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Abstract—Ever increasing traffic and consequential congestion
wastes fuel and is a significant contributor to Green House
Gas (GHG) emissions. Contributors here include ride-sharing
services such as Uber, Lyft, and Didi, with their drivers not only
transporting passengers, but also spending a considerable time in
traffic searching for new ones. To mitigate their impact, this work
proposes a novel algorithm to improve the efficiency the drivers’
search for passengers. Our algorithm directs unassigned drivers
to locations where new passengers are expected to emerge. We
use a non-negative matrix factorization approach to model the
time and location of passengers given historical fraining data. A
probabilistic search strategy then guides drivers to nearby loca-
tions for which we predict new passengers. To ensure that drivers
do not over subscribe to such areas, we randomize destinations
and provide each driver with a home location destination when
unassigned. An experimental evaluation using real-world data
from Manhattan shows that our approach actually reduces the
search time of drivers and the wait time of passengers compared
to baseline solutions.

Index Terms—Non-negative matrix factorization, simulation,
discrete event simulation, spatiotemporal search

I. INTRODUCTION

In the United States alone, drivers spend 6.9 billion person-
hours stuck in traffic each year [19], leading to an annual
waste of more than 11 billion liters of fuel [10]. The trans-
portation sector alone contributes 29% of the total US Green
House Gas emissions, of which in turn 59% are contributed
by passenger vehicles [17]. Adding to this balance is the
increasing popularity of ride-hailing services such as Uber,
Lyft, and Didi. Recent research has shown that ride-hailing
causes a vast increase in vehicle kilometers traveled [21], thus
worsening traffic conditions. This result is intuitive, as using
such services incur travel not only during a trip but also to
pick up passengers and drivers cruising in search for the next
passenger. In the future, a fleet of autonomously driving ride-
sharing vehicles will worsen this situation as predicted by
Bryan Mistele, founder and CEO of INRIX in a SIGSPATIAL
2017 keynote'.

The aim of this work is to help mitigate this emerging
problem by providing smart strategies and heuristics for
drivers to intelligently roam the streets while searching for
passengers to minimize the average time of drivers without
passengers (denoted as search time). We assume that drivers
do not know the location of waiting passengers unless the
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passenger is assigned to them. This scenario reflects current
ride-sharing applications such as Uber, Lyft, and Didi, which
give passengers information about the location of nearby
drivers, but do not show drivers the location of nearby
passengers. The milestone reached in this work is to help
drivers make a more educated guess and to reduce resources
(time, fuel, traffic capacity) spent by drivers cruising in search
for passengers. Unlike previous work, we assume that we
can control the direction of drivers when not assigned to
a passenger. Therefore, our goal is not to match drivers to
passengers, but rather, to smartly move idle drivers through the
network to achieve a better assignment in the future. Towards
this goal, we leverage an agent-based simulation framework,
combined with available real-world passenger data (origin and
destination) and employing a non-negative matrix factorization
approach to model and predict the distribution of passengers
over space and time. Given this prediction of passengers and
their locations for a limited time horizon, we provide a strategy
to guide idling drivers to optimize future assignments.

A four-page invited (non-peer reviewed) workshop version
of the idea for this algorithm has been previously pub-
lished [15]. Towards making the leap from an algorithm to
a system, the goal of this paper is to include justification for
technical approaches and parameter settings, provide technical
details for reproducibility, and discuss challenges towards the
deployment of our algorithm in a ride-hailing system. We
also include a thorough experimental evaluation, showing its
superiority to baseline strategies.

These contributions are organized as follows. We first em-
bed our approach in the context of existing work in Section IL
Section IV motivates the rationale by visually exploring a
simulation of drivers in New York City using real passenger
data. Section V-A describes the non-negative matrix factoriza-
tion approach to model and predict passenger demand over
space and time. Using this model, the search algorithm to
guide drivers is detailed in Section V-B. The experimental
evaluation of Section VI shows that our algorithm reduces
the average search time of drivers and the average wait
time of passengers compared to baseline solutions. Towards
adoption of our algorithm by a ride-hailing service provider,
we discuss limitations due to simplifying assumptions made
in Section VII. Finally, we conclude our work in Section VIIL
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II. RELATED WORK

Our survey of related work addresses task assignment in
spatial crowdsourcing and spatiotemporal resource search. We
also discuss existing work on simulations for ride-hailing
applications and review existing solutions for competitive
spatiotemporal searching.

A. Spatial Crowdsourcing

Related to competitive spatiotemporal searching is the prob-
lem of task assignment in spatial crowdsourcing. In spatial
crowdsourcing, each crowd worker (driver) is considered as
a mobile computing unit to complete tasks (reach resources)
using their mobile devices [22], [16]. Task assignment aims to
assign tasks to workers such that the total number of assigned
tasks or the total weighted value of the assigned pairs of tasks
and workers is maximized. Highly efficient solutions for this
problem have been proposed to derive a bi-partite matching
between workers and tasks for the case in which all tasks
(their time and location) are known in advance [11], [14].
Clearly, for the task ride-hailing, neither availability of drivers
nor resources (passengers) can be assumed to be known in
advance. For the online-case of spatial crowdsourcing, where
drivers and resources are unknown beforehand, assignment
solutions have been proposed [20], [23]. However, spatial
crowdsourcing assumes that the location of workers cannot
be changed. Thus, spatial-crowdsourcing is exclusively an
assignment problem, without any notion of moving workers
to locations where future resources may appear. In contrast,
this work considers the generalized problem of re-positioning
drivers during their idle time towards areas having a high
chance of yielding future resources.

B. Spatiotemporal Resource Search

Ayala et al. [3], [4] introduce parking slot assignment games
to analyze parking slot search in a competitive setting. Similar
to spatial crowdsourcing solutions, the goal is to find an
optimal assignment of cars to parking lots, since each car is
removed from the system once a parking lot is found, without
the need to find more resources. A more general version of this
problem is the spatiotemporal resource search problem [12], in
which mobile agents (drivers) minimize search time for finding
resources (passengers) similar to our setting. In our problem,
however, we do not aim to optimize for an individual driver,
and rather optimize a system in which drivers continuously
seek resources rather than searching for a single resource.
Recent work in operations research [5], [6] has considered the
problem of dynamic scheduling for independent, competing
taxis. This work focuses on assigning taxis to passengers in
an optimal way. This work is a special case of the vehicle
routing problem [18]. Most related to our work is a system,
deployed by DiDi [24], which dynamically assigns drivers to
new passengers. All aforementioned works have in common
that the goal is to optimally assign drivers to passengers.
In our setting, we assume that an assignment strategy is
given by simply pairing taxis and passengers based on nearest
neighbors. Our goal is not to match taxis and passengers, but to

distribute unassigned taxis on the network, in such a way that
future passengers can be assigned more efficiently. None of the
aforementioned works consider strategies for drivers to change
their location between trips, as each mobile agent (driver) is
assumed to be terminated once a resource (passenger) has been
found.

C. Traffic Simulation for Ride Hailing

Geospatial simulation approaches have been proposed to
evaluate how different strategies to assign drivers to passengers
have different effects on passenger wait time, reduce system
wide travel times, and maximize revenue of the ride hailing
service provided [2]. A more in-depth study was performed to
see how ride-hailing affects traffic conditions, by estimating
the increase of distance traveled replacing the use of personal
cars with ride-hailing [21]. While our approach also uses
geospatial simulation, we again note that our approach does
not aim at optimizing driver-passenger assignment but, rather,
aims at providing heuristics to drivers that are currently un-
assigned to improve future assignments.

D. Competitive Spatiotemporal Searching

The problem of vehicle relocation for ride-sharing, which
is addressed in this work, has recently been defined as a GIS-
focused algorithm competition part of the ACM SIGSPATIAL
2019 GIS Cup?®. Similar to Spatiotemporal Resource Search-
ing, the goal is to assign passengers to drivers such that the
average idle time of drivers (without being assigned to a
resource) is minimized. In Spatiotemporal Resource Searching
the goal is to find an optimal assignment strategy for a given
search strategy for drivers. In contrast, the problem of vehicle
relocation is to provide a movement strategy for idle drivers,
given a pre-defined assignment strategy that assigns each re-
source (passenger) to their nearest driver subject to a maximum
range. Due to the uncertainty of resource distributions and
drivers’ behaviors, it is a challenge to manage such uncertainty
in evolving spatiotemporal data [25].

Teams having the best results in terms of minimizing search
times were invited to publish their solution in four-page non-
peer reviewed short papers [13], [7], [15], [8]. The work of
[13] employs a k-means clustering approach to partition space
into areas onto which drivers are distributed, weighted by
the observed passenger popularity. The approach of [7] uses
reinforcement learning to compute round trips for drivers to
optimally cover areas weighted by passenger distribution. A
weighted random walk is proposed by [8], which sends drivers
to random destinations weighted by the learned passenger
distribution. Finally, the winner of GIS Cup 2019 [15], upon
which our work is based on, uses a similar approach, but
constraints the set of possible paths by a distance threshold
to avoid long paths, and uses matrix-factorization to obtain a
more accurate passenger distribution. In this work, we extend
the work of [15] by providing more advanced search strategies,
a more thorough experimental evaluation, and details for
reproducibility.

Zhttps://sigspatial2019.sigspatial.org/giscup2019/



ITI. PROBLEM DEFINITION

We want to formally define the problem of competitive
spatiotemporal searching and review the open-source simula-
tion framework COMSET that we leverage to study different
behaviors of drivers while not assigned to a passenger.

Definition 1 (Road Network): A road network is a graph G =
(V, E), where vertices in V' are the intersection of roads, and
edges in E C V x V are undirected road segments connecting
intersections. Each vertex v € V has a geolocation ».[ and
each edge e € E is assigned a travel speed e.speed. A location
in a road network is a pair (e € E,of fset € [0,1]) that
specifies the relative position on an edge between two vertices.

We assume a dataset of resources corresponding to pas-
senger trips. Each resource has an origin (pick-up) location, a
destination (drop-off) location, and a pick-up time upon which
the resource appears (the ride-hailing service is requested).

Definition 2 (Resource Dataset): Let T = {T1,...,T|7|} be
a domain of temporal intervals (or “ticks”). A resource r is a
tuple (I,,t, € T,lq € E) consisting of an origin location [,
and a destination location l4. Time ¢, defines the time at which
the resource appears. A resource dataset D is a collection of
resources.

We use the term “resource” instead of “passenger” to be
consistent with related work on spatial crowdsourcing. While
our work is mainly motivated by ride-hailing, our definition
also applies to applications such as food delivery and other
logistic applications that may not involve passengers. In addi-
tion, we assume a set of mobile agents (drivers) that traverse
the road network searching for resources.

Definition 3 (Mobile Agent): A mobile agent a traverses the
road network at a speed defined by the travel speed e.speed of
the current edge of a. A mobile agent has two possible states:

1) An agent can be unassigned. In this state, the agent follows
a strategy S to traverse the network.

2) An agent may be assigned to a resource (l,,t, € T,lg €
E) € D. In this state, the agent will take the shortest path to
location [, to pick the passenger, and then take the shortest
path from [, to [ to drop off the passenger. Upon reaching
[4, the agent returns to the unassigned state.

Initially, at time 77, all mobile agents are unassigned.

The ride-hailing provider assigns agents to resources. We
assume a simple strategy that assigns a passenger resource to
the nearest agent subject to a maximum distance.

Definition 4 (Agent-Resource Assignment): For assigning
resources to agents, a global variable dzp is defined to denote
that expiration time or the lifetime of a resource. Any resource
that is not assigned within ..p is removed from the system.
Any unassigned resource r is assigned to the closest available
(unassigned) agent a if and only if the time required for a
to reach r is less than the remaining expiration time of r. If
no such agent exists, then the resource is not assigned. Note
that an unassigned resource may still be assigned later, as a

sufficiently assigned agent may drop-off a resource nearby,
thus becoming available. When a resource r is assigned to an
agent a, it is removed from the system, and a will transition
to the assigned state. Any resource that is not assigned after
degp is removed from the system without assignment.

Given all previous definitions, we can proceed to define the
problem of competitive spatiotemporal searching formally.

Definition 5 (Competitive Spatiotemporal Searching): Given
a road network G, a resource dataset D, a set of mobile
agents A and a resource assignment strategy having expiration
parameter d.rp, the problem of competitive spatiotemporal
searching is to find a search strategy S for agents that
minimizes the average agent search time

Y Igpgs.., (uassigned(a, 1)) /|Al,
teT ,acA

where Ig p 5., (unassigned(a,t)) is an indicator function that
returns 1 if agent a is unassigned at time ¢. To create a setting
comparable to real-world ride-hailing applications, we further
assume that search strategy S must not access (does not know)
the current location of resources, and agents are not allowed
to communicate/collaborate.

As an example, a naive search strategy S;,,qom 1€ts unas-
signed agents implement a random walk on the network, thus
choosing a random (chosen uniformly) edge to follow at each
vertex of the road network until the agent is assigned to a
resource. Another naive search strategy will send agents on a
shortest path to random destinations until they are assigned
to a resource. Our strategy to guide agents is described
in Section V. To evaluate different search strategies S, we
leverage a discrete-event simulation framework described as
follows.

Simulation Framework

To evaluate different search strategies, we make use of
the open-source simulation framework called COMpetitive
SEarching Testbed (COMSET)®. COMSET uses a road net-
work (as in Definition 1) from Manhattan, New York City,
USA. Resources are streamed into the simulation, using origin
location, destination location and time of appearance (see
Definition 2)) taken from the New York City Trip Record
Data [1] dataset. All mobile agents (as in Definition 3) are
introduced at the beginning of a simulation, initially located
at a random location on the road network. To assign resources
to agent, COMSET uses the assignment strategy described
in Definition 4 having a resource expiration time of Segp =
10min.

IV. VISUAL DATA ANALYSIS

To motivate the rationale behind our competitive spatiotem-
poral search algorithm introduced in Section V, this section
presents qualitative results that showcase the availability of
drivers and resources over time using real-world data. We

3https://github.com/Chessn/ COMSET-GISCUP
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(a) 9:10 am: Undersupply

(b) 10:30 am: Bad Agent Distribution

(c) 12:00 pm: Oversupply

Fig. 1: Several screenshots from the simulator (pink dot: available resource, blue dot: searching agent)

added a visualization layer to COMSET to show a road
network as well as available resources and searching agents.
Figure 1 shows searching agents as blue dots, while available
resources are shown as pink dots. This figure shows snapshots
of the simulation using a simple heuristic to guide drivers
to a random new destination across the network until they
are assigned to a resource. A video that demonstrates this
visualization continuously for a simulation day is found at
https://sites.google.com/view/dsaa-2020 and is summarized in
the following. For comparison, this video (but not Figure 1)
concurrently shows the simulation using our proposed com-
petitive spatiotemporal resource search algorithm proposed in
Section V.

Undersupply: During the rush hour peak we observe
an undersupply as shown in Figure la, which shows the
simulation at 9:10 am on January 21st, 2016. At this time,
resources become available at such high frequency that drivers
cannot possibly keep up. During this time, drivers that finish
a ride are immediately assigned to their next resource. We
observe many available resources near central park, while only
a few resources are available on the northern and southern side
of Manhattan. Only very few drivers find themselves searching
in the latter resource-deserts with no available resource in
range. But, keep in mind that some of these agents have not
been taken to this desert by their choice, but rather, were taken
there by a destination of another trip. These cases yield a
situation of “anywhere else is better than here,” where even
a simple baseline that guides drivers to a random destination
is likely to lead a driver out of the desert. We note that in
this case of having an undersupply of drivers, there is little
potential to improve the search times of drivers, as most drivers
are instantaneously assigned to new passengers, yielding an
average search time that approaches zero.

Balanced supply: At 10:30 am on the same day, we ob-
serve in Figure 1b that resources are still available near Central
Park. This implies that there is no available driver to assign to

the resources. At the same time, we also see that agents are
searching in other parts of the network. This is an interesting
because, in this case, it is possible to achieve a potential
improvement over this naive random-destination baseline! If
some of the searching agents were close to the available
resources, they could be assigned and would not have to search
any longer. Thus, to make an improvement, searching agents
need to be led to areas where resources are expected to become
available, rather sending them to random destinations. We
note that our video (https:/ sites. google.com/view/dsaa-2020)
shows qualitatively that during this time of 10:30 am our
approach (denoted as ‘Local Search’ in the video) yields a
much better assignment from resources to drivers: Much fewer
resources are waiting for drivers, and much fewer drivers are
searching for resources. This is achieved by ensuring that
drivers are likely to be located where they will be needed
as described in Section V and quantitatively evaluated in
Section VL.

Oversupply: The third case that can be observed in this
simulation is oversupply, as shown in Figure 1¢ during noon on
the same day. During this time, resources become so scarce
that it is impossible to assign each agent to a resource. We
cannot see any available resources, as any new resource is
immediately assigned to a driver in range. However, we see
many drivers searching. While our goal is to minimize the
search time for agents, we must acknowledge that it is not
possible to avoid search times during oversupply. However,
what we can do is to make sure once the demand of passengers
increases, our drivers are readily waiting in the right locations
by predicting future demand but while also avoiding “herding”
too many drivers into the same area. This observation is the
main motivation of our algorithm described in the next section.

To summarize the lessons learned from data visualization,
our only hope of reducing the search time is to reduce search
times is during times when there are searching agents in some
parts of the network, while there are resources available in
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other parts of the network. Towards this goal, we need to
predict these areas of high resource availability, and we have
to direct searching agents to find these resources quickly. In
our video, you can further see that our proposed algorithm is
seemingly perfectly able to supply all resources with agents.
There are few times in which both waiting resources and
searching drivers can be observed at the same time. In the
video, you can see that during the afternoon rush at around
5:50 pm, the network is nearly empty, as all resources and
agents are assigned to each other. Agents move smartly to
locations where they will be needed. We note that the bad
agent distribution in the morning (at around) 10:30 am using
our approach is an artifact resulting from the initial distribution
of agents to uniformly random locations.

V. COMPETITIVE SPATIOTEMPORAL SEARCH (CSTS)
ALGORITHM

To minimize system-wide average search times, we propose
an algorithm to guide drivers that entails two main compo-
nents. First, we leverage a non-negative matrix factorization
approach to build a model that predicts future resource times
and locations given a large collection of past trip records.
We then leverage this prediction to guide searching agents
to minimize their search time, by using a probabilistic search
strategy to send a driver to a nearby location where resources
are predicted within a short time span. The source code is
publicly available at our git repository https://github.com/
Jjoonseok-kim/ CompetitiveSearch/.

A. Spatiotemporal Resource Prediction

Given a large set of resources, each annotated with an origin
location, a destination location, and a time-stamp, we first
aggregate all information in a spatiotemporal resource origin
matrix M. Each cell M;; of M corresponds to the number
of resources that became available in a spatial region ¢ during
time interval j. We define this matrix formally as follows:

Definition 6 (Spatiotemporal Resource Origin Matrix): Let
D be a training set of resources such that each resource r; € D
is a triple (o;,d;,t;), where o; is the origin of the resource,
d; is the destination of the resource, and t; is the time at
which this resource appears. Further, let S = {Si, ..., S|s|} be
a set of spatial regions, and let T = {71, ..., T} be a set
of temporal intervals spanning all days of D. Then, we define
the following |S| x | 7| matrix as follows:

mgj = |{'l"k = D|Ok = Sﬁ N tk [= Tj‘}l

To divide our dataset into spatial regions, we treat each
individual road segment as a spatial region and we split
time into 20-minute intervals. Thus, we define & as the set
of road segments, and 7 as the set of 20-minute intervals
of the dataset. We choose 20-minute intervals following our
empirical evaluation as described in Section VI. Figure 2
shows the resulting spatiotemporal resource matrix M for the
30 days of June 2016. Each line of this matrix corresponds to
an edge in the spatial network G and each column corresponds
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Fig. 2: Spatiotemporal resource matrix

to one of the 30 % 3 * 24 = 2160 20-minute intervals during
these 30 days. The color intensity of each cell indicates the
number of resources observed in the New York City Trip
Record Data [1] dataset. We can observe that some edges of
the network (lines of the matrix) have little to no resource,
while edges have constant high traffic. We can also observe
temporal periodic patterns, such as a low number of resources
at night, and large numbers during rush hours. We also observe
weekly periodic patterns, showing that some edges seem to
periodically have less resources on weekends.

To reduce the noise in this matrix and to avoid overfitting,
we factorize M using canonical decomposition [9] into two
matrices A and B, where A is a |S| x k matrix that describes
each region in S by k latent features, and B is a k x |T| matrix
that describes each time interval by a set of k latent features.
Here, k is a parameter that allows us to specify the level of
detail of the model. This parameter is selected empirically
as k = 6 (for this data set) as described in Section VI. Maps
showing the distribution of these latent features throughout the
road network can also be found in Section VI to help explain
the semantic of these features.

_Expansion of matrices A and B yields the estimated matrix
M = A - B that we use for prediction of future resources as
follows. For a new day d at a time ¢, we find the most similar
day d (using cosine distance) among all days in the training
set using the time observed on day d so far. Then we look
up the column £ of M that corresponds to time ¢ on day d.
The subsequent columns (which corresponds to the resources
estimations of the 20-minute intervals after f) are used for
prediction. To describe this approach intuitively, assume it is
8:20am on Sunday s and we want to predict future resources.
We use the 25 (8 * 3 + 1) 20-minute intervals seen so far to
search for the most similar day in M. This yields a day &.
To predict today’s resource distribution at 8:40 am, we simply
use the resource distribution that we have observed on § in
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Fig. 3: Sampling and local searching

our training data. We note that our model does not utilize
the destination locations of resources, as we see no way to
leverage the destination distribution to reduce search times.
While it is possible that search times can be reduced by having
agents reject resources that lead them to remote places, the
simulated setting that we aim to optimize does not allow agents
to reject resources.

B. Local Search Guidance

The predicted spatiotemporal resource distribution is used
to guide searching agents to minimize their search time. In a
nutshell, we first leverage the prediction matrix M to draw
random candidate resources predicted to appear within a time
horizon A. To ensure that agents prefer closer locations, we
weigh the resulting candidate resources by their distance to the
agent. Then, we draw resources from this weighted distribution
as the next destination for the agent.

More formally, let ¢ denote the current time, and let M be
the prediction matrix that predicts the number of resources
for each road segment at future time intervals as described in
Section V-A. Thus, a cell 172;; contains the predicted number of
resources at road segment .S; at time T;. Given current location
of an agent [, time horizon A, sampling size N, and distance
decay factor «, we determine the destination of a searching
agent as follows. First, we draw a sample S of N candidate
resources from the distribution of resources estimated within
the next A minutes:

S = Samplen (M. [1,1+4)), )

where rﬁ_,[trpra] is a set of resource predictions of all locations
in the network at any times between the current time ¢ and
the time horizon ¢ + A. The function Samplen (7. 1 11 a])
draws N random sample from the sampling space 7. [; ;4 A],
where each element ﬁzi,%_e_ 1. [1,1+4] Of the sampling space
has a probability of m of being drawn.

The resulting set S contains a set of N candidate locations
chosen randomly from the distribution of resources predicted
in the next A minutes. From this set S we draw a destination

for a searching agent weighted by the distance to the agent’s
current location I:

D = Sample; ([(s,dist(l,s))|s € §]), (2)

where dist(l,s) is the network distance between the agent’s
current location [ and a candidate resource s € S, v is a
parameter that controls the agent’s preference to visit nearby
locations, [(s,dist(l,s)7)|s € S] is a list (note that this list is
not a set, as it may contain duplicates) of pairs of candidate
resources in S and their corresponding distance values taken
to the power of -, and the function Sample; is the same
function that randomly draws a weighted sample from S.
That is, each sample s € & is chosen with a probability of
%ﬁ‘ The location of this resource D is chosen as
%gtfnation of the searching agent. This approach of distance-
weighted sampling is illustrated in Figure 3 which exemplary
shows the search process for the agent Q) located at the center
of the concentric circles. Small red dots denote all resources
predicted to appear within the time horizon A. From all
these resources, N = 8 samples are chosen uniformly at
random following Equation 1 highlighted by larger orange
dots. Weighted inversely by distance following Equation 2,
one of the N samples is chosen as the destination for . In
this case, as most likely but not certain, the location closest
to @ may be chosen, and @} will take the shortest path to this
location until assigned a resource.

For our experiments, we choose v = 0.5, and N = 5 as
these values has empirically shown the best reduction in search
time as detailed in Section VL.

C. Home Zone Guidance

To avoid excessive competition between drivers in busy
regions, we map each driver to a dedicated area, denoted
as their home zone. Similar to local search guidance, home
zone guidance relies on a predicted spatiotemporal resource
distribution. For allocating resources we now also consider
the direction towards the drivers home location. Therefore,
customers directly on route to this home zone will get a larger
weight versus customers that require the driver to deviate
from a respective route. Using the HomeZone heuristic, the
probabilistic weight function of Equation 2 is updated as
follows:

l,s,h)

D = Samplex (s, dist(L, s)7) - (1— X = 2)ls € 8)), 3)

where h is the centroid of the home zone of the driver,
and <«(l, s,h) € [0, n] denotes the radian angle between line
segment Ys) (connecting current driver [ and the customer
location s) and [h (connecting current driver [ and home
location h).

For example, in case of a customer location being orthog-
onal to the drivers path towards the home location, the angle
would be 90° = 0.5« yielding a weight of 1 — 0.5 = 0.5.

The key idea is that drivers will prefer moving towards a
busy area nearby their home zone to prevent “herding”, and



—— RndDestination . 400 ~

—_— ’ =)

o 1400 o Rndwalk P 4 2 N
8 —- LocalSearch g 3 %0 =
p
:E: 1200 == HomeZone o E 200

= ™
S =
S Z 250
@ 1000 o
s 2
B g 200
E§ so0
s & 150
& 2
g 600 © 100
z 2
< 50
400
5000 6000 700D 8000 ©000 10000 5000 6000
Number of drivers

(a) Average Driver Search Time

7000 8000
Number of drivers

(b) Average Passenger Wait Time

—— RndDestination A —— RndDestination
=== RndWalk 25 N === RndWalk
----- = LocalSearch \\\ === LocalSearch

L ===e= HomeZone

[*]
o

Passenger expiration rate
5 o

wn

o

9000 10000 5000

6000

7000 8000
Number of drivers

5000 10000

(c) Passenger Expiration Rate

Fig. 4: Experimental Comparison to Baseline Solutions

having agents prefer different areas depending on their home
zones. To define home zones of drivers, we subdivide using a
regular grid and assign drivers to a grid cell/home zone using
a hashing function of the driver ID.

V1. EXPERIMENTAL EVALUATION

In this section we provide results of our empirical analysis
leveraging the COMSET simulation framework described in
Section III using six months of real-world of New York
City taxi trip record data [1] entailing a total of 57,697,545
trips. Per default, our simulation uses 5000 agents. To predict
resources, we use six-fold cross-validation using, in each fold,
one month for testing and the remaining five months for
training. Our approach uses a sample size of N = 5, a time
horizon of A = 150 minutes, and a number of latent features
k = 6 by default, unless noted otherwise.

A. Competitive Spatiotemporal Search Strategy Evaluation

In this section we experimentally evaluate the effectiveness
of the distance aware search heuristic (denoted as Local
Search) described in Section V-B and the effectiveness of addi-
tionally using the Home Zone Guidance heuristic described in
Section V-C (denoted as HomeZone). We compare our search
heuristics to two baseline strategies:

The Random Walk baseline lets agents cruise in random
directions. Thus, whenever a random walk agent reaches
an intersection, they will continue into a direction chosen
uniformly at random. This random walk continues until the
agent is assigned a resource. Once a resource is assigned, the
random walk is immediately stopped and the agent proceeds
to pick up the resource.

The Random Destination baseline chooses a random desti-
nation uniformly random from all network nodes and follows
the shortest path to this destination. Once a resource is
assigned to the agent, the shortest path is aborted.

For different numbers of agents, the results of comparing
Local Search and HomeZone to these baselines are shown
in Figure 4. First, we observe in Figure 4a that the Random
Walk approach yields a much higher average search time
for drivers than all other approaches. This is due to most
agents randomly walking away from the center area where

most customers appear. Drivers may stray and stay far from
the center, thus becoming unable to help supply the high
demand in the center. We also see that, using the average
search time as a metric, our Local Search approach yields
only a marginal improvement over the random destination
approach, especially for a large number of agents. To explain
this result, we recall our observations from Section I'V: during
most times of the simulation, no improvement is possible, as
the system is either oversupplied with agents (assigning all
resources immediately) or undersupplied (having no agents
searching). Thus, the improvement observed in Figure 4a is
attributed only to short periods where agents have to compete
for resources, leading to a very noticeable improvement during
these short times only. Having a larger number of agents leads
to permanent oversupply, even during rush hours. In this case,
Local Search and Random Destination have most resources
instantly assigned, with waiting times only in parts of town
where new customers rarely appear. Also, we observe that
for the use-case of Manhattan, Random Destination has an
advantage: Most of the resources are located in the city center.
Agents choosing random destinations are likely to traverse the
city center, thus accidental passing through high demand areas.
In contrast, Local Search deliberately keeps agents near the
center where they are needed, thus reducing search times even
with fewer agents. The HomeZone approach yields a slight
improvement combining the best of these approaches. While
agents choose locations having the highest expected chance for
new resources to appear, agent also ensure to choose nearby
locations, but also ensure that agents are spatially dispersed to
avoid herding by moving towards their home zones.

To better show the difference between these competitors,
we turn to another metric to measure the quality of a strategy
in Figure 4b. This figure shows that the average wait time
of resources is decreased drastically by both Local Search
and HomeZone. The reason is that our agents are able to
anticipate where new resources will appear, thus traveling
to these regions ahead of time. In contrast, using Random
Destination, agents will have to wait for an agent to randomly
pass through. As a consequence, Figure 4c further shows that
our approach is able to prevent the expiration of resources, thus
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allowing to achieve the perfect quality of service for resources
at a drastically reduced cost in terms of agents paid and fuel
wasted. Next, we explore the effect of the various parameters
used by our approach shown in Figure 5.

B. Parameter Evaluation

Distance Decay Factor ~ Parameter -+ controls how agents
prefer close to far-away predicted resources. Figure 5a shows
the average search time (and 95% confidence intervals) of 100
simulation runs (with different random seeds) for —1 <~ <1
in 0.1 increments. We first observe that positive values of
~ cause more distant places to be weighted higher, thus
sending agents to distant resources incurring large search
times. We also note that v < —0.8 causes agents to become
too attracted to their nearest candidate resource, thus getting
stuck near their current locations. Empirically, we found that
a value of v = —0.5, thus using the inverse square root to
weigh distances, yields good results. An interesting case is
having v = 0, where all predicted resources are weighted
equally, regardless of their distance. This approach is similar
to Random Destination, except that destinations are not chosen
uniformly random, but weighted by the predicted resource
distribution M.

Number of Latent Features Figure 5b shows the average
agent search time as the number of latent features k for the
non-negative matrix factorization in Section V-A is varied.
We observe that a value of k = 6 is sufficient to yield good
performance in terms of search time.

Sampling Size N In Figure 5c, we observe that increasing the
number N of candidate resources increases the average search
time. The sampling size N defines the number of random
resources from which agents chose their destination. Since
samples are then selected based on their distance (weighted
using parameter ), a large value of N will lead to shorter
distance destinations. Ad-absurdum, for N = 1 a random
destination is selected within regardless of the distance to
the agent. We observe that low values of N < 5 minimize
search times. This indicates that more distance destinations

are advisable. However, we note that this behavior may be
specific to Manhattan, where long-distance trips lead through
the center thus guaranteeing to lead to the main resource hot-
spots.

Time Horizon A and Temporal Resolution Figure 6 eval-
uates how our Local Search strategy is affected by different
time horizons A and different temporal resolution. The z-axis
of Figure 6 denotes the number of equal-duration time slots
used per day, whereas the y — azis varies the time horizon
A used to predict future resource availability. We observe in
Figure 6a a local minimum in average agent search time having
A = 150min and having a day split into 72 intervals (20min
each). To further justify our choice of these parameters, as
indicated by a little red box, Figures 6b and 6c show that this
setting also leads to a low average resource wait time and a
low resource expiration rate, respectively.

Number of Home Zones Our experimental evaluation has
shown that the number of home zones does not have a
significant effect on any of the three metrics average search
time, average passenger wait time, and passenger expiration
rate. Thus, even as little as two home zones (North and South)
are sufficient to ensure that drivers do not congregate in the
same location, as half of the agents will drift North (having
the Northern Home Zone) and the other half South (having
the Southern Home Zone). Increasing the number of different
home zones did not show show any significant (beneficial or
detrimental) effect such that we omit charts for this parameter.

C. Interpretation of Latent Location Features

Towards explainable machine learning, we explore the fea-
tures learned by the non-negative matrix factorization approach
described in Section V-A. Figure 7 visualizes matrix A, the
S x k matrix which describes each location by k = 6 latent
features. Figures 7a-f) show the strength of each of these latent
features for each edge of the network. An interesting case if
Component 2 in Figure 7b), which has high values only in two
locations close to each other: Pennsylvania Train Station and
Pennsylvania Metro Station, two major transportation hubs.
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The matrix factorization has learned that these locations have
unique temporal features that are not observed in other places.
This makes sense, as these locations may have periodical
peaks corresponding to the local train and bus schedules.
Components 5 and 6 in Figures 7e) and f) have strong features
in the center of Manhattan, and may correspond to times when
people leave the city, such as the evening rush when most
people take taxis to leave the center. Components 1 and 4 in
Figures 7a) and d) show a rather uniform distribution, and may
indicate features of general demand.

VII. FUTURE STEPS TOWARDS DEPLOYMENT

One inherent weakness of the COMpetitive SEarching
Testbed (COMSET) that was used to test and evaluated solu-
tions of competing teams at GIS Cup 2019 is the lack of a traf-
fic model. COMSET uses real-data to adjust the speed of each
edge of the road network to reflect its average speed. However,
this speed is assumed to be constant regardless of time and
traffic conditions. A traffic model is needed to adjust our
search heuristic to ensure that the need of customers in slow-
traffic regions can be met. Another drawback of COMSET is
that, even though the customer distribution follows a real-data
distribution, the number of agents is constant due to the lack
of available data on ride-hailing drivers. This assumption of
a constant number of agents may, however, become realistic
in a future of autonomous vehicles that do not need to rest.

Furthermore, our setting assumes that the ride-hailing service
provider can control the directions of drivers. To deploy our
system, incentives would be required for drivers to follow the
suggested routes. The home location of a driver should also
be considered to prevent a driver from randomly driving far
away from their home location, incurring additional overhead
to return home. This could be achieved by adding a directional
bias to the resource sampling function of Equation 2. It should
also be noted that these considerations become less relevant
in a future with autonomous cars and continuous operation.
Finally, COMSET does not allow multiple passengers to share
the same vehicle in a ride-sharing setting, which would be
requirement to reduce traffic and the cost to passengers.

VIII. CONCLUSION

In this work, we tackle the novel problem of competitive
spatiotemporal searching for ride-hailing services, which aims
at guiding drivers to areas that are likely to have passengers
searching for a ride. Applications of this problem not only
include better user experience for both drivers and passengers,
but also improves traffic conditions by reducing distances
traveled by drivers, thus reducing unnecessary emissions and
traffic load. Unlike in previous work, our goal is not to find an
assignment strategy to match drivers to passengers. Instead, we
approach the problem of guiding drivers who cannot currently



be assigned due to a lack of available passengers, and to
maximize the chances of finding a passenger in the near future.

To solve this problem, we employ an agent-based simulation
approach in which drivers are represented by mobile agents
and passengers are represented by immobile resources. Our
approach, which is inspired by the results of our visual analysis
using taxi-data from New York City, employs a non-negative
matrix factorization approach on historic data to predict future
resources for the remainder of a new, partially observed
day. Using these predicted resources, we use a probabilistic
sampling approach to guide agents to predicted locations.
We choose a probabilistic approach to prevent agents from
greedily herding in the same area, while other areas become
undersupplied. Our approach weights sampled locations in-
versely by distance to avoid extremely long trips while still
allowing flexibility to escape unviable regions. Our experimen-
tal evaluation shows, qualitatively and quantitatively, that our
approach reduces the average search time of drivers, but also
reduces the average wait times of passengers. We provide a
thorough parameter calibration to obtain the best results for
the example of Manhattan.

However, different areas may require different parameter
settings, and experimentation for different areas (requiring
large sets of trip data in these areas) is required, to assess
if the parameter settings for Manhattan generalize to other
places. Finally, we discuss simplifying assumptions made by
our model, which would need to be addressed for our proposed
solution to be deployed by a ride-hailing service provider.
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