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Abstract

This work discovers the equivalence relation between quadrilateral meshes and meromorphic quartic differentials. Each
quad-mesh induces a conformal structure of the surface, and a meromorphic quartic differential, where the configuration of
singular vertices corresponds to the configurations of the poles and zeros (divisor) of the meromorphic differential. Due to
Riemann surface theory, the configuration of singularities of a quad-mesh satisfies the Abel–Jacobi condition. Inversely, if a
divisor satisfies the Abel–Jacobi condition, then there exists a meromorphic quartic differential whose divisor equals the given
one. Furthermore, if the meromorphic quartic differential is with finite trajectories, then it also induces a quad-mesh, the poles
and zeros of the meromorphic differential correspond to the singular vertices of the quad-mesh.

Besides the theoretic proofs, the computational algorithm for verification of Abel–Jacobi condition is also explained in
detail. Furthermore, constructive algorithm of meromorphic quartic differential on genus zero surfaces is proposed, which is
based on the global algebraic representation of meromorphic differentials.

Our experimental results demonstrate the efficiency and efficacy of the algorithm. This opens up a novel direction for
quad-mesh generation using algebraic geometric approach.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

Quadrilateral meshes play a fundamental role in computational mechanics, geometric modeling, computer aided
design, animation, digital geometry processing and many fields. Despite tens of years’ research efforts, rigorous and
automatic algorithms to produce high quality quad-meshes have not been achieved yet. The theoretic understanding
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Fig. 1. Quadrilateral meshes with singularities on them, green, yellow and red dots represent singularities with valencies 3, 5 and 6
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of the singularity configurations (the locations and valences) still remains preliminary. This work focuses on giving
sufficient and necessary conditions for singularity configurations based on Riemann surface theory (see Fig. 1).

More specifically, given a closed surface Σ embedded in the Euclidean space R3, it has the induced Euclidean
Riemannian metric g. Suppose the surface is tessellated by a quadrilateral mesh Q. If a vertex in Q with topological
valence 4, then the vertex is regular, otherwise singular. The singularity configuration of Q is represented as the
divisor of Q, defined as

DQ :=

∑
v∈Q

(k(v) − 4)v, (1)

where v is a vertex of Q, k(v) is the topological valence of v. The goal of this work is to find the necessary and
sufficient conditions for quad-mesh divisors.

1.2. Quad-mesh induced structures

A quad-mesh Q naturally induces several structures, each of them gives some information about the singularity
configuration. The induced conformal structure gives the most fundamental and complete information.

Combinatorial structure. Suppose the number of vertices, edges, faces of Q are V, E, F , then E = 2F ,∑
knk = 4F ,

∑
nk = V , where nk is the number of vertices with valence k, furthermore Euler formula holds,

V + F − E = χ (Σ ), where χ (Σ ) is the Euler characteristic number of Σ .

Riemannian metric structure. This part is to discuss Riemannian metric structure, and the reader can refer to
paper [1]. If each face of Q is treated as the unit planar square, a flat Riemannian metric with cone singularities is
induced, denoted as gQ . A vertex with k-valence has discrete curvature 4−k

2 π . the Gauss–Bonnet condition shows
the total curvature equals the product of 2π and the Euler characteristic number χ (Σ ). This implies∑

v∈Q

(k(v) − 4) = −4χ(Σ ). (2)

The degree of the divisor (defined in Section 3) also satisfies the equation above.
The holonomy group induced by the metric gQ on the surface with punctures at the singular vertices is the

rotation group

{ei π2 k, k ∈ Z}. (3)

This is the so-called holonomy condition. Furthermore, if we connect the horizontal and vertical edges of the quad-
faces, we get geodesic loops. If we subdivide the quad-mesh infinitely many times, we obtain geodesic lamination,
each leaf is a closed loop. This is called the finite geodesic lamination condition [1].
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Conformal structure. In this work, we show that the quad-mesh Q induces a conformal structure, and can be treated
as a Riemann surface SQ . Furthermore, it induces a meromorphic quartic differential ωQ , whose trajectories are
finite. Naturally the quad-mesh divisor DQ is equivalent to the divisor D of ωQ . By Abel theorem, the divisor
satisfies the Abel–Jacobi condition in Eq. (8). Inversely, if a point configuration D̃ satisfies the Abel–Jacobi
condition, then there must be a meromorphic quartic differential ω, whose divisor D equals D̃. If the trajectories
of ω are finite, then ω induces a quad-mesh.

Comparison between structures. The metric structure gQ gives partial information about the divisor DQ ; whereas
the conformal structure SQ and the meromorphic quartic differential ωQ gives more thorough information about
DQ .

Given any divisor D =
∑

k nk pk , where nk is an integer, and the total number of pk’s is finite (refer to Section 3).
If
∑

nk = −4χ(Σ ), then one can construct a flat Riemannian metric conformal to the original metric using Ricci
flow [2]. The flat metric is with cone singularities at pk , where the angle equals π (nk + 4)/2. But this flat metric
may not satisfy the holonomy condition in Eq. (3). If furthermore the divisor D satisfies the Abel–Jacobi condition,
then the obtained flat metric satisfies the holonomy condition.

We use a simple example to demonstrate the power of Abel–Jacobi condition. The following question is raised
in [3]:

Problem 1.1. Is there a quad-mesh on a closed torus, such that it has only two singularities, one valence 3 vertex
and one valence 5 vertex, other vertices are regular (with valence 4) ?

From heuristic experiments, it seems that such a quad-mesh does not exist. But it is difficult to find a rigorous
argument: from topological point of view, the connectivity satisfies the Euler equation; from geometric point of view,
there exists a flat Riemannian metric with the two cone singularities with curvature π/2 and −π/2 corresponding
to the valence 3 and valence 5 vertices. But by Abel–Jacobi condition, we can show such kind of quad-mesh does
not exist in Corollary 4.12.

1.3. Contributions

This work opens a novel direction for quad-mesh generation based on Riemann surface theory:

1. To the best of our knowledge, this is the first work that discovers the intrinsic connection between quadrilateral
meshes and meromorphic quartic differentials (Theorems 4.7 and 4.8).

2. This work gives the necessary and sufficient conditions for the singularity configuration, i.e. the Abel–Jacobi
conditions for divisors (Theorem 4.11) and an algorithm to check the validity of the quantity and distribution
of the singularities.

3. This work proposes to generate a quad-mesh by constructing the corresponding meromorphic quartic
differential with global algebraic representation.

The work is organized as follows: Section 2 briefly reviews the most related works; Section 3 introduces
the theoretic background, Section 4 proves the equivalence between quad-meshes and meromorphic quartic
differentials, Abel–Jacobi conditions; Section 5.2 explains the algorithm in detail, and gives simple examples
to verify Abel–Jacobi conditions and construct meromorphic quartic differentials; finally, the work concludes in
Section 6.

2. Previous works

There are many approaches for quadrilateral mesh generation, a thorough survey can be found in [4]. In the
following, we only briefly mention the most related works.

Triangle mesh conversion. Quad-meshes can be generated by conversion from triangular meshes directly. The
simplest way is to insert the barycenters of faces and edges to obtain the initial quad-mesh, then perform Catmull–
Clark subdivision. Alternatively, two original adjacent triangles can be fused into one quadrilateral to form a
quad-mesh [5–8]. This approach can only produce unstructured quad-meshes, the quad-mesh quality is determined
by the input triangle mesh.
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Patch based approach. This approach computes the coarsest level quadrilateral tessellation first, where the cutting
graph is called the skeleton, then coarse mesh is subdivided to obtain finer level quad-meshes. The skeleton can
be generated by clustering method, which merges neighboring triangles into a patch, including normal-based and
center-based methods [9,10]. Another method is to deform the input surface into a polycube shape, which is the
union of cubes, then the faces of the polycube give the patches [11–14]. This approach can generated semi-regular
quad-meshes.

Parameterization based approach. Parameterization based approach computes the quadrilateral tessellation in the
parameter domain, or finds the skeleton from intrinsic geometric functions or differentials. The spectral surface
quadrangulation method [15,16] produces the skeleton structure from the Morse–Smale complex of an eigenfunction
of the Laplacian operator on the input mesh. Discrete harmonic forms [17], periodic Global Parameterization [18]
and Branched Coverings method [19] are all based on parameterization for quad mesh generation.

Voronoi based method. Centroidal Voronoi Tessellation (CVT) produces a surface cell decomposition with uniform
cell sizes and shapes. The method in [20] generalizes the CVT from L2 distance to general L p distance, when p
goes to infinity, the cells tend to be quadrilateral, this method allows for aligning the axes of the Voronoi cells with
a predefined background tensor field. This method can only produce non-structured quad-mesh.

Cross field based approach. Cross field based approach has close relationship with parameterization based
approach, and it can be used in the computation of parameterization. Since cross field guided quad-mesh generation
is one of the most popular approach, we review the most related approaches here. Each algorithm first chooses a
way to represent a cross, for example N-RoSy representation [21], period jump technique [22] and complex value
representation [23]; then the algorithm usually generates a smooth cross field by energy minimization technique,
such as discrete Dirichlet energy optimization [24]. In the end, based on the obtained cross field, these approaches
generate the quad meshes by using streamline tracing techniques [25] or parameterization method [4]. The cross
field guided quad mesh generation method can be very useful and flexible. However it is difficult to control the
position of the singularities and the structures of the quad layout directly. Cross-fields also suffer from being just
direction fields, meaning that their scaling can be far from accurate.

The work in [26] relates the Ginzburg–Landau theory with the cross field for genus zero surface case. This
work further generalizes the work in [26] by relating Riemann surface theory with the cross fields for surfaces
with arbitrary topologies. In theory, cross field gives the horizontal/vertical directions of a meromorphic quartic
differential, but ignores the amplitude. Therefore, a meromorphic differential is a more precise representation of a
quad-mesh.

Metric based approach. A quad-mesh induces a flat metric with cone singularities. Furthermore, the work in [1]
shows the holonomy group of the metric has special properties. Therefore the method in [1] proposes to construct a
flat metric using Ricci flow algorithm with singularities at the given points, such that a quad-mesh can be induced
when the holonomy conditions are met. The existence of the solution to the Ricci flow has theoretic guarantees.
However the holonomy condition heavily depends on the singularity configuration. The work in [1] did not answer
when the singularity configurations are appropriate for the holonomy condition.

In contrast, the current work gives the sufficient and necessary condition for the singularity configuration in order
to satisfy the holonomy requirements: the Abel–Jacobi condition.

Holomorphic differential approach. In [27] and [28], the holomorphic quadratic differential is utilized to generate
quad-meshes and hex-meshes, this approach produces quad-meshes with least singularities and highest smoothness.
However, this approach cannot model singularities with odd topological valences, which greatly prevents the method
for general applications in practice.

The current work is a direct generalization of this approach, by generalizing holomorphic quadratic differentials to
more general meromorphic quartic differentials. This conquers the difficulties raised in the holomorphic differential
method, and covers all possible quad-meshes.

Comparing with all existing approaches, current work shows the equivalence between quad-meshes and
meromorphic quartic differentials, and gives the Abel–Jacobi condition for singularities. This picture is most general
and complete, generalizes most existing approaches including cross fields, Strebel differential and metric based
methods.
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3. Theoretic background

This section briefly reviews the basic concepts and theorems in Riemann surface theory, details can be found in
[29].

3.1. Riemann surface

Definition 3.1 (Topological Manifold). Suppose Σ is a topological space, {Uα} is a family of open sets covering
the space, Σ ⊂

⋃
α Uα . For each open set Uα , there exists a homeomorphism ϕα : Uα → Rn , the pair (Uα, ϕα) is

called a local chart. The collection of local charts form the atlas of M , A = {(Uα, ϕα)}. For any pair of open sets,
Uα and Uβ , if Uα ∩ Uβ ̸= ∅, the transition map is given by ϕαβ : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ), ϕαβ = ϕβ ◦ ϕ−1

α .
Then Σ is called a closed n-dimensional manifold.

Two dimensional manifolds are called surfaces.

Definition 3.2 (Conformal Atlas). Suppose S is a two dimensional topological manifold, equipped with an atlas
A = {(Uα, ϕα)}, every local chart is complex coordinate ϕα : Uα → C, denoted as zα , and every transition map is
biholomorphic,

ϕαβ : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ), zα ↦→ zβ,

then the atlas is called a conformal atlas.

Definition 3.3 (Riemann Surface). A topological surface with a conformal atlas is called a Riemann surface.

Definition 3.4 (Biholomorphic Map). Suppose f : (S, {(Uα, ϕα)}) to (T, {(Vβ, ψβ)}) is a map between two Riemann
surfaces, if every local representation

ψβ ◦ f ◦ ϕ−1
α : ϕα(Uα) → ψβ(Vβ)

is biholomorphic, then f is called a biholomorphic map between Riemann surfaces, namely a conformal map.

Suppose (S, g) is an oriented surface with a Riemannian metric g. For each point p ∈ Σ , we can find a
neighborhood U (p), inside U (p) the isothermal coordinates (u, v) can be constructed, such that g = e2λ(u,v)(du2

+

dv2). The atlas formed by all the isothermal coordinates is a conformal atlas, therefore the surface (S, g) is a
Riemann surface:

Theorem 3.5. All oriented surfaces with Riemannian metrics are Riemann surfaces.

Two metrics g1, g2 on a surface Σ are conformal equivalent to each other, if there is a scalar function λ : S → R,
such that g1 = e2λg2.

3.2. Meromorphic functions and differentials

Definition 3.6 (Holomorphic Function). Suppose f : C → C is a complex function defined on C, (x, y) ↦→

(u(x, y), v(x, y)), if the function satisfies the conditions below:

•
∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y exist everywhere on C;

• f satisfies the Cauchy–Riemann equations everywhere on C
∂u
∂x

=
∂v

∂y
,

∂u
∂y

= −
∂v

∂x
,

• f is continuous in C;
•

∂u
∂x ,

∂u
∂y ,

∂v
∂x ,

∂v
∂y are continuous on C.

then f is called a holomorphic function on C. If f is invertible, furthermore f −1 is also holomorphic, then f is
called biholomorphic.
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Fig. 2. Zeros on holomorphic 1-forms on a genus two surface.

Definition 3.7 (Meromorphic Function). Suppose f : C → C ∪ {∞} is a complex function, f (z) = p(z)/q(z),
where p(z) and q(z) are holomorphic functions, then f (z) is called a meromorphic function.

Definition 3.8 (Laurent Series). The Laurent series of a meromorphic function about a point z0 is given by

f (z) =

∞∑
n=k

an(z − z0)n,

the series
∑

∞

k≥0 an(z − z0)n is called the analytic part of the Laurent series; the series
∑

n<0 an(z − z0)n is called
the principal part of the Laurent series. a−1 is called the residue of f at z0.

Definition 3.9 (Zeros and Poles). Given a meromorphic function f (z), its Laurent series at point p ∈ C has the
form

f (z) =

∞∑
n=k

an(z − p)n,

where k is finite. if k > 0, then p is a zero point of order k; if k < 0, then p is called a finite pole of f (z) of order
k; if k = 0, then p is called a regular point whose order is 0. The order k of a zero or a pole at the point p of f
is denoted as νp( f ).

The concepts of holomorphic and meromorphic functions can be generalized to Riemann surfaces.

Definition 3.10 (Meromorphic Function on Riemann Surface). Suppose a Riemann surface (S, {(Uα, zα)}) is given. A
complex function is defined on the surface f : S → C∪{∞}. If on each local chart (Uα, zα), the local representation
of the functions f ◦ ϕ−1

α : C → C ∪ {∞} is meromorphic, then f is called a meromorphic function defined on S.

A meromorphic function can be treated as a holomorphic map from the Riemann surface to the unit sphere.

Definition 3.11 (Meromorphic Differential). Given a Riemann surface (S, {zα}), ω is a meromorphic differential of
order n, if it has local representation,

ω = fα(zα)(dzα)n,

where fα(zα) is a meromorphic function, n is an integer; if fα(zα) is a holomorphic function, then ω is called a
holomorphic differential of order n.

A holomorphic differential of order 1 is called a holomorphic 1-form (see Fig. 2); A holomorphic differential of
order 2 is called a holomorphic quadratic differential; A meromorphic differential of order 4 is called a meromorphic
quartic differential.
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Fig. 3. Horizontal trajectories of holomorphic quadratic differentials.

Definition 3.12 (Zeros and Poles of Meromorphic Differentials). Given a Riemann surface (S, {zα}), ω is a
meromorphic differential with local representation,

ω = fα(zα)(dzα)n.

If zα is a pole (or a zero) of fα with order k, then zα is called a pole (or a zero) of the meromorphic differential
ω of order k.

We use Singω to denote the singularity set of ω which is the set of poles and zeros. Locally near a regular point
p, the differential ω = f (z)(dz)n can be represented as the nth power of a 1-form h(z)dz where hn(z) = f (z) and
thus h(z) =

n
√

f (z) coincides with one of n possible branches of the nth root. We call this n-valued 1-form the nth
roots of ω, which is a globally well-defined multi-valued meromorphic 1-form on S.

Definition 3.13 (Trajectories of Meromorphic Differentials). Given a meromorphic n-differential ω on S we define n
distinct line fields on S \ Singω as follows. At each non-singular point z there are exactly n distinguished directions
dz at which ω = f (z)(dz)n attains real values. Integral curves of these line fields are called trajectories of ω.

Suppose ω is a meromorphic quadratic differential, dz is a horizontal (vertical) direction if f (z) is real and
f (z)(dz)2 > 0 ( f (z)(dz)2 < 0). Integral curves of horizontal direction are called horizontal (vertical) trajectories.

Definition 3.14 (Strebel Differential). A meromorphic quadratic differential is called a Strebel differential, if all its
horizontal trajectories are finite.

Fig. 3 shows the horizontal trajectories of Strebel differentials. Note that the vertical trajectories of a Strebel
differential may not necessarily be finite.

3.3. Divisor

Definition 3.15 (Divisor). The Abelian group freely generated by points on a Riemann surface is called the divisor
group, every element is called a divisor, which has the form

D =

∑
p

n p p,

where only a finite number of n p’s are non-zeros. The degree of a divisor is defined as deg(D) =
∑

p n p. Suppose
D1 =

∑
p n p p, D2 =

∑
p m p p, then D1 ± D2 =

∑
p(n p ± m p)p; D1 ≤ D2 if and only if for all p, n p ≤ m p.

Definition 3.16 (Meromorphic Function Divisor). Given a meromorphic function f defined on a Riemann surface
S, its divisor is defined as

( f ) =

∑
p

νp( f )p.

The divisor of a meromorphic differential ω is defined in the similar way.
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Fig. 4. Canonical fundamental group basis.

Definition 3.17 (Meromorphic Differential Divisor). Suppose ω is a meromorphic differential on a Riemann surface
S, suppose p ∈ S is a point on S, we define the order of ω at p as

νp(ω) = νp( f p),

where f p is the local representation of ω in a neighborhood of p, ω = f p(dz p)n .

Definition 3.18 (Principle Divisor). The divisors of meromorphic functions are called principle divisors.

All principle divisors are of degree zero. Suppose ω is a meromorphic 1-form, then deg((ω)) = 2g − 2, where
g is the genus.

Definition 3.19 (Equivalent Divisors). Two divisors are equivalent, if their difference is a principle divisor.

3.4. Abel-Jacobian theorem

Suppose {a1, b1, . . . , ag, bg} is a set of canonical basis for the homology group H1(S,Z), each of ai and bi
represents the curves around the inner and outer circumferences of the i th handle. The surface is sliced along the
homology group basis to obtain a fundamental domain, as shown in Fig. 4.

Let {ω1, ω2, . . . , ωg} be a normalized basis of Ω1, the linear space of all holomorphic 1-forms over C. The
choice of basis is dependent on the homology basis chosen above; the normalization signifies that∫

ai

ω j = δi j , i, j = 1, 2, . . . , g.

For each curve γ in the homology group, we can associate a vector λγ in Cg by integrating each of the g 1-forms
over γ ,

λγ =

(∫
γ

ω1,

∫
γ

ω2, . . . ,

∫
γ

ωg

)
The period matrix of the Riemann surface S is given by:(

λa1 , λa2 , . . . , λag ; λb1 , λb2 , . . . , λbg

)
.

We define a 2g-real-dimensional lattice Λ in Cg ,

Λ =

⎧⎨⎩
g∑

i=1

αi λai +

g∑
j=1

β j λb j , αi , β j ∈ Z

⎫⎬⎭
Definition 3.20 (Jacobian Variety). The Jacobian Variety of the Riemann surface S, denoted J (S), is the compact
quotient Cg/Λ.
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Definition 3.21 (Abel–Jacobi Map). Fix a base point p0 ∈ S. The Abel–Jacobi map is a map µ : S → J (S). For
every point p ∈ S, choose a curve γ from p0 to p inside the fundamental domain; the Abel–Jacobi map µ is
defined as follows:

µ(p) =

(∫
γ

ω1,

∫
γ

ω2, . . . ,

∫
γ

ωg

)
mod Λ,

where the integrals are all along γ .

It can be shown µ(p) is well-defined, that the choice of curve γ does not affect the value of µ(p). Given a
divisor D =

∑
k nk pk , the Abel–Jacobi map is defined as

µ(D) =

∑
k

nkµ(pk).

Theorem 3.22 (Abel Theorem). Given a compact Riemann surface S of genus g > 0, and a degree zero divisor D,
D is a principle divisor if and only if

µ(D) = 0 in J (S). (4)

4. Quad-meshes and meromorphic quartic forms

In this section, we show the intrinsic relation between a quad-mesh and a meromorphic quartic differential, this
gives the Abel–Jacobi condition for the singularity configuration of any quad-mesh.

4.1. Quadrilateral mesh

Definition 4.1 (Quadrilateral Mesh). Suppose Σ is a topological surface, Q is a cell partition of Σ , if all cells of
Q are topological quadrilaterals, then we say (Σ ,Q) is a quadrilateral mesh.

On a quad-mesh, the topological valence of a vertex is the number of faces adjacent to the vertex.

Definition 4.2 (Singularity). Suppose (S,Q) is a closed quadrilateral mesh. For each vertex v with topological
valence k. If k is 4, then we call v a regular vertex, otherwise a k-singular vertex.

Definition 4.3 (Quad-mesh Metric). Suppose (Σ ,Q) is a closed quadrilateral mesh. Each face is treated as a unit
planar square, then Q induces a flat Riemannian metric gQ with cone singularities at singularities.

Definition 4.4 (Discrete Curvature). Suppose (Σ ,Q) is a closed quadrilateral mesh. Under the metric gQ , the
discrete curvature at a valence k vertex is

π

2
(4 − k).

Theorem 4.5 (Gauss–Bonnet). Suppose (Σ ,Q) is a closed quadrilateral mesh of genus g. Under the metric gQ ,
the total curvature is∑

v∈Q

π

2
(4 − k(v)) = 2πχ (Σ ). (5)

4.2. Quad-mesh and meromorphic quartic differential

Theorem 4.6 (Quad-Mesh and Riemann Surface). Suppose (Σ ,Q) is a closed quadrilateral mesh, then the
quad-mesh Q induces a conformal atlas A, such that (Σ ,A) form a Riemann surface, denoted as SQ .
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Fig. 5. A quad-mesh induces a conformal atlas, such that the surface becomes a Riemann surface.

Proof. As shown in Fig. 5, we treat each face as the unit Euclidean planar square, this assigns a flat Riemannian
metric to the surface, such that the curvature is zero everywhere except at the singularities. At the singularity with
valence k, the cone angle is kπ/2.

First, we construct the open covering of the surface. The interior of each face f is one open set U f ; each edge
e is covered by the interior of a rectangle Ue; each vertex v is covered by a disk, Uv . It is obvious that

Σ ⊂

⋃
f

U f

⋃
e

Ue

⋃
v

Uv.

Second, we establish the local complex parameter of each open set. For each face U f , we choose the center of the
face as the origin, the real and imaginary axises are parallel to the edges of the face, the local parameter is denoted
as z f ; for each edge Ue, we choose the center as the origin, the real axis is parallel to the edge direction, the local
parameter is ze; for each regular vertex Uv , we choose the center of the disk as the origin, one edge as the real
axis, the local parameter is zv; for a singular vertex Uv , we first isometrically flatten Uv on the complex plane, to
obtain the local parameter wv , the we use the complex power function to shrink it as

w
4
k
v ↦→ zv,

where k is valence of the singular vertex.
Now we examine all the coordinate transition maps. We denote a subgroup of the planar rigid motion G generated

by

z ↦→ ei π2 z, z ↦→ z +
1
2
, z ↦→ z +

i
2
,

Then any transition map ϕ f e between a face and an adjacent edge z f → ze is an element in G, ϕ f e ∈ G; and
transition map ϕev between an edge and one of its regular end vertex ze → zv is an element in G, ϕev ∈ G.

The transition between a singularly vertex and its neighboring edge or face is more complicated. For example,
the transition from a face to its neighboring singular vertex is given by

zv =

(
ei nπ

2 z f +
1
2

(±1 ± i)
) 4

k

(6)

where m, n ∈ Z, k is the valence of v.
Hence all the transition maps are biholomorphic. A = {(U f , z f ), (Ue, ze), (Uv, zv)} form a conformal atlas.

(Σ ,A) is a Riemann surface. □
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Theorem 4.7 (Quad-Mesh to Meromorphic Quartic Differential). Suppose (Σ ,Q) is a closed quadrilateral mesh,
then the quad-mesh Q induces a quartic differential ωQ on SQ . The valence-k singular vertices correspond to poles
or zeros of order k − 4. Furthermore, the trajectories of ωQ are finite.

Proof. We construct a holomorphic 1-form on each face U f , dz f . Because the orientations of all faces are chosen
individually, dz f is not globally defined. Then we define the holomorphic quartic form

ω = (dz f )4,

then ω is globally defined. Suppose a face f and an edge e are adjacent, then

dz f = ei nπ
2 dze, n ∈ Z,

then (dz f )4
= (dze)4. Suppose an edge e has an regular edge vertex v

dze = ei nπ
2 dzv, n ∈ Z,

therefore (dze)4
= (dzv)4. Suppose a face f has a regular vertex v, according to Eq. (6), where k = 4,

dzv = ei nπ
2 dz f ,

hence (dzv)4
= (dz f )4.

Suppose v is a singular vertex with valence k ̸= 4, by Eq. (6), we obtain
k
4

z
k−4

4
v dzv = ei nπ

2 dz f ,

therefore(
k
4

)4

zk−4
v (dzv)4

= (dz f )4
= ω. (7)

Hence, a valence 3 singular vertex corresponds to a simple pole c
zv

dz4
v , a valence 5 singular vertex becomes a simple

zero czvdz4
v .

Therefore, the meromorphic quartic differential ω is globally defined, the valence-k singular vertices correspond
to poles or zeros with order k − 4. The finiteness of the trajectories of ω is obvious. □

Theorem 4.8 (Quartic Differential to Quad-Mesh). Suppose (Σ ,A) is a Riemann surface, ω is a meromorphic
quartic differential with finite trajectories, then ω induces a quadrilateral mesh Q, such that the poles or zeros with
order k of ω correspond to the singular vertices of Q with valence k + 4.

Proof. The horizontal and vertical trajectories of ω partition the surface into rectangles. Given a pole with local
representation

ω = c1zkdz4,

the holomorphic 1-form is given by 4
√
ω with local representation

c2z
k
4 dz =

4
k + 4

c2d(z
k+4

4 ),

the integration of 4
√
ω maps the 2π angle to k+4

2 π , therefore the valence of the singular vertex equals k + 4. □

Fig. 6 shows the quad-meshes induced by holomorphic differentials.

4.3. Abel-Jacobi condition

Definition 4.9 (Quad-Mesh Divisor). Suppose Q is a closed quadrilateral mesh, ωQ is the induced meromorphic
quartic form. Then the quad-mesh induces a divisor DQ = (ωQ):

DQ = (ωQ) =

∑
v∈Q

(k(v) − 4)v,

where k(v) is valence of the vertex v.
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Fig. 6. Quadrilateral meshes induced by holomorphic differentials.

Theorem 4.10. Suppose Q is a closed quadrilateral mesh of genus g, the degree of the induced divisor DQ is

deg(DQ) = 8g − 8.

Proof. Directly induced by the Gauss–Bonnet condition of gQ in Eq. (5). □

Theorem 4.11 (Quad-mesh Abel–Jacobi condition). Suppose Q is a closed quadrilateral mesh, SQ is the induced
Riemann surface, DQ is the induced divisor. Assume ω0 is an arbitrary holomorphic 1-form on SQ , then

µ(DQ − 4(ω0)) = 0 (8)

in the Jacobian J (SQ).

Proof. Suppose the meromorphic differential induced by Q is ωQ . The ratio f = ωQ/ω
4
0 is a meromorphic function,

therefore according to Abel theorem µ(( f )) = 0 in J (SQ),

µ(( f )) = µ((ωQ/ω
4
0)) = µ((ωQ) − (ω4

0)) = µ(DQ − 4(ω0)) = 0 mod Γ .

in J (SQ). □

Namely, the divisors of all meromorphic differentials are equivalent, and are mapped to the same point in J (SQ)
by the Abel–Jacobi map.

Corollary 4.12. A quadrilateral mesh Q on a genus one surface with only one valence 3 and one valence 5
singularity cannot exist.

Proof. Suppose p is the valence 3 singularity, q is the valence 5 singularity. Then p is the simple pole of ωQ , q
is the simple zero of ωQ . Suppose ω0 is the canonical holomorphic 1-form on the Riemann surface SQ . {a, b} is a
set of canonical homology group basis, Ω is a fundamental domain (see Fig. 7). Choose a base point p0 ∈ Ω and
paths γp, γq ⊂ Ω , connecting the base point to the pole and the zero. According to Abel–Jacobi condition in Eq.
(8),

µ(p − q) =

∫
γp

ω0 −

∫
γq

ω0 = 0,

therefore the pole p and the zero q coincide, name the valence 3 and valence 5 vertices coincide. Contradiction,
hence such kind of Q does not exist. □
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Fig. 7. The proof of Corollary 4.12 based on Abel–Jacobi condition Theorem 4.11. No genus one closed quad-mesh has only one valence
3 and one valence 5 singular vertices.

According to the Abel–Jacobi theorem, there exists quadrilateral mesh Q on a genus one surface with only one
valence 2 and one valence 6 singularity. Suppose SQ is a torus, with one zero p of order 2 and one pole q of order
-2. Suppose the fundamental group generators of the Riemann surface SQ are a and b, ω is a holomorphic 1-form,
such that the integration of ω along a and b are 1 and z respectively. Then according to Abel theorem

2 [J (p) − J (q)] = 2

[∫
γp

ω −

∫
γq

ω

]
≡ 0 mod {α + βz|, α, β ∈ Z}.

Ω is a fundamental domain and the integration of ω along a and b are 1 and z. It is possible to find two points
p, q satisfy∫

γp

ω −

∫
γq

ω =
1
2

+
z
2
.

The key difference with Corollary 4.12 is the orders of the pole and zero. Suppose S is a torus, the fundamental
group generators of the Riemann surface S are a and b, ω is a holomorphic 1-form, such that the integration of
ω along a and b are 1 and z respectively. Ω is the fundamental domain. We can easily find two points p̃, q̃ ∈ Ω

satisfying p̃ − q̃ =
1
2 +

z
2 , and there is no such points satisfying p̃ − q̃ = 1 + z. Fig. 8 shows an Annulus whose

double cover is a torus with quad mesh of singularities of degree 2 and 6 only.1

Theorem 4.13 (Inverse Theorem of Abel–Jacobi Condition). Suppose S is a compact Riemann surface of genus g,
ω0 is a holomorphic one-form, D is a divisor, satisfying

µ(D − 4(ω0)) = 0 (9)

in J (S), then there exists a meromorphic quartic differential ω, such that (ω) = D.

Proof. According to Abel theorem, µ(D − 4(ω0)) = 0 in J (S) implies there exists a meromorphic function f ,
such that ( f ) = D − 4(ω0), then let

ω = f · ω4
0,

then (ω) = ( f ) + (ω4
0) = D is the desired meromorphic quartic differential. □

1 This example is provided by Kendrick Shepherd and we check its Abel–Jacobi condition in the next section.
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Fig. 8. An Annulus whose double cover is a torus with order 2 zero and order −2 pole only.

Corollary 4.14. Suppose S is a compact Riemann surface of genus g, ω0 is a holomorphic one-form, D is a divisor,
satisfying condition in Eq. (9) in J (S), then there exists a meromorphic quartic differential ω, such that (ω) = D.
Furthermore, if the trajectories of ω are finite, then ω induces a quadrilateral mesh Q.

Proof. The surface can be sliced along the trajectories of ω, especially those through the zeros and poles. This
produces a quadrilateral mesh. □

5. Computational algorithms

This section explains the computational algorithms to verify Abel–Jacobi condition and construct meromorphic
quartic differentials in detail.

5.1. Abel-Jacobi condition verification

Given a closed triangle mesh, and a divisor, we would like to verify if the divisor satisfies the Abel–Jacobi
condition. This involves the computation of the canonical basis for the homology group and holomorphic differential
group. The canonical homology group basis is carried out using the geometry-aware handle loop and tunnel
loop algorithm in [30]. the holomorphic differential basis is computed using the algorithm described in [31]. The
computation of the period matrix and Abel–Jacobi map is straight forward. The details of the algorithm are described
in Alg. 1.

Genus one cases. This elk model in Fig. 9 is a genus one surface. The left frame shows the quad-mesh Q, the
right frame shows the holomorphic 1-form ω0. The induced meromorphic quartic differential ωQ has 26 poles and
26 zeros,

DQ = (ωQ) =

26∑
i=1

(pi − qi ).

The results of the Abel–Jacobi map are as follows:

µ

(
26∑

i=1

pi

)
= 5.8952427 + i2.7571920, µ

⎛⎝ 26∑
j=1

q j

⎞⎠ = 5.8954460 + i2.7571919.

Therefore, µ(DQ) is the difference between them, which is −2.03332e − 04 + i1.044e − 07, very close to the
theoretic prediction (0, 0).

Fig. 10 shows another genus one model, the rocker-arm. The left frame shows the quad-mesh Q, the right frame
shows the holomorphic 1-form ω0. The induced meromorphic quartic differential has 18 poles and 18 zeros.

DQ =

18∑
i=1

(pi − qi ),
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Algorithm 1: Abel Condition Verification
Input: Closed Surface S of genus g > 0; Divisor D
Output: Whether D satisfies Abel Condition

1 if deg(D) ̸= 8g − 8 then return false;
2 Compute the canonical homology group generators {a1, . . . , ag; b1, . . . , bg};
3 Compute the dual holomorphic 1-form basis {ω1, · · · , ωg};
4 Compute the period matrix of S and obtain its submatrices A, B;
5 Compute the Abel-Jacobi map µ(D);
6 Solve equation group

(Img B)β = Imgµ(D),

to obtain β = (β1, β2, . . . , βg)T .
7 Solve equation group

Aα = µ(D) − Bβ

to obtain α = (α1, α2, . . . , αg)T .
8 if all αi ’s and β j ’s are integer then return true; otherwise return false.

Fig. 9. The genus 1 elk model.

Fig. 10. The genus 1 rockerarm model.
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Fig. 11. The genus 1 model which has a quad mesh with degree 2 and 6 singularities only.

Fig. 12. The input genus two quad-mesh.

The results of the Abel–Jacobi map are as follows:

µ

⎛⎝ 18∑
j=1

p j

⎞⎠ = 2.61069 + i0.588368, µ

(
18∑

i=1

qi

)
= 2.61062 + i0.588699.

Hence, µ(DQ) is the difference between them, which equals 6.967e − 05 − i3.3064e − 4, very close to the origin
in J (SQ).

Fig. 11 shows genus one model with two singularities of degree 2 and 6 only. The left frame shows the quad-mesh
Q, the right frame shows the holomorphic 1-form ω0. The induced meromorphic quartic differential has 1 pole q0
of order −2 and 1 zero p0 with order 2.

DQ = 2 · p0 − 2 · q0,

Suppose the fundamental group generators of the Riemann surface SQ are a and b, we can compute the integration
of ω0 along a and b are 1 and i4.75524 respectively. Hence The results of the Abel–Jacobi map are as follows:

µ(DQ) = µ(2 · p0 − 2 · q0)
= 2 · (0.5 + i9.3678e − 15) − 2 · (0 + i0)
= 1 + i1.87356e − 14
≡ 0 + i3.94e − 15 mod 1 + i4.75524

which is vary close to the origin in J (SQ).

Genus two case. Fig. 12 shows a genus two quad-mesh Q, which has four order two zeros. Fig. 13 shows the
homology group basis of the mesh, the tunnel loops a0, a1 and the handle loops b0, b1. Fig. 14 shows holomorphic
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Fig. 13. The homology group basis.

Fig. 14. The holomorphic differential basis.

differential basis ϕ0 and ϕ1 computed under the quad-mesh metric gQ . We set ϕ0 as ω0 and verify the Abel–Jacobi
condition by computing the Abel–Jacobi map µ(DQ − 4(ω0)). The period matrix A of the Riemann surface SQ is(

0.99999999 − i1.4209e − 09 0.99999989 − i6.01812e − 08
1 + i1.24783e − 08 1.9999998 − i9.03562e − 08

)
The period matrix B is(

3.18e − 08 + i0.38191542 4.7433845e − 20 + i0.3861979
1.04e − 08 + i0.35091173 1.1519648e − 19 + i0.80339934

)
Matrix B AT is symmetric, with imaginary part positive defined and the basis satisfying the Riemann Bilinear

Relation:

B AT
=

(
5.5584516e − 08 + i0.76811328 6.1929719e − 08 + i1.1543112

5.9248147e − 08 + 1.154311 7.861333e − 08 + i1.9577103

)

ABT
− B AT

=

(
0 −2.6815727e − 09 − i1.843294e − 07

2.6815727e − 09 + i1.843294e − 07 0

)
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Fig. 15. A genus 2 quad-mesh of a sculpture model.

Fig. 16. Tunnel and handle loops of the sculpture model.

The Abel–Jacobi image of the divisor,

µ(DQ − 4(ω0)) =

(
1e − 06

2e − 07 − i1.6e − 06

)
,

which is very close to 0. This shows the Abel–Jacobi condition holds for the quad-mesh in Fig. 12.
Fig. 15 shows another genus two quad-mesh of a sculpture model which has 12 valence-5 vertices and 4 valence

3 vertices. Fig. 16 shows the tunnel and handle loops of the sculpture model. Fig. 17 shows the basis of the
holomorphic differentials ϕ0 and ϕ1.

We set ϕ0 as ω0 and verify the Abel–Jacobi condition by computing the Abel–Jacobi map µ(DQ − 4(ω0)). The
period matrix A of the Riemann surface SQ is(

0.99999997 − i2.8e − 09 −0.24999994 + i2.745e − 08
0.99999999 + i1.13e − 08 0.50000015 + i4.1e − 08

)
.

The period matrix B is(
−4.8789098e − 19 + i0.50669566 7.4538899e − 19 + i0.15720634
−7.5894152e − 19 + i0.73261918 4.8789098e − 19 + i0.589281

)
.
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Fig. 17. Holomorphic 1-form basis of the sculpture model.

Matrix B AT is symmetric, with imaginary part positive defined and the basis satisfying the Riemann Bilinear
Relation:

B AT
=

(
−2.8965662e − 09 + i0.46739407 −1.2171121e − 08 + i0.58529885
−1.412443e − 08 + i0.58529895 −3.2439118e − 08 + i1.0272598

)
ABT

− B AT
=

(
0 −1.9533089e − 09 + i9.7987673e − 08

1.9533089e − 09 − i9.7987673e − 08 0

)
The Abel–Jacobi map image of the divisor is

µ(DQ − 4(ω0)) =

(
−1.568599999979e − 05 + i3.69999999994e − 06
4.28899999998e − 05 − i4.400000000182e − 07

)
,

which is very close the 0.

5.2. Meromorphic quartic differential construction

In practice, a surface Σ embedded in R3 is given, the induced Euclidean metric is g. Our purpose is to construct
a quadrilateral mesh Q on (Σ , g). It is highly desirable that the metric induced by Q, gQ , is conformal equivalent to
the original metric g. From above discussion, we see the equivalence between a quad-mesh Q and the meromorphic
quartic differential ωQ on the Riemann surface SQ . Therefore ωQ is also a meromorphic differential on (Σ , g).

Suppose (Σ , g) is a genus zero closed surface, then it is conformal equivalent to the unit sphere S2, namely
C ∪ {∞}. The unit sphere S2 has two charts z and w, z covers C, w covers C ∪ {∞} \ {0}, the transition map is
w = 1/z. We define the simplest meromorphic differential

ω0 = dz = −
1
w2 dw.

Given a quad-mesh Q on Σ , then f = ωQ/w
4
0 is a meromorphic function. On the sphere, any meromorphic function

is a rational function, the general global representation of ωQ on C is given by:

ωQ =
(z − p1)(z − p2) · · · (z − pn−8)

(z − q1)(z − q2) · · · (z − qn)
dz4, (10)

where {p1, p2, . . . , pn−8} are the simple zeros, {q1, q2, . . . , qn} are the simple poles of ωQ . The ∞ point is the zero
of order 8. Each simple zero corresponds to a valence 5 vertex, each simple pole corresponds to a valence 3 vertex.
The zeros (poles) can be merged into high order ones, thus Eq. (10) becomes

ωQ =
Π k

i=1(z − pi )ni

Π l
j=1(z − q j )m j

dz4, (11)

where
∑l

j=1 m j −
∑k

i=1 = 8, mi ’s and n j ’s are positive integers.
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Fig. 18. The visualization of meromorphic quartic differential on a face model.

Table 1
Poles in the meromorphic differential Eq. (12).

z1 = 0.451559 + 0.21962i z2 = 0.45696 + 0.617636i z3 = 0.706853 + 0.52086i
z4 = 0.533522 + 0.407822i z5 = 0.250598 + 0.471244i z6 = 0.747474 + 0.28336i

Eqs. (10) and (11) give all possible meromorphic quartic differentials on the sphere, some of them have infinite
trajectories. The ones with finite trajectories correspond to ωQ for some quad-mesh Q.

Fig. 18 left frame shows two different meromorphic quartic differentials constructed in this way. In the left
frame, we compute a Riemann mapping to conformally map the facial surface S onto the planar unit disk using the
method in [2], then pick a pole z1 = 0.706853 + 0.52086i . The meromorphic quartic differential is given by

ω =
1

z − z1
(dz)4.

The we find a path γ from z1 to the boundary, slice the surface along γ to get a simply connected domain S̄. In
this domain, we choose one branch of 4

√
ω. By integrating 4

√
ω on S̄, we map S̄ onto the complex plane. Then we

use checkerboard texture mapping to visualize the trajectories of ω.
Fig. 18 right frame demonstrates a meromorphic quartic differential with 6 poles,

ω =
1∏6

i=1(z − zi )
(dz)4 (12)

where the poles are given in Table 1.
We compute a cut graph γ connecting all the singularities and the boundary using the algorithm in [32], then

slice the surface along γ to get a simply connected domain S̄. By integrating a branch of 4
√
ω, we map S̄ onto the

complex plane. Any branch can be used as long as it is continuous on S̄ and one branch is enough because we
adopt complex integration.

Fig. 19 shows a meromorphic quartic differential with 4 poles and 2 zeros,

ω =
(z − p1)(z − p2)∏6

i=1(z − qi )
(dz)4, (13)

where the poles and zeros are given in Table 2.
Fig. 20 demonstrates a meromorphic quartic differential on the Max Planck head model. First, we conformally

map the model onto the unit sphere using the algorithm in [33], then the sphere is mapped onto the complex
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Fig. 19. The visualization of meromorphic quartic differential on a face model.

Fig. 20. A meromorphic quartic differential on the Max–Planck sculpture model with 8 poles.

Table 2
The zeros and poles in the meromorphic differential in Eq. (13).

p1 = 0.250598 + 0.471244i p2 = 0.747474 + 0.28336i q1 = 0.451559 + 0.21962i
q2 = 0.45696 + 0.617636i q3 = 0.706853 + 0.52086i q4 = 0.533522 + 0.407822i

plane using the stereo-graphic projection. On the complex plane, we construct a meromorphic quartic differential as
(see Fig. 21)

ω =
1∏8

i=1(z − qi )
(dz)4, (14)

where the poles are given in Table 3.
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Fig. 21. The meromorphic quartic differential the conformal spherical image of the Max–Planck sculpture model with 8 poles.

Table 3
The poles of the meromorphic differential on Max Planck head model in Eq. (14).

q1 = 1.32607 + 1.3106i q2 = −1.27859 + 1.27903i q3 = 1.30017 − 1.25335i
q4 = −1.29695 − 1.28728i q5 = 0.471821 − 0.46131i q6 = −0.443743 − 0.468551i
q7 = 0.452511 + 0.463833i q8 = −0.450766 + 0.468879i

Table 4
The zeros and poles of the meromorphic differential on the Max Planck head model in Eq. (15).

p1 = 0.898261 + 3.24367i p2 = −0.00810208 − 0.25253i q1 = 0.00289177 + 0.255035i
q2 = 1.03926 − 3.32305i q3 = 1.5921 + 0.915034i q4 = −1.61079 + 0.858346i
q5 = 1.61098 − 0.845895i q6 = −1.63865 − 0.894138i q7 = 0.559829 + 0.296053i
q8 = −0.564592 + 0.307631i q9 = 0.555884 − 0.307683i p10 = −0.550573 − 0.311611i

Similarly, a cut graph γ connecting all singularities is computed, the surface is sliced along the cut graph to
get a simply connected domain. We integrate 4

√
ω on the domain, to flatten the surface to the complex plane. By

checkerboard texture mapping, the trajectories of ω can be visualized.
The second meromorphic quartic differential is shown in Fig. 22, which has the form on the complex plane (see

Fig. 23)

ω =

∏2
i=1(z − pi )∏8
j=1(z − q j )

(dz)4, (15)

where the zeros and the poles are given in Table 4.

6. Conclusion

This work proves the equivalence between quadrilateral meshes and meromorphic quartic differentials on
Riemann surfaces with finite trajectories (Theorems 4.7 and 4.8); Second, this work gives Abel–Jacobi condition
for the configurations of singularities of quad-meshes (Theorem 4.11), the condition can be easily verified algorith-
mically; Third, the meromorphic quartic differentials can be constructed on surfaces using their global algebraic
representation, this leads to a novel direction for quad-mesh generation based on meromorphic differentials. Our
experimental results demonstrate that the method is theoretically rigorous, practically simple and efficient. This
opens a new direction for quad-mesh generation based on Riemann surface theory.

In future, we will explore the methods to guarantee the finiteness of all the trajectories of meromorphic
differentials, the algorithm for divisor optimization to satisfy the Abel–Jacobi condition and generalize the
Abel–Jacobi condition to hexahedral meshes.
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Fig. 22. A meromorphic quartic differential on the Max–Planck sculpture model with 10 poles (blue) and 2 zeros (green). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 23. The meromorphic quartic differential the conformal spherical image of the Max–Planck sculpture model with 10 poles and 2 zeros.
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