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ABSTRACT
We present a nonparametric prognostic framework for individualized event prediction based on joint
modeling of both time series and time-to-event data. Our approach exploits a multivariate Gaussian
convolution process (MGCP) to model the evolution of time series signals and a Cox model to map
time-to-event data with time series data modeled through the MGCP. Taking advantage of the unique
structure imposed by convolved processes, we provide a variational inference framework to simultaneously
estimate parameters in the jointMGCP-Coxmodel. This significantly reduces computational complexity and
safeguards againstmodel overfitting. Experiments on synthetic and real world data show that the proposed
framework outperforms state-of-the art approaches built on two-stage inference and strong parametric
assumptions. Technical details are available in the supplementary materials.
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1. Introduction

1.1. Background andMotivation

In recent years, the multivariate Gaussian process (MGP)
has drawn significant attention as an efficient nonparametric
approach to predict time series signal trajectories (Dürichen
et al. 2015; Kontar et al. 2018b; Moreno-Muñoz, Artés-
Rodríguez, and Álvarez 2018; Yue and Kontar 2020). The
MGP draws its roots from multitask learning where trans-
fer of knowledge is achieved through a shared representa-
tion between training and testing signals. One neat approach
that achieves this knowledge transfer, employs convolution
processes to construct the MGP. Specifically, each signal is
expressed as a convolution of latent functions drawn from a
Gaussian process (GP). Commonalities among training and
testing signals are then captured by sharing these latent func-
tions across the outputs (Álvarez et al. 2010; Titsias and
Lawrence 2010; Álvarez and Lawrence 2011). Consequently, the
multiple signals can be expressed as a single output from a
common multivariate Gaussian convolution process (MGCP).
Indeed, many recent studies have demonstrated the MGCP
ability to account for nontrivial commonalities in the data
and provide accurate predictive results (Zhao and Sun 2016;
Cheng 2018; Guarnizo and Álvarez 2018; Yue and Kontar
2019a).

In this article, we explore the following question: can we use
both survival data along with time series signals to obtain reli-
able event prediction? This is illustrated in Figure 1. As shown
in the figure, our goal is to use both survival data and time series
signals from training units to predict the survival probability
and survival time of a partially observed testing unit. Naturally,
the aforementioned question is often encountered in a wide
range of applications, including: disease prognosis in clinical
trials, event prediction using vital health signals frommonitored
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patients at risk, remaining useful life estimation of operational
units/machines and failure prognosis in connectedmanufactur-
ing systems (e.g., nuclear power plants) (Tsiatis, Degruttola, and
Wulfsohn 1995; Gasmi, Love, and Kahle 2003; Pham, Yang, and
Nguyen 2012; Gao et al. 2015; Soleimani, Hensman, and Saria
2018; Yue and Kontar 2019b).

To link survival and time series data, state-of-the-art meth-
ods have focused on jointmodels. The seminalwork of Rizopou-
los (2011, 2012) laid a foundation for joint models where a
linear mixed effects model is used to model time series signals.
The coefficients of the mixed model are then used in a Cox
model to compute the probability of event occurrence condi-
tioned on the observed time series signals. This idea provided
the bases for many extensions and applications in the litera-
ture (Crowther, Abrams, and Lambert 2012; Zhu et al. 2012;
Crowther, Abrams, and Lambert 2013; Proust-Lima et al. 2014;
He et al. 2015; Rizopoulos, Molenberghs, and Lesaffre 2017;
Mauff et al. 2018). It is important to note here that jointmethods
are in general built using a two-stage inference procedure due
to the joint-likelihood intractability and huge computational
complexity. In two-stage inference, features from the time series
data are first learned, these estimated features are then inserted
into a survival model to predict event probabilities. Such an
approach induces bias and fails to handle missing data and
noisy observations. Despite that, some articles have shown that
the two-stage procedure can produce competitive predictive
results (Wulfsohn and Tsiatis 1997; Yu et al. 2004; Zhou et al.
2014; Mauff et al. 2018). Nevertheless, the foregoing works
are based on strong parametric assumptions where signals are
assumed to follow a specific parametric form and all the signals
(training and testing) exhibit that same functional form. In
other words, signals behave according to a similar trend but
at different rates (i.e., different parameter values). This focus
on parametricity is mainly driven by the same reasons to that
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2 X. YUE AND R. AL KONTAR

Figure 1. Joint modeling of longitudinal and time-to-event data.

of two-stage inference: joint-likelihood intractability and huge
computational complexity.

Unfortunately, parametric methods are restrictive in many
applications and if the specified form is far from the truth,
predictive results will be misleading. Furthermore, the assump-
tion that all signals possess the same functional form may not
hold in real-life applications. For instance, units operated under
different environmental conditions may exhibit different signal
evolution rates and trends (Yan et al. 2016; Kontar et al. 2018a).
Some recent efforts aimed to relax strong parametric assump-
tions using splines and continuous time Markov chains. Yet,
these methods still assume homogeneity across the population
and focus on merely imputing the time series data rather than
predicting signal evolution within a time interval of interest
(Dempsey et al. 2017; Soleimani, Hensman, and Saria 2018).

Inspired by recent advances in multi-output/MGPs, we pro-
pose a joint model that can overcome the aforementioned chal-
lenges. Indeed, MGPs have recently seen many success stories
in the machine learning (ML) community. This success can be
largely attributed to two advances: (i) the convolution construc-
tion (van der Wilk, Rasmussen, and Hensman 2017) of GPs
which has enabled accounting for heterogeneity and nontrivial
commonalities in outputs (here outputs refer to the time series
signals); (ii) the variational inference framework (Snelson and
Ghahramani 2006; Damianou and Lawrence 2013) which has
enabled GPs to scale efficiently while regularizing inference to
avoid overfitting.

Exploiting these advances, we propose a joint modeling
approach, denoted as MGCP-Cox, which exploits the unique
structure imposed by convolved processes to seamlessly inte-
grate the Cox and MGP model into a unified framework for
predicting survival times and conditional survival probabilities.
A key interesting finding is that the marriage of MGCP and

Cox results in a tractable variational likelihood which in turn
allows simultaneous estimation of the joint model parameters.
Based on this, we then derive event occurrence probabilities
within any future interval �t (as shown in Figure 1) and sur-
vival times. Using synthetic and real-world data we show the
advantages properties of MGCP-Cox over several state-of-the-
art techniques.

1.2. RelatedWork

An alternative method for joint analysis of time series data
and survival data are treating it as a functional classification
problem. In such a setting, the time series data are the functional
input and the survival output within the interval time �t is the
response. For example, Alaa, Hu, and van der Schaar (2017)
proposed a semi-Markov-modulated process to compute risk
score of patient based on the absorbing probabilities. This score
can assist doctors in building treatment plans. Futoma, Hariha-
ran, and Heller (2017) modeled time series data using multitask
GP and then used the results in a recurrent neural network
classifier to detect Sepsis. The covariance structure used in this
model is separable which, unlike convolved processes, fails to
account for data heterogeneity (van der Wilk, Rasmussen, and
Hensman 2017). Besides, this classification approach is a black
box method that poses drawbacks similar to that of two-stage
inference where they fail to account for missingess, uncertainty
and noisy data. Further, such methods only provide survival
probabilities within �t and fall short of estimating survival
times which are crucial in many applications. As we will show
in the experiment part, the joint model is advantageous to
classification approaches.

Here, we also distinguish joint models from the many works
that model the intensity function of a point process (e.g., Cox,
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Poisson) using a GP or neural networks (Cunningham, Shenoy,
and Sahani 2008; Lloyd et al. 2015; Alaa and van der Schaar
2017; Mei and Eisner 2017; Xiao et al. 2017). In the Cox process,
for example, people are interested in modeling the arrival rate
(e.g., customer arrival rate, disease recurrence rate) of a process.
While in the joint model, we are estimating the survival proba-
bility/time using time series and survival data.We also note that
there has been some recent attempts at rebuilding theCoxmodel
using a GP (Fernández, Rivera, and Teh 2016; Kim and Pavlovic
2018). Kim and Pavlovic (2018) focused on the survival data
and use GP to model the hazard function of Cox model, while
Fernández, Rivera, and Teh (2016) used GP to model variations
in the baseline hazard function. However, these approaches are
only based on survival data and do not handle joint modeling,
which is the focus of this article.

The rest of the article is organized as follows. In Section
2, we review survival analysis. In Section 3, we present our
joint modeling framework and inference algorithm. Numeri-
cal experiments are provided in Section 4. Finally, Section 5
concludes the article with a brief discussion. A detailed code is
deferred to the supplementary materials.

2. Review on Survival Analysis

In this section, we will briefly review survival analysis which
will be used for event prediction in the joint model. Survival
analysis is a branch of statistics for analyzing survival data and
predicting the probability of occurrence of an event. For each
individual unit i, the associated data are Di = (Vi, δi,Y i,wi),
where Vi = min{Ti,Ci} is the event time (the unit failed at
time Ti or was censored at time Ci), δi ∈ {0, 1} is an event
indicator (δi = 1/0 indicates the unit has failed/censored),
Y i are the noisy observed time series data (e.g., vital sig-
nals collected from patients) corresponding to the underlying
latent values f i, and wi is a set of time-invariant features (e.g.,
patient’s gender). Typically, the continuous random variable
Ti is characterized by a survival function S(t) = P(T ≥
t) which represents the probability of survival up to time
t. Another important term is the hazard function h(t) =
lim�→0

1
�
P(t < T ≤ t + �|T ≥ t) = − d

dt log S(t)
and can be thought of as the instantaneous rate of occur-
rence of an event at time t. It is easy to show that S(t) =
exp{− ∫ t

0 h(u)du}. The term
∫ t
0 h(u)du is called cumulative haz-

ard function and is denoted by H(t). The basic scheme of
survival analysis is to find suitable models to explain relation-
ships between the hazard function hi(t) and collected data
Di. These models are defined as survival models. Numerous
survival models have been developed to analyze survival data.
They typically model the hazard function as a function of
some time-varying and fixed features. One class of prevailed
survival models is called the Cox model (Cox 1972), which
has the form hi(t) = h0(t) exp[γ Twi + βfi(t)], where h0(t)
is a baseline hazard function shared by all individuals, and
is typically modeled by the Weibull or a piecewise constant
function, γ is a vector of coefficients for the fixed covariates
(features), fi(t) is the feature estimated by a time series model
(e.g., linear mixed model, GP), and β is a scaling parameter
for the time-varying covariates. Parameters in the Cox model

are typically estimated by maximizing the full log-likelihood
function

∑N
i=1 log p(Vi, δi|wi, f i) defined as

N∑
i=1

{δi log
[
h0(Vi) exp[γ Twi + βfi(Vi)]

]

−
∫ Vi

0
h0(u) exp[γ Twi + βfi(u)]du}. (1)

For a comprehensive review of survival models, see Kalbfleisch
and Prentice (2011).

Given an estimate of parameters from the Cox model, we
can then obtain the event (failure) probability within a future
time interval �t given the fact that the testing unit i survives
non-shorter than the current time instance t∗. This probability,
denoted P̂�t , is estimated as follows:

P̂�t = 1 − Ŝ(t∗ + �t|t∗,wi, f i) = 1 − Ŝ(t∗ + �t|wi, f i)
Ŝ(t∗|wi, f i)

= 1 − exp
{ −

∫ t∗+�t

t∗
ĥ0(u) exp

[
γ̂
Twi + β̂fi(u)

]
du

}
,

(2)

where wi and f i are features for a testing unit i. Note that
in Figure 1 we show the survival curve which is defined as
Ŝ(t|t∗) = 1 − P̂�t , where t = t∗ + �t. As shown in (2),
event prediction requires predicting f (u) within interval �t.
Indeed for the testing unit this requires extrapolation which
is typically hard for nonparametric methods. However, a key
feature ofmultitask approaches like theMGCP is that extrapola-
tion implies interpolation across the testing and training signals
while weighting the effect of different training signals on the test
signal. Naturally then for nonparametric approaches, we require
a training dataset that can capture different underlying behav-
iors and provide coverage throughout the sampling domain in
which the experiment is performed.

3. Joint Modeling and Variational Inference

3.1. Setting

Assume data have been collected from N units and let I =
{1, 2, . . . ,N} denote the set of all units. For unit i, its associ-
ated data are Di = {Vi, δi,Y i,wi}. The observed time series
signal is denoted by Y i = (yi(ti1), . . . , yi(tili))T , where li rep-
resents the number of observations and {tir : r = 1, . . . , li}
denotes the inputs. We decompose the time series signal as
yi(t) = fi(t) + εi(t), where fi(·) is a mean zero GP and
εi(t) denotes additive noise with zero mean and σ 2

ε variance.
Without loss of generality, assume unit 1, . . . ,N−1 are training
units and unit N is the testing unit. Our goal is to predict
the survival probability of testing unit N. Note that our joint
model is also capable of handling multiple testing units. How-
ever, for simplicity, we only focus on a single testing unit in
the remaining of this article. Throughout this article, we use
p(·) to represent the probability density function of a random
variable and use φ(·|a,A) to denote a normal density func-
tion of a random variable with mean vector a and covariance
matrix A.
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3.2. TheMultivariate Gaussian Convolution Process
(MGCP)

To obtain an accurate predictive result, we need to capture the
intrinsic relatedness among N signals. Particularly, we resort
to the convolution process to model the latent function fi(t).
We consider K independent latent functions {Xk(t)}Kk=1 and
NK different smoothing kernels {Gik(t) : i ∈ I}Kk=1. The
latent functions are assumed independent GPs with covariance
cov[Xk(t),Xk(t′)] = τk(t, t′). We set Gik(t) = αikφ(t|0, ξ 2ik) :=
αik

1√
2πξ2ik

exp(− t2
2ξ2ik

) to be scaled Gaussian kernels and τk(t, t′)

to be squared exponential covariance functions (Álvarez and
Lawrence 2009).

τk(t, t′) = exp
[

− 1
2

(t − t′)2

λ2k

]
. (3)

Note that the choice of latent functions and smoothing kernels
will not affect the inference procedure. Practitioners can replace
themwith any popular choices based on the domain knowledge.

The GP fi(t) is then constructed by convolving the shared
latent functions with the smoothing kernel as shown in (4).
This is the underlying principle of the MGCP, where the latent
functions {Xk(t)}Kk=1 are shared across different outputs through
the corresponding kernels Gik(t). Since convolutions are linear
operators on a function and since the latent function, a GP, is
shared across multiple outputs then all outputs can be expressed
as a jointly distributed GP, an MGCP. A key feature is that
information is shared through different parameters encoded in
the kernels Gik(t). Outputs then can possess both shared and
unique features, accounting for heterogeneity in the time series
data.

fi(t) =
K∑

k=1

∫
R

Gik(t − u)Xk(u)du. (4)

Based on Equation (4), the covariance function between fi
and fj, and the covariance function between fi and Xk, can
be calculated in closed forms. Please refer to Appendix A
in the supplementary materials for details. Now denote the
underlying latent values as f = {f T1 , . . . , f TN}T , where f i =
{fi(ti1), . . . , fi(tili)}T . The density function of f can be obtained
as p(f ) = φ(f |0,Kf f ), where |·| is the determinant andKf f sized
(
∑N

i=1 li)× (
∑N

i=1 li) is the covariance function. The likelihood
of f involves inverting the large matrix Kf f . This operation has
computational complexity O((

∑N
i=1 li)3) and storage require-

mentO((
∑N

i=1 li)2). To alleviate computational burden, we use
the inducing variable approximation (van derWilk, Rasmussen,
and Hensman 2017) which relies onM pseudo-inputs from the
latent functions denoted as Xk(Z) = [Xk(z1), . . . ,Xk(zM)]T
where Z = {zi}Mi=1. Since the latent functions are GPs, then
any sample Xk(Z) follows a multivariate Gaussian distribu-
tion. Conditioned on Xk(Z), we next sample from the con-
ditional prior p(Xk(u)|Xk(Z)). In Equation (4), Xk(u) can be
approximated well by the expectation E(Xk(u)|Xk(Z)) as long
as the latent functions are smooth (Álvarez and Lawrence 2011).
Here, we note that in the context of GPs, this is known as the
fully training independent conditional (FITC) approximation
(Quiñonero-Candela and Rasmussen 2005). Now, denote by

X = {XT
1 (Z), . . . ,XT

K(Z)}T . The probability distribution of X
can be expressed as p(X|Z) = φ(X|0,KXX), where KXX is a
block-diagonal matrix such that each block is associated with
the covariance of Xk in (3). By multivariate Gaussian identities,
the probability distribution of f conditional on X,Z is

p(f |X,Z) = φ(f |KfXK−1
XXX,Kf f − Q), (5)

where Q = KfXK−1
XXKXf . Therefore, p(f ) can be approximated

by p(f |Z), which is given as

p(f |Z) =
∫

p(f |X,Z)p(X|Z)dX. (6)

From (6), p(Y) can be obtained by p(Y|Z) =∫
p(Y|f )p(f |X,Z)p(X|Z)df dX.

3.3. JointModel and Variational Inference

Now following our convolution construction in (4), the hazard
function at time t is given as

hi(t) = h0(t) exp
[
γ Twi + β

K∑
k=1

∫
R

Gik(t − u)Xk(u)du
]
. (7)

This key equation links the MGCP to the Cox model. We begin
with presenting the log-likelihood of the joint model given
observed data D = {Di}Ni=1. The marginal log-likelihood
function is

log p(D) = log
∫

p(D|f )p(f )df = log
∫

p(D|f )p(f |Z)df

= log
∫

p(D|f )p(f |X,Z)p(X|Z)dXdf .

(8)

We would like to provide a good approximation of log p(D) by
introducing an evidence lower bound (ELBO) L. This bound
is calculated by finding the Kullback–Leibler (KL) divergence
between the variational density q(f ,X|Z) and the true posterior
density p(f ,X|D,Z). Specifically,

KL(q(f ,X|Z)||p(f ,X|D,Z))

=
∫

q(f ,X|Z) log
q(f ,X|Z)

p(f ,X|D,Z)
dXdf

=
∫

q(f ,X|Z) log
q(f ,X|Z)p(D)

p(f ,X,D|Z)
dXdf

= log p(D) −
∫

q(f ,X|Z) log
p(f ,X,D|Z)

q(f ,X|Z)
dXdf

= log p(D) − L ≥ 0.

(9)

The variational density is assumed to be factorized as

q(f ,X|Z) = p(f |X,Z)q(X). (10)

Maximizing the ELBO with respect to q(X) and hyperparam-
eters from the MGCP-Cox model can achieve purposes of
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variational inference and model selection simultaneously. By
Equation (9),

L =
∫

q(f ,X|Z) log
p(f ,X,D|Z)

q(f ,X|Z)
dXdf

=
∫

q(X)

∫
p(f |X,Z) log p(D|f )df dX

+
∫

q(X) log
p(X|Z)

q(X)
dX.

(11)

Furthermore, we can decompose log p(D|f ) = log p(Y|f ) +
log p(V , δ|w, f ), where V = {Vi}Ni=1, δ = {δi}Ni=1 and
w = {wi}Ni=1. Based on Equation (11), the MGCP propa-
gates uncertainties through the latent processes to the Cox
model.

It is desirable to find a closed form of the ELBO in Equation
(11). Since p(Y|f ) and p(f |X,Z) are both Gaussian, we can
obtain

∫
p(f |X,Z) log p(Y|f )df = logφ(Y|KfXK−1

XXX, σ
2
ε I)

− 1
2σ 2

ε

Tr(Kf f − Q),
(12)

where Tr(·) is a trace operator. Therefore, the ELBO can be
simplified as

L = − 1
2σ 2

ε

Tr(Kf f − Q)

+
∫

q(X) log
φ(Y|KfXK−1

XXX, σ 2
ε I)p(X|Z)

q(X)
dX

+
∫

q(X)p(f |X,Z) log p(V , δ|w, f )df dX. (13)

We compute the optimal upper bound of L by reversing
Jensen’s inequality. This gives an optimal distribution q∗(X) and

L∗ = log
∫

φ(Y|KfXK−1
XXX, σ

2
ε I)p(X|Z)dX + PE

+
∫

q(X)p(f |X,Z) log p(V , δ|w, f )df dX

= log[φ(Y|0, σ 2
ε I + Q)] + PE

+
∫

q(X)p(f |X,Z) log p(V , δ|w, f )df dX,

(14)

where PE = − 1
2σ 2

ε
Tr(Kf f − Q). PE can be thought of

as a penalization term that regularizes the estimation of the
parameters. Note that the first two terms in Equation (14)
can be computed inO((

∑N
i=1 li)M2) (Snelson and Ghahramani

2006).

3.4. Variational Inference on CoxModel

Parameters in the Coxmodel can be attained bymaximizing the
following log-likelihood function:

log p(V , δ|w, f ) =
N∑
i=1

log p(Vi, δi|wi, f i)

=
N∑
i=1

{
δi log

[
h0(Vi) exp[γ Twi

+ β

K∑
k=1

∫
R

Gik(Vi − u)Xk(u)du]
]

−
∫ Vi

0
h0(u) exp[γ Twi

+ β

K∑
k=1

∫
R

Gik(u − v)Xk(v)dv]du
}
.

(15)

In Equation (14), we obtain the optimal q∗(X) to maximize
the ELBO. In this section, we will use it. Specifically, the optimal
q∗(X) has the form

q∗(X) = φ(X|σ−2
ε KXX(KXX + σ−2

ε KXf KfX)−1KXf Y ,
KXX(KXX + σ−2

ε KXf KfX)−1KXX) := φ(X|m, s).
(16)

It is easy to show that q(f |Z) has the normal distribution with
parameter μ,�. Specifically,∫

q∗(X)p(f |X,Z)dX = q(f |Z) := q(f ), f ∼ N (μ,�), (17)

where

μ = KfXK−1
XXm, � = Kf f − KfXK−1

XX(I − sK−1
XX)KXf .

The last integration in Equation (14) can be simplified to∫
q(f ) log p(V , δ|w, f )df

=
∫

q(f )
N∑
i=1

{
δi log

[
h0(Vi) exp[γ Twi + βfi(Vi)]

]

−
∫ Vi

0
h0(u) exp[γ Twi + βfi(u)]du

}
df .

(18)

The first term in Equation (18) can be calculated analytically.
For each unit i,∫

q(f )δi log[h0(Vi) exp[γ Twi + βfi(Vi)]]df
= δi

{
log h0(Vi) + γ Twi + βEq(f )[fi(Vi)]

}
= δi

{
log h0(Vi) + γ Twi + βμi(Vi)

}
,

(19)

where Eq(f )[fi(Vi)] = K fi(Vi)XKXX−1m := μi(Vi). The second
term in Equation (18) can also be further simplified. For each
unit i,∫

q(f )(−
∫ Vi

0
h0(u) exp[γ Twi + βfi(u)]du)df

= −
∫ Vi

0
h0(u) exp[γ Twi] exp

[
β[μi(u) + 1

2
σ 2
i (u)]]du, (20)
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where μi(u) = K fi(u)XKXX−1m and σ 2
i (u) = K fi(u)fi(u) −

K fi(u)XK
−1
XX(I − sK−1

XX)KXfi(u). Please refer to Appendix B in the
supplementary materials for details.

We can assume h0(t) to be an exponential function exp(b +
ψ(t−min{Vi}Ni=1)), where b,ψ are parameters to be learned and
h0(t) = 0 when t < min{Vi}Ni=1 because units are not subject
to risk before the first failure event. Note that if we assume the
baseline hazard is nondecreasing with time, we can add one
constraint ψ ∈ R+. Otherwise, we can use ψ ∈ R. We can also
use smoothing spline to get a robust baseline hazard estimation.
Please refer to Section 3.6 for details.

The L∗ is maximized with respect to the parameters � =
(θ , σε , γ , β , b, ψ), where θ = ({λk, ξik,αik}N,K

i=1,k=1), by the
gradient-based method. Specifically, We can obtain the optimal
parameters �̂ by maximizing L∗.

3.5. Event Prediction

Without loss of generality, we focus on predicting the event
occurrence probability for unit N. Suppose observations from
the testing unitN have been collected up to time t∗. The survival
model computes the event probabilities conditioned on the
predicted time series features f N(u), u ∈ [t∗, t∗ + �t]. Given
estimated parameters, and following (2), we are interested in
calculating

1 − Ŝ(t∗ + �t|t∗,wN , f N) = 1 − Ŝ(t∗ + �t|wN , f N)

Ŝ(t∗|wN , f N)

= 1 − exp{−
∫ t∗+�t

t∗
ĥ0(u) exp

[
γ̂
TwN + β̂fN(u)

]
du}.

(21)

Based on Equation (21), the accurate extrapolation within �t is
essential. In the MGCP, the predictive distribution for any new
input point T is given by

p(fN(T∗)|Y) =
∫

p(fN(T∗)|X)p(X|Y)dX

=
∫

φ(fN |K fN (T∗)XK−1
XXX,W)p(X|Y)dX

=
∫

φ(fN |K fN (T∗)XK−1
XXX,W)

p(Y|X)p(X)

p(Y)
dX

= φ(fN |AD−1Y ,K fN (T∗)fN (T∗) − AD−1AT),

(22)

where

A = K fN (T∗)XK−1
XXKXf ;

W = KfN (T∗)fN (T∗) − K fN (T∗)XK−1
XXKXfN (T∗).

We have used KfN (T∗)fN (T∗) as a notation to indicate when the
covariance matrix is evaluated at the T∗. Consequently, the
predicted signal at the time point T∗ for unit N is f̂N(T∗) =
AD−1Y . Besides survival probability, the survival time can also
be estimated in closed form.We provide detailed information in
Section 4.2.

3.6. Practical Issues

In this section, we will discuss some practical issues about the
algorithm implementation.

• Smoothing spline: To obtain a good baseline hazard predic-
tion given the estimated b̂, ψ̂ , we can calculate the cumu-
lative hazard at time point t as H(t) = ∑

u∈F(t) ĥ0(u),
for all t, where F(t) := {{V(1),V(2), . . . ,V(N−1)} ∪
{0, 1, 2, . . . ,V(N)}

} ∩ [0, t], and V(i) is the ith smallest ele-
ment in {Vi}Ni=1. Then we fit a regularized smooth spline
to H(t) (Ruppert 2002). The predicted baseline hazard at
u ∈ [t∗, t∗ + �t∗] can be estimated by dĤ(t)

dt

∣∣∣
t=u

(Rosenberg
1995).

Smoothing of the baseline hazard has been a common
practice that was observed to enhance prediction accuracy
(Rosenberg 1995). This practice has also been adopted in
most of the well-known survival analysis code libraries. For
example, if we assume the baseline hazard to be piecewise
constant or some piecewise function, then the cumulative
hazard is not smooth and we cannot get a continuous esti-
mation of h0(t). However, if we assume a smooth parametric
form of h0(t), then the spline is not necessary. Overall, the
smoothing spline is an add-on approach that is commonly
used to ensure the robustness of the estimation method
(mainly smoothness of the estimated baseline hazard).

• Number of pseudo-inputs: It has been widely investigated in
MGCPs and the recent work in Burt, Rasmussen, and Wilk
(2019). For smooth kernel, it is in the form ofM = O(log n)
where n is number of data points. The key advantage is that
M is much smaller than the number of data points. This
achieves the so-called “sparse approximation.”

• Number of latent variables: This is still an open question.
Intuitively, when training units display a strong heterogene-
ity, we require more latent variables (and thus heavier com-
putational burden) (Zhao and Sun 2016). Practically, as we
will demonstrate in the experiment section, only one latent
variable is flexible enough to provide an accurate prediction.

4. Experiments

We conduct case studies to demonstrate the performance of our
proposed methodology. Both synthetic and real-world data are
used.

4.1. Data Setting

For the synthetic data, we assume that the underlying true path
for unit i has the polynomial trajectory with individualized
random effects. Specifically, yi(t) = zT(t)bi + εi(t) = bi0 +
bi1t + bi2t2 + εi(t), where εi(t) ∼ N (0, 0.1), zT(t) = [1, t, t2]
and bi = [bi0, bi1, bi2]T ∼ N (μb,�b) with μb = [2.5, 0.1, a]T

and �b =
⎡
⎣ 0.2 −4e − 4 −8e − 5

−4e − 4 3e − 6 3e − 7
−e − 5 3e − 7 1e − 7

⎤
⎦ where a ∼

uniform(0.003, 0.03). Without loss of generality, we assume that
the time unit is month and that signals were obtained regularly
at each month up to their failure or censoring time. For each
unit, we specify a time-invariant featurewi ∈ {0, 1} generated by
a Bernoulli distribution with p = 0.5. In the Cox model, we use
the Weibull baseline hazard rate function h0(t) = λρtρ−1 with
λ = 0.001 andρ = 1.05.We generate the failure timeTi for each
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unit by rejection sampling using its probability density function
hi(t)Si(t) . We set γ = 0 and β = 0.5. Also, we randomly
select 5% of the units to be right censored. The number of units
generated isN = 20 and the experiment is repeated forQ = 100
times.

For the real-world case study we use the C-MAPSS dataset
provided by theNational Aeronautics and SpaceAdministration
(NASA). The dataset contains failure time data of aircraft turbo-
fan engines and degradation signals from informative sensors
mounted on these engines. Note that in our analysis we stan-
dardize all sensor data. We refer readers to Saxena and Goebel
(2008) for more details about the data. We also conduct another
real-world case study using data from automotive lead-acid bat-
teries. Similar to the NASA data, each battery has a degradation
signal and its own failure time. The signal measurements are
irregular with missing values. In either dataset, the training
sample size is 100.

4.2. Baselines and Evaluations

We focus on predicting the event probability within a future
time interval �t. We consider �t = 12, 15, 20 months in
this simulation study. Prediction performance at varying time
points t∗ for the partially observed unit N is then reported.
The time instant t∗ = αTN is defined as the α-observation
percentile, where TN is the failure time of unit N. The values
of α are specified as 30%, 50%. Further, in our simulation
studies, we benchmark our method with four other reference
methods for comparison: (1) support vector machine (SVM)
classifier: in the SVM, event data is transformed into binary
labels δi = 1/0 denoting whether units failed or not within
the time interval [t∗,�t + t∗]. The time-fixed covariate wi

and the last observed signal measurement at t∗ are used as the
model predictors. We use the radial basis kernel and determine
parameters using 2-fold cross-validation on the training data.
(2) The multi-task GP recurrent neural network (RNN) clas-
sifier (GP-RNN) (Futoma, Hariharan, and Heller 2017): this
method exploits a RNN to provide a binary event outcome
prediction. (3) The deep recurrent survival model (Deep-S)
(Ren et al. 2019): this model also uses deep neural network
to estimate survival probability. However, it does not use any
information from time series data. (4) Parametric joint model
(LMM-joint): we implement a state-of-the-art joint modeling
algorithm using the linear mixed-effect model. The LMM-
joint uses a general polynomial function whose corresponding
degree is determined through an Akaike information criteria
to model the signal path. Note that this framework estimates
parameters from the mixed-effect model and the Cox model
separately (Rizopoulos 2011; Zhou et al. 2014; Mauff et al.
2018). Regarding our MGCP-Cox model we set the number
of pseudo-inputs to M = 128 (Burt, Rasmussen, and Wilk
2019) and the number of latent functions to K = 1. This
setting is a commonly used setting for the MGCP (Álvarez
and Lawrence 2011; Zhao and Sun 2016). The performance of
each method is then assessed by the receiver operating char-
acteristic (ROC) curve, which is a common diagnostic tool
for binary classifier. The ROC curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR).
Predictive accuracy is then assessed through the area under the
curve (AUC). The results from the synthetic data are shown in
Figure 2. Due to poor performance of the SVM on N = 20,
we also checked whether it can produce comparable results
to the MGCP-Cox when N = 200. We denote this model
as SVM-200.

Figure 2. ROC curves from simulation studies under different percentile of observation α.
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For the real data, the true survival probabilities are not avail-
able since we do not have information about the underlying
parameters used to generate the data. Therefore, to evaluate
model performance, we calculate the mean remaining life-
time (i.e., survival time) of the testing unit, which is defined
as m̂rl(t∗) = ∫ ∞

t∗ Ŝ(u|t∗,wN , f N)du. This integration can be
obtained by the Gauss-Legendre quadrature. The performance
is assessed by the absolute error AE = |rlj − m̂rlj| where rlj is
the true remaining lifetime of the testing unit. We then report
the distribution of the errors across all units using the boxplot
in Figure 3. Similar to the synthetic data we use 30% and 50%
percentiles to assess prediction accuracy. We also note that we
cannot obtain m̂rl estimates from all classification methods as
they transform event prediction into a time series classification
problem. Besides, there are very limited models which are capa-
ble of handling joint data and predicting survival time. There-
fore, we only benchmark our model with (1) the state-of-the-art
LMM-joint model. (2) The linear models of coregionalization
(LMC) (Soleimani, Hensman, and Saria 2018). This method
uses coregionalization rather than convolution to construct GP.
Besides, this method ignores useful information from future
evolution of time series signals. (3) the MGCP-Cox with two-
stage inference (Joint-Two). In the Joint-Two, we apply the two-
stage inference method. Therefore, the uncertainty in the time
series data is not propagated via latent variables. All results are
reported in Figures 3 and 4.

4.3. Results

The results are given in Figures 2–4. Based on the figures, we can
obtain some important insights. First, the MGCP-Cox model
clearly outperforms the benchmarked models and achieves
high classification and prediction accuracy. This highlights the
advantages of joint estimation compared to two-stage inference
where time series uncertainty is not propagated to the survival
model. Furthermore, the results highlight the advantages of the
joint model compared to the classification-based models which
are Deep-S, GP-RNN, and SVM. For SVM even with a much
larger number of units, the MGCP-Cox was still superior.

Figure 3. Remaining life prediction accuracy from NASA data.

Figure 4. Remaining life prediction accuracy from Battery data.

Second, the results show that the MGCP-Cox clearly outper-
forms LMM-joint. This result highlights the dangers of para-
metric modeling and demonstrates the ability of our nonpara-
metric approach to avoid model misspecifications.

Third, as expected, prediction errors significantly decrease as
the lifetime percentiles increase. Thus, the prediction accuracy
from the MGCP-Cox model will become more accurate as t∗
increases andmore data are collected from an online monitored
unit.

Fourth, the prediction accuracy slightly decreases as we pre-
dict over a longer horizon (i.e., prediction is better for the near
future). This is intuitively understandable as accuracy might
decrease when predicting over a large region where not many
training data might be observed. Lastly, one striking feature,
shown in Figures 2–4, is that even with a small number of
observations (30% observation percentile) from the testing unit
we were still able to get accurate predictive results. This crucial
in many applications as its allows early prediction of an event
occurrence such as a disease or machine failure.

We also report the computation time in Table 1. In the table,
denote by GP-joint the joint model using the ordinary GP.
Denote by LMC the joint model using the LMC GP. Our model
is the joint model using convolution GP. In the last column,
we report the computation time of the parametric joint model
LMM as a reference. Compared with the exact GP, both our
model and LMC can significantly reduce the computation time,
as mentioned in Section 3.2. Note that although the parametric
joint model has lower complexity, it is built on the strong homo-
geneous assumptions and the performance decays when there is
a heterogeneous pattern in the data.

In summary, the results highlight that the joint model frame-
work can provide accurate predictions of both time series
signals, event probabilities and survival time. The unique

Table 1. Computation time (in sec).

Experiment GP-joint Our model LMC LMM GP-RNN Deep-S SVM

Simulation data 3615.0 60.1 78.0 3.0 70.2 44.3 4.7
NASA data 8.5 (hr) 733.2 755.0 12.3 NA NA NA
Battery data 9.1 (hr) 778.5 750.0 13.1 NA NA NA
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smoothing kernelGik for each individual allows flexibility in the
prediction, since it enables each training signal to have its own
characteristics. This substantiates the strength of the MGCP.
Equipped with the shared latent processes, the model can infer
the similarities among all units, and predict signal trajectory
by borrowing strength from training units. These shared and
convolved latent processes in turn propagate uncertainty to the
Cox model to provide a better map of both survival and time
series data.

5. Conclusion

We have presented a nonparametric joint modeling framework
for time series and survival data. A sparse variational inference
framework is established to jointly estimate parameters from
the MGCP-Cox model and propagate uncertainty from time
series data to the survival model. Empirical studies highlight
the advantageous features of our model compared to the state of
the art methods. Our proposed model is computationally effi-
cient and requires small number of training units. Furthermore,
our framework can correctly detect failure event at early stage
and is capable of avoiding some catastrophic consequences. In
conclusion, our modeling framework is promising and we will
consider applying it to more complex real-world applications in
the future.We hope our work spurs interest in themerits of joint
model.

Supplementary Materials

Appendix: This appendix includes technical details. In Appendix A, we
introduce the detailed covariance functions. In Appendix B, we discuss
the detail of Cox model (file type: PDF).

R code: R code for our algorithm. (zipped file)
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