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Functional Principal Component Analysis for
Extrapolating Multistream Longitudinal Data

Seokhyun Chung and Raed Kontar

Abstract—In this article, we present a nonparametric approach
to predict the evolution of multistream longitudinal data. Our
approach first decomposes each stream into a linear combination of
eigenfunctions and their corresponding functional principal com-
ponent (FPC) scores. A Gaussian process prior for the FPC scores
is then induced based on a functional semimetric that introduces a
similarity measure across streams. Finally, an empirical Bayesian
updating strategy is derived to update the established prior using
real-time stream data. Empirical evidence shows that the proposed
framework outperforms state-of-the-art approaches and can effec-
tively account for heterogeneity as well as achieve high predictive
accuracy.

Index Terms—Bayesian inference, functional principal
component (FPC) analysis, Gaussian processes (GPs).

I. INTRODUCTION

AMONG various environments, where longitudinal data
are gathered, the environment covered in this study is a

multistream and real-time environment. Recent progress in sen-
sor and data storage technologies has facilitated data collection
from multiple sensors in real-time as well as the accumulation
of historical signals from multiple similar units during their
operational lifetime. This data structure where multiple signals
across different units are collected is referred to as multistream
longitudinal data. Examples include: vital health signals from
patients collected through wearable devices [1], [2], battery
degradation signals from cars on the road [3], [4], and energy
usage patterns from different smart home appliances [5].
In this article, we propose an efficient approach to extrapo-

late multistream data for an in-service unit through borrowing
strength from other historical units. An illustrative example is
provided in Fig. 1. In this figure, there areN historical units and
an in-service unit, whose index is denoted by r. Each unit has
M identical sensors from which each respective signal forms a
stream. Multistream data from the in-service unit are partially
observed up to the current time instance t∗. Our goal is to
extrapolate stream data from the in-service unit r over a future
period t ≥ t∗ ∈ T , where T is the time domain of interest.
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Fig. 1. Extrapolation of multistream longitudinal data for an in-service unit.

In mathematical notation, let I = {1, . . ., N, r} and IH =
{1, . . ., N} be the respective index sets for all available units
including the in-service unit r and the units in our historical
dataset, respectively. For each unit i ∈ I , we haveM streams of
data, where l ∈ L = {1, . . .,M}. For the ith unit, the history of
observed data for a specific stream l is denoted as X(l)

i (tiu),

where {tiu : u = 1, . . ., p
(l)
i } ⊂ T represents the observation

time points and p
(l)
i represents the number of observations

for signal l of unit i. The underlying principle of our model
is borrowing strength from a sample of curves {X(l)

i (t) : i ∈
IH, l ∈ L} to predict individual trajectoriesX(l)

r (t) over a future
time period t ≥ t∗ ∈ T . Without loss of generality, throughout
the article, we focus on predicting stream s ∈ L, which we refer
to as the target stream. Note that the target stream in Fig. 1 is
streamM . To achieve this goal, we exploit functional principal
component analysis (FPCA, [6]), which is a nonparametric tool
for functional data analysis. Indeed, FPCA has recently drawn
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increased attention due to its flexibility, uncertainty quantifica-
tion capabilities, and the ability to handle sparse and irregular
data [7]–[10]. However, advances in FPCA fall short of handling
multistream data and real-time predictions.
Our overall framework is summarized at the bottom of Fig. 1.

Specifically, historical signals X(s)
i (t), i ∈ IH, from the target

stream s are decomposed into a linear combination of orthonor-
mal eigenfunctions that form their functional space. The coeffi-
cients of the linear combination are called functional principal
component (FPC) scores. With the assumption that the target
signal of the in-service unit X(s)

r (t) lies in the same functional
space, a proper estimation of FPC scores associatedwithX(s)

r (t)
is required. Here, we propose to establish a prior on these
FPC scores using information from streams l ∈ L−s = L\{s}.
However, such a prior needs to define a similarity measure
across random functions rather than random variables. To this
end, we propose aGaussian process (GP) prior for FPC scores of
X

(s)
r (t) using a functional semimetric that measures similarities

of streamsL−s between historical units and the in-service unit r.
The underlying principle is that unit X(s)

r (t) will exhibit more
commonalities with historical units that exhibit similar trends
in streams L−s. For example, consider that stream s denotes
degradation trajectories and L−s denotes external factors such
as temperature. Then, X(s)

r (t) will share more commonalities
with a subset of historical signals X(s)

i (t), i ∈ IH, degrading
under similar external factors (similar temperatures). This ap-
proach allows us to address heterogeneity in the data. Finally,
an empirical Bayesian updating strategy is derived to update the
established prior using real-time stream data obtained from the
in-service unit.
In this article,we propose anFPCA-basedmodel that provides

individualized predictions for each stream in a multistream
environment. Our model is able to automatically account for
heterogeneity in the data and screen the sharing of information
across different streams. We achieve this by introducing a GP
prior based on a functional semimetric that measures similarities
between streams of historical units and the in-service unit.
We then derive a computationally efficient Bayesian updating
strategy to update predictions when additional data are col-
lected in real-time. We achieve the computational efficiency
through building our model upon FPCA that features linearity
and orthogonality. We demonstrate the advantageous features of
our approach compared to state-of-the-art methods using both
synthetic and simulation-based data. Here, we note that the
derived functional semimetric can be of independent interest
as it introduces a valid measure of similarities across random
functions rather than random variables, where such measures
are well-established.
The rest of this article is structured as follows. In Section II,

we review a range of related work. In Section III, we briefly
revisit the FPCA. In Section IV, we discuss our proposedmodel.
In Section V, we discuss computational efficiency and time
complexity of our model. Numerical experiments using syn-
thetic data and simulation-based data are provided in SectionVI.
Finally, Section VII concludes this article. Technical proofs and

a detailed code can be found in the appendix while a detailed
code can be found online.1

II. RELATED WORK

There has been extensive literature on the extrapolation of
longitudinal signals under a single stream setting. However,
literature has mainly focused on parametric models due to their
computational efficiency and ease of implementation [11]–[14].
Unfortunately, parametric modeling is vulnerable to model mis-
specifications, and if the specified form is far from the truth,
predictive results will be misleading. To address this issue, re-
cent attempts at non-parametric approaches have been based on
FPCA [15]–[17] or multivariate (multioutput) GPs (MGP) [18]–
[22]. These studies show that such nonparametric approaches
outperform parametric models in case where functional forms
are complex and exhibit heterogeneity. Nevertheless, the fore-
going works have dealt with only single stream cases. In this
article,we exploit FPCAasMGP, despite itsmany recent success
stories, faces intrinsic challenges in our setting: 1) Extrapola-
tion: the empirical best linear unbiased predictor in the GP is
an interpolant [23]. 2) Real-time inference: real-time updating
in MGP implies refitting the model, where MGP (even with
recent variational and low rank approximations) suffers from a
nonconvex parameter space and high computational complexity,
which limit its real-time applicability. 3)Multistream setting: To
the best of our knowledge, there is no literature tackling MGPs
in a multistream setting.
Multistream longitudinal data, also known as multivariate2

longitudinal data analysis in the statistics literature, recently
has drawn wide attention. The main objective of the analysis
is to jointly model the covariance across multiple outcomes and
units. Various methodologies such as pairwise fitting of mixed
modeling [24], latent variable hiddenMarkov model accounting
for heterogeneity [25], and nonparametric modeling [26], [27]
are proposed. In practice, this sort of data often arises inmedical-
related applications, e.g., clinical drug trials [28], skin cancer
chemoprevention [29], dietary intervention trial on breast cancer
survivors [30], etc. The readers interested in a comprehensive
review are referred to [31]. However, the above studies mainly
focus on the analysis of multivariate longitudinal data rather
than building a prediction model that extrapolates incomplete
signals, which is important in many applications.
On the other hand, in engineering fields, the few literature

that addressed the extrapolation in multistream settings have
focused on data fusion approaches. Data fusion in this case
refers to aggregating all streams into a single stream using fusion
mechanisms. In health-related applications, this fused stream
is coined as a health-index, which is often derived through a
weighted combination of the M data streams [32], [33]. Such
methods require regularly sampled observations and enforce

1[Online]. Available: https://github.com/UMDataScienceLab/
FPCAmultistream.

2Remark that the term “multivariate” in longitudinal data analysis stands for
a different notion in the GP-related literature as a multivariate GP corresponds
to a multioutput GP.
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strong parametric assumptions. An alternative data fusion ap-
proach includes multivariate FPCA [34]–[37]. However, since
data fusion methods are operated by aggregating multistreams
into a single or a smaller group of streams, they are not capable
of predicting individual stream trajectories and thus have limited
applications.

III. BRIEF REVIEW OF FPCA

From an FPCA perspective, longitudinal signals observed in
a given time domain can be decomposed into a linear combi-
nation of orthonormal basis functions with corresponding FPC
scores as coefficients. Therefore, FPCA can be regarded as a
dimensionality reduction method in which a signal corresponds
to a vector in a functional space defined by the basis functions.
The basis functions are referred to as eigenfunctions. Assume
that the longitudinal signals, over a given time domain T ,
are generated from a square-integrable stochastic process X(t)
with its mean E[X(t)] = μ(t) and covariance defined by a
positive semidefinite kernelG(t1, t2) = Cov(X(t1), X(t2)) for
t1, t2 ∈ T . Using Mercer’s theorem on G(t1, t2), we have

G(t1, t2) =
∞∑

k=1

λkφk(t1)φk(t2)

where φk(t) presents the kth eigenfunction of the lin-
ear Hilbert–Schmidt operator G : L2(T ) → L2(T ), G(f) =∫
T G(t1, t2)f(t1)dt1 ordered by the corresponding eigenvalues

λk, λ1 ≥ λ2 ≥ · · · ≥ 0. The eigenfunctions φk(t) form a set
of orthonormal basis in the Hilbert space L2(T ). Following
the Karhunen–Loéve decomposition, the centered stochastic
process X(t)− μ(t) can then be expressed as

X(t)− μ(t) =

∞∑
k=1

ξkφk(t) + ε(t)

where ξk =
∫
T (X(t)− μ(t))φk(t) presents FPC scores associ-

ated with φk(t). The scores are uncorrelated normal random
variables with zero-mean and variance λk; that is, E[ξk] =
0,∀k ∈ N andE[ξk1

ξk2
] = δk1k2

λk1
, ∀k1, k2 ∈ N,where δk1k2

denotes the Kronecker delta. Also, ε(t) is additive Gaussian
noise.
This idea of projecting signals onto a functional space spanned

by eigenfunctions was first introduced by [38] for growth curves
in particular. Basic principles [39], [40] and theoretical char-
acteristics [41]–[43] were then developed. These ideas were
expanded to longitudinal data settings in the seminal work
of [44]. After that, the FPCA was applied and extended to a
wide variety of applications, where multiple works tackled fast
and efficient estimation of the underlying covariance surface [7],
[8], [45]–[47].

IV. EXTRAPOLATION OF MULTISTREAM LONGITUDINAL DATA

A. FPCA for Signal Approximation

Now, we discuss our proposed nonparametric approach for
extrapolation of multistream longitudinal data. Hereon, unless
there is ambiguity, we suppress subscripting the target stream

with (s). Using historical signalsXi(t), i ∈ IH, we decompose
the target stream s as

Xi(t) = μ(t) + fi(t) + ε(t), i ∈ IH (1)

where fi(t) represents random effects characterizing stochastic
deviations across different historical signals in stream s and
ε(t) denotes additive noise. We assume fi(t) and ε(t) are
independent. Through an FPCA decomposition, we have that
fi(t) =

∑∞
k=1 ξikφk(t). This decomposition is an infinite sum,

however, only a small number of eigenvalues are commonly
significantly nonzero. For these values, the corresponding scores
ξik will also be approximately zero. Therefore, we approximate
this decomposition as fi(t) =

∑K
k=1 ξikφk(t), where K is the

number of significantly nonzero eigenvalues.

Xi(t) = μ(t) +

K∑
k=1

ξikφk(t) + ε(t), i ∈ IH. (2)

Here, we follow the standard estimation procedures in [8]
and [48] to estimate the model parameters, where μ(t) is ob-
tained by local linear smoothers [49], while K is selected to
minimize the modified Akaike criterion. Now, given that the
in-service unit r lies in the same functional space spanned by
φk(t), our task is to find the individual distribution of ξrk using
the partially observedmultistream data from unit r. Specifically,
we aim to find Xr(t) = μ(t) +

∑K
k=1 ξrkφk(t) + ε(t).

B. Estimation for Prior Distribution of FPC Scores Via GP

Next, we estimate the prior distribution of ξrk based on the
key premise that Xr(t) will behave more similarly to Xi(t) for
some units i ∈ IH whose signalsX(l)

i (t) for l ∈ L−s are similar

to the corresponding signals of the in-service unit X(l)
r (t). To

this end, for k ∈ {1, . . .,K}, we model a functional relationship
between [ξ1k, . . ., ξNk, ξrk]

′ and X
(l)
i (t), . . ., X

(l)
N (t), X

(l)
r (t)

for l ∈ L−s as

[ξ′k, ξrk]
′ = Gk

(
X

(−s)
1 (t), . . .,X

(−s)
N (t),X(−s)

r (t)
)
+ εξk

(3)

whereX(−s)
i (t) = [X

(l)
i (t)]l∈L−s for i ∈ I , ξk = [ξik]i∈IH , and

εξk ∼ N (0, σ2
k).

The idea here, is to model Gk as a GP with a covariance
function defined by a similarity measure between the observed
signals, i.e., a functional similaritymeasure. Specifically, for any
k ∈ {1, . . .,K}, the vector of FPC scores [ξ′k, ξrk]

′ will follow
a multivariate Gaussian distribution[

ξk
ξrk

]
∼ N

(
0N+1,

[
Ck + σ2

kIN ck

c′k c
(r)
k

])
(4)

where Ck ∈ RN×N is constructed such that its (i, j)th ele-
ment is h(i, j;θk) for i, j ∈ IH, ck = [h(i, r,θk)]i∈IH , c(r)k =
h(r, r,θk), and h denotes a covariance function defined as

h(i, j;θk) = αk exp

(
− 1

2

∑
l∈L−s

∥∥X(l)
i (t)−X

(l)
j (t)

∥∥2
l(

β
(l)
k

)2
)
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in which ‖ · ‖l is a semimetric providing a similarity measure
across functions, and αk and β

(l)
k are nonnegative hyperparame-

ters for streams l ∈ L−s. For notational simplicity, we introduce
θk = [αk, β

(1)
k , . . ., β

(s−1)
k , β

(s+1)
k , . . ., β

(M)
k ]′.

To show the validity of the GP (4), we provide the following
proposition.

Proposition 1: The matrix [
Ck+σ2

kIN ck

c′
k c

(r)
k

] corresponding to

the covariance function h(i, j;θk) a valid covariance matrix.
Proof: See Section A in Appendix. �
One possible semimetric that represents the similarity be-

tween two signals can be derived based on FPCA. Let Tt∗ ⊂ T
denote the time domain for observations up to t∗. Note that
we define Tt∗ since the signals of the in-service unit r are
available only for t ∈ Tt∗ . For i, j ∈ I , l ∈ L−s, and t ∈ Tt∗ , the
semimetric based on FPCA for two signalsX(l)

i (t) andX(l)
j (t)

can be represented as∥∥X(l)
i (t)−X

(l)
j (t)

∥∥
l

=

√√√√K(l)∑
k=1

(∫
Tt∗

[
X

(l)
i (t)−X

(l)
j (t)

]
ψ
(l)
k (t)dt

)2

(5)

where ψ
(l)
k (t) is kth eigenfunction derived by the FPCA on

X
(l)
i (t) for i ∈ I and t ∈ Tt∗ , and K(l) is the number of

eigenfunctions. We would like to point out that
∫
Tt∗ [X

(l)
i (t)−

X
(l)
j (t)]ψ

(l)
k (t)dt is the difference between the FPC scores of

X
(l)
i (t) and X

(l)
j (t) associated with ψ

(l)
k (t), which implies that

thismetricmeasures the Euclidean distance between two vectors
composed of the corresponding FPC scores.
In order to optimize the hyperparameter Θk = [θ′

k, σk]
′

for the multivariate Gaussian distribution (4), we maximize
the marginal log-likelihood function of ξk = [ξ1k, . . ., ξNk]

′

given X
(−s)
1 (t), . . .,X

(−s)
N (t). Let X denote the obser-

vations of signals X
(l)
i (t) for l ∈ L−s units i ∈ IH,

that is X = {X(l)
i (t)|t ∈ T

(l)
i , l ∈ L−s, i ∈ IH} where T

(l)
i =

{tiu|i ∈ IH, l ∈ L(−s), u = 1, . . ., p
(l)
i }. Also, let zik denote the

true underlying latent values corresponding to the FPC scores
ξik and let zk = [z1k, . . ., zNk]

′. Then the marginal likelihood
is given as

P (ξk|X ,Θk) =

∫
P (ξk|zk,X ,Θk)P (zk|X ,Θk)dzk

=

∫ ∏
i∈IH

P (ξik|zik,X ,Θk)P (zk|X ,Θk)dzk

where P (ξik|zik,X ,Θk) = N (0, σ2
k) and P (zk|X ,Θk) =

N (0N ,Ck). The second equality follows from the fact
that the error is an additive Gaussian noise. Thus,∏

i∈IH P (ξik|zik,X ,Θk) = N (0N , σ2
kIN ) and the log-

likelihood of P (ξk|X ,Θk) is

logP (ξk|X ,Θk) = −1

2

〈
Ξk, (Ck + σ2

kIN )−1
〉
tr

− log
∣∣Ck + σ2

kIN
∣∣− n

2
log 2π

where 〈A,B〉tr = trace(AB) and Ξk = ξkξ
′
k. As a conse-

quence, the optimized hyperparameters denoted by Θ∗
k =

[θ∗′
k , σ

∗
k]

′ are found by maximizing the marginal log-likelihood.
More formally, we have

Θ∗
k = [θ∗′

k , σ
∗
k]

′ = argmaxΘk
logP (ξk|X ,Θk).

Followingmultivariate normal theory, the posterior predictive
distribution of ξrk, given (4) and Θ∗

k, is derived as

P (ξrk|ξk,X ,Θ∗
k) = N

(
ξ̂rk, σ̂

2
rk

)
(6)

with

ξ̂rk = ĉ′k(Ĉk + (σ∗
k)

2IN )−1ξk

σ̂2
rk = ĉ

(r)
k − ĉ′k(Ĉk + (σ∗

k)
2IN )−1ĉk.

where ĉk, Ĉk, and ĉ
(r)
k indicate the corresponding covariances

ck,Ck, and c
(r)
k established with the hyperparameter θ∗′

k .
Here, we note that for each k ∈ {1, . . .,K}, we can derive ξ̂rk

and σ̂2
rk using an independent GP as the FPC scores from differ-

ent orthonormal basis functions are uncorrelated. This facilitates
scalability of computation as for different k, we can derive
{ξ̂rk} and {σ̂2

rk} in parallel. As shown in the computational
complexity derivations in Section V, this aspect is important
specifically in a real-time environment, where predictions need
to be continuously updated.
Now combining (2) and (6), we obtain the predictive mean

X̂r(t) and variance σ̂2
r(t) of Xr(t) as follows:

X̂r(t) = μ(t) +

K∑
k=1

ξ̂rkφk(t)

σ̂2
r(t) = σ2

μ(t) +

K∑
k=1

σ̂2
rkφ

2
k(t) + σ2

ε . (7)

Here, note that μ(t), σ2
μ(t), and σ2

ε are model parameters
corresponding to the estimated FPCA model in (2), where σ2

ε

denotes the estimated variance of ε(t). Here, we recall that
X̂r(t) = X̂

(s)
r (t) as the index (s) is dropped for the target

stream.

C. Empirical Bayesian Updating With Online Data

In the previous section, we derive a prior for X̂r(t) and σ̂2
r(t)

using data observed from streams l ∈ L−s. Here, we develop
an empirical Bayesian approach to update X̂r(t) and σ̂2

r(t)
given the target stream (s) observations from the in-service
unit r. Specifically, given the prior distributions P (ξrk) =

N (ξ̂rk, σ̂
2
rk) for each k and given the observations Xr(t) at

t = [tr1, . . ., trpr
]′, the posterior P (ξrk |Xr(t)) is given in

Proposition 2.
Proposition 2: Given that Xr(t) = μ(t) +

∑K
k=1 ξrkφk(t)

+ ε(t), where the prior distribution of ξrk is N (ξ̂rk, σ̂
2
rk), and

the FPC scores are pairwise independent. Then, the posterior
distribution of the FPC scores, such that ξ∗rk = P (ξrk |Xr(t)),
is given as

[ξ∗r1, . . ., ξ
∗
rK ]′ ∼ N (ξ∗,Σ∗)
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where

ξ∗ = Σ∗
(
Σ−1

0 μ0 +
1

σ2
ε

Φ(t)′(Xr(t)− μ(t))

)

Σ∗ =

(
1

σ2
ε

Φ(t)′Φ(t) +Σ−1
0

)−1

with

μ0 =
[
ξ̂r1, . . ., ξ̂rK

]′
Σ0 = diag

(
σ̂2
r1, . . ., σ̂

2
rK

)
Xr(t) = [Xr(tr1), . . ., Xr(trpr

)]′

μ(t) = [μ(tr1), . . ., μ(trpr
)]′

Φ(t) =

⎡
⎢⎢⎣
φ1(tr1) . . . φK(tr1)

...
. . .

...

φ1(trpr
) . . . φK(trpr

)

⎤
⎥⎥⎦ .

Proof: See Section B in Appendix. �
Based on the updated FPC scores for in-service unir r, the

posterior predicted mean X̂∗
r(t̃), of Xr(t) for any future time

point t̃ ≥ t∗, where t̃ ∈ T is given as

X̂∗
r(t̃) = μ(t̃) +

K∑
k=1

ξ∗rkφk(t̃).

Similarly, the posterior variance (σ̂∗
r(t̃))

2 can be computed as

σ̂∗2
r (t̃) = σ2

μ(t) +
K∑

k1=1

K∑
k2=1

(Σ∗)k1k2
φk1

(t̃)φk2
(t̃) + σ2

ε

where (Σ∗)k1k2
indicates the (k1, k2)th element of the covari-

ance matrix Σ∗.
Despite our focus on the target stream s, we note that our

framework can predict every individual stream for the in-service
unit r. This ability to provide individualized predictions is a
key feature of the proposed methodology compared to the data
fusion literature that predicts a single aggregated signal. Further,
one differentiating factor is that we allow irregularly sampled
data from each stream, where time points of each signal {t(l)iu :

u = 1, . . ., p
(l)
i } ⊂ T do not need to be identical or regularly

spaced across streams. Indeed, such situations are quite common
in practice because most multistream data are gathered from
different types of sensors. Therefore, the proposed approach is
applicable to a wide array of practical situations.

V. COMPUTATIONAL COMPLEXITY

Since we work in the regime of streaming data, the frequency
with which we receive data is very high. Moreover, we collect
data frommultisensors, which usually leads to a larger scale data
than of a single sensor system. Due to this, our model needs to
be efficient in terms of the time taken to make each update.
Here, we note that the proposed Bayesian updating can be

done efficiently due to two important features of FPCA: linear-
ity and orthogonality. Despite being nonparametric, the FPCA
features a linear combination of orthogonal eigenfunctions and

their FPC scores. Thus, online updates can be done in closed
form as Proposition 2. Furthermore, since the eigenfunctions are
orthogonal, the estimation procedure of the GP priors placed on
FPC scores in Section IV-B is parallelizable. This implies that
reestimating and updating the model in a real-time setting can
be done instantaneously.
More rigorous complexity analysis is provided as follows.

With the assumption that all signals from M streams have Q
observations, the complexity of multivariate FPCA for multi-
stream data is O(M2NQ2 +M3Q3) [35]. In our model, the
computationally expensive steps are the FPCA for the target
stream (see Section IV-A) and the implementation of GP for
estimating the FPC scores (see Section IV-B). Following [47],
the complexity of the former is O(QN2 +N3). While com-
plexity of a GP with an N ×N covariance matrix is O(N3)
[50]. Given that we implement K independent GP models the
complexity of estimating the FPC scores isO(KN3). Combin-
ing the above observations, we conclude that the complexity of
our procedure is O(QN2 +N3 +KN3). Typically, we have
that M,N,K � Q, also, in real-time Q is increasing. Thus,
our model is clearly more efficient than multivariate FPCA and
applicable in a real-time streaming environment.

VI. NUMERICAL CASE STUDY

A. General Settings

In this section, we discuss the general settings used to as-
sess the proposed model, denoted as FPCA-GP. We evaluate
the model by performing experiments with both synthetic and
simulation-baseddata.We report the prediction accuracy at vary-
ing time points t∗ for the partially observed unit r. Specifically,
for the time domainT = [a, b], we assume that the online signals
from the in-service unit r are partially observed in the range of
[a, t∗ = a+ γ(b− a)], referred as γ-observation. We set γ =
25%, 50%, and 75% for every case study. In the extrapolation
interval [t∗, b], we use the mean absolute error (MAE) between
the true signal value XT

r (t) and its predicted value X̂
(s)
r (t) at

U evenly spaced test points (denoted as tu for u = 1, . . ., U ) as
the criterion to evaluate our prediction accuracy.

MAE =
1

U

U∑
u=1

∣∣X̂(s)
r (tu)−XT

r (tu)
∣∣, tu ∈ [t∗, b]. (8)

We report the distribution of the errors acrossG repetitions using
a group of boxplots representing the MAE for the testing unit
r at different γ-observation percentiles. Further, we benchmark
our method with three other reference methods for comparison:
1) The FPCA approach for single stream settings denoted as
FPCA-B. In this method, we only consider the target stream
s [15], [20]. Note that we incorporate our Bayesian updating
procedure to update predictions as new data is observed. 2) The
empirical Bayes random effects model with a general polyno-
mial function, whose degree is determined through an Akaike
information criteria [11], [51], [52]. We denote this method
as EBRE. The EBRE model intrinsically applies a Bayesian
updating scheme as more data are obtained from the in-service
unit. 3) The sparse convolved MPG denoted as SMGP [18]. We
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Fig. 2. Illustration of generated true curves (90% heterogeneity case).

choose the SMGPamong variousMGP-basedmodels (e.g., [20],
[22]) because SMGP can scale to our dataset. We follow model
settings for the SMGP given by [18]. Note that the SMGP is also
performed only on a single target stream. Detailed codes for the
reference methods are included in online supplement.

B. Numerical Study With Synthetic Data

First, we show the numerical results of the proposed model
performed on synthetic data. For this experiment, we assume
that two streams l ∈ {1, 2} of data are observed from two
different sensors embedded in each unit. The target stream of
interest is l = 1. To generate signals possessing heterogeneity,
we suppose there are two separating environments, denoted by
environment I and II. We generate signals for each unit using
different underlying functions depending on which environment
the unit is in. This is illustrated in Fig. 2. As shown in this
figure, the underlying trend of the target stream (l = 1) will vary
under different profiles of stream l = 2. To relate this setting
with real-world application, consider l = 1 as the degradation
level and l = 2 as the temperature profile. Then, from Fig. 2, we
have that units operating under different temperature profiles
will exhibit different trends.
We generate a training set of N = 50 units and one testing

unit r whose signals are partially observed. Also, we repeat
the experiment G = 100 times. Historical units are operated
in either environment I or II, whereas the in-service unit is
operated in environment II. The population of historical units
is created according to three levels of heterogeneity: 1) 0%
heterogeneity where all units in the historical database are op-
erated under environment II (similar to that of the testing unit).
2) 50% heterogeneity where 25 units are distributed to each
environment. 3) 90% heterogeneity where only five units are
assigned to environment II. Conducting the experiments across
a homogeneous setting and a heterogeneous setting, where the
in-service unit belongs to the minority group with only 10%
ratio, will allow us to investigate the robustness of our approach.
For units in environment I, the signals from respective

streams l = 1, 2 are generated according to X
(1)
i (t) = 0.3t2 −

2 sin (w1,iπt) + wI
2,i and X

(2)
i (t) = 2w1,i sin t, where w1,i ∼

N (0.4, 0.032) andwI
2,i ∼ U(0, 5), where U denotes the uniform

distribution. For units in environment II, we generate the sig-
nals as X

(1)
i (t) = 0.3t2 − 2 sin (w1,iπt

0.85) + 3(arctan(t−
5) + π

2 ) + wII
2,i and X

(2)
i (t) = 2w1,i sin 0.3t, where wII

2,i ∼
U(1.5, 6.5). Measurement error ε1 ∼ N (0, 0.32) for stream 1
and ε2 ∼ N (0, 0.052) for stream 2 are assumed.

Fig. 2 illustrates training signals X(1)
i (t) in the case of 90%

heterogeneity. It is crucial to note that at early stages (ex:
γ = 25%), it is hard to distinguish between the two different
trends in stream l = 1. We model that on purpose to check if our
model can leverage information from stream l = 2 to uncover
the underlying heterogeneity at early stages. This in fact is a
common feature in many health-related applications, as many
diseases remain dormant at early stages and it is only through
measuring other factors we can predict their evolution early on.
The results are illustrated in Figs. 3, 4, and Table I. Based

on the results, we can obtain some important insights. First, the
FPCA-GP clearly outperforms the FPCA-B. This is specifically
obvious at early stages (γ = 25%) and when the data exhibits
heterogeneity (90% and 50% heterogeneity). This confirms the
ability of our model to borrow strength from information across
different streams to discern the heterogeneity and enhance pre-
dictive accuracy at early stages. This result is very motivating
specifically since at γ = 25% data from in-service unit r is
sparse and all signals in stream s have similar behavior, which
makes it hard to uncover future heterogeneity. It further implies
that the FPC scores of the testing unit are appropriately estimated
by the proposed approach, as shown in the first column of Fig. 3.
From the figure, we observe that the estimated prior mean from
the FPCA-GP appropriately follows the signals in environment
II, whereas the prior mean from the FPCA-B follows the signals
in environment I,which is themajority. Second, as expected, pre-
diction errors significantly decrease as the percentiles increase.
Thus, our Bayesian updating framework is able to efficiently
utilize new collected data and provide more accurate predictions
as t∗ increases. Third, the results show that EBRE behaved the
worst and its predictions accuracy merely decreases at later
stages. This result illustrates the vulnerabilities of parametric
modeling and demonstrates the ability of our nonparametric
modeling to avoid model misspecifications. Fourth, the results
confirm that even in the case, where other streams have no effect
on the target stream (0% heterogeneity) the FPCA-GP is com-
petitive compared to FPCA-B. This highlights the robustness of
the FPCA-GP. Finally, the FPCA-GP significantly outperforms
the SMGP in both predictive performance and computation
time. This shows that an MGP-based model is vulnerable even
in the case of the moderate number of outputs (N = 50) as
they are required to optimize the negative likelihood in a high-
dimensional nonconvex space [22]. Furthermore, the results
in Table I showcase that the FPCA-GP performs considerably
better than SMGP in a computational perspective even though
the SMGP involves the target stream only. This supports the
discussion on complexity in Section V.

C. Numerical Study With Simulation-Based Data

In this section, we discuss the numerical study using
simulation-based data provided by the National Aeronautics
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Fig. 3. Illustration of the FPCA-GP and FPCA-B prediction (90% heterogeneity case). The first column illustrates the respective prior mean of FPCA-GP and
FPCA-B before updating in the case of 25%-observation.

Fig. 4. Box plots of MAEs for comparative models for synthetic data.

TABLE I
COMPUTATION TIME (SECONDS) WITH DIFFERENT

HETEROGENEITY RATIO (H-RATIO)

Fig. 5. Schematic diagram of turbofan engine (reproduced figure of the
original imagein [55]).

and Space Administration (NASA). The dataset contains degra-
dation signals collected from multiple sensors on an aircraft
turbofan engine. This dataset was generated from a simulation
model, developed in MATLAB Simulink, called commercial
modular aero-propulsion system simulation (C-MAPSS). This
system simulates degradation signals from multiple-sensors,
installed in several components of an aero turbofan engine, under
a variety of environmental conditions. The list of the components
includes Fan, LPC, HPC, and LPT, and is illustrated in Fig. 5.
The dataset is composed of 21 sensor streams from 100 training
and 100 testing units. The sensors are listed in Table II. Refer
to [53] formore details about turbofan engine data. The dataset is
available at [54]. Following the analysis of [32], we preprocess
the dataset as follows. We select the 11 most crucial streams:
T24, T50, P30, Nf, Ps30, phi, NRf, BPR, htBleed, W31, and
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TABLE II
LIST OF SENSORS ON TURBOFAN ENGINE

Fig. 6. Selective examples for degradation signals from turbofan engine data.
Signals from two example units are illustrated.

W32. Some signals from these streams are shown in Fig. 6. To
remove the nondefective phase of the signals, we truncate the
time range (0,100] and predict the testing signal over the time
range (100, 160].

Table III demonstrates that the MAE results of stream 2, 4, 7,
8, 12, and 15. Note that we choose these streams since they have
shown to have the largest impact on failure [35]. Note that we
include the standard deviation of MAE across the testing units.
Table IV presents the MAE results of the worst cases for the
chosen sensor. We provide the results because it is important
in real-applications to achieve robust performance for every
possible unit.
The results clearly show that our approach is farmore superior

than benchmarks for the simulation-based data. For all provided
cases, the mean of MAE for the FPCA-GP is less than that
of the FPCA-B and the SMGP. Once again this highlights the
importance of leveraging information from all streams of the
data. Another important insight from this study is that our model
was able to outperform the EBRE even though the curves from
Fig. 6 seem to exhibit a clear parametric trend. This further
highlights the robustness of our method and its ability to safe-
guard against parametric misspecifications. Finally, we find that
FPCA-GP outperforms the other benchmark models even in the
worst predictions, except for a few cases.

VII. CONCLUSION

In this article, we developed a nonparametric statistical model
that can extrapolate individual signals in a multistream data set-
ting.Using both synthetic and simulation-based data,we demon-
strated our model’s ability to borrow strength across all streams
of data, predict individual streams, account for heterogeneity,
and provide accurate real-time predictions, where an empirical
Bayesian approach updates our predictor as new data is observed
in real-time. Complexity analysis was discussed and this showed
that the method enjoys computational efficiency comparing to
existing multivariate FPCAmethods. The proposedmethod out-
performed benchmarks in both synthetic and simulation-based
data. In particular, the numerical results showed that our model
well revealed the future behavior of signals even at the early
stages, which implies a huge applicability in various fields.
We conclude by discussing possible directions for future

work. The current approach is built upon FPCA, which may
suffer difficulty to deal with multivariate inputs. For example,
onemay have spatial-temporal data as inputs of the target stream
in amultistream system. Tackling such a case will be an interest-
ing problem and we leave it as future work. Another challenge
inherited from FPCA is that the time domain of observations
across units within a stream is assumed to be identical. A
promising direction regarding the issue for future work can be
to propose an extrapolation method for the data in multistream
environments, especially for the case, where time domains vary
across the units.

APPENDIX

A. Proof of Proposition 1

Proof: Hereon, unless there is ambiguity, we suppress super-
scripts (l) on X

(l)
i (t) and β

(l)
k and let K = K(l) in the proof

where this does not lead to confusion. Also, let 〈·, ·〉 and 〈·, ·〉F
denote the inner product in theHilbert space and an inner product
space F , respectively.

Note that the matrix [
Ck+σ2

kIN ck

c′
k c

(r)
k

] is a valid covariance

matrix if and only if h(i, j,θk) is a valid kernel. Let us define
the kernels

h̄l(i, j,θk)=exp

(
−
∥∥Xi(t)−Xj(t)

∥∥2
l

2β2
k

)
, l ∈ {1, . . ., L−s}.

(9)
Note that h(i, j,θk) is the sum of the product of nonnega-

tive hyperparameter αk and h̄l(i, j,θk) for l ∈ {1, . . ., L−s}.
Following kernel theory [56], h(i, j,θk) is a valid kernel if
h̄l(i, j,θk) for l ∈ {1, . . ., L−s} are valid. Let us now prove that
h̄l(i, j,θk) is valid.

Definition 3: Akernel is a two-argument real-valued function
over A×A (κ : A×A → R) such that for any x1,x2 ∈ A

κ(x1,x2) =
〈
ω(x1), ω(x2)

〉
F (10)

for some inner-product spaceF such that ∀x1 ∈ A, ω(x1) ∈ F .
To prove that κ is a valid kernel, showing that a mapping ω

exists that gives (10) is sufficient. We thus aim to show that our
proposed kernel h̄ can induce the mapping.
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TABLE III
MEAN AND STANDARD DEVIATION (STD.) OF COMPARATIVE MODELS PERFORMED ON THE NASA DATASET

All values except for the sensor 4 are scaled by ×10−2. The best result in each case is boldfaced. Note that the increasing of MAE along with the case of 25%, 50%, and
75%-observation does not mean the predictive accuracy decreases, since the number of time point Q is different.

TABLE IV
MAES OF THE WORST CASES OF COMPARATIVE MODELS PERFORMED ON THE NASA DATASET

All values except for the sensor 4 are scaled by ×10−2. The best result in each case is boldfaced.

By the equation (5), the semimetric
∥∥Xi(t)−Xj(t)

∥∥
l
can be

presented as∥∥Xi(t)−Xj(t)
∥∥
l

=

√∑K

k=1

(∫
Tt∗

[Xi(t)−Xj(t)]ψk(t)dt

)2

=

√∑K

k=1

(∫
Tt∗

Xi(t)ψk(t)dt−
∫
Tt∗

Xj(t)ψk(t)dt

)2

.

(11)

Note that
∫
Tt∗ Xi(t)ψk(t)dt ∈ R is an inner product.Consider

a real-valued vector x(i) = [x1(i), . . ., xK(i)]′ ∈ RK , where
xk(i) =

∫
Tt∗ Xi(t)ψk(t)dt. Then, the semimetric (11) can be

represented as the Euclidean norm
∥∥x(i)− x(j)

∥∥
2
, which al-

lows us to represent the function h̄(i, j,θk) as

h̄l(i, j,θk) = exp

(
−
∥∥x(i)− x(j)

∥∥2
2

2β2
k

)
. (12)

Without loss of generality, let β2
k = 1. Then

h̄l(i, j;θk)

= exp

(
−
∥∥x(i)− x(j)

∥∥2
2

2

)

= exp

(
−
∥∥x(i)∥∥2

2

2

)
· exp

(
−
∥∥x(j)∥∥2

2

2

)

· exp
(〈

x(i),x(j)
〉)

= exp

(
−
∥∥x(i)∥∥2

2

2

)
· exp

(
−
∥∥x(j)∥∥2

2

2

)

·
∞∑

n=0

〈
x(i),x(j)

〉n
n!

=

∞∑
n=0

(〈
n

√
ζ(i)

n!
x(i),

n

√
ζ(j)

n!
x(j)

〉)n

=

∞∑
n=0

∑
∑K

k=1 nk=n

(
n

√
ζ(i)

n!

(
n

n1, . . . , nK

)1/2

× (x1(i))
n1 . . . (xK(i))nK

· n

√
ζ(j)

n!

(
n

n1, . . . , nK

)1/2

(x1(j))
n1 . . . (xK(j))nK

)

=

〈
Ψ(i),Ψ(j)

〉

where

ζ(i) = exp

(
− 1

2

∥∥x(i)∥∥2
2

)

Ψ(i) =[
ζ(i)

(
n

n1, . . . , nK

)1/2

(x1(i))
n1 . . . (xK(i))nK

]′
n=0,...,∞,
∑K

k=1 nk=n

.

Hence, there exists a mappingΨ corresponding to (10). There-
fore, h̄l(i, j,θk) is a valid kernel. �

B. Proof of Proposition 2

Proof: Let us define Y (t) = Xr(t)− μ(t). Using Bayes’
theorem, we can derive the posterior distribution of the FPC
scoreξ = [ξr1, . . ., ξrK ]′ as follows:P (ξ

∣∣Y (t)) = P (ξ,Y (t))
P (Y (t)) =

P (Y (t)
∣∣ξ)P (ξ)

P (Y (t)) ∝ P (Y (t)
∣∣ξ)P (ξ). The distributionP (Y (t)

∣∣ξ)
is represented as

P (Y (t)|ξ) = P (Y (tr1), . . ., Y (trpr
)|ξ)
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Fig. A.1. Simple example of multistream longitudinal data.

=

pr∏
u=1

P (Y (tru)|ξ)

= N
(
Y (t)|Φ(t)ξ,′ σ2

ε Ipr

)
. (13)

Given the prior distribution P (ξ) = N (ξ|μ0,Σ0) and using
normal distribution theory, the posterior distributionP (ξ|Y (t))
is a normal distribution derived as

P (ξ|Y (t)) = N (ξ̂, Σ̂)

where

ξ̂ = Σ̂

(
Σ−1

0 μ0 +
1

σ2
ε

Φ(t)′Y (t)

)

= Σ̂

(
Σ−1

0 μ0 +
1

σ2
ε

Φ(t)′ (Xr(t)− μ(t))

)

Σ̂ =

(
1

σ2
ε

Φ(t)′Φ(t) +Σ−1
0

)−1

.

Note that ξ̂ = ξ∗, Σ̂ = Σ∗, and P (ξ|Y (t)) = P (ξ|Xr(t))
since μ(t) is fixed. �

C. Comparison to Functional Clustering Methods

In this section, we discuss the differences between our
approach and functional clustering methods for longitudinal
data [57]–[61]. The main differences are 1) whether knowledge
transfer across streams occurs and 2) whether the extrapolation
of incomplete signals is conducted.
To be detailed, we provide a simple hypothetical example of

three (two historical and one in-service) units with two sensors,
illustrated in Fig. A.1. Assuming that each signal has been col-
lected for t ∈ [0, 10], we are operating the in-service unit 3 and

now the current time is t∗. The goal is to extrapolate the evolution
of the signal of the target stream 1 for the in-service unit 3. In this
setting, a single-stream functional clustering method [57]–[59]
would not performwell as every signal in stream 1 for t ∈ [0, t∗]
exhibits a similar trend, resulting in clustering every target signal
into the same class. On the other hand, our proposed model
can effectively infer the difference by leveraging knowledge
obtained from stream 2; in stream 2, the signal from unit 1 is
more similar to that of unit 3 rather than 2, hence it is reasonable
to expect that the future evolution of the target signal from the
unit 1 will be similar to that of unit 3. That is, ourmodel transfers
information across streams.
Furthermore, the functional clustering methods do not pro-

vide extrapolation of an incomplete signal, which is one of
the significant components of our model. Remark that there
are several studies on functional clustering for multivariate
longitudinal data (e.g., [60], [61]) accounting for similarities
across streams. However, they mainly focus on clustering and it
is not straightforward to incorporate the extrapolation procedure
into their framework, while our approach seamlessly integrates
the empirical Bayesian updating for computationally efficient
extrapolation.

D. Computer Specifications

We utilize Intel(R) Core(TM) i7-8700 CPU @ 3.40 GHz (8
CPUs) and 32 GB RAM. We implemented all algorithms in R
version 3.5.0.
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