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A B S T R A C T   

The magnetospheric physics research community uses a broad array of quantitative data-model comparison 
methods (metrics) when conducting their research investigations. It is often the case, though, that any particular 
study will only use one or two metrics, with the two most common being Pearson correlation coefficient and root 
mean square error (RMSE). Because metrics are designed to test a specific aspect of the data-model relationship, 
limiting the comparison to only one or two metrics reduces the physical insights that can be gleaned from the 
analysis, restricting the possible findings from modeling studies. Additional physical insights can be obtained 
when many types of metrics are applied. We organize metrics into two primary groups: 1) fit performance 
metrics, often based on the data-model value difference; and 2) event detection metrics, which use a discrete 
event classification of data and model values determined by a specified threshold. In addition to these groups, 
there are several major categories of metrics based on the aspect of the data-model relationship that the metric 
assesses: 1) accuracy; 2) bias; 3) precision; 4) association; 5) and extremes. Another category is skill, which is a 
measure of any of these metrics against the performance of a reference model. These can be applied to a subset of 
either the data or the model values, known as reliability and discrimination assessments. In the context of 
magnetospheric physics examples, we discuss best practices for choosing metrics for particular studies.   

1. Introduction 

The Earth’s magnetic field not only protects our planet but also 
channels energy into geospace, serving both as a shield and a funnel. 
This magnetic field extends into near-Earth space and would continue 
indefinitely, except that other magnetic fields exist in the solar system to 
confine it, such as the interplanetary magnetic field (IMF) carried by the 
solar wind (Axford and Hines, 1961; Dungey, 1961). While canonical 
configurations of this magnetized bubble around the planet, known as 
the magnetosphere, exist (see recent reviews by Tanaka, 2007; 
Ganushkina et al., 2018), it is in a continuous dynamical state as the 
solar wind and IMF deform it, sometimes into extreme configurations (e. 
g., Tsurutani et al., 2003; Siscoe et al., 2006; Cid et al., 2015). Since 
Explorer 1, the first successful spacecraft with a scientific payload, 
measured energetic particles and discovered the existence of the radia
tion belts (Van Allen et al., 1958), scholars have been developing ex
planations for the observed phenomena within the magnetosphere. 

These descriptions are developed and tested with approaches including 
analytical theories, coupled suites of numerical models and data-based 
empirical models. In every case, they give values that can be 
compared against observations. 

Methods of quantitatively comparing model output to observational 
data are called metrics. The magnetospheric physics research commu
nity uses many different data-model comparison formulas, several of 
which are shown in Fig. 1. Most space weather modeling studies include 
forecast verification (i.e., model validation) involving a range of so
phistication levels for their data-model comparison analysis. Space 
weather research, which has an operational focus seeking to understand 
the present or future state of potential electromagnetic hazards in outer 
space, involves nowcasts, forecasts, and post-event analysis towards 
improved decision making regarding assets that are adversely affected 
by the space environment. For operational space weather usages of 
magnetospheric models, it is up to the user to decide what metrics best 
define their decision-making needs (e.g., Halford et al., 2019), and the 
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more metrics that are calculated, the more information that user will 
have for deciding a course of action. As reviewed by Morley (2020), 
most of the progress in metrics usage and adoption by the space research 
community has been with the intention of improving space weather 
predictions. 

Compared to space weather, magnetospheric physics has taken a 
much slower path to adopting comprehensive metrics into research 
studies. Magnetospheric physics is defined here as the pursuit of 
fundamental knowledge about the magnetic-dominated space environ
ment around Earth and other planets. While cogent reviews on the use 
and misuse of statistics in space physics have existed for decades (e.g., 
Reiff, 1990), advocating for root mean square error (RMSE) and the 
Pearson linear correlation coefficient (R), ubiquitous application of 
metrics for basic research in the field is a recent phenomenon. Efforts 
towards large-scale data-model comparison did not become the normal 
until the Geospace Environment Modeling (GEM) program’s series of 
magnetospheric community “challenges,” supported by the Community 
Coordinated Modeling Center (CCMC). The first of these, less than 20 
years ago, was the GEM Reconnection Challenge (Birn and Hesse, 2001), 
which included only model-model comparisons for idealized input sce
narios. This was the exception, not the rule, however, and nearly all 
challenges since then have involved user or CCMC simulations of 
selected intervals, usually one or more with particular geomagnetic 
activity of interest to that group. For instance, the second GEM challenge 
focused on substorms, with several modeling groups conducting studies 
of the events. The data-model comparisons were not that sophisticated, 
however, either being entirely qualitative (e.g., Raeder et al., 2001) or 
using a single metric, like RMSE (e.g., Ridley, et al., 2002). The Inner 
Magnetosphere/Storms Assessment Challenge (Liemohn, 2006) 
involved many data providers in the formulation of the task, but un
fortunately did not mandate particular metrics to be used by all par
ticipants, so much of the scientific advancement was based on few, if 
any, metrics. 

GEM challenges for magnetospheric physics began to be more 
quantitative only in the last decade. A significant factor in this shift was 
the change of how the challenges were conducted, with CCMC con
ducting the metrics assessments. There was a series of “challenge” 
studies on ground-based and satellite-based magnetic field comparisons, 
such as Pulkkinen et al. (2010) followed by more in-depth analysis by 
Rastätter et al. (2011) and Pulkkinen et al. (2011). One of the biggest 
assessments was that of Pulkkinen et al. (2013), providing the objective 
comparison of several large-scale models against ground-based magne
tometer station dB/dt time series to aid in the selection of one code for 
transition to space weather forecasting operations. The GEM community 
increased its focus on global model validation against various data sets, 

including the Dst index (Rastätter et al., 2013), in situ plasma parame
ters (Honkonen et al., 2013), empirical models of magnetospheric 
characteristics (Gordeev et al., 2015), and local K index values (Glocer 
et al., 2016). Another GEM challenge, which focused on the interactions 
of the magnetosphere with the ionosphere, resulted in several studies, 
such as focusing on Poynting flux and Joule heating (Rastätter et al., 
2016) and another on total electron content (Shim et al. (2017). In 
creating the virtual model repository, Ridley et al. (2016) used over 600 
simulations available at the CCMC to examine over 2000 satellite passes 
through model output, calculating RMSE against the observed magnetic 
field and compiling this into a star rating for each code. One of the latest 
GEM challenges sought to predict the inner magnetospheric electron 
fluxes responsible for spacecraft charging (Yu et al., 2019), effectively 
using a wide array of data-model comparisons to conclude that the inner 
magnetospheric electric field is, most likely, the largest discriminator in 
determining electron flux in near-Earth space. This rich history shows 
that the magnetospheric physics community has started accepting 
data-model comparisons as a standard practice for advancing knowledge 
and modeling development, but the robustness of these studies is mixed. 
There are still studies produced very recently that compare with data but 
only conduct qualitative assessments rather than rigorous metrics cal
culations. Some of these model-focused papers discuss data comparisons 
but do not include any plots or values, such as the Damiano et al. (2018) 
study of electron distribution modification by kinetic scale field line 
resonances. Others include direct overplots of data with the model re
sults but provide no quantitative assessments, such as the Yu et al. 
(2017) unveiling of a new self-consistent electric field calculation in 
their kinetic drift physics model. Other studies, like Kalegaev et al. 
(2019) and Poedts et al. (2020), discuss large-scale modeling efforts for 
space weather prediction, including extensive plans for model valida
tion, but no specifics or details of metrics usage. 

To advance the conversation on space weather modeling assess
ments, CCMC staff organized a conference on this topic in April 2017. 
Several reports resulted from this with recommendations for magneto
spheric physics, such as Welling et al. (2018) advocating contingency 
table use for quantifying model prediction of ground-based dB/dt 
events, Liemohn et al. (2018b) issuing metrics guidelines for geomag
netic index prediction, and Zheng et al. (2019) offering a framework for 
energetic charge particle assessments. A second conference on this topic 
was recently held in February 2020 to continue community engagement 
with this issue. A similar effort has been underway in Europe, with 
Opgenoorth et al. (2019) strongly recommending robust validation 
techniques for comparison of large-scale coupled space weather models, 
including the development of a consensus set of metrics for community 
adoption. 

Fig. 1. Several of the metrics available for data-model comparisons.  

M.W. Liemohn et al.                                                                                                                                                                                                                           



Journal of Atmospheric and Solar-Terrestrial Physics 218 (2021) 105624

3

Multiple metrics are highly advantageous for modern numerical 
modeling techniques. Due to the high dimensionality of most physics- 
based models, a single metric, designed to ascertain a particular facet 
of the data-model relationship, cannot fully describe the ability of the 
model to reproduce the observations and of outliers in particular. This 
concept of multi-faceted metric analysis has been understood for de
cades in the field of meteorology (e.g., Murphy, 1991), but has only 
recently been pointed out for magnetospheric physics studies (e.g., Kubo 
et al., 2017; Kubo, 2019). The approach of using many metrics can lead 
to additional inferences that affect the conclusions of scientific analyses. 
This is a recurrent theme throughout this review. 

For magnetospheric scientific investigations, examining the full 
scope of metrics scores allows for additional knowledge discovery. 
Because the typical state of the magnetosphere is “quiet,” those times 
deemed “active” are relatively rare. Extreme event behavior will, then, 
often not be represented very well in qualitative or single metric ana
lyses because these events constitute only a small portion of the entire 
dataset. In a field where outlier detection and description are major 
aspects of scientific analyses, methods that focus outside of the canon
ical statistical focus on mean values is of great importance. Choosing 
only one or two metrics unnecessarily confines scientific advancements 
and effective operations with magnetospheric models. There is sub
stantial usefulness in applying many metrics and, as discussed below, 
the magnetospheric physics community seems to be underutilizing the 
power of data-model comparison assessments. 

The field of magnetospheric physics has entered a transitional time 
for data-model comparisons and quantitative metrics usage. As dis
cussed by Liemohn et al. (2019), several factors are converging to make 
this happen. For one, the amount of data is dramatically increasing, in 
part due to better telemetry, smaller and more numerous satellites, and 
cheaper launch capabilities. This could lead to a new class of missions, 
enabling Magnetospheric Constellation and other 
distributed-arrays-in-space concepts (Kepko, 2018). Computational re
sources have also substantially improved, allowing for large-scale sim
ulations with fine-scale resolution that merge the macroscopic and 
microscopic views of geospace physics. On the physical modeling side, 
the use of kinetic models in geospace system coupled simulations is 
becoming much more common, with an immense volume of code output 
readily available for comparison with particle velocity-space observa
tions (see review by Wiltberger, 2015). Statistical modeling, for example 
machine learning techniques, have also pushed forward an interest in 
metrics. Machine learning techniques, with metrics analysis embedded 
in their creation, have been used for magnetospheric physics problems 
for decades (e.g., Lundstedt and Wintoft, 1994), but they have only 
recently gained widespread acceptance and use across this field (e.g., 
Camporeale, 2019) and should be paired with scientific understanding 
to optimize such algorithms (e.g., Azari et al., 2020; Swiger et al., 2020). 
The final component is an appreciation of data-model comparisons as a 
means to new scientific understanding, learning from our atmospheric 
science counterparts that the synthesis of forecast verification with 
fundamental research leads to better science (e.g., Folini, 2018). 

Using a comprehensive metrics methodology will greatly improve 
the community’s scientific return from data-model comparison studies. 
In this report, we review the basic groupings and categories of data- 
model comparison techniques and discuss the strengths and limita
tions of each of the common metrics. We then review the recent 
magnetospheric studies that have used these quantitative assessments 
and how that could be used in future magnetospheric physics 
investigations. 

2. Organization of metrics 

Because there are so many metrics from which to choose, it can be 
daunting for a researcher or model user to approach this vast list and 
pick those that are most appropriate for the desired assessment. There
fore, it is useful to organize the metrics according to how they are 

calculated and the quality that they assess. While there are many ways to 
cluster metrics, we discuss two, which we call groupings and categories. 
These are orthogonal definitions, with the former based on calculational 
method and the latter based on the characteristic of the data-model 
relationship that the metric examines. These groupings and categories 
make it easier to determine which metric is most appropriate for the 
planned assessment. 

2.1. Metrics groupings: continuous versus discrete assessments 

Metrics can be organized in many different ways; in this report we 
discuss one of the more common splits, dividing the metrics into two 
major groupings. These are based on how the metrics are calculated, 
regardless of the feature within the data-model comparison on which 
they focus. 

The first grouping is called “fit performance” because these metrics 
use the exact values of both the data and model in their formulation. 
They are also called continuous metrics or regression metrics (e.g., 
Wilks, 2019). They are usually based on the difference between the data 
and model values, with most including a summation of these differences, 
often with extra mathematical operators included in the calculation, like 
squares, square roots, and absolute values. This is the grouping of the 
two most common metrics in use in magnetospheric physics, R and 
RMSE. Not all fit performance metrics include this difference of each 
data-model pairing, though; they might use the data and model values 
separately. That is, metrics based on probability distributions also fall 
within this grouping. 

The other major grouping will be referred to as “event detection” and 
includes all metrics that classify each of the data and model values as 
either in or out of an “event state.” This grouping is sometimes referred 
to as categorical metrics. Once the event state is determined, the exact 
value of either the data or model no longer matters, only the event status 
will be used in the metrics calculations. That is, the data-model scatter 
plot can be reduced to a 2 × 2 matrix, in which the elements depend on 
the event state of the data and model values. This table has many names 
(e.g., confusion matrix), but will be referred to as a contingency table in 
this report. The four numbers of this table also have many names, but we 
will use hits, false alarms, misses, and correct negatives (e.g., Joliffe and 
Stephenson, 2012). These values can be used in many different ways to 
understand the data-model relationship. Sometimes the data is collected 
as categorical values, other times the data are collected as continuous 
values and then converted to an event status by applying a threshold. 
This event identification threshold can be either the same or different for 
the data and model values, depending on the type of assessment being 
conducted and the needs of the eventual user of the information. 
Sweeping the event identification threshold setting can reveal the 
model’s ability to detect events across a broad range of thresholds. Event 
detection is not limited to a dichotomous event status but could have 
three or more (e.g., n) states, making the contingency table into an n by n 
matrix. Event detection metrics represent a fundamentally different 
consideration toward data-model considerations, and ones in which 
outliers and/or events are the primary focus of comparison. 

Fig. 2 shows schematics of the calculational emphasis for the fit 
performance and event detection groupings. Fit performance metrics use 
the individual Mi and Oi values, while event detection metrics count the 
points in each quadrant defined by the data and model event identifi
cation thresholds. 

Fit performance metrics are by far the more common type of metric 
in use for magnetospheric space physics and space weather model as
sessments. They are, however, of limited use for investigations that focus 
on the rare “active times” of geospace. In this case, the methodology of 
event detection could be the better choice. Because each metric focuses 
on only a particular facet of model execution, using metrics from both 
groupings might be the optimal choice. 
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2.2. Metrics categories: analyzing particular facets of the data-model 
relationship 

Independent of the method of calculation, metrics can be categorized 
by the property that they assess. There are numerous options for 
defining these categories; here we present some of the more common 
definitions. We divide the list into five primary categories and then 
discuss three derivative quantities in the next subsection. 

2.2.1. Five major categories of metrics 
The first and, arguably, foremost category is accuracy. This is defined 

as the closeness of the model values to the data values. Accuracy ad
dresses the question of whether the model can exactly reproduce the 
data or not. If measures of accuracy are very good, then the comparison 
could, perhaps, stop here, as this indicates that other comparisons will, 
most likely reveal little in terms of information about model perfor
mance except to confirm the excellent accuracy values. When the 
measures of accuracy are less than perfect, however, then additional 
metrics from other categories are useful to better understand how the 
model is different from the data and therefore reveal a path for model 
improvement. While the metrics within the accuracy category quantify 
the overall quality of the data-model comparison, they cannot, by 
themselves, explain why the quality was good or bad. 

Note that RMSE falls within the accuracy category. It is heartening 
that so many magnetospheric physicists choose this metric; it does a nice 
job at assessing the overall closeness of the model to the data values. 
However, RMSE might not be the optimal metric for a particular user’s 
end needs. As discussed with the other categories below, RMSE cannot 
reveal if the model is systematically under or over predicting the ob
servations; it cannot determine whether the difference is from many 
points being slightly off or because of a small cluster of outliers. 
Furthermore, comparing two models to the same data set and obtaining 
identical RMSE values does not mean that the models are identical in 
ability to reproduce the observations; it could be that the two models are 
completely different in their relationship to the data values, but this 
metric distills the comparison into a single number and does not provide 
any additional meaning. 

To more robustly assess the data-model relationship, additional 
metrics from other categories are needed. The next category to be dis
cussed is bias. Metrics in this category are comparisons of the centroids 
of the data and model values. Bias indicates if the model is systemati
cally overestimating or underestimating the observations. A perfect bias 
score does not mean that the model values are identical to the data, but 

rather that the centroid of the model values matches the centroid of the 
data, whether that is average, median, or some other parameter. Bias is 
essentially a component of the accuracy calculation. 

Precision is the next category, representing the complementary 
“other half” of accuracy. Metrics in this category seek to quantify the 
similarity in the clustering of the data and model values, after the 
centroid offsets have been removed. The equations for precision metrics, 
therefore, can be quite complicated. Similar to bias, a perfect precision 
value does not mean perfection. Since the bias is removed, a model with 
high precision could still have systematic differences between the model 
and the data. A possibly useful metaphor is that precision is temperature 
of a particle distribution, i.e., their random velocity, while bias is the 
bulk flow of the particles. In this metaphor, accuracy would then be the 
total velocity of the particles. 

Another major category of metrics is association. Metrics in this 
category, including R, quantify the ability of the model to capture the 
up-and-down trends of the data. They often do not take into account how 
close the model values are to the data values; they usually only focus on 
whether the model is capable of increasing when the data increases or 
decreasing when it decreases. A perfect association metric indicates that 
the model captures this “motion” of the data but does not necessarily 
imply anything about accuracy. The inclusion of R along with RMSE in 
many data-model comparison studies makes for a good combination 
towards deciphering how the model behaves relative to the observa
tions, but such a combination is only a beginning. 

A final category to include in this set of common metrics is extremes. 
These are metrics that, while including all data-model pairs in the 
comparison, focus on the outliers of the distributions. As with other 
metrics, a perfect score for an extremes metric often does not indicate a 
perfect match to the data but rather that some aspect of the wings of the 
model distribution aligns with that of the observations. Because of the 
rarity of some modes of geospace activity, metrics from the extremes 
category could be particularly useful for magnetospheric studies. 

2.2.2. Three major derivative categories of metrics 
There are several metrics categories that use the formulas from other 

metrics in their definitions. In fact, the three to be discussed here could 
use metrics from any of the categories mentioned in the previous sec
tion. The three chosen for inclusion here are skill, discrimination, and 
reliability. Again, other metrics exist; this list is not meant to be 
exhaustive but rather a robust yet tractable listing of metrics categories 
that magnetospheric physicists could find particularly useful when 
conducting data-model comparisons. 

Fig. 2. Schematics of the calculational methodology for the two major metrics groupings, (a) fit performance metrics and (b) event detection metrics.  
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The category of skill includes the type of calculation in which the 
metric value is compared against that from a reference model. While 
skill is often defined with an accuracy metric, any metric from one of the 
categories above can be used. Skill is usually defined as a skill score, 
which has a specific relationship between old and new model scores: 

Skill Score =
Metric(new model) − Metric(reference model)

Metric(perfect value) − Metric(reference model)
(1) 

In (1), “new” represents the score of the metric value for the new 
model, “reference” is the metric value for the reference model, and 
“perfect” is the ideal data-model comparison for that metric. The perfect 
value for a skill score is, therefore, one. This is true regardless of the 
chosen metric. Note that, because of the subtraction in the numerator, a 
skill score of zero indicates the same skill for the new model as for the 
reference model, and a negative skill score denotes worse skill than the 
reference model. The reference model can be anything. Sometimes it is a 
previous model, other times it is based on the observations, and even 
occasionally it is “random chance; ” there is no set rule on the definition 
of what constitutes a reference model. 

The category of discrimination is unique in that these metrics use 
only a subset of the data range. Any metric can then be calculated for 
each data range subset. Subsets can be quite broad, splitting the data 
range into two segments, or quite fine, such as breaking the range into 
20 bins and only using 5% of the total points for each subset. The term 
discrimination, therefore, is defined here as separation and identifica
tion. The most common calculation is to choose an accuracy metric, but 
this is not the only option. When applying a metric with discrimination 
subsetting, the interpretation of the result assesses the ability of the 
model to reproduce data only within each of the subsets. While it might 
seem strange to conduct a correlation coefficient calculation on only a 
quarter or a tenth of the total number of points, it is a useful examination 
of how well the model captures the up and down trends of the obser
vations within that particular range of data values. 

The category of reliability is the converse of discrimination; a reli
ability calculation examines portions of the full data-model comparison 
based on subsets of the model value range, not subsets of the data value 
range. Other than this switch over which number set the subsetting is 
performed, the calculational scheme is exactly the same as that for 
discrimination. The model value subset can be large, perhaps up to half 
the values, or very fine, with dozens or even hundreds of subset cate
gories. All of the metrics categories above can be used on for reliability, 
assessing the model’s ability to reproduce the data within a limited 
range of model values. 

For event detection metrics, the subsetting ranges are easily defined 
as above and below the event identification threshold. If the observa
tions are provided as categorical yes/no values, then this is indeed all 
that you can do with it. Because the contingency table only includes four 
values, some metrics within that grouping are designed specifically as 
discrimination or reliability metrics. 

Subsetting is a powerful methodology for assessing particular fea
tures and aspects of the data-model relationship. This is useful not only 
for space weather applications, where the user might have specific needs 
for decision making purposes, but also for space physics investigations, 
where subsetting can reveal the influence of the inclusion or omission of 
physical processes on a limited and focused region of the data or model 
values. 

3. Metrics equations 

Given the above definitions of these metrics categories, each 
addressing certain aspects of the data-model relationship, we now pre
sent equations for metrics in each category within the two major 
groupings (continuous versus discrete formulations). As stated several 
times already, this is not a comprehensive list but one that includes the 
most common metrics found within magnetospheric physics studies, and 
the ones that could be of most value to magnetospheric physicists. 

3.1. Common fit performance metrics 

Fit performance metrics use the continuous nature of the data and 
model values (e.g., Wilks, 2019). There are several common terms that 
will be used in the definitions below. Model values will be denoted by M, 
with individual values with the number set listed as Mi. Observational 
values are given the variable O, with individual data points called out by 
Oi. The total number of pairs in the data-model set is N. 

3.1.1. Accuracy 
There are many fit performance metrics for accuracy. The most 

common accuracy fit performance metric is RMSE: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − d

∑N

i=1
(Mi − Oi)

2

√
√
√
√ (2) 

Here, d is the degrees of freedom in the model configuration. For a 
linear fit, d = 2. For a physics-based model, d can be hard to obtain. 
Fortunately, this value usually doesn’t matter, because for nearly all 
magnetospheric physics data-model comparisons, N ≫ d so the influence 
of d on RMSE will be negligible. 

The quadrature formulation in RMSE (squaring the differences and 
then taking the square-root) emphasizes the contribution of the larger 
differences. This is the same functional form as standard deviation σd, so 
it is directly comparable to that quantity. In fact, that is a way to give 
meaning to RMSE – comparisons against σd,O of the observations, as well 
as σd,M for the model values, provides context to this metric. An RMSE 
value that is smaller than both σd values is considered good. 

Because of this similarity to sd, RMSE is sometimes divided by σd,O to 
create a normalized version, NRMSE. The normalization can, in fact, be 
anything, including the interquartile range or the full range of either the 
data or model values. Another way that is similar to the quality check 
mentioned above is to divide by the smaller of the two standard devia
tion values, min [σd,O, σd,M]. 

Instead of comparing against standard deviation, a common alter
native is to forego the square root operation and leave the metric as 
mean square error: 

MSE =
1

N − d

∑N

i=1
(Mi − Oi)

2 (3) 

MSE can be directly compared with the variance of either the ob
servations or the model values (or, even better, both). Note that because 
the values are left squared, the units are different than the original ones. 

Rather than using the quadrature formalism, another often-used 
accuracy metric is the mean absolute error, MAE: 

MAE =
1

N − d
∑N

i=1
|Mi − Oi| (4) 

Like RMSE, MAE also has the same units as the original values. It is 
often smaller than RMSE, although if the model values are very close to 
the observed ones, then the reverse could be true. 

One of the problems with RMSE, MSE, and MAE is that they favor the 
larger values within a set. If the data and model ranges only span an 
order of magnitude, then these metrics are fine. When the values have a 
larger range of several orders of magnitude, then the use of other metrics 
designed for measuring error for highly variable number sets are 
preferred. There are two common accuracy equations for this case, 
introduced to the space physics community by Morley et al. (2018a) 
specifically to address the wide-ranging nature of magnetospheric en
ergetic particle flux measurements. The first is the symmetric mean 
absolute percentage error, SMAPE (Armstrong, 1978), which is a 
convenient replacement for MAE: 

SMAPE = 100
1
N

∑N

i=1

⃒
⃒
⃒
⃒

Oi − Mi

(Oi + Mi)/2

⃒
⃒
⃒
⃒ (5) 
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The division makes it a relative error, so an error of a factor of two 
contributes the same regardless of the magnitude of the values them
selves. The average of the pair of values makes it symmetric. There is 
another version of this formula, MAPE, that simply divides by the model 
value Mi, which is sometimes used in magnetospheric physics studies but 
will undercount the relative error when the model is larger than the 
observation. SMAPE, however, also has the problem of being an average, 
and the positive definite nature of the absolute error calculation means 
that the distribution of error is often skewed right, rendering SMAPE 
susceptible to outliers. Therefore, another metric, median symmetric 
accuracy, was introduced that preserves the qualities of SMAPE but is 
based on the logarithm of the values and on the median of the error 
values rather than their mean: 

MSA = 100
(

exp
[

Median
(⃒

⃒
⃒
⃒ln

(
Mi

Oi

)⃒
⃒
⃒
⃒ ∀ i

)]

− 1
)

(6) 

If the model matches the data perfectly, then the M/O ratio will al
ways be one, the natural log will always yield zero, so the median value 
is zero and the exponential will yield one, and then the minus one at the 
end will set MSA to zero. 

3.1.2. Bias 
The next category, bias, has one metric that has been the dominant 

selection for data-model comparisons, similar to RMSE within the ac
curacy category. This standard metric within bias is the mean error: 

ME = M − O (7) 

In (7), the bar over the values indicates the centroid or average of the 
values. This is usually taken as the arithmetic mean, but it could be 
median or is sometimes the geometric mean, xgeom =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅x1⋅x2⋅…⋅xN
N
√ . Note 

that this is equivalent to finding the arithmetic mean of the logarithm of 
the values and then applying an exponential function after the sub
traction of the means. Note that the ordering of the subtracted values is 
sometimes reversed, but this reverses the interpretation of ME. As 
written in (7), a negative ME indicates that the model systematically 
underpredicts the observations, while a positive value reveals that the 
model systematically overpredicts the observed data. 

A similar issue arises with ME as with RMSE or MAE – when the 
values span orders of magnitude, ME favors those at the high end of the 
range. An alternative is to use the harmonic mean, which favors the low 
end of the range but still suffers from the same weighting issue. Morley 
et al. (2018a) suggested the use of a different bias metric for highly 
variable values, called the symmetric signed percentage bias, SSPB: 

SSPB = 100
(

sign
[

Median
(

ln
(

Mi

Oi

)

∀ i
)])(

exp
[⃒

⃒
⃒
⃒Median

(

ln
(

Mi

Oi

)

∀ i
)⃒

⃒
⃒
⃒

]

− 1
)

(8) 

The “sign” in (8) indicates the + and – sign of the value but not the 
number itself. The last term in SSPB is quite similar to MSA but with one 
key difference, the absolute value is outside of the median operator 
within the exponential. 

A final fit performance metric in the bias category is the median 
percentage error, MPE. This is simply the median value of (M-O)/O 
multiplied by 100. If the model is symmetrically balanced around the 
observed values, then the median of these differenced values will be 
zero. Writing it with M-O gives it the same interpretation as ME. 

3.1.3. Precision 
Precision is, unfortunately, rarely used in magnetospheric physics 

investigations, but there is one fit performance metric in this category 
that has received some usage in the CCMC modeling challenge results, 
modeling yield, YI, which is simply a ratio of the ranges: 

YI =
max(M) − min(M)

max(O) − min(O)
(9) 

The interpretation of this is that values above one indicate that the 
model overpredicts the spread of the data, while values below one show 
that the model underpredicts the spread. YI is susceptible to outliers, 
though, because it only uses the maximum and minimum values from 
each of the number sets. A more robust measure of precision is based on 
the standard deviations of the M and O number sets, either their ratio, 

Pσ,ratio =
σM

σO
(10)  

or their difference, 

Pσ,diff = σM − σO (11) 

The first of these definitions, Pσ,ratio, has the same interpretation as YI, 
with values above and below unity indicating that the model over or 
under predicts the spread of the observations. The second variation, 
Pσ,diff , has the same interpretation as ME, with values above and below 
zero indicating that the model over or under predicts the spread of the 
data. If using (11), it is useful to compare it with both ME and either 
RMSE or MAE, as this provides some understanding of the relative 
contributions of systematic offset versus random spread in contributing 
to the accuracy. 

3.1.4. Association 
What if the model values are close to the observations in some part of 

the range but slowly drift away from the observed values elsewhere in 
the range? This is an indication that the model captures the up-down 
trends of data but perhaps is not that accurate at reproducing the 
exact values. This is quantified by metrics in the association category, 
and there is one metric that is by far the dominant choice, the Pearson 
linear correlation coefficient, R: 

R =

∑(
Oi − O

)(
Mi − M

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

Oi − O
)2 ∑ (

Mi − M
)2

√ (12) 

Note that R is sometimes referred to as r or CC or even PCC. Because 
the observational and modeling values are never differenced from each 
other, only against their own mean values, the two number sets could 
have very different ranges, means, and spreads, but still result in a good 
correlation. The R metric can range in values between one and minus 
one; for a data-model comparison, the ideal value of R is one. A value of 
minus one would indicate a model that was quite bad at predicting the 
numerical value of the observations but nonetheless has predictive 
ability. 

Correlation coefficient is a metric often interpreted with a p-value, a 
probability that the two number sets could have achieved that R value 
by random chance. Tradition has denoted a p-value of 0.05 (or, 5%) as 
significant. With many data points in the comparison, R might be rela
tively low but still be “statistically significant.” The current statistics 
trend (e.g., Amrhein et al., 2019a) is to not assign thresholds to signif
icance determinants, because they depend on context/application, i.e., 
5% might be good for some problems but 1% or even 0.001% might be 
needed for others. In fact, the American Statistical Association issued a 
statement deemphasizing scholarly reliance on p-values (Wasserstein 
and Lazar, 2016). Regardless of the number of points, a “good” value of 
R should not only satisfy appropriate statistical significance but also be 
above some rule of thumb threshold for the problem being investigated. 
For many magnetospheric applications, rule of thumb values of a good R 
are 0.5 or even 0.7. The latter is chosen so that R2, the coefficient of 
determination, will be at or above 0.5, indicating that more than half of 
the variance of the data is captured by the model. To reiterate, though, 
the situational context is critical for interpretation of a result and even 
these rule of thumb values could be too low or too high for a specific 
purpose. 

One other association metric in the fit performance category is the 
Spearman rank order correlation coefficient. To calculate this metric, 
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usually designated RS or ROCC, the M and O values in (12) are replaced 
by the sorted rank order of each model value and observed value, 
respectively. It has the advantage of deemphasizing any outliers and 
exaggerating the influence of any near-centroid clustering of the values. 
Because the M and O values themselves are lost and replaced with their 
rank order, however, the assumed ideal linearity between the observa
tions and model values is also obscured. 

3.1.5. Extremes 
Fit performance metrics that quantify a model’s extreme values (the 

extremes category) are not often used in magnetospheric physics. There 
are, however, several methodologies for quantifying extremes. The first 
is the use of the cumulative probability distribution (CPD). An illustra
tion of the relationship of a number set’s probability distribution to its 
CPD is shown in the top panels of Fig. 3. The CPD is calculated for some 
value x along a number set by adding together the probability distri
bution (i.e., its histogram) bins from negative infinity up to x and then 
dividing by the total number of values in the entire number set, N. As x 
increases, CPD monotonically increases from 0 to 1. CPD could also be 
defined by starting at positive infinity and sweeping x towards lower 
values. Here, x is either the M or O number sets in the data-model 

comparison. The lower panel of Fig. 3 shows an example of this for 
the AL index, based on high-latitude magnetometers, comparing 
observed values (from OMNIWeb) with those from a model (WINDMI, 
solar wind interaction with the magnetosphere and ionosphere) for the 
year 2014. 

Defining a measure of extremes can be accomplished by determining 
the value above or below which a particular small percentage of values, 
ε, is located. For a Gaussian distribution, for example, there are 5% of 
values below x − 1.96σ, and 5% of values above x + 1.96σ. Neither the 
data nor the model, however, is guaranteed to be Gaussian, so the spe
cific values for the data and model number sets corresponding to this ε 
offset from either end of the full range could be determined: 

CPDΔ,ε = Mε − Oε (13)  

CPDΔ,1−ε = M1−ε − O1−ε (14) 

These metrics evaluate the similarity or difference between these 
“extreme tail thresholds” of the two number sets. They are interpreted 
similarly to ME in (7), with values above zero indicating that the model 
has a higher value for this extreme cutoff and values below zero indi
cating that the model has a lower value for the cutoff. 

Fig. 3. The top row shows a histogram of values that closely matches a Gaussian probability distribution (shown in blue) and the corresponding CPDs for both the 
values and the normal distribution. The low panel shows CPD values of the AL index for the year 2014, with the observed CPD in orange and modeled AL values 
in blue. 
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Another way to plot the CPD values is the quantile-quantile plot. To 
create this tool, the data values and the model values are sorted, sepa
rately, in ascending order. This makes it similar to the CPD comparisons, 
but now the two separately-ordered distributions are plotted against 
each other, resulting in a monotonic line (or series of points). Usually, a 
unity-slope zero-offset line is also drawn for reference. If the two data 
sets match, then the points will fall on the diagonal reference line. De
viations from this reveal subsets of the data or model values where the 
comparison is not particularly good. Note, however, that this compari
son has reshuffled the data-model pairings, so it assesses the model’s 
ability to get the distribution of the observed values but not necessarily 
at the same time or place. 

Another method of determining extremes is the comparison of the 
skew and kurtosis values for the observation and model distributions. 
Skew, often denoted as γ, involves the cubic differencing of a number set 
against its mean, relative to its standard deviation: 

γ =

∑N
i=1(xi − x)

3

(N − d)σ3
x

(15) 

Kurtosis involves the analogous quartic equation: 

k =

∑N
i=1(xi − x)

4

(N − d)σ4
x

(16) 

In both (15) and (16), the x represents either the M or O number sets. 
These values for each of the two number sets can then be compared, 
usually with a difference as was done in (7) above, for both skew: 

γΔ = γM − γO (17)  

and for kurtosis: 

kΔ = kM − kO (18) 

For either (17) or (18), a value below zero means that the model is 
underpredicting the skew or kurtosis, respectively, of the observations. 
A value greater than zero indicates that the model overpredicts this 
feature of the data. 

3.1.6. Skill 
Skill is the final category with its own formulas. Any of the equations 

above can be used in (1) to define a fit performance skill score. The most 
common in use for magnetospheric physics, by far, is prediction effi
ciency, PE, based on MSE with the variance of the observations as the 
reference value (e.g., Murphy, 1988): 

PE = 1 −

∑
(Mi − Oi)

2

∑ (
Oi − O

)2 (19) 

Because MSE has an ideal value of zero, if the model values exactly 
match the observations then PE will be one. A value of PE less than zero 
indicates that the model is worse than the average of the data at pre
dicting the observations. Other metrics can be used in (1), but the most 
common are accuracy. Also, while PE uses a data-based reference model 
(i.e., the observational mean), skill scores can be calculated with a prior 
model, Mold, as the reference model. In this case the prediction efficiency 
formula, for example, becomes this: 

SSMSE = 1 −

∑
(Mi − Oi)

2

∑ (
Mold

i − Oi
)2 (20) 

Rather than comparing PE values between the two models, this 
directly compares the two models against the data set of interest. 

3.1.7. Subsetting: discrimination and reliability 
As stated earlier, the subsetting categories, discrimination and reli

ability, do not have their own formulas in the fit performance grouping. 
Any of the formulas listed above can be applied in the discrimination or 

reliability context, subsetting either the data or model values, respec
tively. Fit performance metrics applied to only part of the full number set 
are powerful tools that allow for a detailed assessment of the particular 
ranges within the full data or model range where the model is particu
larly good (or, not good) at reproducing the observations. This is useful 
not only in the magnetospheric physics scenario but also in space 
weather applications. When conducting physics studies, it allows the 
researcher to focus usage of the model on those applications where it is 
most appropriate and focus model development on the aspects of the 
output that are most troublesome. When determining models for use in 
operational settings, a robust discrimination or reliability assessment 
allows the user to understand how best to incorporate the model output 
into their decision-making process. 

3.2. Common event detection metrics 

Let us now switch over to metrics for all of the categories within the 
event detection grouping. These are the metrics based on the categorical 
event status of the data and model, regardless of the actual values. Using 
event status, we define the contingency table from which many metrics 
can be calculated. Following Wilks (2019), the quadrants of hits, false 
alarms, misses, and correct negatives will be referred to as a, b, c, and d, 
respectively, in the equations below. Each metric is based on its appli
cation to one contingency table. We end this section with a discussion of 
methods for analysis with varying event state thresholds. 

3.2.1. Accuracy 
For the accuracy category, the goal of these metrics is to capture the 

model’s ability to correctly identify the event status of the observations. 
Therefore, metrics in this category assess the “correct” quadrants of hits 
and correct negatives against the other two values of false alarms and 
misses. There are two primary metrics that fall within this definition. 
The first is proportion correct, PC: 

PC =
a + d

N
(21) 

Remember that N is the total number of model-observation pairs in 
the comparison, so it is the sum of the quadrant values, N = a+b + c + d. 
Note that PC is sometimes multiplied by 100 and renamed percent 
correct, which unfortunately has the same initials of PC. When using PC, 
always be clear with the definition (with or without the multiplication 
by 100) to avoid confusion and misinterpretation. The second metric is 
the critical success index, CSI: 

CSI =
a

a + b + c
(22) 

Note that CSI is sometimes called the threat score. A third commonly- 
used measure of accuracy is the F1 score: 

F1 =
2a

2a + b + c
(23) 

The F1 score is very close to CSI, with the same functional form but 
including an extra emphasis on the hits. The big difference between PC 
versus CSI or F1 is the removal of d from both the numerator and de
nominator. This can be especially useful for the evaluation and inter
pretation of model quality if the number of correct negatives is large and 
that value dominates the contingency table. In this case, PC could 
indicate a very good accuracy for the model even if b and c are larger 
than a. 

3.2.2. Bias 
The bias category has one metric that is the regular choice for many 

studies, the frequency bias, FB: 

FB =
a + b
a + c

(24) 
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It is sometimes called the bias ratio. FB assesses the symmetry of the 
contingency table, with the hits acting as a regulating value in the 
equation. When the model systematically overpredicts the observations, 
then it will be in event state more often than the observations, resulting 
in more false alarms than misses and therefore an FB greater than one. If 
the model systematically underestimates the observations, then misses 
will be more numerous than false alarms and FB will be less than one. 
When the model predicts event state more often than not, then the in
clusion of hits in both the numerator and denominator will lead to an FB 
close to one. Note that this metric could be exactly one even when b and 
c are larger than a; FB is not measuring accuracy, but rather bias. 

3.2.3. Precision 
The category of precision is a comparison of the amount of clustering 

of the model with respect to the amount of clustering in the observa
tions. Since the exact values no longer are meaningful in event detection 
metrics (only the event status matters), there is no single metric that 
exactly matches this category in the even detection grouping. Note, 
however, that there is an event detection metric called precision. This 
metric is actually a metric within reliability so this discussion is being 
postponed until metrics for that category have been introduced. More on 
event detection precision is given below at the end of section 3.2.7. 

3.2.4. Association 
In the category of association, an evaluation of how well the model 

matches the observed trends, the metric most often assigned to this 
category is the odds ratio skill score, (ORSS): 

ORSS =
θ − 1
θ + 1

=
(a⋅d) − (b⋅c)

(a⋅d) + (b⋅c)
(25) 

In (25), θ is the odds ratio, defined as θ = ad/bc. ORSS is preferred 
over the odds ratio itself because it removes the false alarms times misses 
term from the denominator, preventing a possible division by zero. 
ORSS has the same properties as other skill scores, in that the perfect 
score is one and values below zero are worse than the reference model 
(here, random chance). If the model is correctly predicting the event 
status of the observations and ad ≫ bc, then ORSS will be close to one. If 
the opposite is true and the model incorrectly predicts the event status 
more than it gets it right, then ORSS will be less than zero. Because of the 
inclusion of d in the equation, it should be noted that ORSS can be close 
to one even when the model is not particularly good at predicting events. 

3.2.5. Extremes 
This issue where some metrics are overwhelmed by a large number of 

correct negatives is addressed by the extremes category, which includes 
metrics that work well when events are rare (e.g., Provost and Fawcett, 
2001; Haixiang et al., 2017). The most popular metric in this category is 
the symmetric extreme dependency score, SEDS: 

SEDS =

ln
(

a+b
N

)

+ ln
(

a+c
N

)

ln
(

a
N

) − 1 (26) 

All three natural logarithm operands in (26) are, by definition of N, 
less than one, rendering the output from the natural log function 
negative. The numerator terms include b and c in the operands, so these 
natural logs will be equal to or more negative than the denominator log 
value, ensuring that the first term on the right-hand side of (26) is always 
equal to or less than one. If b = c = 0, then SEDS will be one. If a = b = c 
= d, then SEDS will be zero. If a, b, and c are small relative to d, then 
SEDS increases towards 1. If a is smaller than b and c, then SEDS remains 
close to zero, but if a is the largest of these three, then SEDS approaches 
one. Rather than simply ignoring correct negatives, SEDS includes it in 
the denominators of the natural log functions. This accentuates the 
values when a ≪ d, making SEDS a keen indicator of model quality when 
events are rare. 

3.2.6. Skill 
There are numerous skill scores that have been developed from the 

contingency table values. There are three that will be mentioned here, 
simply because of their occasional use in magnetospheric physics 
studies. The first, and arguably most widely known, is the Heidke skill 
score, HSS (e.g., Hogan and Mason, 2012): 

HSS =
2[(a⋅d) − (b⋅c)]

(a + c)(c + d) + (a + b)(b + d)
(27) 

HSS measures the fraction of correctly predicted times after elimi
nating those predictions that would be correct purely from random 
chance. Note that the numerator is nearly identical to that of ORSS in 
(25), off by only a factor of two, but the denominator is completely 
different. Like other skill scores, a perfect score for HSS is one, and 
values of HSS less than zero mean that the model is worse than the 
reference model, which in this case is random guessing. 

There are two other skill scores to list here. Another often-used skill 
metric is the Peirce skill score, PSS: 

PSS =
(a⋅d) − (b⋅c)

(a + c)(b + d)
(28) 

PSS is also called the True Skill Statistic and the Hanssen-Kuiper Skill 
Score. PSS has exactly the same numerator as ORSS. The denominator is 
simpler than HSS, being the multiplication of the number of times the 
data are in the event state with the number of times it is not. The other 
metric in this category that is sometimes used is the Gilbert skill score: 

GSS =
a − aref

a − aref + b + c
where aref =

(a + b)(a + c)

N
(29) 

GSS has the advantage of minimizing the influence of d because 
d only appears in the denominator of aref. When d is relatively large, then 
aref goes to zero and GSS asymptotes to CSI. 

3.2.7. Subsetting: discrimination and reliability 
Unlike fit performance metrics, the discrimination and reliability 

categories of the event detection grouping have unique equations. This 
is because subsetting of the data and model number sets is essentially 
predefined by the event status. This natural breakpoint makes it 
convenient to use the contingency table values for defining equations 
specifically for discrimination and reliability. Discrimination subsets the 
number sets according to the observed events and non-events, and two 
mutually exclusive metrics naturally arise from the separation of the 
contingency table into these two halves. The first, based on observations 
in the event state, is the probability of detection, POD: 

POD =
a

a + c
(30) 

POD is sometimes known as true positive rate, sensitivity, or recall. 
The second, which uses only the times when the observation was not an 
event, is the probability of false detection, POFD: 

POFD =
b

b + d
(31) 

Note that they have different ideal values, with a perfect POD being 
one and a perfect POFD being zero. Equation (31) can be rewritten with 
an ideal value of one by replacing the b in the numerator with d, a metric 
known as the true negative rate or specificity. For reliability, the values 
are split into subsets according to the model values being in or out of 
event state. Again, two mutually exclusive metrics can be written from 
the contingency table values. One of these, for model values in the event 
state, is the false alarm ratio, FAR: 

FAR =
b

a + b
(32)  

with b in the numerator, an ideal value of FAR is zero. This can be 
rewritten as the positive predictive value (PPV) by substituting the b in 
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the numerator with a. The second, using the values when the model is 
not in event state, is the miss ratio, MR: 

MR =
c

c + d
(33a) 

The complement of MR is the negative predictive value, which re
places c in the numerator of (33) with correct negatives, d. There is one 
more metric in the reliability category, the forecast ratio, FR, which is 
the ratio of hits to false alarms (Weigel et al., 2006), providing a quick 
measure of the utility of a model at producing useful predictive 
information. 

It was mentioned in section 3.2.3 that the event detection metrics for 
precision, the similarities of the spreads of the data and model, needed to 
wait until after the metrics listings for the subsetting categories. The 
metric known as precision is the same as PPV, the hits divided by hits 
plus false alarms. Therefore, event detection metrics in the precision 
category can be defined as POD and PPV because these assess the spread 
away from the hits quadrant into the two incorrect quadrants (false 
alarms, also known as type 1 errors, and misses, also called type 2 
errors). 

3.2.8. Moving the event identification thresholds 
A final topic to mention is that all of the above quantities are defined 

for a single contingency table with a given event identification threshold 
for the data and an event identification threshold for the model. These 
two values could be different. In fact, the data could even be collected as 
categorical event status values, a unitless yes/no designation. It could be 
the case, then, that a user will want to specifically set the model’s event 
identification threshold to optimize some aspect of event detection. All 
of the metrics above can be calculated with a sliding threshold of model 
event status. Examining the relationship of these metrics with model 
event threshold provides information on the model’s ability to repro
duce the observed events. 

A special technique has been created that deserves mention, the 
relative (or receiver) operating characteristic (ROC) curve (e.g., Birdsall, 
1973; Cook, 2007). Long used in terrestrial weather prediction (e.g., 
Mason, 1982), this is a graph of POD on the y axis against POFD on the x 
axis, with many values of these metrics created by sweeping through the 
full range of thresholds for the event status of the model. This results in a 
monotonic curve that moves from (1,1) for low thresholds to (0,0) for 
high thresholds. The area under the curve (AUC) of the ROC curve has 
been interpreted as a measure of how well the model captures the 
physical processes responsible for the observed event status (e.g., Han
dley and McNeil, 1982; Flasch et al., 2011). 

Along these same lines, if the data are continuous, rather than cat
egorical, and the model is trying to exactly reproduce the observed 
values, then another technique could be applied to the event detection 
metrics. Specifically, both thresholds, for model and data, can be 
simultaneously swept from low to high values. In this case, all points 
start as hits and eventually end up as correct negatives. All of the metrics 
above can be calculated with this process of sliding both event identi
fication thresholds and a user can examine the results to better under
stand model quality. 

Like the ROC curve, a special curve has been devised for this process 
of moving both thresholds together, the sliding threshold of observa
tions for numeric evaluation (STONE) curve (Liemohn et al., 2020). 
Created with the same procedure of plotting POD against POFD, the 
STONE curve has many of the same features as the ROC curve, but with 
one key difference. With the ROC curve, the points stay above or below 
the observed event threshold line because this line doesn’t shift. With 
the STONE curve, this line is sweeping just like the model event 
threshold, and the points can shift between the quadrants differently in 
the ROC curve case. Most notably, the STONE curve can have non
monotonicities whereas the ROC curve is always monotonic. These 
ripples and wiggles in the STONE curve reveal non-Gaussian features of 
the scatter plot of data-model points, which can be assessed in more 

detail using other metrics from both the event detection and fit perfor
mance groupings. 

Note that some definitions of fit performance metrics to include, as 
part of the definition of this grouping, any and all calculations that use 
the continuous nature of the model values. In this case, when the model 
or observational event determination setting is swept through the 
possible thresholds, event detection metrics could be considered part of 
the fit performance metrics. Because of this ambiguity, we prefer not to 
expand the definition of fit performance metrics in this way, keeping the 
two groupings distinct. 

3.3. Summarizing the metrics definitions 

Table 1 provides a quick-reference summary of the major categories 
(listed in the first column, defined in the second column) and the metrics 
within these categories for the two major groupings (third and fourth 
columns for the continuous and discrete metrics, respectively). A study 
that only uses RMSE in the data-model comparison is quantitatively 
assessing the overall similarity of the values, which is a good start. More 
can be learned by using additional metrics, especially those from the 
other categories. If you are evaluating the quality of the model at 
identifying active times, then RMSE is actually the wrong metric and 
will reveal very little about the model’s ability towards this purpose. It is 
useful to use several, even many, metrics when assessing the quality of a 
model, in order to robustly test its capabilities for the desired purpose. 

4. Review of recent magnetospheric studies with metrics usage 

The common metrics defined above have been used throughout the 
last several decades in magnetospheric physics studies. As stated in the 
Introduction, however, metrics were used rather infrequently until the 
last several years. Here, we provide a comprehensive review this recent 
usage of metrics for magnetospheric research and magnetospheric space 
weather applications, focusing on studies published in the last three 
years only. Also, to keep it tractable, the review is limited to magneto
spheric physics metrics usage only, omitting papers that focus on either 
the thermosphere-ionosphere or the solar-heliosphere regions. 

We present this discussion in the same order as in section 3, focusing 
first on those studies that only use fit performance metrics, followed by 
those that used only event detection metrics. A third subsection then 
covers studies that used metrics from both groupings in their analysis. In 
each subsection, we start from the magnetopause and work inward, 
covering global magnetospheric properties, and then back outward, 
covering specific particle populations. 

Note that all of the studies mentioned below are “good” because they 
included at least one metric in their data-model comparison analysis. 
The discussion below only covers some of the many magnetospheric 
physics studies that consider data and models together. 

Table 1 
Summary of metrics within each grouping (last two columns) and category 
(rows).  

Category Feature Being 
Assessed 

Common Fit 
Performance 
Metrics 

Common Event 
Detection Metrics 

Accuracy Overall similarity of 
values 

RMSE, MSE, MAE, 
SMAPE, MSA 

PC, CSI, F1 

Bias Similarity of 
centroids 

ME, SSPB FB 

Precision Similarity of spreads YI, Pσ,r, Pσ,d PPV, POD 
Association Similarity of trends R, RS ORSS 
Extremes Reproducing outliers CPDΔ,ε, CPDΔ,1-ε, 

γΔ, κΔ 
SEDS 

Skill Quality relative to a 
reference model 

PE, SSMSE HSS, PSS, GSS 

Discrimination Data-range subsets Any of the above POD, POFD 
Reliability Model-range subsets Any of the above FAR, MR, FR  
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4.1. Fit performance metrics in magnetospheric physics 

As indicated several times above, fit performance metrics are, by far, 
the more commonly used metrics grouping in magnetospheric physics 
and, indeed, across all of space physics and weather. Fig. 4 presents a 
composite of various visualizations of fit performance metrics. More 
detail about each panel will be given throughout this section. 

For the magnetopause, Staples et al. (2020) is the only recent study 

that systematically used metrics to examine this structure. They chose a 
single accuracy metric, ΔRMP (modeled minus observed magnetopause 
distance from Earth’s center), for their analysis. They examined the 
response of an empirical magnetopause model during storm sudden 
commencements (SSC). It could be argued that they also applied 
discrimination methods to the analysis, as they separately considered 
specific types of solar wind structures and then separately considered 
different times relative to the SSC via superposed epoch analysis. Fig. 4b 

Fig. 4. Proficient examples of fit-performance metric analysis in magnetospheric physics community. (a) From Haiducek et al. (2017). (Upper) Probability density of 
Kp error and Kp itself for different global model configurations during 1–31 January 2005. (Lower) Mean error for each Kp bin. The ranges for each bin are denoted in 
the x axis labels in the form [Kpmin, Kpmax). (b) From Staples et al. (2020). Purple diamonds show the median standoff distance calculated by the Shue et al. (1998) 
model, RMod, corresponding to a spacecraft magnetopause crossing measured at a given standoff distance, RSC. The error bars show the propagated error of the Shue 
et al. (1998) model. (c) From Anderson et al. (2017). Scatterplots of Jr from various global and empirical models versus AMPERE Jr together with the linear fit 
between them, and the linear regression coefficient, R. (d) From Ripoll et al. (2017). (Left) An assessment of the models accuracy through the computation of MAE, 
RMSE, and PE. (Right) An assessment of the model’s accuracy through the evolution during the 12 days of the event (4–16 March) of the three global error indices. 
(e) From Aminalragia-Giamini et al. (2018). Mean spectra from all fluxes during the studied SPEs from SEPEM and unfolded in this work re-binned to SEPEM 
energies. The inset shows the percentage error at each energy bin. (f) From Swiger et al. (2020). (Top) Scatter density correlation of modeled vs. observed electron 
flux at all 17 energy channels for two versions of their model. The comparison for both models was performed on the data reserved for testing. (Bottom) Training and 
test loss and skill for the two different model configurations. Various panels show the loss and skill metrics after each epoch of training the models. 
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shows an example plot from this study, presenting the magnetopause 
standoff distance from the Shue et al. (1998) empirical model against the 
standoff distance measured by the chosen spacecraft. It shows that there 
is a particular standoff distance in which the model closely matches the 
observations. The data and model values are highly correlated though, 
because the offset between them is linear. This metrics usage was 
effective for the study they conducted. 

Brito and Morley (2017) assessed the ability of five different 
empirical magnetospheric magnetic field models, presenting an opti
mization scheme that greatly improved the comparisons with data. They 
focused on only two metrics, the accuracy metric of RMSE and the bias 
metric of MPE, performed on a value τ that included both magnitude and 
angular direction of the local field. These are excellent choices that 
assess the closeness of the model value to the observed τ and, like the 
Staples et al. (2020) study, examined subsets of the observations based 
on geomagnetic activity conditions (in particular, sorted by Kp). 

The large-scale magnetic field configuration is associated with 
magnetospheric currents, and two studies have considered the ability of 
numerical models to capture observed field-aligned current (FAC) pat
terns, as measured by low-Earth orbit satellites. Wiltberger et al. (2017) 
assessed the influence of a new electrojet turbulence model in their 
global magnetohydrodynamic (MHD) model and associated code suite, 
comparing the resulting FACs with several data sets. While the com
parisons are mostly qualitative, the study mentions RMSE scores against 
some of the observations. Anderson et al. (2017) examined FAC patterns 
for several global MHD models as well as empirically-derived FAC 
models. In addition to many qualitative comparisons presented as 
scatterplot or line plot figures, they chose to use R as the quantitative 
assessment of these codes. The scatterplots for a selected time are shown 
in Fig. 4c. The data values, plotted along the x axis, are the same in each 
panel, and all of the points are from the same 2D map of FAC values, 
with the red lines showing the linear fit. 

The large-scale electric currents in geospace cause magnetic field 
perturbations observed by ground-based magnetometer stations, and 
quite a few studies have included quantitative fit performance metrics 
calculations when assessing models that seek to predict or explain these 
perturbations. Starting with individual magnetometer comparisons, 
Castillo et al. (2017) assessed the ability of an empirical magnetic field 
model to reproduce midlatitude ground-based perturbations, using R 
from daily value sets as well as distributions of R for quiet and active 
days. The time derivative of such perturbations, dB/dt, was considered 
by Welling et al. (2017), who revisited the Pulkkinen et al. (2013) results 
as a function of activity level, showing that the underlying conductance 
models are being extrapolated beyond validity. They quantified this 
decrease in performance with a quantity they called relative error, 
which is MAE normalized by the observation value. For both of these, 
the use of a single metric was enough to make their main point – that the 
models are only modestly good for geomagnetically active intervals. 
Bentley et al. (2019) also used only a single fit performance metric, PE, 
for comparison of their magnetic wave model against ground-based 
magnetometer data, which was enough to show that the model was 
better than both the observational variance and 1-h persistence. 

The vast majority of model comparisons with ground-based magne
tometer data are not with individual station observations but rather with 
geomagnetic indices. Starting at low latitudes, quite a few models exist 
that attempt to reproduce the Dst index, or its 1-min counterpart, the 
SYMH index. Bashkar and Vichare (2019) used RMSE and R in the 
assessment of their neural network model. Lazzus et al. (2017) also have 
a neural network model for predicting Dst, for which they routinely rely 
on RMSE, MAE, and R for model assessment (Lazzus et al., 2019). 
Chandorkar et al. (2017) use an autoregressive exogenous modeling 
approach to predict Dst, also using these same three metrics. Similarly, 
Lethy et al. (2018) have another machine learning algorithm (a neutral 
network) for computing Dst, and, as above, use RMSE, MAE, and R. 
While these three metrics provide a well-rounded assessment of the 
data-model relationship, there is more that can be learned when 

additional metrics are included in the assessment. Specifically regarding 
Dst, Engel et al. (2019) conducted a comparison of a new version of their 
ring current drift physics model against SYMH, using not only these 
same three metrics but also SMAPE for additional accuracy assessment, 
ME and SSPB for bias, and two skill scores, PE, and another based on 
MAE. Moreover, they examined comparisons with observed hot plasma 
fluxes as well. While they only considered a single storm event, the 
richness of the metrics usage allowed them to thoroughly assess the 
quality of the new model version relative to the old one. 

Shifting poleward, the Kp index is a commonly-used parameter of 
perturbation variability, compiled from midlatitude station data. Win
toft et al. (2017) presented a new version of their neural network model 
for predicting Kp, using RMSE and R for the comparative assessment. 
Similarly, Sexton et al. (2019) presented a neural network model for Kp, 
also using RMSE and R as the quantitative comparison. Shprits et al. 
(2019) also developed a neural network model for Kp, comparing it 
against persistence and historical Kp values for different forecast lead 
times. They only used RMSE. With all of these models, the use of only 
one or two metrics is better than purely qualitative comparisons but it 
does not explore the details of how the model output is similar to or 
different from the data values. In contrast, Zhelavskaya et al. (2019) 
developed yet another neural network model for Kp prediction, using 
not only RMSE and R but also included a table with the additional 
metrics of MAE, ME, and PE as a function of hours of lead time for 
prediction. With this extra information about model performance, they 
take a detailed look at the Kp features for which their model performs 
the best, and why. 

A few studies have used fit performance metrics to examine several 
geomagnetic indices simultaneously. Andriyas and Andriyas (2017) 
used multivariate relevance vector machines to predict 1-h lead times of 
not only Dst but also the high-latitude indices of AL and PC. Examining 
177 storms, they use RMSE as well as PE in their analysis. Gopinath et al. 
(2018) took a dynamical system approach to magnetospheric physics, 
developing a model of both Dst and the high-latitutde index of AE, using 
R as their quantitative assessment tool. Wintoft and Wik (2018) showed 
a new version of their neural network models for Dst and Kp, using the 
same two that they usually use, RMSE and R, but now including ME and 
quantile-quantile plots for bias and extremes comparisons, respectively. 
An even better fit performance assessment with multiple indices is that 
of Haiducek et al. (2017), who assessed a month of MHD and associated 
model output against SYMH, Kp, and AL. Using RMSE, NRMSE, and ME 
for the basic assessment, they also considered histograms of relative 
error as a function of subsetted data range, i.e., a discrimination anal
ysis, to reveal that the model is quite good at reproducing quiet and 
moderate activity but decreases in quality for strong geomagnetic ac
tivity. Examples of the Haiducek et al. (2017) metrics visualizations are 
shown in Fig. 4a, presenting probability distributions and mean error 
values of the observed and modeled Kp values. 

These magnetic field perturbations are registered not only by 
ground-based magnetometers but also by satellite-based sensors, leading 
to measurements of plasma waves with periods from milliseconds to 
minutes. A few wave parameter models have been developed and 
compared against observations with fit performance metrics. Aryan 
et al. (2017) have models for chorus waves and plasmaspheric hiss, 
which they compared against data using RMSE. Saikin et al. (2018) 
compared wave amplitudes from linear theory with spacecraft data, 
using relative difference (i.e., normalized MAE) as their quantitative 
metric. 

Like the geomagnetic index modelers, inner magnetospheric plasma 
and particle modelers have a strong record of using quantitative metrics 
in their assessments. Starting with the highest energies, i.e., the radia
tion belt particles, over a dozen studies in the last three years have used 
fit performance metrics. The majority of these studies use first-principles 
physics-based models, such as Li et al. (2017), who compared their 
radial diffusion model of energetic electrons with Van Allen Probes data 
using difference of the log of the flux values. This same metric was used 
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by several others, such as Castillo et al. (2019) in their comparison of 
model output with Van Allen Probes and geosynchronous data and by 
Zhu et al. (2019) to test the improvement from their new wave diffusion 
coefficients in their radiation belt model. RMSE is also a common choice 
for radiation belt modelers, as demonstrated by its use as the quantita
tive metric in both Woodroffe et al., (2018) and Jordanova et al. (2018). 
Some first-principles modeling studies use multiple fit performance 
metrics. Ripoll et al. (2017), for instance, in their examination of the 
efficacy of many different radial diffusion coefficient settings, conducted 
comparisons with RMSE, MAE, and PE. Fig. 4d shows plots of these three 
quantities against time in days from March 4, 2013 for several different 
model runs. Similarly, Ma et al. (2018) used MSA, median log accuracy 
ratio, and normalized difference. 

A watershed in quantitative fit performance metrics for radiation belt 
modeling occurred with the publication of Morley et al. (2018a), who 
introduced the space physics community to several metrics based on the 
logarithm of the values, in particular SMAPE and SSPB. As discussed 
above, such metrics are especially useful for highly variable values that 
span several orders of magnitude, as occurs for energetic electrons in 
near-Earth space. That study presented an initial usage of these new 
metrics for their radiation belt model output, demonstrating the effec
tiveness of these new assessment tools. They immediately came into 
usage by other groups, with both Glauert et al., 2018 and Yu et al. (2019) 
adopting SSPB in their studies a few months later, along with other fit 
performance metrics. 

Machine learning, artificial intelligence, and assimilative approaches 
are common for radiation belt modeling. Developers users of such codes 
have regularly adopted fit performance metrics into their assessments. 
Aminalragia-Giamini et al. (2018) used MAPE to quantitatively examine 
the quality of output from their artificial intelligence model for radia
tion. Fig. 4e shows the resulting flux from this model against corre
sponding observations, along with the percent error at each energy in 
the lower left inset. Most of these studies, however, choose several 
metrics. Wei et al. (2018), for example, used RMSE, R, and PE to assess 
their neural network model of geosynchronous high-energy electron 
flux, and Pires de Lima et al. (2020) used these same three metrics for 
their neural network – RMSE in the creation of the model and R and PE 
for testing and validation. Boynton et al. (2019) used a nearly identical 
set of metrics, except they swapped out RMSE for MSE. Finally, Coleman 
et al. (2018), in diagnosing the quality of their outer radiation belt 
nowcasting model, not only used RMSE and PE but also, applying the 
generic skill score formula in (1), calculated MSE-based skill scores (i.e., 
like PE) comparing the new model against a previous model and against 
persistence. 

Fit performance metrics have also been used with the hot (~keV) 
plasma of the inner magnetosphere and plasma sheet. Specifically, Katus 
et al. (2017) used RMSE to compare their hot ion temperature model, 
based on energetic neutral atom imagery, against in situ temperature 
values from the Geotail spacecraft. Wang et al. (2017), in creating their 
support vector machine for predicting plasma sheet temperatures, used 
R and NRMSE in training and testing the model. A more substantial 
usage of these metrics is that of Yu et al. (2019) for their spacecraft 
surface charging GEM challenge results, in which several models were 
compared against available data sets, using RMSE for accuracy, YI and 
SSPB for bias, R for association, and PE for skill. While it was for one 
value (integrated electron flux from 10 to 50 keV) for one storm event, 
this robust set of metrics allowed for a more complete examination of the 
models, including follow-up discussion on the differences between the 
model assessment values. Swiger et al. (2020) created a neural network 
model of plasma sheet keV electron fluxes, using a wide range of nine 
different fit performance metrics – MSE, MAE, MSA, SMAPE, ME, YI, 
SSPB, R, and PE. They showed that the inclusion of physical under
standing in the setup configuration of the neural network yielded better 
model results, with 7 of the 9 metrics improving even though the 
training data set was smaller. Fig. 4f is an example of their results for the 
two model configurations considered, presenting a color heat map of the 

observed fluxes against the modeled fluxes along with the training and 
test set MSE and PE scores as a function of training epoch number. 

Thermal plasma models of the plasmasphere have also been the 
subject of fit performance metrics evaluations. He et al. (2017) collected 
many data sets into a new plasmapause model, then used RMSE and the 
Spearman rank order RS for comparison with the reserved test data. 
Several neural networks have been created for plasmapause location and 
plasmaspheric density, such as Zhelavskaya et al. (2017), who used 
RMSE, Chu et al. (2017), who use RMSE and R, and Zheng et al. (2019), 
who used RMSE, normalized RMSE, and R. The topside ionosphere, 
which is directly connected to and controlled by magnetospheric dy
namics, has also been explored in this manner, like Adebiyi et al. (2019), 
who compared topside densities against other nearby data, using RMSE 
and R to quantify the relationships. Studies here include the CEDAR 
challenge results of Shim et al. (2017) and Shim et al. (2018), who used 
relative difference, RMSE, YI, and R, the assessment of a multifluid 
transport model by Swoboda et al. (2017), employing RMSE and relative 
RMSE. There are also the climatological studies of Perlongo et al. 
(2018), who used NRMSE and PE, and that of Tsagouri et al. (2018), who 
included a number of metrics – RMSE, ME, R, and mean relative error 
(another metric for bias). 

The unique study of Borovsky& Denton (2018) explored the idea of a 
composite scalar index for the entire magnetosphere, not just from 
ground-based magnetometer data but also from in situ satellite values. 
They only use R for their assessment, but they subset the values ac
cording to various solar wind input parameters and solar cycle phases, 
making it a discrimination assessment as well. 

A final study to mention here is that of Rastätter et al. (2019), who 
presented their new analysis software available at the CCMC. Before, the 
available tools only examined the model output, and users had to 
download the digital values to conduct their own data-model compari
sons. The new interface includes many built-in comparison tools, 
including MAPE, R, SSPB, and PE for magnetospheric model evaluation 
against satellite data. More metrics are regularly being incorporated into 
these CCMC capabilities with their periodic updates to the online 
version of the code. 

4.2. Event detection metrics in magnetospheric physics 

Fewer magnetospheric studies use event detection metrics, but there 
are some in the recent past that focus entirely on this type of comparison 
for assessing a model against observations. Fig. 5 shows a composite of 
various plots of event detection metrics. More information about the 
specific panels of this figure is given throughout this section and the 
next. 

Two recent studies are from governmental space weather forecasting 
centers. Sharpe and Murray (2017) provide the details of the latest ca
pabilities of the UK Met Office Space Weather Operations Center, 
including forecast verification analysis. Validation of their geospace 
storm predictions focused on ROC curves and decile reliability diagrams 
for capturing “G1 level and above” storm activity, showing assessments 
for 1, 2, 3, and 4-day forecasts. Similarly, Podladchikova et al. (2018) 
analyzed 5 years of StormFocus service output, using POD and FAR to 
show the abilities of their storm prediction models. 

The most comprehensive global magnetospheric model assessment 
using event detection metrics was that of Haiducek et al. (2020), who 
were focused on substorm identification in long-baseline simulation 
results. They created a data-based and corresponding model-based 
“substorm score” from signatures they identified that represent prop
erties of substorm expansion phase onset. Using this list of observed and 
modeled events, they calculated PC, HSS, POD, and POFD to assess the 
ability of the model, concluding that it has significant skill at capturing 
substorm timing. The resulting waiting times from the observations and 
the model results are shown in Fig. 5b, as a function of the threshold 
used to identify a substorm event. The metrics essentially quantify how 
well the curves in the bottom set of panels matches those in the upper set 
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of panels. 
A few studies have used event detection with geomagnetic indices. 

Savani et al. (2017) created a model that relates solar wind to Kp and 
then tested its ability to reproduce high-Kp space weather events. They 
used PC, CSI, FB, PSS, POD, and FAR in this assessment, comparing 
against other Kp prediction capabilities for a variety of solar wind input 
conditions, robustly demonstrating that their new model is quite good at 
predicting active time intervals. Similarly, Maimaiti et al. (2019) used a 

wide array of event detection metrics (PC, TPR, MR, PPV, F1 score, and 
ROC curves) to validate their neural network model for predicting SML. 

A few studies have used event detection metrics with inner magne
tospheric magnetic wave power and radiation belt electron flux models. 
Balasis et al. (2019) created a machine learning routine for wave event 
recognition, using PC for their quantitative assessment. Capman et al. 
(2019) divided magnetospheric wave power into three bands for logistic 
regression modeling of relativistic electrons, using PC, POD, and TNR 

Fig. 5. Proficient examples of event detection metric analysis in magnetospheric physics community. (a) From Liemohn et al. (2018b). (Top) STONE curves for the 
comparisons of WINDMI SYM-H, WINDMI AL, UPOS Kp, and RAM-SCB SYM-H. Event performance metrics for the comparisons of the aforementioned four datasets. 
(b) From Haiducek et al. (2020). Distributions of substorm waiting times for a range of identification thresholds and kernel widths used in the identification pro
cedure. (a–c) Observed waiting time distributions. (d–f) MHD waiting time distributions. (a, d) Threshold = 1.0; (b, e) Threshold = 1.5; (c, f) Threshold = 2.0. (c) 
From Morley et al. (2018b). (Top) Event analysis metrics of dB/dt values for Newport (NEW) and Yellowknife (YKC) stations with different thresholds. (Bottom) 
Observed and simulated dBH/dt for the Newport (NEW) magnetic observatory. (d) From Ganushkina et al. (2019). Scatter plots of GOES MAGED electron fluxes 
versus modeled fluxes by IMPTAM for 40 keV overplotted with population density of the data, together with thresholds used for binary event analysis marked by red 
lines. (e) From Azari et al. (2020). ROC curves from several logistical regression algorithms as well as from a manually created event identification method. (f) From 
Mukhopadhyay et al. (2020). Impact of changes to the auroral conductance on dB/dt predictions. (Top) Expansion of the auroral oval as seen through DMSP F16 
auroral radiance maps and the magnetometer stations at Yellowknife (YKC) and Newport (NEW). (Bottom) Heidke Skill Score (HSS) performance of SWMF simu
lation variants with different conductance models at ascending dB/dt predictions for all events listed in Pulkkinen et al. (2013). 
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(1-POFD) to demonstrate the high quality of the model. Even more 
recently, Simms and Engebretson (2020) created a recurrent neural 
network model for relativistic electrons, trained on 5 years of data and 
tested on 2 other years of observations, exploring the assessment with 
POD, ROC curves, and its integral value, AUC. 

A final study to mention here is that of Azari et al. (2020) regarding 
energetic ions in Saturn’s magnetosphere, who argued that machine 
learning algorithms greatly benefit from the inclusion of known physical 
relationships. They used a combination of HSS scores, ROC curves, and 
probability density curves, including eye-catching explanatory visuali
zations of the modeling technique continuum and the Saturn space 
environment. The study showed that their science informed event 
identification algorithm from Azari et al. (2018) performs better than 
other more complex logistic regression models, as shown in Fig. 5, and 
obtains the same performance as a data intensive random forest model. 

4.3. Robust metrics usage in magnetospheric physics 

The studies mentioned above have focused on one or the other of the 
two major groupings of metrics, either fit performance or event detec
tion. Several recent magnetospheric studies have employed both ap
proaches to their assessments. Half of these have focused on 
geomagnetic indices. The neural network model of Tan et al. (2018) for 
Kp prediction underwent comparisons against observations using RMSE, 
MAE, and R from the fit performance grouping as well as high-Kp event 
detection quantification using POD and POFD and a skill value known as 
the F1 score. A neural network for Dst was developed by Gruet et al. 
(2018), using not only RMSE, MAE, and R but also POD and POFD as a 
function of model event identification threshold (i.e., a tabular ROC 
curve) and a reliability diagram, which plots observed event occurrence 
rate against the modeled rate as a function of model threshold. Two 
other papers that considered geomagnetic indices with both metrics 
groupings are Liemohn et al. (2018a) and Liemohn et al. (2018b). The 
former examined the real-time nowcasting performance of a global 
modeling suite against Dst while the latter laid out guidelines for metrics 
assessments of new index prediction models, including example calcu
lations on three different state-of-the-art codes. The usage of metrics in 
these two studies spans nearly everything listed in section 3 above. 
Fig. 5a shows a few of the plots from Liemohn et al. (2018b), displaying 
both the STONE curves in the upper panels as well as HSS and FB as a 
function of event identification threshold setting. The threshold settings 
for which each model is good and those thresholds when the model is 
less accurate. 

Two studies have examined modeling capabilities at reproducing 
dB/dt observed by ground-based magnetometers. Morley et al. (2018b) 
conducted 40 global magnetospheric simulations with perturbed solar 
wind inputs around the baseline observed values, quantifying the impact 
of this variability on the resulting magnetic field at Earth’s surface. They 
used RMSE, MAE, and ME against SYMH during the selected intervals as 
well as PC, FB, HSS, POD, and POFD to assess event detection in dB/dt in 
high-latitude magnetometers. Their study robustly quantified confi
dence intervals around the baseline metrics values, allowing operational 
users to better identify true space weather events from a spurious input 
value. Fig. 5c presents a summary of their key findings, showing the 
data-model comparison in the lower panels and four different event 
detection metric scores in the upper panel. Similarly, Mukhopadhyay 
et al. (2020) tested the space weather event prediction capabilities of 
their model with an even broader range of fit performance and event 
detection metrics, allowing them to probe which aspects of the code lead 
to improved dB/dt event identification as well as identifying additional 
avenues for model development. A visualization of their results is 
included in Fig. 5f, showing auroral oval observations in the top panel as 
context to accompany the HSS values in the lower panels. 

Two final studies to mention here are investigations of energetic 
particles in the inner magnetosphere. With their new radiation belt 
model, Chen et al. (2019) compared against 3.5 years of Van Allen 

Probes data using PE along with CSI, FB, POD, and POFD for flux en
hancements, subdividing the analysis by radial distance, demonstrating 
that the model has a potentially useful forecast capability out to one day 
ahead. In addition, Ganushkina et al. (2019) compared their nowcasting 
of keV-energy electron fluxes against three energy channels of geosyn
chronous observations, considering not only MSA, SSPB, and R but also 
HSS for detecting high-flux events. Fig. 5d is a scatterplot of the model 
output for 40 keV electron fluxes against the observed values, with the 
red lines showing event identification thresholds used in the analysis. 
The extra analysis allows them to better discuss and explain discrep
ancies, exploring the underlying assumptions of the model 
configuration. 

5. Synthesis: metrics best practices 

Some magnetospheric physics and magnetospheric space weather 
studies conduct data-model comparisons in a purely qualitative manner, 
supplying two plots next to each other or overplotting observations with 
the simulation output. While this provides a general impression of the 
goodness of the model and has led to many new physical insights 
through the history of magnetospheric physics research, it is not 
rigorous and does not invoke confidence in the veracity of the code. That 
is, this might be useful for physics when the field is in an initial phase of 
discovery on a particular topic, but this is not sufficient for detailed 
physical analysis or space weather operational decision-making. 

When only using RMSE, R, or some other singular metric, the study is 
greatly improved over a purely qualitative analysis because it now in
cludes a quantitative data-model comparison. The use of only one 
metric, however, only tests one aspect of the relationship. That is, RMSE 
only tests the overall accuracy, with an emphasis on outlier data-model 
differences. Similarly, R only tests the model’s ability to reproduce up- 
down trends of the data, saying nothing about the closeness of the 
model values to the observations. RMSE alone does not indicate if the 
model values are systematically or randomly off from the data, only the 
extent of difference. The use of bias and precision measures provide the 
additional context. Furthermore, RMSE alone will not reveal a subset 
range of the data or model where the model might be particularly good 
or bad. In addition, neither RMSE nor R indicate if the model is good at 
capturing events in the observations. Evaluating a model or forecasting 
method using only a single metric and then making improvements to 
optimize for that single metric alone can lead to improvements in one 
area at the cost of another important feature. This might be what is 
needed for that particular usage of the model, but the model should not 
be considered validated for any other use. 

The lesson to learn from this presentation of metrics and exploration 
of magnetospheric studies that used quantitative metrics in their data- 
model comparisons is that additional insights can be gleaned when 
additional metrics are included in the analysis. In a research study, the 
model is being used to assess a particular hypothesis, so that aspect of 
the model needs to be validated against observations to show that it is 
solving the right equations for the problem of interest. The model output 
could greatly exceed the spatial or complexity scope of the stated 
problem, but if the model has not been tested for the particular feature of 
interest, then this needs to be done prior to using it for the proposed 
analysis. 

A similar argument can be used for space weather operations with 
magnetospheric models. To trust the model results to the point of 
making decisions based on code output, the aspects of the code most 
relevant to that decision process need to be thoroughly vetted. This 
might involve one or two fit performance metrics, like RMSE or R, but 
most likely it should involve a large variety of metrics considering that 
aspect of model output from many angles. Such in-depth assessment of 
model capabilities are necessary to substantiate any subsequent decision 
making based on the model. Furthermore, validation for one usage does 
not mean that the model can be applied for other purposes. This is the 
AUL concept of Halford et al. (2019) – when the user or application of a 
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model changes, that model reverts to a lower AUL and must be assessed 
again in a manner that adequately evaluates its capabilities for the new 
usage. 

The above metrics can be applied to any set of model output and 
corresponding observations. The most intuitive usage is with time-series 
values, such as a ground-based magnetometer index or particle flux at a 
given energy. Even for this usage, it should be noted that comparisons 
with indices have their own concerns, such as those raised by Liemohn 
et al. (2018b). The metrics could also be applied to spatially distributed 
values, in one or more dimensions, such as ΔB from many magnetometer 
stations at a particular time (e.g., Mukhopadhyay et al., 2020), a spatial 
array of field-aligned currents (e.g., Anderson et al., 2017), or a 
remotely-sensed image of magnetospheric plasma, such as those of the 
cold and hot ions (e.g., Burch, 2000; McComas et al., 2009a, 2009b). The 
multidimensional aspect of data can also extend into velocity space 
(across an energy-pitch angle grid, for example) or using time in addi
tion to one or more of these other phase space dimensions, such as an 
energy-time spectrogram of particle fluxes or a latitude-time keogram of 
auroral emissions. The metrics above can be used with any of these, but 
multi-dimensional comparisons open the possibility of additional met
rics. For example, Liemohn et al. (2006) used several such techniques, 
including the local time of the peak in energetic neutral atom images and 
the radial distance of the plasmapause. Even more sophisticated options 
exist, such as those of Uritsky et al. (2002), who calculated the spatial 
extent of auroral bright regions and integrated their 
dynamically-changing area over time. Multidimensional data-model 
comparison techniques deserve their own comprehensive review. 

It is good practice to conduct uncertainty calculations. A value 
calculated from a metric is difficult to interpret without context, and 
uncertainties around the base value is one way to provide that. An issue 
regarding uncertainty is the number of data-model pairs in the calcu
lation. Especially with fine-scale subsetting, there is a risk that the 
number of points within the subset could become small, therefore the 
uncertainty of that metric value could become large and obscure the 
meaning and interpretation of the metric values. 

Uncertainties can be placed on all of the metrics above. Morley et al. 
(2018b) provide one example of this, conducting many model simula
tions with the inputs perturbed around the baseline values, then using 
the perturbed-input metrics values to obtain a confidence interval 
around the metrics values with the baseline inputs. Another way to 
obtain error bars is the bootstrap method (e.g., Efron and Tibshirani, 
1993), in which the data-model pairs are randomly sampled, with 
replacement, to create a “new” set of data-model pairs, from which 
metrics can be calculated. Doing this random selection with replacement 
hundreds of times yields a distribution of metrics values, from which a 
standard deviation can be calculated and applied to the original metric 
score. In addition to these two methods, a thorough discussion of un
certainties on event detection metrics values is given by Hogan and 
Mason (2012). 

A final best practice is the use of quantitative tests to compare a 
metric value against its perfect score or against that metric score from 
another data-model comparison (either the same model for a different 
data set or a different model for the same data set). Many such tests exist, 
and the appropriate test should be used for the hypothesis being 
assessed. Here, we will list two of the most common tests. The first is the 
Welch’s t-test, which assesses the similarity of two values (A1 and A2) 
with unequal sample sizes (n1 and n2) and unequal variances (σ2

1 and σ2
2): 

t =
|A1 − A2|

σΔ
where σΔ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
1

n1
+

σ2
2

n2

√

(33b) 

This Welch’s t statistic can be converted into a p-value probability 
that the two values came from the same population, knowing the de
grees of freedom d, which is a function of the sample sizes and variances: 

dW =
σΔ

4

(σ2
1/n1)

2

n1−1 +
(σ2

2/n2)
2

n2−1

(34) 

If the t statistic is low (below ~1.5 to 3, depending on dW) and the 
probability is high, then this indicates a good chance that the two metric 
scores, A1 and A2, are “sampling the same population” – that is, the 
metrics values can be considered close enough to be “the same.” If the t 
statistic is high and the probability is low, then this implies a statistically 
significant difference between A1 and A2. An example would be if the 
metric A were R and the new version of your model yielded a higher 
value than your old version. If this difference is deemed statistically 
significant by a Welch’s t-test, then you have quantitative evidence that 
the new version is better with respect to the “similarity of trends” in the 
model and data values (quoting the association definition from Table 1). 

The other assessment of model performance we will mention is the F 
ratio, which is calculated as the mean square regression over mean 
square error: 

F = (N − d)

∑ (
Mi − O

)2

∑
(Mi − Oi)

2 (35) 

This is a comparison of the error of the model to the observational 
mean against the error of the model to the individual observations. In 
(35), d is the model degrees of freedom used in many of the fit perfor
mance metrics. The F ratio can be converted into a p-value probability 
for statistical significance, which usually requires a value above ~250 
(depending on N – d). If the probability is low, then the model is a good 
fit to the data. Because it is based on MSE, this is a test of accuracy. That 
is, the F ratio assesses the significance of the “overall similarity of the 
model to the data. 

As stated above, these probabilities for t and F should be used with 
caution. Wasserstein et al. (2019) strongly suggest dropping the implied 
“statistical significance” at the 0.05 threshold as an indicator of hy
pothesis confirmation or rejection. In an even stronger statement, 
Hurlbert et al. (2019) recommend journals disallow the use of the terms 
“statistically significant” and “statistical significance.” The reporting of 
p-values is still encouraged, but now should be used as one of many 
indicators subject to interpretation. Finally, because magnetospheric 
physics relies on measurements of the natural environment and thus is 
not conducive to controlled and repeatable experiments, differing 
p-values between studies does not imply contradictory results. As 
Amrhein et al. (2019b) put it, “there is no replication crisis if we don’t 
expect replication.” It is recommended to use these significance tests as 
guides for assessing the quality of a data-model comparison, taking into 
account all of the other caveats, limitations, and constraints of the 
measurement techniques and numerical setup. 

6. Conclusions 

This review explored the historical usage of data-model comparison 
metrics in magnetospheric physics studies and space weather fore
casting of magnetospheric quantities. After a general introduction, the 
groupings, categories, and types of metrics were presented, listing their 
strengths with respect to probing some aspect of the data-model rela
tionship. A detailed examination of the recent magnetospheric studies 
using metrics was presented, followed by a discussion of the main les
sons to be learned about limited or comprehensive assessments. 

The main points can be summarized as follows:  

1. The field of magnetospheric physics adopted robust metrics usage 
only within the last 10 years or so; prior to this, metrics usage was 
sporadic at best and most studies included only qualitative 
comparisons. 
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2. The advent of GEM challenges greatly increased metrics usage, in 
particular the involvement of CCMC to orchestrate large-scale com
parisons involving many models and data sets.  

3. Two metrics groupings exist, called here fit performance and event 
detection; the former usually focuses the exact values of the data and 
observations, in particular their difference, while the latter converts 
the exact values into event status. 

4. Metrics can be divided into eight commonly used categories – ac
curacy, bias, precision, association, extremes, skill, discrimination, 
and reliability. Fit performance and event detection metrics exist 
within each category, sometimes many.  

5. Within the last 3 years, dozens of magnetospheric space physics and 
space weather studies have used multiple metrics to assess the data- 
model relationship for the chosen model usage, demonstrating that 
the field is growing in its acceptance of metrics usage as a standard 
practice in this field.  

6. Because each metric was designed to test only one limited aspect of 
the data-model relationship, it is highly advantageous to conduct a 
robust suite of metrics calculations to validate the usefulness of the 
model for its specific usage in the new study being conducted. 

7. Uncertainties can be calculated on all metrics, which can be partic
ularly helpful for operational usage of magnetospheric models in 
space weather forecast decision making. 

The space weather community has largely embraced the use of 
metrics in their usage of magnetospheric models in operational settings. 
With this review, it is advocated to the magnetospheric physics com
munity to also fully adopt metrics usage as a standard practice. Each 
metric is designed to test only a specific aspect of the data-model rela
tionship and therefore can only yield a limited assessment. The physical 
insights to be gained from consideration and analysis with additional 
metrics will yield additional scientific impact from each study. As pre
sented and discussed above, there is a zoo of metrics available for our 
use. We urge the magnetospheric physics community, and indeed the 
entire space plasma physics field, to visit the zoo. 
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