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Abstract—Traffic sensing has been revolutionized with the
commoditization of GPS technology. Smartphone navigation
applications ubiquitously track vehicles as samples of the overall
traffic. This so-called Probe Vehicle Data (PVD) has replaced
traditional road-side sensor technologies, such as induction loops
and microwave sensors, given its relative low cost, good coverage,
and reliability. However, while PVD allows us to assess speed and
by extension the overall traffic condition in a road network, this
sample-based approach does not provide us with traffic flow,
i.e., the number of vehicles passing through an edge of the road
network. This paper bridges this gap by proposing and evaluating
a range of methods to infer traffic flow for a road network that
is ubiquitously observed using probe data but having traffic flow
measurements only in very road-side sensor locations. We create
Road Segment Archetypes that relate PVD speeds to flow from
road-side sensors for these locations. These archetypes are then
extended to the entire network covered only by PVD based on
similar traffic characteristics. Using these archetypes we augment
and experimentally evaluate different traffic flow estimation
models using real-world traffic data. Experimental results show
that the Road Archetype flow estimation is comparable to the
accuracy of prediction models that would be based on actual
road-side sensor flows.

Index Terms—Modeling, Estimation, Traffic Flow, Road Net-
works, Road Segment Archetypes, Probe Vehicle Data

I. INTRODUCTION

With the proliferation of smartphones, Probe Vehicle Data

(PVD) has become the prevalent means for monitoring traffic

conditions. Such probe data provides speed information for

the entire road network. However, it does not provide actual

traffic flow as the fraction of vehicles in traffic captured

by PVD varies considerably over space and time as shown

in [44] and it is not trivial to estimate the actual number

of vehicles in traffic. Traditional means for assessing traffic

have been stationary roadside sensors such as induction loops

and microwave sensors, which capture accurate traffic flow

data at discrete locations throughout the road network and

carefully chosen by traffic management authorities. Due to

the associated cost and unreliability of such a sensor network,

it is infeasible to have complete coverage, and thus, traffic

models are used to infer and estimate flows in networks based

on such sensor readings. Yet, understanding the traffic flow

throughout a network would benefit transportation planning [4]

to efficiently adapt the transportation infrastructure to existing

needs. In addition, having accurate estimates of traffic flow

has applications in traffic [26] and emissions prediction [42].

In this work, our goal is to combine PVD with sparse

stationary roadside sensors and to build a model that esti-

Fig. 1. Traffic Flow and Traffic Speed on Interstate Road I-395 heading north,
January 24th 2017.

mates (rather than measures) traffic flow in the entire network

based on available PVD. To train models to infer traffic flow

from traffic speed, we leverage a small number of stationary

roadside sensors to measure flow. To estimate traffic flow

in other locations, we enrich speed information with learned

periodic (daily, weekly, etc.) patterns of human mobility, as it

has been shown that “daily mobility is, in fact, characterized

by a deep-rooted regularity” [17], [45]. We assess various

statistical and machine learning models with respect to their

suitability to estimate traffic flow based on a learned speed-

flow relationships.

As speed information is available almost for the entire

network, infer traffic flow from traffic speed and a given

road capacity is not a trivial problem. Consider the a 15min

interval of speed and flow data for a typical Tuesday on an

interstate route near Washington D.C. shown in Figure 1.

We observe two major drops in speed; early morning and

late afternoon periods, which coincide with the peak traffic

conditions. During such traffic jams, the speed can drop to as

low as 10mph. Yet, we do not observe a drop in traffic flow.

While vehicles move many times slower during these periods

of congestion, they also move much closer to each other, thus

leading to a higher traffic density, effectively compensating for

the effects of decreased speed. A takeaway here is that speed

does not always correlate with flow.

Traditional approaches used to capture the speed-flow re-

lationship, such as the Bureau of Public Roads (BPR) func-

tion [7], are prone to considerable errors. Such approaches

model this relationship based on the road characteristics and

categories. Specific parameters such as the coefficient and the



exponent of flow in these equations are recorded in relation to

road categories (highway, freeway, etc.). However, even after

tuning these parameters using historic measurements of speed

and flow for specific roads, large errors are still possible in

the estimation of traffic flow.

In this work, we use ubiquitous PVD speed information for

the entire road network in conjunction with a limited number

of flow measurements from stationary sensors throughout

the network. Using additional information such as time and

road information, we test several machine learning approaches

to extrapolate flow information for the entire network. We

devise so-called road segment archetypes that signify speed-

flow relationships for prototypical locations, and use those to

train models in an effort to estimate the flow for arbitrary

locations in the road network. The primary goal of this work

is to propose a system to estimate traffic flow ubiquitously

from sparse traffic flow measurements and ubiquitous speed

measurements from PVD. Our experiments for the Washing-

ton D.C. metropolitan area compare and evaluate different

flow estimation models, and augment these models using our

segment archetype approach. To evaluate our method, we

use traffic flow data provided by the Virginia Department of

Transportation (VDOT) for the greater Washington D.C. metro

area and PVD data provided by INRIX. Our experiments show

that our proposed approach drastically outperforms traditional

solutions to estimate traffic flow from traffic speed, showing

a proof-of-concept that our proposed system can be applied

to other cities where road-side sensors are sparsely placed to

train our proposed segment archetype approach.

To summarize, our contributions are:

• based on vehicular speed and flow, we categorize road

segments into archetypes;

• we model traffic flow of these archetypes based on

vehicular speed and flow periodic patterns;

• using these models, we experimentally provide a com-

prehensive perspective on the strengths and weaknesses

of state-of-the-art prediction and regression models;

• our evaluation uses actual traffic flow and speed measure-

ments for the Northern Virginia/Washington D.C. metro

area.

The remainder of this paper is organized as follows. After a

survey of related work in Section II, we formalize our problem

in Section III. Section IV describes our latent feature extraction

and clustering approach to model different groups of sensor

locations. Finally, in Section V, we show the results of our

experimental evaluation, comparing different regression and

prediction algorithms to estimate flow from traffic speed.

II. RELATED WORK

Our goal is to estimate traffic flow from publicly available

data sources. Towards this goal, the fundamental diagram

[18], [22], [30], [32] describes the relationship between traffic

density, speed and flow. It can be used to infer vehicular

flow from traffic speed and density. The Bureau of Public

Roads (BPR) developed a link congestion function, the BPR

curve [7], which describes traffic speed as a power law of

the flow to capacity ratio. It includes parameters related to

the type of road, as well as the capacity and free-flow speed.

Such functional approaches, while applicable ubiquitously,

introduce large errors, as they cannot learn from available flow

information given by sparsely placed road-side sensors. Our

experimental evaluation in Section V supports this claim by

showing that even in the case where the parameter of these

functions are guessed optimally, the prediction results of BPR

function-based solutions are far inferior to our proposed data-

driven solutions.

Traffic flow, congestion, and other aspects of transportation

networks have been traditionally measured using static road-

side sensors [23], [32], [36], [50] and surveillance cameras

[3], [46], [53]. The respective flow measurements can be

used to train models in order to predict future traffic flow

[24], [35], [50]. However, these quantities are not readily

available for the entire road network given that deploying

and maintaining a stationary sensor network (induction loop

detectors, microwave sensors) is costly. The goal of this

work is to make accurate traffic flow estimation available in

places where only PVD data is available, thus enabling the

aforementioned traffic prediction solutions ubiquituously.

PVD data is obtained by sampling movement typically

using GPS. This data is affected by a measurement error

due to GPS accuracy and the sampling error caused by the

sampling rate, i.e., not knowing where the moving object was

in between position samples [39]. Map matching is needed

to match tracking data to the road network (cf. [5], [28],

[34], [49]. Matching the trajectories to specific road segments,

the average speed [40] can easily be derived. Having large

amounts of vehicles collecting such data for a given spatial

area such as a city (e.g., taxis, public transport, utility vehicles,

and private vehicles) allows us to create an accurate picture

of the traffic condition in time and space. PVD has been

extensively been used in literature to estimate travel times on

road networks, e.g., [3], [11], [31], [40], [48], [52], [54], [56].

However, since PVD uses a sample of vehicles, it cannot be

used directly to measure traffic flow. Further, given that the

sample size varies over time and space [44], estimating traffic

flow based on PVD presents a challenge.

Several studies have used different approaches to estimate

traffic flow for entire road networks. Lefebvre et al. [25] use

data collected from acoustic sensors; a technology introduced

to overcome the prohibitive cost of stationary sensors. Current

installation of such sensors are limited, compared to the

wide availability of PVD data. Cellular phone data has been

leveraged to estimate traffic flow [8], using the handover from

one base station cell to another as an indicator of traffic

flow. This approach is limited, as it may estimate the flow

only at the boarders of base station cells, but not within the

area of coverage of a cell. A real-time traffic flow estimation

from videos taken by unmanned aerial vehicles is proposed

in [21]. This approach raises privacy concerns and it is

uncertain to what extent it is cost-efficient, or scalable for

ubiquituous traffic flow estimation. Graph-based deep learning

models have been recently proposed to capture spatial and



temporal dependencies of the road network graph, including

temporal graph convolutional networks [55], spatio-temporal

graph convolutional networks [51], traffic graph convolutional

long short-term memory neural networks [9], dynamic spatio-

temporal graph convolutional neural networks [10], attention

based spatial-temporal graph convolutional networks [19], and

diffusion convolutional recurrent neural networks [27]. These

models still require large collections of traffic flow data for

training, which is not always feasible as explained. Snowdon

et al. [44] study the spatio-temporal coverage of PVD samples

in relation to flow using historic data collected for the Wash-

ington DC area. This respective coverage is used to estimate

the total flow based on the number of current PVD samples.

The approach is limited and cannot easily be generalized as

the sample size varies with time and space (roads). Relevant

to our contribution, [1], [33] combine the speed estimated

by PVD with the fundamental diagram to estimate traffic

flow. However, directly inferring traffic flow from the average

speed of sparse GPS samples leads to erroneous results, as the

sample of vehicles is often a non-representative subset of the

full set of vehicles on the roads. Meng et al. [31] combines

data collected by static sensors and taxi trajectories in a semi-

supervised learning model to infer the city-wide traffic flow.

Aslam et al. [2] study the case of learning a regression model

from a roving sensor network of taxi probes. However, it is

not clear if taxi flow can be leveraged to generalize to general

traffic flow, as taxis may be a biased sample of the population.

III. PROBLEM DEFINITION

Before discussing our solution to ubiquitous traffic flow

estimation, we first recapitulate the traditional definitions of

the basic traffic quantities, as described by the Highway

Capacity Manual [30]:

Definition 1: Traffic Flow is defined as the rate, per time,

at which vehicles pass a point on a traffic-way.

Definition 2: Travel Speed is the average speed, in kilo-

meters per hour, of a traffic stream computed as the length of

a highway segment divided by the average travel time of the

vehicles traversing the segment.

In the remainder of this paper, we refer to “travel speed” as

“average speed”, or simply as “speed”.

Definition 3: Traffic Density is the number of vehicles on

a roadway segment averaged over space, usually expressed as

vehicles per kilometer.

The relationship between flow, speed and density is de-

scribed by the fundamental diagram of traffic flow [30].

Figure 2 shows the relationship of speed and flow. These

diagrams however, are over-simplified models of the actual

relationships. For instance, Figure 3 shows the scatter-plot of

real measurements of flow and speed over one week period

from a sensor of I-395 northbound. We can observe that several

values of flow may correspond to the same speed value, which

cannot be captured by a single deterministic function like the

fundamental diagram in Figure 2.

The problem that we address in this paper, is to combine

globally available speed measurements with a limited number

Fig. 2. Fundamental diagram depicting the speed-flow relationship, by the
Highway Capacity Manual [30].

Fig. 3. Traffic speed vs. flow at the I-395 interstate (northbound) on 23
January - 20 February 2017.

of flow time series from specific locations, in order to estimate

the flow at every segment of the road network. This problem

is formalized in the following.

Definition 4: (Flow data) Let L be the set of the locations

of all the road segments in a road network, and let the set

LF = {L1, L2, ...Lm} ⊂ L be the finite set of locations where

the roadside sensors are located, also called the flow locations.

Formally, the traffic flow can be expressed as a function from

the domain of flow locations LF and time T , to the set of

positive real numbers that correspond to the rate of vehicles

passing by L at that time:

F : LF × T → R
+

Definition 5: (Speed data) Travel speed is a function

mapping any road segment locations L and time T , to a

positive real number that correspond to the average speed of

vehicles passing from a segment at a given time:

S : L × T → R
+

We use the notations F (L) and S(L) to refer to the entire

time series of vehicular flow and average traffic speed at a

specific location L. For every flow location L ∈ LF , the time

series of speed S(L), and flow F (L) are known. For any other

location on the road network L ∈ L\LF , only the speed time

series S(L) is available. Furthermore, the coordinates of each

location, the road name, direction, number of lanes and road

category are known for every road segment.



Definition 6: (Traffic Flow Estimation) Let L ∈ L\LF be

the location of a segment of the road network where there is no

roadside sensors. We wish to use the available time series of

speed S(L) at L, as well as the set of available flows {F (l) :
l ∈ LF } and speeds {S(l) : l ∈ LF } from flow locations, to

estimate the traffic flow at L.

We propose a framework that infers flow information for

locations where only speed information is available. Towards

this goal, the next section defines our concept of modeling pro-

totypical road segments as so-called road segment archetypes.

These archetypes are used for supervised classification of

locations. Section V provides a study of different regression

and estimation approaches using this framework.

IV. ROAD SEGMENT ARCHETYPE-BASED TRAFFIC FLOW

ESTIMATION

We combine the available speed and flow time-series from

various roadside sensor locations to build models that capture

the behavior of traffic flow for different parts of the network.

We call these models road segment archetypes. This section

describes our data driven approach for modeling different

archetypes inspired by the classic KDD process [13]: In

a preprocessing step, we first extract features from traffic

speed and traffic flow time-series collected at each road-side

sensor described in Section IV-A. This feature representation

is used to cluster sensor locations into groups of sensor

locations having similar temporal behavior in Section IV-B.

For each cluster, we train a model called a road segment

archetype that maps a sequence of observed traffic speed

measurements together with time information to a traffic flow

value as described in Section IV-C. Finally, in Section IV-D,

we leverage these road segment archetypes to estimate traffic

flow in locations where only traffic speed is known.

A. Latent Feature Extraction

We use the time-series of speed and flow measurements

of each flow location to identify clusters of similar loca-

tions, with respect to their traffic behavior. These time se-

ries typically consist of a large number of measurements,

each of them being a feature of the corresponding flow

location. To reduce the dimensionality of our problem, we

apply Principal Component Analysis (PCA) to extract a

smaller set of latent features for each of the flow locations.

Further technical details on this can be found online at

https://github.com/olgagk/trafficFlowEstimPVD.git.

B. Clustering of Flow Locations

Using observed speed and flow measurements to assess the

similarity between road segments, we group similar segments

together. Each such group is represented by a generalized

segment archetype. The time-series of traffic flow and speed

have daily and weekly periodic patterns caused by the ha-

bitual behavior of drivers. For instance, observed patterns of

commuting on roadways during weekdays typically show con-

gestion in the early morning (in the direction towards the city

center) and late afternoon (in the directions leading towards

residential areas). We aim to form groups of road segments

with similar traffic patterns. This defines a partitioning of the

flow locations in LF into a set of groups C = {c1, c2, ..., cn},

where every group ci ⊂ LF contains a subset of the flow

locations and ci ∩ cj = ∅,∀i 6= j, where ci, cj ∈ C.

To achieve the formation of flow location groups with high-

est similarity between the behavior of traffic characteristics

between the members of each group, we cluster the locations

of LF based on the extracted latent features from both

their speed and flow data. We use hierarchical agglomerative

clustering of the flow locations, manually choosing a similarity

threshold that yields discriminating clusters.

C. Road Segment Archetypes

Each cluster ci ∈ C defines a group of road segments

with similar traffic patterns. We combine the time-series of

speed and flow from all the locations in ci to train a flow

estimation model, which we term road segment archetype. This

archetype model Mi can be later applied on new locations with

similar characteristics. These models describe the relationship

between the time series of speed S(Lj) with the flow F (Lj , t)
at any location Lj ∈ ci at any time t. To take into account

the most recent traffic history of a road segment, our models

use the speed measurements within a time window that starts

at time t − w, ends at time t and includes a total of w

measurements.

Definition 7: (Road Segment Archetype)

Let S[t−w:t](Lj) be the set of w speed measurements at

location Lj , included in the a time window [t− w, t]:

S[t−w:t](Lj) := {S(Lj , t− w), ..., S(Lj , t)} (1)

Then, the road segment archetype model Mi is a regression

model that estimates flow from speed for locations in ci ∈ C:

Mi : (R
+)w ×D × T → R

+, such that:

F (Lj , t) ∼ Mi(S[t−w:t](Lj), d, τ), ∀Lj ∈ ci (2)

where R
+ is the domain of speed values, w-1 is the number

of previous speed measurements that are used to take into

account the most recent traffic history of a road segment, d

is the day of the week (vector of 6 dummy variables), and

τ ∈ T = [0, τmax] is the time of the day. For example, τmax =
24 · 60 = 1440 if the temporal granularity is in minutes.

Training the aforementioned model is not trivial. As dis-

cussed in the introduction, speed does not translate directly

to flow (cf. Figure 3). Our hypothesis is that the dominant

signal of the flow time-series is a periodic curve whose values

depend mostly on the time of the day and the day of the week,

as can be seen in Figure 4. On the other hand, we expect

that the short-term fluctuations of flow should be more related

to the behavior of traffic speed. In the following subsection,

we discuss how we train a regression model using the flow

and speed data of each archetype. This model is then used to

estimate flow at any road segment on a given day and time,



Fig. 4. Traffic Flow at a road segment of I-395 interstate.

using the average vehicular speed of this segment, as well as

the day of the week and time of the day information.

We build our traffic estimation model in two phases. Phase

1 focuses on the periodic nature of traffic flow. We use the

day of the week and the time of the day to get a first rough

estimation of flow.

Figure 4 shows the traffic flow measurements over a period

of (a) one week and (b) one month for a northbound road

segment of I-395. As can be observed, each 24-hour period

follows a pattern with lower flows during night time and

peaks during rush hours (morning commute). Weekends differ

slightly and are less busy than weekdays. These daily and

weekly patterns repeat over several months in our data.

We have observed that the relationship between flow and

time of the day is not linear, and in fact appears to follow

a polynomial pattern. As a result, we employ polynomial

regression on the time of the day.

Phase 2 focuses on the short-term variations of flow that do

not necessarily follow a periodic pattern. These fluctuations

can be correlated with the short-term fluctuations of traffic

speed. Furthermore, short-term history of traffic patterns af-

fects the current value of flow. Therefore we include historic

values of speed within a short-term time window that ends

at the current time. We also train a polynomial regression

model on speed, as the relationship of speed and flow is non-

linear [20].

In our implementation, during Phase 1, we first train a

regression model M
(1)
i on the flow F (ci) of all the members

of a group ci using the day of the week d and the time of the

day τ of measurements as features. F (ci) is the concatenation

of the time series of flow of all the road segments in ci:

F (ci) = ©Lj∈ciF (Lj)

Then we estimate the flow values at these known locations

using the trained regression model. We calculate the difference

between real and estimated flow at these locations. The result

is the time series of the errors from Phase 1. We then use these

errors in Phase 2 to train another regression model M
(2)
i using

S(ci), the concatenation of the time series of speed of all the

road segments in ci:

S(ci) = ©Lj∈ciS(Lj)

Formally, the archetype model Mi of a group ci ∈ C of

Equation 2 can now be expressed as:

Mi(S[t−w:t](Lj), d, τ) =M
(1)
i (d, τ)

+M
(2)
i (S[t−w:t](Lj)) , ∀Lj ∈ ci

(3)

where M
(1)
i is the model trained during Phase 1, using only

temporal features, and M
(2)
i is the model trained in Phase 2,

using traffic speed.

D. Traffic Flow Estimation

Let L ∈ L \ LF be the location of a segment of the

road network where there are no roadside sensors. Let M =
{M0,M1, · · · ,Mk} be the set of road archetype models. A

challenge of this work is to match L with one of the road

segment archetypes, using its speed information as well as

its spatial characteristics (coordinates of the location, road

name, direction, number of lanes, etc.). To achieve this goal,

we classify every new location into one of the road segment

archetypes (i.e., clusters) of the flow locations. In other words,

every cluster ci, which resulted from the unsupervised learning

task of clustering, now becomes a class label for the supervised

learning task of classification. The technical details of this step

can be found in Section V-B.

Having matched l to the appropriate archetype, we can use

its model Mi ∈ M to estimate the traffic flow at L.

Once the new location L ∈ L \ LF has been classified

into one of the existing groups ci, we can apply its archetype

model Mi on S(L), the speed time-series of L, to estimate the

traffic flow at L. This estimation consists of the sum of the

results using the regression models for each of the two phases

described above. Formally, if L has been classified to the road

segment archetype Mi, then the estimation of its traffic flow

is as follows:

〈F (L, t)〉 ∼ M
(1)
i (d, τ) +M

(2)
i (S[t−w:t](L)) (4)

To illustrate our approach, Figure 5 presents an example

of the traffic flow estimation at a road segment of I-395

northbound during January 23-27, 2017. The output of the

polynomial regression of M
(1)
i (d, t) in the first phase is shown

in Figure 5(a). While it adequately approximates the periodic

traffic behavior, it misses the details of the unpredictable

fluctuations in speed and flow. These details are the output

of M
(2)
i (Sd[t−w:t](L

′, d, t) based on traffic speed, as shown

in Figure 5(b). The combination of these two phases provides

a significantly more accurate estimation of the actual traffic

flow, as can be observed in Figure 5(c).

V. EXPERIMENTAL EVALUATION

This section presents the results of our experimental evalu-

ation on data from the Virginia Department of Transportation

(VDOT). All algorithms were implemented in Python. We

used implementations from the scikit-learn [38] Python pack-

age for machine learning and from the Py-earth [41] package

for regression splines. The experiments were performed on a



(a) Output of Phase 1

(b) Output of Phase 2

(c) Total Estimation

Fig. 5. Estimation sample from an I-395 northbound road segment, during
23 – 27 January, 2017.

264GB-memory Intel(R) Xeon(R) 2.40GHz-CPU server run-

ning CentOS Linux. The source code of our implementation,

as well as reproducibility details, can be found online at

https://github.com/olgagk/trafficFlowEstimPVD.git.

A. Data

To evaluate our method, we use traffic speed and flow data.

The flow data has been measured by roadside sensors deployed

by the Virginia Department of Transportation (VDOT). These

sensors are monitoring 36 road segments located on interstates

of the northern Virginia district. Our data contains 3 months

(January 01 - March 31, 2017) of measurements aggregated at

15-minute intervals, constituting a total of 17,280 features for

each of the 36 sensor locations. To reduce the dimensionality

of our problem, we apply Principal Component Analysis

(PCA) to extract a smaller set of latent features for each

Fig. 6. Road segment classification accuracy (%) by different combinations
of features.

of the sensor locations. We chose to retain the first five

principal components (accounting for the most variability of

the data) for the time-series of traffic flow, and the first five

principal components for the speed time-series, for a total of

ten features. The locations for which both traffic speed and

flow measurements are available, i.e., those that belong to the

set LF , are clustered in order to form the representative road

archetype. We employ hierarchical agglomerative clustering,

using Euclidean distance, to form groups of locations based

on their similarity of the latent features of Speed and Flow.

To obtain clusters from the resulting dendrogram, we selected

a distance threshold of 0.0022 yielding 10 clusters of the 36

flow locations.

B. Classification of New Road Segments

The majority of road segments in a transportation network

do not belong to LF , as the roadside sensors are sparsely

scattered throughout the network. Thus, for those road seg-

ments, we cannot combine the information of flow and speed

to assign them to groups in C. Instead, we can use the speed,

together with other known characteristics of a location. We

use nearest-centroid classification and assign the label of the

nearest cluster to the location that is being tested. Euclidean

distance was used as the dissimilarity metric, i.e., the same

metric that we had used in our clustering of flow locations.

The feature vector of each location consists of the top 5 latent

features of speed, as well as the coordinates of the location,

the road name, direction and number of lanes. We normalize

this information so that no attribute will dominate the values

of the other features in the distance metric.

To evaluate the quality of the classification, we performed a

leave-one-out cross validation using the 36 flow locations. The

original cluster id of a location is used as the ground truth for

the location’s class label. The results of our analysis are shown

in Figure 6. Using only the speed information for classification

yields unsatisfactory results; only 61.7% of the sensors were

classified correctly to their original group. Using only the

location information (spatial coordinates) results in an even

lower classification accuracy of 47.1%. Classifications based

only on road name or segment direction yield accuracy of 44%

and 47.1% respectively. Combining multiple features increases

the overall accuracy. The highest classification accuracy was

achieved by combining the information of speed (i.e., the 5



Fig. 7. Root Mean Square Error (RMSE) of the tested models. The proposed
approach (archetype-based) is shown in blue. The BPR function based
estimation is shown in crimson red. Three periodicity-based approaches are
shown in black assuming available historic traffic flow data.

latent features from applying PCA on the speed time series

S(L)), spatial coordinates of the road segment, direction and

road name. The resulting accuracy is 85.29%, which is a strong

result considering that this is a 10-class classification problem,

where random guessing would yield an expected accuracy of

10%.

C. Traffic Flow Estimation Approaches

The approaches that we tested in our experiments include

the proposed road segment archetype based estimation, the

flow estimation based on the BPR formula [7], and a set of

periodicity based approaches, which we describe below.

Archetype-based approach. To evaluate our road segment

archetype based approach, we performed a leave-one-out cross

validation. For each experiment, we consider one of the flow

locations l ∈ LF to be an ‘unknown’ road segment where only

the travel speed is known. The remaining 35 flow locations in

LF \ {l} are the ‘known’ flow locations where both speed

and flow information is available. We cluster these 35 road

segments into groups and classify the remaining ‘unknown’

road segment l into one of these groups. Let g be the group

to which l was classified. We then train a wide range of

regression models (listed below), using the speed and flow

information of the selected group g. We use these road segment

archetype models to predict the traffic flow at l, using the

available speed S(l), day of the week and time of the day

information. We compare the estimated values of flow 〈F (l)〉
with the ground truth F (l), i.e., the actual flow at l. We report

our results of the average RMSE and R2-score, averaged over

all the tested road segments, in Figures 7 and 9 respectively.

We experimented with a variety of models to test their

efficiency in traffic flow estimation, using our road segment

archetype-based approach. This includes a set of Generalized

Linear Models (GLMs), as well as non-linear models, such as

k-nearest neighbor regression, and decision trees. The models

that we tested are the following:

• Polynomial regression fits a polynomial function mini-

mizing the sum of square residuals.

• Lasso regression [47] constrains the sum regression

coefficients, reducing the number of variables of the

problem.

• Elastic Net regression [57] estimates sparse coefficients

like Lasso, while maintaining the regularization proper-

ties of Ridge.

• LARS Lasso [12] is a Lasso model implemented using

the least angle regression algorithm.

• Orthogonal Matching Pursuit (OMP) [37] is a recur-

sive forward feature selection algorithm that approxi-

mates the fit of a linear model, based on the matching

pursuit method [29].

• Multivariate Adaptive Regression Splines [15] is a non

parametric approach using regression splines.

• Nearest Neighbors Regression (kNN) predicts the

inverse-distance weighted average the k nearest neighbors

of a point.

• Decision Tree regression is a non-parametric model that

learns decision rules for prediction.

• AdaBoost [14] is a boosting algorithm for ensemble

models using the weighted average multiple other models.

• Random forests [6] are ensemble models consisting of

decision trees, each built from a subset of the training

set.

• Gradient Boosting [16] is a boosting generalization that

allows for optimization of arbitrary differentiable loss

functions.

After experimenting using w=2 to 15 values of historic

speed in Phase 2, and with polynomial features of up to 9th

degree, we selected (i) w=10, and (ii) polynomial features of

up to 7th degree in both phases, which gave the highest cross

validation accuracy.

BPR. We compare our results against the BPR formula [7]

that describes the relationship between traffic speed and flow,

given by the following equation,

S =
s0

(1 + α ·
(

F
c

)β
)

(5)

where S is the speed, F is the flow, c is the capacity of the

road segment, s0 is the free-flow speed, and α, β are road

parameters. Typical values for α vary from 0 to 1.0 and for

β from 4 to 11 [20], [43]. Solving for traffic flow, Equation 5

becomes:

F = c ·

(

1

α
· (

s0

S
− 1)

)−β

For each road segment, we first optimize the parameters α

and β, given the actual speed and flow measurements, and

the capacity of the segment. As free-flow speed, we used

the maximum speed limit. We use the real speed values to

estimate the flow. Note that in reality, when traffic flow is

unknown, no such initial optimization of the parameters can



Fig. 8. Root Mean Square Error (RMSE) of the proposed approach
(archetype-based), shown in blue, vs. an alternative location-based approach
(orange) which requires traffic flow data measured at every location.

be performed. Instead, the values for α, β and road capacity

of each road segment would be approximated or looked up

in a reference manual. Thus, our results present the best-case

estimation accuracy of the BPR formula.

Periodicity-based approaches. For the same reasons as

above, we also include three periodicity-based estimations: (i)

the weekly periodicity that estimates a flow value as the traffic

flow of the same road segment one week ago (at the same day

and time), (ii) the daily periodicity that estimates a flow value

as the traffic flow of the same road segment 24 hours ago,

and (iii) the last measurement that estimates flow as the last

measurements that was taken 15 minutes ago from the same

sensor.

All these three approaches require past traffic flow values,

which is impractical given the general lack of flow data for

a network. However, our proposed archetype-based approach

compensates for this lack of data and provides excellent flow

estimates as evidenced by this “unfair” comparison.

1) Estimation Quality: Road Archetypes vs BPR error.

The accuracy of our estimation is shown in Figures 7-9 in blue

color. The root mean square error of all the tested methods is

depicted in Figure 7. The highest accuracy is achieved by the

k-Nearest Neighbor regression, followed by the Polynomial

regression (i.e., the Linear regression model using polynomial

features) with a difference of about 7%. kNN manages to

achieve about half (51%) of the RMSE of the corresponding

BPR estimation, even though the latter is based on the real flow

of the road segment rather than the archetype flow. It even

beats the weekly periodicity and is comparable to the daily

periodicity approach, even though these approaches use known

past flow measurements at the location of interest, which our

approach does not use neither for the training phase, nor for

the estimation. The Lasso, Elastic Net, and Spline regressions

also achieved adequate results, with errors that are less than

10% of the road capacity. As expected, the last measurement

Fig. 9. R
2 score of the tested models. BPR (red square) and the (unrealistic)

periodicity-based approaches (black crosses) are included in both graphs.

of flow is actually a very good estimate of the traffic flow at

the same segment 15 minutes later. However, this approach

would require a continuous monitoring of flow everywhere in

the road network, which is in reality not available.

Archetype-based vs Location-based errors. To assess

to what degree our road archetype based models provide

meaningful results, we perform an additional set of exper-

iments, in which we train the regression models using the

original traffic flow and speed of a road segment l ∈ LF as

training data, instead of performing the archetype modelling

of Section IV-C. We then use this model to estimate the traffic

flow at the same segment l. To perform this experiment, we

use the first 1.5 month of the time-series as training and the

next 1.5 month as the test set. Figure 8 shows a comparison of

our archetype based approach to the location based approach,

for each of the models. The location based approaches are

shown in orange color (to the right of each corresponding

archetype-based estimation error) for comparison. It must be

stressed that these results would only be possible if there

existed a recording of flow measurements over time. As

explained in Section I this is infeasible in practice due to

limited sensor coverage. We only include this result to show

that our archetype-based flow estimation at an ‘unknown’ road

segment can give comparable results to those estimations that

are based on known previous traffic flow measurements of the

road segment. It must be noted that while using the real flow

in the training phase of these models yields better results, the

difference is still manageable, 33.09% for kNN, 18.07% for

polynomial regression, and only 7.4% for Lasso. The worst

case is the 36% difference for Splines. On the other hand, the

decision tree based models and ensemble methods performed

on average 3% better using the road archetypes rather than the

original historic flow of the road segment.

Coefficient of determination. The coefficient of deter-

mination (R2-score) is reported in Figure 9. The blue dots

correspond to the models trained by the road archetype speed



Fig. 10. Running time of the tested models. The preprocessing time is not
included for the model comparison.

and flows, while the red square corresponds to BPR, and x

shows the periodicity-based approaches. An R2-score of 1

(green dotted line) implies a perfect regression model, wheras

an R2-score of zero (red dotted line) corresponds to the quality

of a model that predicts a constant mean flow of a segment.

Negative values correspond to poor quality, and there is no

lower limit as a model can be arbitrarily bad. Given that

we assume that we do not know the true traffic flow, any

value of 0 or higher is in reality a very positive result by

our approach. kNN, Polynomial, Elastic Net, Lasso, Spline

and OMP regression all score much higher than the BPR

estimation, while Lasso Lars, decision tree, random forest, Ada

boost and gradient boosting models still achieve somewhat

acceptable performance. kNN regression is the winner with

an R2-score of 0.71, which is 17.8 times better than the BPR,

and only 18.2% lower than the corresponding kNN trained on

the true traffic flow. We remind the reader that the weekly and

daily periodicity, as well as the“last measurement” approaches

are only applicable for the scenario where both traffic speed

and flow measurements of each road segment are available

(location based approach), whereas they can not be used if

no flow measurements are being monitored at a road segment.

The latter is the case for the majority of road segments, due to

the high cost of installation and maintenance of the monitoring

equipment. Thus, these methods, despite their high accuracy,

cannot be used to estimate traffic for the largest part of the

road network.

Overall, the experiments conclusively show that the pro-

posed road segment archetype method is a reliable traffic flow

estimation method for an entire road network with sparse

sensor coverage.

2) Running time: We report the total running time for

training and testing each of the regression models, using

our archetype based approach in Figure 10. Splines can be

computationally expensive compared to simpler models like

lazy k-Nearest Neighbor regression, or Polynomial regression,

that also proved to be more efficient in terms of estimation

quality. In our experiments, kNN regression required just over

a second to run, which is tolerable since it also gives the

lowest estimation errors. Lasso and Elastic Net run within 240

miliseconds. Polynomial regression finished in 94 miliseconds

and is a very good candidate for cases when running time is as

important as the accuracy of the result. The fastest model was

the decision tree with a running time just below 23 miliseconds

with a lower, but acceptable, flow estimation quality.

VI. CONCLUSIONS

Given the advent of novel sensor technology to estimate

traffic conditions, this so-called probe vehicle data provides

us with speed information for the entire road network, but no

traffic flows. This work leverages sparse stationary sensors

and novel PVD data to estimate flow for the entire road

network. Parts of the network with similar traffic patterns

were combined to model Road Segment Archetypes, which are

then used to estimate the traffic flow for the entire network.

Experimental evaluation of a wide variety of regression models

and using real-world traffic data shows that road segment

archetypes provide better estimates than existing methods.

Moreover, the estimates are comparable to hypothetical flow-

based estimates. This is a strong result, given that in our

approach the models never observe any instance of the real

flow at the location of interest. Directions for future work

are to create a flow map for the entire road network and to

empirically verify the results with the respective stakeholders.
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