX(t, s) = 𝜎2

Γ(𝜈)2𝜈−1

(√
2𝜈|t − s|

𝜌

)𝜈

K𝜈

(√
2𝜈|t − s|

𝜌

)
,

which is the Matérn covariance function, and K𝜈 is the modified Bessel function of the second kind. We set 𝜌 = 0.5, 𝜈 = 5∕2 and 𝜎2 = 1. These

curves are evaluated at m equally-spaced time points from [0, 1]. We assume that each observed point contains a normal measurement error

with mean zero and variance 𝜎2
𝛿
= 0.3. We set 𝛽(t) = w × sin(2𝜋t), where w is a weight coefficient used to adjust the signal. The response, Yi

(i = 1, … , n), is computed using the model in Equation (1), where 𝛼 = 0 and 𝜎2
𝜖 = 1. In the binary response case, we define Yi (i = 1, … , n) using

the Bernoulli and logit link function in Equation (1). Finally, for each curve, we assume a percentage (s) of the m time points is unobserved. After

the scores are imputed, we fit a scalar-on-function regression model using these imputed curves.

For the linear case, we simulate the data sets of different sample sizes, n∈ {200, 500, 1000} (results for n = 200 and n = 1000 are included in the

appendix); different numbers of observations per curve, m∈ {32, 52}; and different sparsity levels, s ∈ {Medium, High}. For sparsity levels, medium

means 50% of the points are missing for each curve and high means more than 85% of the points are missing for each curve. Also, the values of

m are taken such that they help with the process of binning. Each of these settings is simulated 10 times. Since we are primarily interested in the

accuracy of the final estimates 𝛽(t), Ŷ(t), and X̂(t), we report the root mean square error (RMSE), or prediction error, for each of them.

Tables 1 and 2 indicate that, in general, irrespective of the number of points, all the binned methods perform better compared to other methods

for prediction error or RMSE of prediction, 𝛽 coefficients, and imputation when the sparsity is medium and the sample size is 500. Also, we can

see that the RMSE of imputation for PACE is the same for both the tables. This is because we are using the same sample curves to generate

scalar and binary response. There is no clear winner between MF and MLLF within the binned methods with or without PACE initialization.

Again, for high sparsity, we notice similar behavior as before: Irrespective of the number of points, all the binned methods perform better.
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TABLE 1 RMSE of prediction, 𝛽 coefficients, and imputation of the curves for different methods under linear case
when n = 500 for different time points and sparsity settings

n = 500, s = medium n = 500, s = high

m = 32, b = 17 m = 52, b = 27 m = 32, b = 8 m = 52, b = 12

Method Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp

MF 0.136 0.155 0.108 0.227 0.241 0.077 0.267 0.422 0.470 0.177 0.307 0.390

PACE 0.170 0.208 0.199 0.484 0.595 1.910 0.376 0.432 0.369 0.350 0.388 0.308

MLLF 0.142 0.149 0.070 0.234 0.242 0.023 58.010 43.721 0.601 69.24 55.43 0.508

MICE 3.611 3.612 0.090 0.237 0.253 0.089 9.840 5.950 0.910 3.162 2.390 1.073

MFP 0.122 0.144 0.105 0.228 0.250 0.130 0.141 0.289 0.398 0.232 0.310 0.328

MLLFP 0.132 0.153 0.144 0.232 0.246 0.100 0.376 0.432 0.364 0.384 0.386 0.302

MF_B 0.122 0.136 0.079 0.173 0.180 0.052 0.117 0.264 0.334 0.152 0.217 0.261

MLLF_B 0.126 0.137 0.082 0.174 0.177 0.053 0.097 0.291 0.338 0.132 0.203 0.267

MFP_B 0.122 0.138 0.053 0.176 0.182 0.023 0.101 0.263 0.339 0.146 0.219 0.275

MLLFP_B 0.128 0.143 0.059 0.179 0.178 0.023 0.091 0.817 0.614 0.129 0.214 0.307

Note: Bold values in the table indicate the best values.

TABLE 2 Prediction error, RMSE of 𝛽 coefficients, and RMSE of imputation of the curves for different methods
under linear case with binary response when n = 500 for different time points and sparsity settings

n = 500, s = medium n = 500, s = high

m = 32, b = 17 m = 52, b = 7 m = 32, b = 17 m = 52, b = 12

Method Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp

MF 0.268 0.409 0.043 0.280 0.391 0.155 0.317 0.383 0.187 0.251 0.347 0.307

PACE 0.270 0.508 0.199 0.431 0.426 1.910 0.348 0.463 0.369 0.466 0.687 0.308

MLLF 0.364 0.453 0.040 0.532 1.376 0.212 0.282 0.490 0.309 0.374 2.768 1.715

MICE 0.459 1.282 0.284 0.589 0.385 0.934 0.543 4.828 1.115 0.672 1.814 1.050

MFP 0.260 0.385 0.198 0.282 0.340 0.198 0.258 0.356 0.185 0.260 0.360 0.282

MLLFP 0.274 0.417 0.038 0.364 0.379 0.213 0.360 0.462 0.307 0.366 0.372 0.651

MF_B 0.160 0.262 0.036 0.276 0.322 0.132 0.214 0.329 0.174 0.250 0.290 0.261

MLLF_B 0.161 0.235 0.037 0.264 0.378 0.132 0.232 0.346 0.169 0.246 0.271 0.274

MFP_B 0.161 0.249 0.037 0.266 0.321 0.121 0.220 0.309 0.179 0.244 0.296 0.275

MLLFP_B 0.169 0.270 0.036 0.274 0.357 0.121 0.236 0.467 0.250 0.252 0.281 0.304

Note: Bold values in the table indicate the best values.

FIGURE 2 Estimated coefficient function for different methods under
linear case with sample size (n = 500), time points (m = 52), sparsity
(s = High), and scalar response

As we increase the sparsity, it seems like MICE and MLLF perform worse. This happens mainly because they do a poor job of imputing the curves,

the effects of which get compounded when estimating the parameters and modelling. Again, binned methods are the best with no clear winner.

The results for the other cases with different sample sizes and scalar response yield similar performance to these tables and can be found in the

Table A1 for n = 200 and Table A2 for n = 1000.

We can see from Figure 2 how each method does in estimating the 𝛽 coefficient. We can observe that most of the MF extensions are catching

the right shape and doing a good job. The plot does not contain PACE, MICE, and MLLF, as their estimates were very poor, which is also reflected

in the RMSE for the 𝛽 coefficients from Table 1.
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Figure 3 shows an example of imputed curves under different methods for one random sample curve. Here, binning helps in not only doing

better imputation, as seen from Table 1, but also giving much smoother results as compared to the MF methods without the binning. The same

effect can be seen with LLF methods as well. This plot is included in the Figure A2.

Non-linear case:

All simulation parameters are the same as before, except the response Yi (i = 1, … , n) is computed using the model in Equation (2), where

f(Xi(t), t) = 5 ∗ sin(X(t)2 ∗ t2). For the non-linear case, we also simulate data sets of sample size n=500 with different numbers of observations per

curve, m∈ {32, 52}, and with different sparsities, s ∈ {medium, high}. Each of these settings is simulated 10 times. Since we are primarily interested

in the accuracy of the final output Ŷ(t) and X̂(t), we report the RMSE, or prediction error, for each of them. Another non-linear model result can

be found in Table A3.

From Tables 3 and 4, we observe that our proposed approaches are outperforming PACE and MICE for imputation irrespective of the number

of points and sparsity. When it comes to prediction, our methods are still better than PACE and MICE but the gap is not as large compared to

the linear case. Overall, we see the same trend as in the linear case, with the binned methods outperforming every other method under various

simulation settings.

The major takeaway from all the simulations is that our methods perform the best under various settings. This is because our methods impute

smoother curves, resulting in better modelling and smoother estimates of the beta coefficients, irrespective of the relation between the response

and the functional predictors.

3.2 Electronic health records

New statistical tools are vital for data such as PATH, which are very large and have a great deal of underlying structure. We see the performance

of the developed tools for imputation with this longitudinal/functional data. The electronic medical records contain information about smokers

(patients) who irregularly come for a check-up at the hospital. We have the BP readings along with some other measurement values at each

check-up of the patients. From previous studies, we know that the majority of the relapse among smokers occurs within the first 2 years. For

cleaning the data, the exclusion criteria were based on the number of longitudinal measurements (time points). Patients who had a smoking

history (smoked for at least a year) with fewer than two measurements were excluded. After cleaning, we are left with 122 patients, of whom

61 smokers relapsed and 61 smokers did not, where each smoker is under observation for 18 months. Hence, here the sample size (n) is 122

and the number of time points (m) is 18. The data is sparse naturally, as the patients don't come in for check-ups regularly, and sometimes the

FIGURE 3 Comparing imputed curves in non-binned and binned
methods of MF under the linear case for one random sample curve
with time points (m = 52) and sparsity (s = high)

TABLE 3 RMSE of prediction and imputation of the curves
for different methods under the non-linear case
( f(Xi(t), t) = 5 ∗ sin(X(t)2 ∗ t2)) when n = 500 for different
time points and sparsity settings

n = 500, s = medium n = 500, s = high

m = 32, b = 17 m = 52, b = 27 m = 32, b = 8 m = 52, b = 12

Method Pred Imp Pred Imp Pred Imp Pred Imp

MF 0.236 0.102 0.223 0.078 0.303 0.428 0.355 0.381

PACE 0.328 0.238 0.214 1.253 0.431 0.659 0.386 0.551

MLLF 0.230 0.066 0.209 0.064 0.419 0.592 0.351 0.482

MICE 0.334 0.812 0.214 0.680 0.652 0.892 0.644 1.020

MFP 0.235 0.980 0.210 0.075 0.334 0.379 0.351 0.324

MLLFP 0.276 0.044 0.560 0.027 0.427 0.357 0.342 0.259

MF_B 0.174 0.045 0.161 0.053 0.293 0.257 0.318 0.275

MLLF_B 0.183 0.045 0.163 0.054 0.335 0.364 0.312 0.282

MFP_B 0.176 0.031 0.160 0.026 0.290 0.257 0.311 0.251

MLLFP_B 0.174 0.031 0.163 0.028 0.328 0.385 0.329 0.308

Note: Bold values in the table indicate the best values.
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n = 500, s = medium n = 500, s = high

m = 32, b = 17 m = 52, b = 12 m = 32, b = 17 m = 52, b = 12

Method Pred Imp Pred Imp Pred Imp Pred Imp

MF 0.388 0.157 0.390 0.296 0.478 0.522 0.306 0.402

PACE 0.405 0.238 0.356 1.253 0.589 0.659 0.411 0.551

MLLF 0.386 0.144 0.392 0.274 0.486 2.790 0.382 1.490

MICE 0.451 0.154 0.388 0.282 0.641 1.262 0.712 2.139

MFP 0.388 0.213 0.292 0.238 0.492 0.573 0.300 0.708

MLLFP 0.382 0.268 0.288 0.276 0.290 0.413 0.402 1.401

MF_B 0.296 0.112 0.262 0.232 0.308 0.374 0.288 0.372

MLLF_B 0.294 0.113 0.262 0.232 0.294 0.369 0.292 0.372

MFP_B 0.294 0.091 0.262 0.221 0.302 0.379 0.290 0.366

MLLFP_B 0.294 0.090 0.262 0.221 0.280 0.550 0.292 0.370

Note: Bold values in the table indicate the best values.

TABLE 4 Prediction error and RMSE of imputation of the
curves for different methods under the non-linear case
with binary response ( f(Xi(t), t) = 5 ∗ sin(X(t)2 ∗ t2)) when
n = 500 for different time points and sparsity settings

Method MF PACE MLLF MICE MFP MLLFP MF_B MLLF_B MFP_B MLLFP_B

Linear model 0.39 0.42 0.39 0.39 0.36 0.37 0.33 0.35 0.32 0.35

CAM 0.36 0.39 0.36 0.38 0.35 0.36 0.28 0.32 0.28 0.31

Note: Bold values in the table indicate the best values.

TABLE 5 Prediction error of
different methods for the EHR
data

FIGURE 4 Imputation results for one curve
from the EHR data

FIGURE 5 Estimated coefficient function of all
the methods for the EHR data using linear
scalar-on-function regression

measurements are missing even though there was a visit, due to unknown reasons. We build a model to predict whether a patient will relapse or

not using the BP measurement over an 18 month period.

We can infer from Table 5 that the binned methods again are outperforming the other methods in prediction, irrespective of linear or non-linear

modelling. Also, since both the model results are so close, the true relation looks linear. This is further supported by Figure 4, where we see only

the binned methods have smooth imputed curves, with the black points denoting the observed values for that patient. Although all the estimated

𝛽 coefficients seem to follow the same trend in Figure 5, the methods with binning have much smoother results, leading to better interpretability.

Smoothness is inherent to functional data and that is why binned methods are able to perform so well.
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Also, Figure 5 suggests that patients with low BP or sudden changes in their BP have a higher risk of relapse. Also, the curve isn't constant,

suggesting that acceleration/velocity of the BP curve is important. We did check and found out that the average BP was higher in the control

group (no relapse) than for the cases (relapse). We feel there might be confounding variables and further analysis is needed, which is outside the

scope of the project as we are only interested in demonstrating the efficacy of our methods for imputation and training the model, which results

in better analysis and interpretation.

4 DISCUSSION AND CONCLUSIONS

In this project, we explored different multivariate imputation methods under sparse and irregular functional data settings. We have proposed a

new imputation method, MLLF, which is a mixture of MF and MICE. Also, we modified this method along with MF to deal with functional data

in a systematic fashion by careful initialization using PACE and smoothing out the results using bins. Our proposed approaches overcome a lot

of the challenges faced by the current methods (like PACE and MICE) to give consistent estimates. They incorporate the response and deal with

complex non-linear relations with multiple imputations. Results under multiple simulation settings also illustrate the value of our approach over

existing methods for fitting scalar-on-function regression models when the functional predictors are irregularly and sparsely sampled irrespective

of the sparsity level, number of points in the curve, and sample size. All the binned methods work equally well with slight variations in some

cases; though there is no clear winner, MF with binning (MF_B) was the most consistent performer.

Our approach is sensitive to the subdivision of the time points into the bins. Different binning strategies were not explored in depth but are

one of the directions for further investigation. Another interesting avenue is defining a relationship between the number of time points (m) and

the number of bins (k), to ease the search for the optimum bin number. Also, even though it looks like the extension of MF performs better than

LLF imputation (MLLF), further analysis is required to differentiate between the methods. Deep learning has become a major research area in

multiple fields and the application of neural networks to the imputation setting might be very interesting, though our initial efforts did not bear

strong results.

Finally, at a high level, there are still many remaining challenges with the imputation of functional data. When evaluating the performance

of future methods, we suggest considering at least three critical points: (1) Do the imputations improve subsequent modelling? (2) Can the

imputations incorporate the assumed underlying smoothness of the curves or at least domain information? and (3) Can the imputations handle

measurement noise in the observed points? A multiple imputation approach seems to be critical for the first point, while the latter two are still

quite open. Our binning approach, while simple, helped a great deal with the second point. However, the third point was basically untouched

in this work. When using methods such as PACE, incorporating observation error is straightforward, but it is unclear how to incorporate it into

more complicated imputation procedures.
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APPENDIX A

FIGURE A1 Cumulative percentage of
observations for BP per patient

FIGURE A2 Comparing imputed curves in non-binned and binned
methods of MLLF under linear case for one random sample curve with
time points (m) equal to 52 and sparsity (s) High
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TABLE A1 RMSE of prediction, 𝛽 coefficients, and imputation of the curves for different methods under the linear case
when n = 200 under different time points and sparsity settings

n = 200, s = medium n = 200, s = high

m = 32, b = 17 m = 52, b = 27 m = 32, b = 8 m = 52, b = 12

Method Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp

MF 0.149 0.1656 0.141 0.476 0.459 0.117 1.290 1.272 0.573 0.349 0.476 0.529

PACE 0.221 0.332 0.393 0.700 0.667 1.863 0.433 0.461 0.434 0.449 0.456 0.362

MLLF 0.140 0.144 0.085 0.515 0.491 0.025 30.871 20.224 0.663 26.841 20.301 0.583

MICE 0.148 0.191 0.204 0.462 0.452 0.172 0.400 0.704 0.939 0.440 0.649 0.961

MFP 0.140 0.158 0.165 0.468 0.455 0.225 0.340 0.483 0.509 0.220 0.354 0.451

MLLFP 0.170 0.188 0.186 0.493 0.472 0.196 0.434 0.461 0.427 0.454 0.459 0.354

MF_B 0.124 0.135 0.89 0.264 0.258 0.078 0.285 0.340 0.395 0.191 0.255 0.312

MLLF_B 0.124 0.132 0.091 0.266 0.260 0.077 0.286 0.313 0.434 0.178 0.283 0.301

MFP_B 0.126 0.133 0.071 0.266 0.269 0.037 0.411 0.434 0.450 0.211 0.262 0.293

MLLFP_B 0.124 0.135 0.088 0.268 0.265 0.030 0.423 0.662 0.652 0.197 0.273 0.345

Note: Bold values in the table indicate the best values.

TABLE A2 RMSE of prediction, 𝛽 coefficients, and imputation of the curves for different methods under the linear case
when n = 1000 under different time points and sparsity settings

n = 1000, s = medium n = 1000, s = high

m = 32, b = 17 m = 52, b = 27 m = 32, b = 7 m = 52, b = 27

Method Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp Pred 𝛽 Imp

MF 0.155 0.163 0.085 0.259 0.265 0.061 3.137 3.070 0.404 0.395 0.455 0.328

PACE 0.176 0.242 0.192 0.125 0.583 0.868 0.412 0.441 0.389 0.326 0.354 0.281

MLLF 0.140 0.144 0.061 0.265 0.272 0.027 51.947 41.243 0.545 61.500 51.082 0.476

MICE 0.152 0.168 0.118 0.254 0.262 0.092 0.365 0.660 0.873 0.911 0.838 0.856

MFP 0.151 0.164 0.085 0.251 0.278 0.110 0.198 0.296 0.353 0.288 0.338 0.274

MLLFP 0.167 0.198 0.134 0.0.255 0.284 0.099 0.412 0.441 0.339 0.324 0.357 0.244

MF_B 0.143 0.168 0.071 0.116 0.220 0.046 0.149 0.267 0.357 0.104 0.194 0.263

MLLF_B 0.147 0.153 0.072 0.113 0.208 0.046 0.123 0.293 0.373 0.111 0.265 0.295

MFP_B 0.144 0.165 0.048 0.116 0.221 0.026 0.145 0.273 0.348 0.128 0.219 0.366

MLLFP_B 0.143 0.160 0.051 0.113 0.211 0.031 0.127 0.802 0.644 0.138 0.354 0.475

Note: Bold values in the table indicate the best values.

TABLE A3 RMSE of prediction and imputation of the curves for different methods under the non-linear case
(f(Xi(t), t)= cos(X(t)3 ∗ t)+5 ∗ t) when n = 500 under different time points and sparsity settings

n = 500, s = medium n = 500, s = high

m = 32, b = 17 m = 52, b = 12 m = 32, b = 7 m = 52, b = 27

Method Pred Imp Pred Imp Pred Imp Pred Imp

MF 0.180 0.189 0.292 0.112 0.682 0.541 0.832 0.468

PACE 0.147 1.912 0.253 0.549 0.598 0.393 0.557 0.292

MLLF 0.138 0.104 0.239 0.093 25.376 2.586 18.231 1.581

MICE 0.199 0.275 0.448 0.267 0.712 0.837 0.802 1.007

MFP 0.178 0.177 0.237 0.102 0.630 0.434 0.842 0.431

MLLFP 0.320 0.060 0.212 0.091 0.483 0.320 0.570 0.160

MF_B 0.155 0.054 0.189 0.032 0.458 0.178 0.502 0.155

MLLF_B 0.156 0.053 0.184 0.032 0.459 0.179 0.524 0.159

MFP_B 0.154 0.055 0.191 0.030 0.455 0.179 0.502 0.156

MLLFP_B 0.155 0.055 0.183 0.031 0.468 0.206 0.550 0.207

Note: Bold values in the table indicate the best values.
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