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Abstract

This work proposes a rigorous and practical algorithm for quad-mesh gen-

eration based the Abel-Jacobi theory of algebraic curves. We prove sufficient

and necessary conditions for a flat metric with cone singularities to be compat-

ible with a quad-mesh, in terms of the deck-transformation, then develop an

algorithm based on the theorem. The algorithm has two stages: first, a mero-

morphic quartic differential is generated to induce a T-mesh; second, the edge

lengths of the T-mesh are adjusted by solving a linear system to satisfy the deck

transformation condition, which produces a quad-mesh.

In the first stage, the algorithm pipeline can be summarized as follows: calcu-

late the homology group; compute the holomorphic differential group; construct

the period matrix of the surface and Jacobi variety; calculate the Abel-Jacobi

map for a given divisor; optimize the divisor to satisfy the Abel-Jacobi condition

by integer programming; compute a flat Riemannian metric with cone singular-

ities at the divisor by Ricci flow; isometrically immerse the surface punctured at

the divisor onto the complex plane and pull back the canonical holomorphic dif-

ferential to the surface to obtain the meromorphic quartic differential; construct

a motorcycle graph to generate a T-Mesh.
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In the second stage, the deck transformation constraints are formulated as a

linear equation system of the edge lengths of the T-mesh. The solution provides

a flat metric with integral deck transformations, which leads to the final quad-

mesh.

The proposed method is rigorous and practical. The T-mesh and quad-

mesh results can be applied for constructing Splines directly. The efficiency and

efficacy of the proposed algorithm are demonstrated by experimental results on

surfaces with complicated topologies and geometries.

Keywords: Quadrilateral Mesh, T-mesh, Spline, Abel-Jacobi, Flat

Riemannian Metric, Geodesic, Discrete Ricci flow, deck transformation,

Divisor

1. Introduction

In computational mechanics, computer-aided-design, geometric design, com-

puter graphics, medical imaging, digital geometry processing and many other

engineering fields, quadrilateral mesh is a universal and crucial boundary sur-

face representation. Although quadrilateral meshes have been broadly applied

in the real industrial world, the theoretic understanding of their geometric struc-

tures remains primitive. Recently, [29] made a breakthrough from the algebraic

geometric view: basically a quad-mesh induces a conformal structure and can

be treated as a Riemann surface. Furthermore, a quad-mesh is equivalent to

a meromorphic quartic differential with closed trajectories, and the singulari-

ties satisfy the Abel-Jacobi condition. This discovery provides a solid theoretic

foundation for quad-meshing.

1.1. Abel-Jacobi Condition

Suppose a closed surface (Σ,g) is embedded in Euclidean space R3 with the

induced Euclidean Riemannian metric g. Suppose the surface is represented

as a quadrilateral mesh Q, then Q induces a special combinatorial structure, a

Riemannian metric structure, and a conformal structure.
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Combinatorial structure : Suppose the number of vertices, edges, faces of Q are

V,E, F , then E = 2F and the Euler formula holds, V + F − E = χ(Σ), where

χ(Σ) is the Euler characteristic number of Σ. The vertices with topological

valence 4 are called normal ; otherwise they are singular .

Riemannian metric structure : A flat metric with cone singularities gQ can be

induced by Q by treating each face as a unit planar square. A vertex with

k-valence has the discrete curvature 4−k
2 π, and the total curvature satisfies the

Gauss-Bonnet condition : ∑
v

4− val(v)

2
π = 2πχ(Σ), (1)

where val(v) is the topological valence of v. The holonomy group induced by

the metric gQ on the surface Σ \ S with punctures at the singular vertices S is

the rotation group

Hol(Σ \ S,gQ) = {eiπ2 k, k ∈ Z}. (2)

This is the so-called holonomy condition [11].

Furthermore, let (Σ̃, π) be the universal covering space of the punctured surface

Σ \ S, where π : Σ̃ → Σ \ S is the projection map. Then π pulls back the

quad-mesh metric gQ to g̃Q. If the Deck transformation group of Σ̃ is Deck(Σ̃),

then each deck transformation τ ∈ Deck(Σ̃) is an isometric automorphism of

(Σ̃, g̃Q), and satisfies the relation π ◦τ = π. Furthermore, it must have the form

∀τ ∈ Deck(Σ̃), τ(z) = ei
π
2 kz + (u, v), k, u, v ∈ Z, (3)

We call this as the deck transformation condition.

Conformal structure: The quad-mesh Q induces a conformal structure, and can

be treated as a Riemann surface SQ; furthermore, it induces a meromorphic

quartic differential ωQ, whose horizontal and vertical trajectories are finite. The

vertices of Q with valence less than 4 are the poles of ωQ, the vertices with

valence greater than 4 are the zeros of ωQ. The divisor of ωQ represents the

configuration of singularities of Q, denoted as (ωQ). Suppose ϕ is a holomorphic
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1-form on SQ, then ϕ4 is a holomorphic quartic differential. Then (ωQ) and

4(ϕ) are equivalent, and satisfy the Abel-Jacobi condition, the image of the

Abel-Jacobi map, µ((ωQ)− 4(ϕ)), is zero in the Jacobi variety (J(SQ)).

1.2. T-mesh and Quad-mesh generation

The procedure to generate quadrilateral meshes can be summarized as two

stages: the first stage is to construct a meromorphic quartic differential, which

leads to a T-mesh; the second stage updates the edge lengths of the T-mesh

to satisfy the deck transformation condition by solving a linear system, the

updated metric induces the desired quad-mesh.

T-mesh generation. The algorithm for T-meshing is as follows: 1) choose an

arbitrary set of points on surface as the initial singularities, which capture the

geometric features of the surface, such as the extreme points of the Gaussian

curvature; 2) improve the initial singularity set to satisfy the Abel-Jacobi con-

dition; the resulting singularity set is denoted as S; 3) construct a meromorphic

quartic differential ω, whose divisor (ω) equals to S with multiplicity; 4) trace

the horizontal and vertical critical trajectories of ω to form a motorcycle graph

T , which is the T-mesh.

If the initial singularities do not satisfy the Gauss-Bonnet condition 1, we

will add more poles and zeros at the critical points of Gaussian curvature. Then

we compute the Abel-Jacobi map, minimize the squared norm of the image of

the divisor using gradient descent method. Once the divisor satisfies the Abel-

Jacobi condition, we use surface Ricci flow to compute a flat cone metric, and

isometrically immerse the surface with punctures at the singularities into the

plane. On the plane C, there is a canonical holomorphic quartic differential

(dz)4, which can be pulled back to the surface by the immersion map to a

meromorphic quartic differential ω, which is globally defined on the original

surface by construction. The critical trajectories of ω form a motorcycle graph,

which partitions the surface to a T-mesh.
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Quad-mesh Generation. We adjust the edge lengths of the T-mesh, preserve

all the faces to be rectangular, make all the translational components of deck

transformations to be rational and ensure the parametric positions of singular-

ities are rational as well. These conditions are formulated as a square linear

system, the solution gives us a flat metric with cone singularities, which satis-

fies the Abel-Jacobi condition and the rational deck transformation condition

formulated in Theorem 3.23. The metric leads to a quad-mesh directly.

1.3. Contributions

This work proves the sufficient and necessary conditions for a flat metric

with cone singularities to be compatible with a quad-mesh, namely the deck

transformation condition described in theorem 3.22 and 3.23. The work then

proposes a novel algorithm to generate T-meshes and quad-meshes based on

the Abel-Jacobi theory and the deck transformation condition theorems. The

algorithm first finds a meromorphic quartic differential, which leads to a seam-

less parameterization and a T-mesh, then deforms the T-mesh metric to satisfy

the deck transformation condition, which leads to the desired quad-mesh. To

the best of our knowledge, this is the first work that constructs meromorphic

quartic differentials for quad-meshing. The experimental results demonstrate

the algorithm is rigorous, effective and efficient.

The work is organized as follows: Section 2 briefly reviews the most related

works; Section 3 introduces the theoretic background; Section 4 explains the

algorithm in details; the experimental results are reported in Section 5; finally,

the work concludes in Section 6.

2. Previous Works

This section briefly reviews the most related works. We refer readers to [5]

for more thorough reviews. Quad-mesh generation has a vast literature. In the

following we only discuss some of the most popular approaches.
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Triangle Mesh Conversion. Catmull-Clark subdivision method can be applied

to convert triangular meshes to quad-meshes, and then the original vertices

become singularities. Another intuitive way is to merge two triangular faces

adjacent to the same edge to a quadrilateral as proposed in [38, 33, 21, 41].

These type of methods can only produce unstructured quad-meshes, without

much quality control.

Patch-Based Approach. In order to generate semi-regular quad-meshes, this

type of methods calculates the skeleton first, then partitions the mesh into

several quadrilateral patches. Each patch is regularly tessellated into quads.

There are different strategies to cluster the faces to form each patch. One way

is to merge neighboring triangle faces based on the similarity among the nor-

mals [23]. The other is based on the distance among the centers of the faces

[3, 10]. Poly-cube map is a normal based method to deform the surface to a poly-

cube shape, such as [44, 43, 31, 22]. The Morse-Smale complex of eigenfunction

of the Laplace operator naturally produces a skeleton structure, which is uti-

lized to generate quad-meshes. The spectral surface quadrangulation method

applies this method in [15, 24].

Voronoi Based Approach. This approach puts samples on the input surface,

then computes a Voronoi diagram on the surface using different distances. For

example, if Lp norm is applied, then the cells are similar to rectangles [28]. This

method can only generate a non-structured quad-mesh.

Cross field Based Approach. This approach generates a cross field first, then by

tracing the stream lines of the cross field [37] or iso-parametric lines of the pa-

rameterization induced by the field [5], the quad-mesh can be constructed. The

cross fields are represented in different ways, such as the N-RoSy representation[35],

the period jump technique [30] and the complex value representation [27]. Then

by minimizing the discrete analogy to the harmonic energy [25], the cross field

can be smoothed. The work in [42] relates the Ginzberg-Landau theory with

the cross field for genus zero surface case. The theoretical foundation of [42]
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is only for the topological disk case, though other proofs in the work apply for

more general surfaces. This type of method is difficult to control the positions

of the singularities and the global structure of the quad layout. Cross fields can

be treated as the horizontal and vertical directions of a meromorphic quartic

differential without magnitudes.

General Parameterization Based Approach . The parameteization method maps

the surface onto a planar domain, constructs a quad-mesh on the parameter do-

main, and then pulls it back to the surface. There are different ways to compute

the parameterization, such as using discrete harmonic forms [40], periodic global

parameterization [1] and branched coverings method [26]. Several algorithms

have been proposed to generate global parameterizations aligned with the cross

field. The work in [34] proposed a global parameterization algorithm for the

purpose of T-Spline construction, which aligns with a prescribed field robustly.

Integrable polyvector fields method is developed in [13], which generates a

global parameterization aligned with the fields by constructing a curl-free vec-

tor field. All these methods rely on solving elliptic partial differential equations

on surfaces.

Seamless Parameterization Based Approach. The concept of seamless parame-

terization was first proposed in [36]. According to Definition 1 in that work,

the transition maps between the local parameterizations have the form

τ(u+
√
−1v) = e

√
−1 k2 π(u+

√
−1v) + (s+

√
−1t), k ∈ Z.

Equivalently, a seamless parameterization defines a flat metric with cone singu-

larities, the holonomy group consists of rotations of k2π, hence the deck transfor-

mations have rotations of k2π. In turn, a seamless parameterization is equivalent

to a meromorphic quartic differential, hence its singularities satisfy the Abel-

Jacobi condition.

Later Campen and Zorin developed the concept of seamless similarity parametriza-

tion or seamless similarity map for the purpose of T-Spline construction [7].
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Here the deck transformation has the form

τ(u+
√
−1v) = ce

√
−1 k2 π(u+

√
−1v) + (s+

√
−1t), k ∈ Z, c ∈ R+,

where c represents the key scaling transformation. Therefore, the seamless sim-

ilarity parameterization generalizes the seamless parameterization. There are

distinctions between the two concepts: the seamless similarity parameteriza-

tion only defines a connection satisfying the holonomy condition, but not a

Riemannian metric with cone singularities; in contrast, the seamless parame-

terization defines a metric. Furthermore, the conformal structure given by the

seamless parameterization covers the whole surface (including the singularities),

but that of seamless similiarty parametrization doesn’t cover the singularities.

In our current work, we directly compute the seamless parameterization using

the Abel-Jacobi condition.

Campen and Zorin [9, 8] proposed to obtain a seamless similarity param-

eterization by convex optimization using Newton’s method. By constructing

a motorcycle graph [17], a T-mesh can be obtained and further converted to

a quad-mesh [7]. Note that, because a seamless similarity parameterization

doesn’t give a metric, (but an affine structure for the punctured surface, which

is sufficient for the purpose of constructing T-Splines), their method can not

define the edge lengths of the T-mesh. Then they treat the edge lengths as

unknowns, and add two types of constraints: a. each edge length is a non-

negative integer (or rational); b. each face of the T-mesh is a rectangle, namely

the lengths of opposite sides are equal. The constraints form a linear Diophan-

tine equation system, its solution leads to a quad-mesh. In a recent work [32],

they improved the algorithm by adding more constraints to the edge lengths to

reduce the angle distortions introduced by quantization.

Our current work finds a meromorphic quartic differential, gets a seamless

parameterization, constructs a motorcycle graph [17] and obtains a T-mesh.

Since the seamless parameterization defines a metric, the T-mesh has initial

edge lengths. Then we adjust the edge lengths to satisfy the deck transforma-
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tion conditions, (including singularity position constraints, deck transformation

constraints and the face side constraints), and the changes of edge lengths are

treated as unknowns. According to our Theorem 3.23, these constraints are suf-

ficient and necessary conditions for quad-meshing. The constraints in Campen

and Zorin’s work are sufficient conditions, but not necessary. For example, an

edge length connecting a singularity and a T-junction needn’t to be integer for

the purpose of quad-meshing. Therefore, the number of our constraints is less

than that of their method, the linear system is easier to solve. (In fact, the

initial metric is a solution to the same linear system. )

Integer-grid Mapping Based Approach. As a parameterization method, integer-

grid mappings, similar to finite trajectories parameterization, have been widely

applied to the high-quality quad mesh generation [40, 26, 6, 7, 4, 16]. The

additional integer constraints are imposed on the translation part, as opposed

to the seamless parameterization, the transition maps have the form

τ(u+
√
−1v) = e

√
−1 k2 π(u+

√
−1v) + (s+

√
−1t), k, s, t ∈ Z.

The essence is to construct a local injective mapping from the surface to the

planar integer-grid, so that the grid is pulled back to produce a quad mesh.

In addition to computing integer-grid mappings directly [40], most approaches

[7, 6, 4, 26] tend to obtain a seamless parameterization and then adopt some

form of rounding method to adjust it to an integer-grid mapping, called quanti-

zation. Sometimes the degradation of resulting parameterization as well as the

infeasibility of constrained problem are inevitable. In our work, we introduce

the deck transformation condition, which has fewer constraints and the linear

system is easier to solve.

Comparing to the existing approaches, our method has explicit theoretic

analysis for the singularities, the dimension of solution space, the deck trans-

formation conditions for quad-meshing. Therefore the theoretic rigor will help

improve the efficiency and efficacy for quad-mesh generation.
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3. Theoretic Background

This section briefly introduces the most related mathematical concepts and

theorems. We refer readers to [14] for the basic concepts and theorems in Rie-

mann surface theory, [39] for those in algebraic topology, and [29] for the detailed

proof of Theorem 3.16 and Theorem 3.17.

3.1. Basic Concepts of Riemann Surface

Definition 3.1 (Riemann Surface). Suppose Σ is a two dimensional topological

manifold, equipped with an atlas A = {(Uα, ϕα)}, every local chart has complex

coordinates ϕα : Uα → C, denoted as zα, and every transition map ϕαβ is

biholomorphic,

ϕαβ : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ), zα 7→ zβ ,

then the atlas is called a conformal atlas. A topological surface with a conformal

atlas is called a Riemann surface.

Suppose (Σ,g) is an oriented surface with a Riemannian metric g. For each

point p ∈ Σ, we can find a neighborhood U(p), inside U(p) the isothermal

coordinates (u, v) can be constructed, such that g = e2λ(u,v)(du2 + dv2). The

atlas formed by all the isothermal coordinates is a conformal atlas, therefore we

obtain the following:

Theorem 3.2. All oriented, metric surfaces are Riemann surfaces.

Definition 3.3 (Meromorphic Function). A complex function on a domain

Ω ⊂ C to C ∪ {∞} is called meromorphic, if there exists a sequence of points

p1, p2, · · · with no limit point in Ω such that

1. f : Ω \ {p1, p2, . . . } → C is holomorphic;

2. f has poles at p1, p2, . . . , namely limz→pi |f(z)| =∞.

Definition 3.4 (Meromorphic Function on Riemann Surface). Suppose a Rie-

mann surface (Σ, {(Uα, ϕα)}) is given. A complex function is defined on the
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surface f : Σ→ C ∪ {∞}. If on each local chart (Uα, ϕα), the local representa-

tion of the functions f ◦ϕ−1
α : C→ C∪ {∞} is meromorphic, then f is called a

meromorphic function defined on Σ.

A meromorphic function can be treated as a holomorphic map from the

Riemann surface to the unit sphere.

Definition 3.5 (Zeros and Poles). Given a meromorphic function f(z), if its

Laurent series has the form

f(z) =

∞∑
n=k

an(z − p)n,

if k > 0, then p is called a zero point of order k; if k < 0, then p is called a pole

of order k; if k = 0, then p is called a regular point. We denote νp(f) = k.

Definition 3.6 (Meromorphic Differential). Given a Riemann surface (Σ, {zα}),

ω is a meromorphic differential of order n, if it has the local representation,

ω = fα(zα)(dzα)n,

where fα(zα) is a meromorphic function, n is an integer; if fα(zα) is a holo-

morphic function, then ω is called a holomorphic differential of order n. If zα

is a pole (or a zero) of fα with order k, then zα is called a pole (or a zero) of

the meromorphic differential ω of order k.

A holomorphic differential of order 2 is called a holomorphic quadratic dif-

ferential. A meromorphic differential of order 4 is called a meromorphic quartic

differential.

Definition 3.7 (Divisor). The Abelian group freely generated by points on a

Riemann surface is called the divisor group, every element is called a divisor,

which has the form

D =
∑
p

npp, np ∈ Z,

where only a finite number of points p’s have non-zero coefficients np. The

degree of a divisor is defined as deg(D) =
∑
p np. Suppose D1 =

∑
p npp,
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D2 =
∑
pmpp, then D1 ±D2 =

∑
p(np ±mp)p; D1 ≤ D2 if and only if for all

p, np ≤ mp.

Definition 3.8 (Meromorphic Differential Divisor). Suppose ω is a meromor-

phic differential on a Riemann surface Σ, suppose p ∈ Σ is a point on Σ, we

define the order of ω at p as

νp(ω) = νp(fp),

where fp is the local representation of ω in a neighborhood of p, ω = fp(z)(dz)n.

The divisor of ω is defined as

(ω) =
∑
p

νp(ω)p.

3.2. Abel-Jacobi Theorem

Figure 1: Canonical fundamental group basis.

Suppose {a1, b1, . . . , ag, bg} is a set of canonical basis for the homology group

H1(Σ,Z) as shown in Fig. 1. Each ai and bi represent the curves around the

inner and outer circumferences of the ith handle.

Let {ω1, ω2, . . . , ωg} be a normalized basis of Ω1(Σ), the linear space of all

holomorphic 1-forms over C. The choice of basis is dependent on the homology

basis chosen above; the normalization signifies that∫
ai

ωj = δij , i, j = 1, 2, . . . , g.
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For each curve γ in the homology group, we can associate a vector λγ in Cg by

integrating each of the g 1-forms over γ,

λγ =

(∫
γ

ω1,

∫
γ

ω2, . . . ,

∫
γ

ωg

)T
.

Definition 3.9 (Period Matrix). The matrix (A,B) where

A =
(
λa1 , λa2 , · · · , λag

)
, B =

(
λb1 , λb2 , · · · , λbg

)
is called the period matrix of the Riemann surface.

We define a 2g-real-dimensional lattice Λ in Cg,

Λ =


g∑
i=1

si λai +

g∑
j=1

tj λbj , si, tj ∈ Z

 .

Definition 3.10 (Jacob Variety (Jacobian)). The Jacobi variety (Jacobian) of

the Riemann surface Σ, denoted J(Σ), is the compact quotient Cg/Λ.

Definition 3.11 (Abel-Jacobi Map). Fix a base point p0 ∈ Σ. The Abel-Jacobi

map is a map µ : Σ → J(Σ). For every point p ∈ Σ, choose a curve γ from p0

to p; the Abel-Jacobi map µ is defined as follows:

µ(p) =

(∫
γ

ω1,

∫
γ

ω2, . . . ,

∫
γ

ωg

)
mod Λ,

where the integrals are all along γ.

It can be shown that µ(p) is well-defined, that the choice of curve γ doesn’t

affect the value of µ(p).

Theorem 3.12 (Abel-Jacobi). Let D be a divisor of degree 0 on Σ, then D is

the divisor of a meromorphic function f if and only if µ(D) = 0 in the Jacobian

J(Σ).

3.3. Quad-Meshes and Meromorphic Quartic Forms

We summarize the intrinsic relation between a quad-mesh and a meromor-

phic quartic differential.
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Definition 3.13 (Quadrilateral Mesh). Suppose Σ is a topological surface, Q

is a cell partition of Σ, if all cells of Q are topological quadrilaterals, then we

say (Σ,Q) is a quadrilateral mesh.

On a quad-mesh, the topological valence of a vertex is the number of faces

adjacent to the vertex.

Definition 3.14 (Singularity). Suppose (Σ,Q) is a quadrilateral mesh. If the

topological valence of an interior vertex is 4, then we call it a regular vertex,

otherwise a singularity; if the topological valence of a boundary vertex is 2, then

we call it a regular boundary vertex, otherwise a boundary singularity. The

index of a singularity is defined as follows:

Ind(vi) =

 4− val(vi) vi 6∈ ∂(Σ,Q)

2− val(vi) vi ∈ ∂(Σ,Q),

where Ind(vi) and val(vi) are the index and the topological valence of vi.

The following theorems bridge quad-meshes with meromorphic quartic dif-

ferentials, and the singularities with Abel-Jacobi condition. Detailed proof can

be found in [29].

Theorem 3.15 (Quad-Mesh to Meromorphic Quartic Differential [29]). Sup-

pose (Σ,Q) is a closed quadrilateral mesh, then

1. the quad-mesh Q induces a conformal atlas A, such that (Σ,A) form a

Riemann surface, denoted as SQ.

2. the quad-mesh Q induces a quartic differential ωQ on SQ. The valence-k

singular vertices correspond to poles or zeros of order k− 4. Furthermore,

the trajectories of ωQ are finite.

Theorem 3.16 (Quartic Differential to Quad-Mesh [29]). Suppose (Σ,A) is a

Riemann surface, ω is a meromorphic quartic differential with finite trajectories,

then ω induces a quadrilateral mesh Q, such that the poles or zeros with order

k of ω corresponds to the singular vertices of Q with valence k + 4.
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Figure 2: Left: the kitten surface Σ with a loop γ; Middle: the universal covering space

Σ̃ and one fundamental domain Σ̄, the red rectangle; Right: γ ⊂ Σ is lifted to a path

γ̃ ⊂ Σ̃. The translations of the plane which maps a fundamental domain to another is a Deck

transformation.

Theorem 3.17 (Quad-mesh singularity Abel-Jacobi condition). Suppose Q is a

closed quadrilateral mesh, SQ is the induced Riemann surface, ωQ is the induced

meromorphic quartic form. Assume ω0 is an arbitrary holomorphic 1-form on

SQ, then

µ((ωQ)− 4(ω0)) = 0 mod Λ (4)

in the Jacobian J(SQ).

3.4. Deck Transformation Condition

Definition 3.18 (Covering Space). Let X be a topological space. A covering

space of X is a topological space X̃ together with a continuous surjective map

π : X̃ → X, such that for every p ∈ X, there exists an open neighborhood U

of p, such that π−1(U) is a union of disjoint open sets in X̃, each of which is

mapped homeomorphically onto U by π.

Definition 3.19 (Universal Covering Space). Suppose X is a topological space,

(X̃, π) is called the universal covering space of X if it is a covering space of X,

and it is simply connected, namely, its fundamental group π1(X̃) = 〈e〉.

Definition 3.20 (Deck Transformation). Suppose X is a topological space,

(X̃, π) is a covering space of X, an automorphism τ : X̃ → X̃ is called a
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deck transformation, if π ◦ τ = π. All the deck transformations form a group,

which is called the deck transformation group of X̃ and denoted as Deck(X̃).

Definition 3.21 (Fundamental Domain). Suppose Σ is a surface, Σ̃ is the

universal covering space of Σ. Let p̃ ∈ Σ̃ be a point, the images of p̃ under the

Deck transformation group action is call an orbit. A fundamental domain of Σ

is a simply connected subset of Σ̃ which contains exactly one point from each of

these orbits.

Fig. 2 illustrates these concepts, universal covering space, fundamental do-

main and the Deck transformation for a genus one closed surface. The left

frame shows the surface Σ, the middle frame the universal covering space Σ̃,

which is the plane. The red rectangle is one fundamental domain, the whole

plane is tessellated to infinite many fundamental domains. Each planar transla-

tion, mapping one fundamental domain to the other is a Deck transformation.

A closed loop γ on the surface is lifted to a path on the universal covering

space, connecting two fundamental domains and associated with a unique deck

transformation.

Given a surface Σ with a quad-mesh Q, the singularity set of Q is S, S =

{v0, v1, v2, . . . , vn}. The punctured surface Σ\S is obtained by removing S from

Σ. Suppose we choose a fundamental domain Σ̄ of Σ, such that the boundary

∂Σ̄ doesn’t go through any singularity point. Then we choose a base point p0,

and consider the generators of the fundamental group π1(Σ \ S, p0),

π1(Σ \ S, p0) = 〈a1, b1, a2, b2, · · · , ag, bg, γ1, γ2, · · · , γn〉, (5)

where ai, bi are the tunnel and handle loops corresponding to the i-th handle, the

loop γj starts from p0 to vj , goes around vj and returns to p0. Furthermore, we

require all the generators γj ’s are contained in the fundamental domain Σ̄. We

isometrically immerse Σ̄ on the plane using gQ, such that v0 is at the origin, the

face edges are along horizontal and vertical directions, the mapping is denoted

as ϕ : Σ̄→ C. All the singularities are on the integer grid, the coordinates of vi

are (mi, ni).

ϕ(vi) = (mi, ni), mi, ni ∈ Z, ∀vi ∈ S. (6)
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The Deck transformation group of the universal covering space Deck(Σ̃) is iso-

morphic to the fundamental group of the base space π1(Σ \ S, v0). Suppose

vi ∈ S with valence val(vi), corresponds to the loop γi in π(Σ \ S, v0), and τi

in the Deck transformation group of Σ̃. Since S satisfies the Abel condition, we

have

τi(z) = e
√
−1

kiπ

2 z + (ui +
√
−1vi), ki ∈ Z, (7)

where the valence and the rotation angle satisfy:

ki + val(vi) = 0 mod 4, ∀vi ∈ S (8)

and the translation part satisfies

(ui, vi) =



(0, 0) ki ≡ 0 mod 4

(mi − ni,mi + ni) ki ≡ 1 mod 4

2(mi, ni) ki ≡ 2 mod 4

(mi + ni, ni −mi) ki ≡ 3 mod 4.

(9)

Note that, for singularities whose valence are not 4k, (ui, vi) and (mi, ni) can

mutually determine each other; for singularities with valence 4k, no matter what

(mi, ni) are, the (ui, vi) are always (0, 0).

Theorem 3.22 (From Quad-mesh to Deck Transformation). Suppose Σ is a

closed surface with a quad-mesh Q. The singularity set of Q is S. The quad-

mesh induces a flat Riemannian metric gQ with cone singularities at S. The

universal covering space of the punctured surface Σ \ S is Σ̃ with the pull back

metric π∗gQ. Then each deck transformation τ ∈ Deck(Σ̃) has the form:

τ(z) = e
√
−1π2 kz + (u+

√
−1v), k, u, v ∈ Z.

Furthermore, if the fundamental group generators are chosen as Eqn. (5), then

for each singularity vi ∈ S, the parametric coordinates induced by the isomet-

ric immersion are integers Eqn. (6), the corresponding deck transformation is

Eqn. (7), the valence and the rotation angle satisfy Eqn. (8), and the translation

is given by Eqn. (9).
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Proof. Suppose Q is a quad-mesh of Σ, then if each face is treated as a unit

square, we obtain the flat metric gQ.

The universal covering space Σ̃ with the pull back metric π∗gQ can be isomet-

rically immersed in the plane, where the pre-images of the singularities are the

branched points.

We fix a face f0 ∈ Q, and define a face loop,

γ := f0, f1, f2, · · · , fn−1, fn,

where each pair of adjecent faces fi, fi+1 share a common edge, and fn = f0.

Then we can lift γ to a face path γ̃ ⊂ Σ̃, π(γ̃) = γ. We define an orthonormal

frame on f0, whose origin is at the center of the face, axes are parallel to the

edges of f0, and transport the frame along γ in parallel, when it reaches fn

(coinciding with f0), the frame has a rotation angle ei
π
2 k, k ∈ Z. This gives

the holonomy condition Eqn. 2. Furthermore, the transportation is lifted to a

translation along γ̃ in the universal covering space. Since at every step, the

translation from f̃i to f̃i+1 is either horizontal or vertical unit translation, the

total translation u+ iv is integral.

Furthermore, suppose we choose a fundamental domain Σ̄ of Σ \ S, such that

the boundary ∂Σ̄ doesn’t go through any singularity point. We isometrically

immerse Σ̄ using gQ. By a translation and rotation, we assume v0 = (0, 0) and

the quad-edges are horizontal or vertical, the position of each singularity vi is

(mi, ni), mi, ni ∈ Z, namely Eqn. (6) holds. Suppose the deck transformation

corresponding to vi is τi, then by direct computation, we can obtain the relation

between the valence of vi and the rotation angle of τi as Eqn. (8), and the

translation of τi as Eqn. (9). Since all (mi, ni)’s are integers, the corresponding

(ui, vi)’s are also integers.

Consider each handle, we choose a face path homotopic to ai, and flatten the face

path using gQ, then we get the deck transformation, the translation component

must be integer. This holds for deck transformation corresponding to bi as well.

Since all the generators of the deck transformation group satisfy Eqn. 7, all the

deck transformations have integer translation components.
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The inverse is also true.

Theorem 3.23 (From Deck Transformation to Quad-Mesh). Suppose Σ is a

closed surface, a flat metric g with cone singularities S is defined on Σ. The

universal covering space of the punctured surface Σ \ S is Σ̃ with the pull back

metric π∗g. Suppose each τ ∈ Deck(Σ̃) has the form:

τ(z) = e
√
−1π2 kz + (u+

√
−1v), k, u, v ∈ Z.

Furthermore, suppose a fundamental domain Σ̄ of Σ\S is chosen, ∂Σ̄ doesn’t go

through any singularity, v0 ∈ S is selected, a set of generators of the fundamen-

tal group π1(Σ\S, v0) are chosen as Eqn. (5). If for each singularity vi ∈ S, the

parametric positions are integers as Eqn. (6), the corresponding deck transfor-

mation τi has the form as Eqn. (7), the valence and the rotation angle have the

relation Eqn. (8), the translation is given by Eqn. (9), then there is a quad-mesh

Q defined on Σ with the singularity set S, which induces the metric gQ = g.

Proof. The universal covering space (Σ̃, π∗g) can be isometrically immersed on

the plane. We consider the image of one fundamental domain Σ̄, by a trans-

lation, Eqn. (6) ensures the parametric positions of all singularities are on the

integer lattice,

Λ := {(m,n) |m,n ∈ Z} .

Since each deck transformations τ ∈ Deck(Σ̃) has the form Eqn. 7, the para-

metric positions of all the pre-images of singularities π−1(S) are on the lattice

Λ. Furthermore, all the deck transformations are isometric, and preserve the

integer lattice. Therefore, the projection of the lattice π(Λ) defines a quad-mesh

Q of the original surface Σ.

Again, note that the position of singularities Eqn. (6) and the integer trans-

lation of deck transformations Eqn. 9 are not fully independent, except those

for 4k-valence singularities.
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3.5. Quad-Meshing

This subsection explains how to deform a T-mesh parameterization into a

quadrilateral mesh parameterization. We adjust the edge lengths of the T-mesh

to satisfy a set of constraints. According to Theorem 3.23, these constraints

are sufficient to guarantee a quadrilateral mesh. This reduces to solve a square

linear system. Teichmüller theory is required to furter determine the rank of

the linear system.

Suppose Σ is a closed surface with genus g, D is a divisor satisfying the Abel-

Jacobi condition, ω is the meromorphic quartic differential, T is the motorcycle

graph, (or equivalently the T-Mesh), induced by ω.

Lemma 3.24. Suppose Σ is a genus g closed oriented surface, S is the sin-

gularity set, for each vi ∈ S, its valence is ki. Suppose the motorcycle graph

T = (V,E, F ), where V,E, F are vertex, edge and face set respectively, then

1. The total valence of singularities∑
vi∈S

ki = 4|S| − 8 + 8g, (10)

2. The number of edges

|E| = 2
∑
vi∈S

ki, (11)

3. the number of vertices

|V | = |S|+
∑
vi∈S

ki, (12)

4. the number of faces

|F | = (2− 2g) +
∑
vi∈S

(ki − 1). (13)

Proof. 1.For Eqn (10), for each singularity vi ∈ S, the curvature is (4 − ki)π2 ,

according to Gauss-Bonnet,∑
vi∈S

(4− ki)
π

2
= 2π(2− 2g),
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hence ∑
vi∈S

ki = 4|S| − 8 + 8g.

2.For Eqn. (11), every trajectory Ti emitted from vi will terminate when it in-

tersects another trajectory Tj emitted from vj orthogonally. The termination

point divides a segment in Tj into two sub-segments. Therefore, initially there

are
∑
vi∈S ki trajectories, and they will produce the same number of termina-

tion points. Hence the total number of edges equals to 2
∑
vi∈S ki.

3.For Eqn. (12), there are two types of vertices, the singularities and the termi-

nation points. The former has |S| vertices, the later has
∑
vi∈S ki vertices.

4.For Eqn. (13), according to the Euler formula

|V |+ |F | − |E| = 2− 2g,

hence

|F | = |E| − |V |+ 2− 2g =
∑
vi∈S

ki − |S|+ (2− 2g).

For each edge e ∈ E, its length under the flat metric is denoted as de. We

can change the length by amount xe. Therefore, all the unknowns are in the set

{xe : e ∈ E}.

Singularity Position Constraint Suppose the singularities are {v0, v1, . . . , vn}.

We compute a fundamental domain Σ̄, the boundary ∂Σ̄ doesn’t go through any

singularity, and construct paths Γi ⊂ Σ̄, i = 1, 2, . . . , n, each Γi is contained in Σ̄

and connects v0 with vi. By isometrically embedding the faces along Γi, we can

obtain the parametric position of vi, denoted as ϕ(vi). We require ϕ(vi) ∈ Q2.

Each path consists of edges of T , ϕ(vi) can be represented by the edge lengths

de and xe as follows: suppose Γi consists of edges, horizontal edges with posi-

tive (negative) orientations are H+
i (H−i ), vertical edges with positive (negative)

orientations are V +
i (V −i ), then the parametric position of vi is given by

ϕ(vi) =

 ∑
e∈H+

i

(de + xe)−
∑
e∈H−

i

(de + xe),
∑
e∈V +

i

(de + xe)−
∑
e∈V −

i

(de + xe)

 ∈ Q2.

(14)
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Hence there are |S| − 1 constraints for xe’s.

Deck Transformation Constraint The Deck transformation group has 2g+

|S|−1 generators, corresponding to the fundamental group generators in Eqn. (5),

each generator corresponds to a constraint. The singularity position constraints

Eqn.( 14) imply the deck transformation constraints of γi’s in the generators of

π1(Σ \ S, v0). (For valence 4k singularities, with k a positive integer, the deck

transformation conditions are automatically satisfied, independent of the edge

lengths.)

Suppose the canonical handle and tunnel loops of Σ are {a1, b1, a2, b2, · · · , ag, bg},

each of them is a loop with starting point v0. We can find a homotopically equiv-

alent curve comprised of edges in E, then flatten the faces along the loop one

by one. When we return to the starting point, we can flatten the initial face

again. The rigid transformation between two embedding of the initial face gives

us the deck transformation. Suppose the deck transformation τi corresponds

to ai. The rotation part of τi is already ei
π
2 ki , we add the constraints to the

translation part, such that both x and y components are rational numbers. τi

can be represented by the edge lengths de and xe as follows: suppose ai con-

sists of edges, horizontal edges with positive (negative) orientations are H+
i

(H−i ), vertical edges with positive (negative) orientations are V +
i (V −i ), then

the translation component of τi is given by ∑
e∈H+

i

(de + xe)−
∑
e∈H−

i

(de + xe),
∑
e∈V +

i

(de + xe)−
∑
e∈V −

i

(de + xe)

 ∈ Q2.

(15)

Hence there are 2g constraints for xe’s.

Face Constraints Each face has two constraints, the total length of one side

is equal to that of the opposite side. The constraint can be represented by

the edge lengths de and xe as follows, suppose fi has four sides s0, s1, s2, s3

counter-clockwisely, then(∑
e∈s0

(de + xe)−
∑
e∈s2

(de + xe),
∑
e∈s1

(de + xe)−
∑
e∈s3

(de + xe)

)
= (0, 0). (16)

Note that, the equation for the last face linearly depends on those of other faces.
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Hence there are 2(|F |−1) = 2(
∑
vi∈S ki−|S|+ 1−2g) face constraints for xe’s.

Furthermore, the face constraints in Eqn. (16) may not be linearly independent.

For example, the face constraints for an cube with 8 corner as singularities are

linearly dependent.

Linear System Here we discuss the linear system of the constraints of the

singularity position, the deck transformation and the face sides. We show that

the linear system is a square matrix.

Lemma 3.25. Given a closed surface Σ of genus g with singularity set S, and

a T-mesh T , the linear system Eqn. (14), Eqn. (15) and Eqn. (16) forms a

|E| × |E| square matrix.

Proof. The number of singularity position constraints Eqn. (14) is 2(|S| − 1),

the number of deck transformation constraints corresponding to the handle and

tunnel loops is 4g, the number of face constraints is 2(|F | − 1). So the total

number of constraints is

2(|S| − 1) + 4g + 2(|F | − 1) = 2(|S| − 1) + 4g − 2 + 2|F |.

By Eqn. (13), |F | = (2− 2g) +
∑
vi∈S ki − |S|, the above equals to

2|S| − 4 + 4g + 2|F | = 2|S| − 4 + 4g + (4− 4g) + 2
∑
vi∈S

ki − 2|S| = 2
∑
vi∈S

ki.

By Eqn. (11), |E| = 2
∑
vi∈S ki, hence the total number of constraints equals to

|E|. On the other hand, we know the number of unknowns equals to |E|. Hence

the linear system is a square matrix.

This shows the number of unknowns {xe} is more than the number of con-

straints. Note that, the initial edge lengths of the T-mesh are a solution to

linear system with different constraints on the right hand side. The number of

constraints is less than that of the method in [7].

The initial metric is a solution to the linear system, therefore this step de-

forms the conformal structure of the original surface (and the T-mesh) such

that the meromorphic quartic differential (equivalently the divisor) satisfies all
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the constraints. The thorough analysis involves Teichmüller theory, and will be

investigated in our future work.

The proposed algorithm solves the linear system Eqn. (14), Eqn. (15) and

Eqn. (16). The unknowns xe’s are real numbers, and won’t be quantized. The

only quantization is for the right hand sides of equations. The initial deck

transformations induced by the meromorphic quartic differential give the initial

values for the right hand sides, then we quantize them to mi
ni

. The solutions

will be multiplied by the least common multiple. ni’s are chosen to balance the

distortion and the number of quad-faces.

The Algorithm 1 doesn’t require mesh subdivision. After Algorithm 1 is

completed, the Ricci flow step requires the modification of the triangulation at

the new extraordinary points. If a new extraordinary point is in the interior

of a triangle face, we subdivide the face into 3 smaller triangles. Because the

dynamic Ricci flow alogirthm can handle triangle meshes with bad qualities,

this simple subdivision is good enough for the purpose.

Surfaces with Boundaries All the theorems, lemmas discussed in this section

focus on closed oriented surfaces, they can be directly generalized to compact

oriented surface with boundaries using the ”doubling” operator as follows: sup-

pose Σ is a compact oriented surface with boundaries, we make a copy of Σ,

denoted as Σ′, then we reverse the orientation of Σ′, isometrically glue Σ and

Σ′ along their corresponding boundaries. The obtained surface is denoted as Σ̄,

which is a closed oriented surface with a special symmetry. All the theoretic

results hold on Σ̄ and can be translated to Σ. In general, the boundaries are

along the edges of the quad-mesh.

For non-oriented surface Σ, we can cover it into an oriented surface by “double

covering”: suppose Σ is triangulated, for each face f ∈ Σ, we construct two faces

f+ and f− with opposite orientations (i.e. different ordering of vertices), then

we glue the oriented faces f±1 and f±2 along a common edge, if the non-oriented

faces f1 and f2 are adjacent in Σ, and the common edges are with opposite

orientations in f±1 and f±2 respectively. The obtained double covering mesh is

oriented.
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4. T-Mesh and Quad-Mesh Generation Algorithms

The algorithmic pipeline can be divided into two stages, the first stage com-

putes a meromorphic differential ω, its critical graph induces a T-mesh (motor-

cycle graph); the second stage further deforms the T-mesh to a quad-mesh.

4.1. T-Mesh Generation

This subsection explains the algorithm for T-mesh generation in detail. The

input surface is represented as a triangle mesh Σ; the output is a meromorphic

quartic differential ω, and the flat metric with cone singularities at the poles

and zeros induced by ω. The pipeline of the algorithm is as follows:

1. Compute the homology group generators of Σ, {a1, · · · , ag; b1, · · · , bg};

2. Compute the dual holomorphic 1-form basis {ϕ1, · · · , ϕg}; Construct a holo-

morphic differential ϕ on the Riemann surface Σ through a linear combina-

tion of basis {ϕk}gk=1, locate the zeros of ϕ;

3. Compute the period matrix (A,B) of surface and construct the lattice Λ,

Jacobi variety J(Σ);

4. Define the initial divisor D as the extremal points of the Gaussian curvature

function, extremes with positive curvature are poles, extremes with negative

curvature are zeros;

5. Compute the Abel-Jacobi map of the initial divisor D in the Jacobi variety

J(Σ);

6. Optimize the divisor D to satisfy the Abel-Jacobi condition;

7. Compute the flat metric with cone singularities at the divisor D by surface

Ricci Flow ;

8. Compute a cut-graph not going through any singularity, connect each singu-

larity to the cut graph by the shortest path, slice the surface along the cut

graph and the shortest paths to obtain a fundamental domain Σ̄.

9. Isometrically immerse Σ̄ into the complex plane. The immersion pulls (dz)4

back to the surface and produces a meromorphic quartic differential ω.
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10. Trace the critical horizontal and vertical trajectories of ω, namely isopara-

metric curves through singularities, to generate a motorcycle-graph, which

gives the T-mesh.

In the following, we explain every single step in details. Each subsection

corresponds to one step.

4.1.1. Homology group basis

In practice, we compute a special canonical homology group basis, the tunnel

loops {ai} and handle loops {bi}, such that each ai and bi intersect each other

at one point. The homology group basis will determine the holomorphic 1-form

basis, the cut graph. For the simplicity of presentation and the ease for debug-

ging, we compute a canonical homology group basis. Our algorithm is mainly

based on the work of Dey et al.[12], which avoids tetrahedral tessellation and

modification of the original triangle mesh. The algorithm utilizes the concept

of a Reeb graph and the linking number to produce different sets of homology

basis.

As shown in Fig. 3 left frame, the algorithm may generate a homology basis

which doesn’t satisfy the intersection condition,

ai · bj = δij , ai · aj = 0, bi · bj = 0, i, j = 1, . . . , g, (17)

where α · β represents the algebraic intersection number between α and β, g

is the genus of the mesh. We compute the algebraic intersection between the

tunnel loops and handle loops; if the intersection condition 17 is violated, we

randomly reset the height function used for constructing a Reeb graph, and

obtain a new set of handle loops and tunnel loops. After several iterations, we

can get a canonical homology group basis, as shown in Fig. 3 right frame.

4.1.2. Holomorphic 1-form Basis

The algorithm of computing holomorphic 1-form is based of the work of Gu et

al. [18], which is based on Hodge theory. For a genus g closed Riemann surface,

the space of holomorphic one-forms has g complex dimensions, or equivalently
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Figure 3: Sculpt model. Left: the handle loop b1 intersects both tunnel loops a1 and a2,

where we call the handle loop b1 illegal. Right: each handle loop bi only intersects its

conjugate ai once.

Figure 4: A holomorphic 1-form basis on a genus two surface, the Sculpt model.

2g real dimensions.

Step 1. For each loop γ, we slice the mesh Σ along γ to get an open mesh Σ̄γ
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with boundaries ∂Σγ = γ+ − γ−, then we construct a function

gγ(vi) =


1 vi ∈ γ+

0 vi ∈ γ−

random otherwise.

Then the discrete 1-form λγ = dgγ is a closed 1-form. In this way, we construct

a cohomology group basis λa1 , λb1 , · · · , λag , λbg .

Step 2. For each closed 1-form λ, we construct a function f : Σ → R, such

that λ + df is harmonic, namely the function f satisfies the Poisson equation

∆f = −δλ. In this way, we diffuse the cohomology basis to a harmonic 1-form

group basis, denoted as ωa1 , ωb1 , · · · , ωag , ωbg .

Step 3. Each harmonic 1-form ω is equivalent to a curl-free vector field on

Σ, we rotate the vector field by π
2 about the normal to the surface to obtain

a divergence free vector field, which is equivalent to another harmonic 1-form

∗ω. The pair ω +
√
−1∗ω is a holomorhic 1-form. In this way, we construct a

holomorphic 1-form basis {ϕa1 , ϕb1 , . . . , ϕag , ϕbg}, where

ϕγ = ωγ +
√
−1∗ωγ , γ ∈ {a1, . . . , ag, b1, . . . , bg}.

According to the Riemann-Roch theory, the above set of holomorphic 1-forms

span the linear space of all holomorphic 1-forms Ω1(Σ), namely for any ϕ ∈

Ω1(Σ),

ϕ =

g∑
k=1

αkϕak +

g∑
l=1

βlϕbl , (18)

where the αk, βl are real linear combination coefficients.

In practice, in order to compute the zeros of ϕ more accurately, we choose

the linear combination coefficients, such that the conformal factor function of

ϕ is as uniform as possible. (By integrating ϕ, we can obtain a conformal

parameterization of the surface. The ratio between the surface area element and

the parametric area element is defined as the conformal factor, which measures

the area distortion cased by the parameterization.) In our implementation, we

assign all αk’s and βl’s to be 1. Heuristically, the resulting holomorphic 1-form

meets our accuracy requirement.
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4.1.3. Period matrix and Lattice

We can further construct a set of holomorphic 1-form basis {ϕ1, ϕ2, . . . , ϕg},

such that ∫
ai

ϕj = δij , i, j = 1, 2, . . . , g. (19)

This can be accomplished as follows: we represent each ϕi as a linear combina-

tion of the basis {ϕak , ϕbl} as in Eqn. (18), then build a linear system by the

constraints in Eqn. (19) and solve the linear combination coefficients {αk, βl}.

Then for each γ in the homology basis, we construct a g dimensional vector

λγ ∈ Cg,

λγ =

(∫
γ

ϕ1,

∫
γ

ϕ2, · · · ,
∫
γ

ϕg

)
.

The period matrix (A,B) can be constructed as

A =



∫
a1
ϕ1

∫
a2
ϕ1 · · ·

∫
ag
ϕ1∫

a1
ϕ2

∫
a2
ϕ2 · · ·

∫
ag
ϕ2

...
...

. . .
...∫

a1
ϕg

∫
a2
ϕg · · ·

∫
ag
ϕg

 B =



∫
b1
ϕ1

∫
b2
ϕ1 · · ·

∫
bg
ϕ1∫

b1
ϕ2

∫
b2
ϕ2 · · ·

∫
bg
ϕ2

...
...

. . .
...∫

b1
ϕg

∫
b2
ϕg · · ·

∫
bg
ϕg

 (20)

by our construction, A is the g × g identity matrix, the imaginary part of B is

positive definite [19]. Then we construct a lattice Λ in Cg,

Λ =

{
g∑
k=1

(skλak + tkλbk), sk, tk ∈ Z

}
.

4.1.4. Abel-Jacobi Map

Given a canonical homology group basis, we slice the surface along the basis

to obtain a topological disk Σ̄. Fix a base point in the interior of Σ̄, p0 ∈ Σ̄, for

any point p ∈ M , we can choose arbitrarily a path γ ⊂ Σ̄ connecting p and p0,

the Abel-Jacobi map µ : M → J(M), J(M) = Cg/Λ, is defined as

µ(p) = Φ(p) mod Λ,

where

Φ(p) =

(∫
γ

ϕ1,

∫
γ

ϕ2, · · · ,
∫
γ

ϕg

)T
. (21)
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Similarly, given a divisor D =
∑n
i=1 nipi, choose paths γi ⊂ Σ̄ from p0 to pi,

µ(D) =
n∑
i=1

niµ(pi) =
n∑
i=1

ni

(∫
γi

ϕ1,

∫
γi

ϕ2, · · · ,
∫
γi

ϕg

)T
mod Λ.

Abel-Jacobi condition claims that if D is a principle divisor, then µ(D) is 0,

namely

Φ(D)−A


s1

...

sg

−B

t1
...

tg

 =


0
...

0

 , si, tj ∈ Z. (22)

By expansion, we obtain the equation

∑n
i=1 ni

∫
γi
ϕ1∑n

i=1 ni

∫
γi
ϕ2

...∑n
i=1 ni

∫
γi
ϕg


−



∑g
k=1(sk

∫
ak
ϕ1 + tk

∫
bk
ϕ1)∑g

k=1(sk

∫
ak
ϕ2 + tk

∫
bk
ϕ2)

...∑g
k=1(sk

∫
ak
ϕg + tk

∫
bk
ϕg)


=


0

0
...

0

 , (23)

where sk, tk are integers. The base point p0 can be arbitrarily chosen, and

the same condition holds. This condition is stronger than the Gauss-Bonnet

theorem.

4.1.5. Abel-Jacobi Condition Optimization

Initially, the singularities are located at the extremal points of Gaussian

curvature. For extremal points with positive curvatures, we set the valence to

be 3, those with negative curvature to be 5. Suppose the initial divisor D0

doesn’t satisfy the Gauss-Bonnet condition, namely deg(D0) 6= 8g − 8, we can

add extra poles or zeros to obtain D =
∑n
i=1 nipi, such that deg(D) = 8g − 8.

We also choose a holomorphic 1-form ϕ.

Our goal is to adjust the divisor D such that µ(D − 4(ϕ)) is zero, where µ

is the Abel-Jacobi map. We define the energy to be the squared norm, namely

‖µ(D − 4(ϕ))‖2. By definition, µ(D − 4(ϕ)) equals to Φ(D − 4(ϕ)) modulus

the lattice Λ. Each grid-point of the lattice Λ is labeled by g pairs of integers

{(sk, tk), k = 1, . . . , g}. Hence our optimization includes two steps: the first step
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is to determine the cell inside the lattice containing Φ(D − 4(ϕ)). We can find

the grid point {(sk, tk), k = 1, . . . , g} closest to Φ(D−4(ϕ)), then a cell adjacent

to the closest grid-point contains Φ(D− 4(ϕ)). By definition, it is obvious that

such kind of cell exists, but may not be unique. The second step is to further

optimize the squared norm of µ(D − 4(ϕ)) within the fixed cell with respect to

the positions of all singularities, counting their multiplicities. The singularities

can be merged or split. Since there are meromorphic quartic differentials, the

solution for the second step also exists. During the optimization, Φ(D − 4(ϕ))

may transit to adjacent cells. The algorithm dynamically trace the current cell

containing it. In Algorithm 1, the current cell is dynamically determined at

the step 23.

First, we determine the integer coefficients sk and tk, k = 1, 2, . . . , g in the

Abel-Jacobi condition (23) by minimizing the squared norm

min
sk,tk∈Z

∥∥∥∥∥Φ(D)−
g∑
k=1

skλak −
g∑
k=1

tkλbk − Φ(4(ϕ))

∥∥∥∥∥
2

. (24)

This can be accomplished by standard integer programming method [2]. When

the norms of (sk, tk)’s go to infinity, the energy goes to infinity. Hence we can

search the solution in a compact set Ω ⊂ R2g, where the number of integer grid

points {(sk, tk)}gk=1 is finite, hence the minimizer {(sk, tk)}gk=1 always exists.

In practice, we can simply use enumeration of integer grid points within the

compact set Ω to find the optimum.

Second, once the integer coefficients {(sk, tk)}gk=1 are determined, we mini-

mize the squared norm of µ(D) with respect to the positions of the poles and

the zeros,

min
p1,...pn∈Σ

∥∥∥∥∥Φ(D)−
g∑
k=1

skλak −
g∑
k=1

tkλbk − Φ(4(ϕ))

∥∥∥∥∥
2

.

The positions of the singularities are the variables, they may be the vertices of

the mesh or the interior points of triangle faces. If a singularity p is with multi-

plicity np, then these np points are treated as np different variables and moved

independently. Therefore the singularities can be split during the optimization.
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They can also be merged together, even cancel out each other. Since there are

meromorphic quartic differentials, the solution always exists, but may be de-

generated. For example, consider a closed torus with one valence 3 singularity

at q and one valence 5 singularity at p. Then the initial divisor is D0 = p − q,

the optimization process will merge p and q then return the final divisor D = 0.

Let d ∈ Cg be the constant complex vector

d =

g∑
k=1

skλak −
g∑
k=1

tkλbk − Φ(4(ϕ)),

then the above energy becomes

E(p1, . . . , pn) :=

g∑
j=1

∥∥∥∥∥
n∑
i=1

ni

∫ pi

p0

ϕj − dj

∥∥∥∥∥
2

.

For each point pi, we choose a local neighborhood ∆i of pi, with local parameter

zi, then the holomorphic 1-form ϕj has the local representation,

ϕj = hij(zi)dzi,

where hij(zi) is a holomorphic function defined on ∆i. By direct computation,

we obtain the gradient of the energy,

∂E

∂pi
=

g∑
j=1

[
nih

i
j(pi)

(
n∑
i=1

ni

∫ pi

p0

ϕ̄j − d̄j

)
+ nih̄

i
j(pi)

(
n∑
i=1

ni

∫ pi

p0

ϕj − dj

)]
,

(25)

we can use gradient descent method to minimize the energy ‖µ(D)‖2. In prac-

tice, we choose the triangle face containing pi as ∆i. We isometrically embed

∆i onto the plane, and the planar coordinates give local parameter zi. ϕj can

be represented as a complex linear function on ∆i, which is hij(zi). We update

the position of pi along the negative direction of the gradient, until we reach

the boundary of the current face ∆i. Then we travel to the adjacent face ∆′i

along the negative gradient direction, then compute the local parameter z′i and

the local representation of ϕj . By repeating this procedure, we can minimize

the squared norm of µ(D). The algorithm is presented briefly in Alg. 1.
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Figure 5: The singularities of the Buddha surface. The valences of the singularities are 3

(red), 5(blue) and 6 (green) respectively.

Fig. 5, Fig. 6 and Fig. 7 show an example computed using Alg. 1. The

input Buddha surface is of genus 3 with complicated geometry, the number of

vertices, edges and faces are 59.4k, 178.1k and 118.7k respectively. The initial

singularities are selected at the extreme points of the Gaussian curvature, then

the algorithm modifies the initial divisor to satisfy the Gauss-Bonnet condition.

Then, we compute the Abel-Jacobi map of the divisor, Φ(D). By minimizing

the energy in Eqn. (24), we obtain the lattice point (sk, tk) for k = 1, 2, 3, and

get µ(D) by quotient the lattice. Then for each singularity pi ∈ D, we find the

triangle ∆i containing pi, for each base holomorphic 1-form ϕj , we get the local

linear representation hij . We compute the gradient of the square norm with

respect to pi using Eqn. (25), and move pi inside ∆i along the negative gradient

direction. If pi exceeds ∆i and transits to a neighboring face, we update the local

representation of ϕj , namely hij and repeat. In this way, the energy is minimized

using the gradient descent method and eventually the norm of µ(D) is less than

a threshold, the divisor is close to a canonical divisor and satisfies the Abel-

Jacobi condition. There are 34 valence 3 singularities, 36 valence 5 singularities

and 7 valence 6 singularities on the Buddha surface as shown in Fig . 5. The
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divisor D uniquely determines a meromorphic quartic differential ω, the critical

trajectories of ω induce the motorcycle graph as shown in Fig. 6, and the flat

metric of ω induces an immersion of the surface as shown in Fig. 7, namely a

seamless parameterization. We then visualize the seamless parameterization by

checkerboard texture mapping. By examining these figures, we can see the right

corner angles of checkers are well preserved, hence the parameterization has high

conformality. By examining Fig. 7, we can see all the faces of the motorcycle

graph are mapped to planar rectangles, this shows the holonomy conditions are

satisfied. The threshold for this experiment is 3.0e − 4, the iterations in the

optimization are 670539 and the running time is 2.021 seconds. This shows the

efficiency of this algorithm.

4.1.6. Discrete Surface Ricci Flow

Suppose we have obtained the divisor D =
∑n
i=1 nipi, if there is a non-

vertex point pi ∈ D, then we add pi as a vertex and modify the mesh structure

accordingly. After that we set the target curvature for all vertices,

K̄(vi) =

 (4− ni)π2 vi ∈ D

0 vi 6∈ D

(Here we assume the surface is closed. For surfaces with boundaries, we use

double covering technique to convert them to be closed ones.) For each vertex

vi ∈ M , we set the initial conformal factor as ui = 0. Then the edge length is

given by vertex scaling, for edge eij = [vi, vj ], its length is given by

lij = euiβije
uj ,

where βij is the initial edge length, usually induced by the Euclidean metric of

R3. The corner angles are calculated using Euclidean cosine law,

θijk = cos−1
l2ik + l2jk − l2ij

2likljk
,

the discrete Gaussian curvature is given by

K(vi) =

 2π −
∑
jk θ

jk
i vi 6∈ ∂M

π −
∑
jk θ

jk
i vi ∈ ∂M.
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The discrete Ricci energy is defined as

E(u1, . . . , un) =

∫ (u1,...,un) n∑
i=1

(K̄i −Ki)dui.

The gradient of the energy is given by

∇E = (K̄1 −K1, K̄2 −K2, · · · , K̄n −Kn)T .

The Hessian matrix is given by the cotangent edge weight [20]

∂2E

∂ui∂uj
=

 (cot θijk + cot θjil )/2 eij 6∈ ∂M

cot θijk /2 eij ∈ ∂M.

and
∂2E

∂u2
i

= −
∑
i∼j

∂2E

∂ui∂uj
.

We can use Newton’s method to optimize the Ricci energy, during the optimiza-

tion, we update the triangulation to be Delaunay all the time. The work [20]

proves the convergence and the finiteness of the edge flips. We can compute

holonomy using the resulting Riemannian metric.

4.1.7. Isometric Immersion and Meromorphic Quartic Differential

We have obtained a canonical homology group basis {a1, . . . , ag, b1, . . . , bg}.

The union of the basis forms a cut graph Γ of the mesh. For each pole or zero

pi in D, we find a shortest path γi connecting pi to the cut graph under the

original metric, furthermore, all such shortest paths γi’s are disjoint. Then we

slice Σ along the cut graph and the shortest paths, Γ
⋃
{
⋃k
i=1 γi}, to obtain a

fundamental domain Σ̃.

Then we flatten Σ̃ face by face using the metric obtained by the discrete

surface Ricci flow. This produces an immersion ϕ : Σ̃ → C. On the complex

plane, there is a canonical differential dz4, the pull back differential ϕ∗dz4 is a

meromorphic quartic differential ω well defined on Σ. We can use ϕ as a pa-

rameterization, and use checker board texture mapping to visualize the quartic

differential ω.
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Figure 6: In the left two frames, the red curves form the motorcycle graph, the blue curves

are the original cut graph. The right two frames show the T-Mesh of the Buddha surface.

4.1.8. T-Mesh Generation

We trace the critical trajectories of the meromorphic quartic differential

ϕ∗dz4. Suppose the valence of vi is ki, then ki trajectories are traced. Each

trajectory is denoted as γk(sk), where sk is the arc length parameter of γk, its

image ϕ(γk) is the horizontal and vertical lines through the singularity ϕ(vi) on

the parameter plane. If γi(si) intersects γj(sj) at some point q, and si < sj at

q, then γj stops at q, γi continues. This procedure will generate the motorcycle

graph [17] on the surface, as shown in the left two frames in Fig. 6.

The surface is partitioned into rectangular patches as shown in the right two

frames of Fig. 6. Each surface patch is parameterized to a planar rectangle, as

shown in Fig. 7. The corresponding surface patch and the planar rectangle are

rendered using the same color. The motorcycle graph gives the T-mesh of the

original surface Σ.

4.2. Quad-Mesh Generation

Suppose we have obtained the T-mesh T = (V,E, F ) from the first stage in

the algorithm pipeline, where each face f ∈ F is a planar rectangle. We denote

the length of the edge e ∈ E as de, and the change of the length as xe.

In the step of isometric immersion and meromorphic quartic differential

4.1.7, the cut graph Γ is found, the fundamental domain Σ̃ is obtained, and

the shortest paths γi’s connecting p0 and pi are computed. We homotopically
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(a) zoomed in (b) planar images

Figure 7: Each surface patch is parameterized to a planar rectangle.

deform the arcs of the cut graph Γ and the shortest paths γi’s to be aligned

with the edges in T , and cut the T-mesh T to get a fundamental domain T̃ . We

flatten face by face to isometrically immerse T̃ on the plane. Then we obtain the

parametric positions of the singularities ϕ(pi) = (ui, vi), i = 1, 2, . . . , n. Each

position ϕ(pi) is represented by the lengths of the edges in T . Then we quantize

(ui, vi) to be rational numbers (mi, ni) and construct the linear equations for

singularity position constraints Eqn. (14).

In the step of homology group basis, the handle and tunnel loops have been

computed {a1, b1, a2, b2, · · · , ag, bg}. For each ai, we find a face path in T con-

taining ai, and flatten the path face by face, until we return to the first face

again. The rigid motion between the two images of starting face is the deck

transformation τi corresponding to ai. By our construction, τi can be repre-

sented by the edge lengths of the faces in the face path. Suppose the trans-

lation component of τi is (ui, vi), we quantize (ui, vi) to rational coordinates

(mi, ni). Hence, we obtain a linear equation for the deck transformation con-

straints Eqn. (15).

Finally, for each face fi ∈ F (except the last face), we construct an equation

requiring the opposite sides have the same length, namely the face constraint

as Eqn. (16).
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The linear system of Eqn. (14), Eqn. (15) and Eqn. (16) is solved using con-

ventional least square method to obtain {xe}, then each edge length is deformed

to de + xe. The flat metric of the updated T-mesh satisfies the conditions de-

scribed in Theorem 3.23. We then find the least common multiple λ of all the

constants on the right hand side of the linear system, and scale the T-mesh by

the factor λ. Again we flatten the fundamental domain T̃ on the plane using

the updated metric, such that ϕ(p0) is the origin, the images of the face edges

are horizontal or vertical on the plane. Then we tessellate T̃ by the inter grid

on the plane, this induces the quad-mesh of the original surface. The pipeline

of the quad-mesh generation algorithm is summarized in Alg. 2.

5. Experimental Results

In this section, we report our experimental results. All the experiments were

conducted on a PC with 1.60GHz Intel(R) core(TM) i5-8250U CPU, 16.0GB

RAM and 64-bit Windows 10 operating system. The running time is reported

in Table 1 and Table 4.

5.1. T-Mesh Generation

The singularities and the resulting T-meshes are illustrated in the figures.

As shown in Fig. 8, the singularities are color-encoded, the red, blue and green

circles represent the +1, −1 and −2 indices respectively. The white circles

represents the T-junction points. Different surface patches are color-encoded

differently. By carefully examining the texture patterns in Fig. 8, we can see that

the adjacent patches differ by horizontal and vertical translations composed with

rotations by angle k π2 , k ∈ Z. Therefore, the parameterizations are seamless

parameterizations. We can construct T-Splines on these T-meshes directly.

By examining Table 1, one can see that the running time for holomorphic

1-form is much longer than that of other steps in the algorithm pipeline. Be-

cause the computation involves many steps (homology basis, cohomology basis,
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Figure 8: Singularities, white: T-junctions, blue: valence 5, green: valence 6, red :valence 3.

harmonic 1-form basis and holomorphic 1-form basis), the intermediate results

are stored in mesh files, and passed by files. The file IO takes most of the time.

This process can be optimized by performing all the tasks inside the memory

without any file IO.

Table 1: Singularities Computation Running time

Model
Mesh Information Holo 1-form Holo zeros Legalization of Singularities Ricci Flow Iso. Immersion

#V #E #F #Genus Time(sec.) Time(sec.) Error Threshold Iterations Time(sec.) Time(sec.) Time(sec.)

Kitten 10.2k 30.7k 20.4k 1 10.247 — 3.0e-4 2132 0.002 0.013 0.006

Ornament 28.8k 86.5k 57.7k 1 47.954 — 3.0e-4 3382 0.005 6.177 0.014

Rocker arm 40.2k 120.5k 80.4k 1 39.014 — 3.0e-4 2049 0.004 12.134 0.021

Dancer 43.0k 129.1k 86.0k 1 43.913 — 3.0e-4 6069 0.005 10.0659 0.027

Bull head 75.8k 227.3k 151.5k 1 95.904 — 3.0e-4 2313 0.003 18.160 0.054

Sculpture 4.0k 12.2k 8.0k 2 4.828 0.029 1.0e-3 37601 0.052 1.485 0.002

Starcup 30.0k 90.0k 60.0k 2 51.682 0.301 3.0e-4 1167 0.005 6.654 0.013

Monk 38.5k 115.5k 77.0k 2 86.741 4.037 3.0e-4 17551 0.108 8.624 0.022

Hermanubis 39.9k 119.8k 79.9k 2 96.122 1.441 3.0e-4 17540 0.043 10.370 0.025

Amphora 82.6k 246.5k 164.3k 2 174.396 0.883 3.0e-4 5129 0.016 21.4288 0.046

Loveme 86.7k 260.2k 173.5k 2 191.663 1.156 3.0e-4 5776 0.020 25.7747 0.057

Buddha 59.4k 178.1k 118.7k 3 179.568 2.623 3.0e-4 670539 2.021 13.117 0.026

Kiss 61.7k 185.2k 123.5k 3 201.353 6.274 3.0e-4 94620 0.546 14.633 0.027

3Holes 65.0k 195.0k 130.0k 3 218.954 0.819 1.0e-3 343710 0.9333 16.756 0.032

Witch 75.0k 225.0k 150.0k 4 363.533 10.877 3.0e-4 304729 1.033 20.343 0.051

Hardware
CPU RAM

Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 16.0GB

5.2. Abel-Jacobi and Holonomy Condition Verification
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Figure 9: Singularities and T-Mesh of the Loveme model.

Ornament Dancer Hermanubis

Figure 10: Singularities and T-Meshes of high genus surfaces.
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Witch model Kiss model Monk model

Figure 11: Singularities and T-Meshes of the surfaces with complicated geometries.

(a) Kitten model (b) Amphora model (c) Bull head

Figure 12: Singularities and T-Meshes of various surfaces.
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Star cup model Sculpture model

Figure 13: Singularities and T-Meshes of high genus surfaces.

Figure 14: The motorcycle graph and T-mesh of the genus 3 kiss model.

Rocker arm 3 holes surface

Figure 15: Singularities and T-Meshes of high genus surfaces.
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Figure 16: The loops on the genus two Garniture model : a1, a2 are the tunnel loops; b1,

b2 are the handle loops; t1, t2, t3 surround index +1, −2, −1 singularities respectively; t4

encloses three singularities, with index +1, −1, −2 respectively.

Table 2: The holonomy of the loops in Fig. 16, rotation components.

Loops a1 b1 a2 b2

Rotation degree(◦) 90.31809 -0.12269 0.19303 89.81468

Loops t1 t2 t3 t4
Rotation degree(◦) 270.00047 540.00136 450.00192 539.99818

We verify the holonomy condition for a genus two surface as shown in Fig. 16.

We compute the tunnel loops a1, a2 and handle loops b1, b2, and several loops

enclosing different number of singularities. Then we compute their holonomies

by parallel transportation on the flat metric computed using Ricci flow, the

rotation components are reported in the Table 2. We can see that all the

holonomies are very close k
2π, where k is an integer.

Furthermore, for every surface, we compute the image of the singularities

under the Abel-Jacobi map, all the results are reported in Table 3. We can see

that all the images are very close to the zero point in the Jacobian lattice, this

shows the singularities satisfy the Abel-Jacobi condition. This demonstrates the
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(a) Kiss model (b) Dancer model (c) Monk model (d) Witch model

Figure 17: Singularities and Quad-meshes of various surfaces.

accuracy of our proposed algorithm.

5.3. Quad-Mesh Generation

The T-meshes are converted to quad-meshes by solving the linear system

of singularity position constraints Eqn. (14), deck transformation constraints

Eqn. (15) and face constraints Eqn. (16). The numbers of vertices, edges, faces

of T-meshes are listed in Tab. 5 and follow the predictions of Lemma 3.24.The

running time for quad-mesh generation is reported in Table 4. Since the con-

nectivity of a T-mesh is generally very simple, this step is highly efficient. The

quad-meshes are directly converted from T-meshes, and illustrated in Fig. 17

and Fig. 18. The singularities of quad-meshes are exactly the same as those of

T-meshes, the red, blue and green circles represent singularities with valence

3, 5 and 6 respectively. The quad-meshes are obtained by adjusting the edge

lengths of T-meshes without any optimization, however we can see all the quad-

faces are close to planar squares, this shows the quad-mesh is highly conformal

to the original Riemannian metric, the sizes of the quad-faces vary smoothly,

this shows the high regularity of conformal factors.
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(a) Amphora model (b) Bull head model (c) Rocker-arm model

Figure 18: Singularities and Quad-meshes of various surfaces.

Table 3: Abel Jacobian mapping result

Model Abel Jacobian Mapping Model Abel Jacobian Mapping

Kitten
(
2.13971e-04 + i ∗ 7.09315e-05

)
Ornament

(
-1.09501e-08 + i ∗ 5.73307e-08

)
Rockerarm

(
-6.05103e-05 + i ∗ 6.27266e-06

)
Dancer

(
-3.14143e-05 + i ∗ 1.57991e-05

)
Bull

(
-1.55144e-05 + i ∗ 6.56513e-06

)
Starcup

4.59275e-05− i ∗ 1.27194e-04

8.14751e-05− i ∗ 2.32289e-04

 Monk

-1.37142e-05− i ∗ 1.84819e-04

4.70251e-05 + i ∗ 1.90921e-04


Hermanubis

-1.05753e-04− i ∗ 8.17228e-05

9.29236e-05 + i ∗ 4.96067e-05

 Amphora

1.16072e-04− i ∗ 1.37645e-04

1.32789e-05− i ∗ 1.56983e-04


Loveme

-9.65795e-05 + i ∗ 3.60684e-05

-3.69644e-05− i ∗ 1.48141e-04

 Sculpt

-3.72147e-04− i ∗ 9.82485e-04

8.03122e-04 + i ∗ 6.25321e-04



Kiss


2.90402e-04− i ∗ 2.89651e-04

2.13554e-04− i ∗ 5.80312e-05

1.70373e-04 + i ∗ 2.77541e-04

 3Holes


6.85741e-05 + i ∗ 9.32962e-04

3.55608e-05− i ∗ 8.67721e-04

-1.36089e-05 + i ∗ 5.60214e-04



Witch


-1.29378e-04− i ∗ 2.40348e-04

-2.75192e-04 + i ∗ 1.98399e-04

2.23835e-04 + i ∗ 2.55373e-04

-2.64736e-04 + i ∗ 2.39598e-04

 Buddha


1.16965e-04 + i ∗ 2.90814e-04

-1.28974e-04− i ∗ 7.77251e-06

1.55074e-04− i ∗ 2.54977e-04



6. Conclusion

This work proposes a rigorous and practical algorithm for T-mesh and quad-

mesh generation based on Abel theorem. We prove the sufficient and necessary

condition for a flat metric with cone singularities to be compatible with a quad-

mesh 3.23, then develop the algorithm based on the Abel-Jacobi condition and
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this theorem. The first stage of the algorithm is to generate a T-mesh: the

initial divisor is optimized to satisfy the Abel-Jacobi condition, a meromorphic

quartic differential is induced, the critical trajectories of the meromorphic quar-

tic differential lead to the T-mesh. The second stage is to generate a quad-mesh:

the edge lengths of the T-mesh is adjusted to satisfy the deck-transformation

conditions by solving a linear system, a fundamental domain of the T-mesh is

isometrically immersed in the plane using the updated metric, the immerse pulls

back the planar integer-grid to the surface to produce the quad-mesh.

Our experimental results demonstrate that the method can handle surfaces

with complicated topology and geometry. The algorithm is efficient and accu-

rate. The resulting T-meshes can be used to construct T-Splines directly. The

quad-meshes can be applied for NURBS construction.

In the future, from algorithmic point of view, we will further explore how to

optimize the configurations of singularities and align the stream lines of the T-

mesh/quad-mesh with the feature curves of the surfaces to improve the quality

of the Spline surfaces; from theoretic point of view, we will further explore the

intrinsic connection between quad-meshing and conformal geometry, especially

the Teichmüller space theory and give more thorough analysis for the existence

of quad-meshes with special requirements.

Table 4: Quad Mesh Generation Running time

Model
Mesh Information #Singularities Motor Cycle Graph Finite trajectories parametrization Quad Mesh

#V #E #F #Genus #V alence3 #V alence5 #V alence6 #V #E #F Time(sec.) Time(sec.) #F Time(sec.)

Rockerarm 40.2k 120.5k 80.4k 1 13 11 1 125 200 75 0.019 73.219 21998 0.381

Dancer 43.0k 129.1k 86.0k 1 42 40 1 415 664 249 0.043 66.269 16650 0.311

Bull 75.8k 227.3k 151.5k 1 20 18 1 195 312 117 0.035 122.526 35610 0.791

Monk 38.5k 115.5k 77.0k 2 24 22 5 263 424 159 0.033 24.980 10660 0.174

Amphora 82.6k 246.5k 164.3k 2 14 22 0 188 304 114 0.039 127.218 12242 0.362

2Kids 61.7k 185.2k 123.5k 3 21 29 4 286 464 174 0.037 41.341 16112 0.334

Witch 75.0k 225.0k 150.0k 4 46 32 19 509 824 309 0.069 134.691 84258 0.849

Hardware
CPU RAM

Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 16.0GB
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Table 5: T-Mesh Connectivity

Model
Resulting T-Mesh Information

#V #E #F #Genus #V alence3 #V alence5 #V alence6
∑∑∑

ki

KITTEN 115 184 69 1 12 10 1 92

ROCKERARM 125 200 75 1 13 11 1 100

ORNAMENT 120 192 72 1 12 12 0 96

DANCER 415 664 249 1 42 40 1 332

BULL 195 312 117 1 20 18 1 156

SCULPT 148 240 90 2 10 18 0 120

STARCUP 283 456 171 2 28 18 9 228

MONK 263 424 159 2 24 22 5 212

HERMANUBIS 228 368 138 2 23 11 10 184

AMPHORA 188 304 114 2 14 22 0 152

LOVEME 163 264 99 2 14 12 5 132

BUDDHA 401 648 243 3 34 36 7 324

2KIDS 286 464 174 3 21 29 4 232

3HOLES 111 184 69 3 3 13 3 92

WITCH 509 824 309 4 46 32 19 412
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Algorithm 1 Optimize a Divisor to Satisfy the Abel-Jacobi Condition

Input: Closed mesh M ; A group of singularities D; A holomorphic 1-form;

Precision threshold ε.

Output: Optimized divisor D Abel-Jacobi condition.

1: if D doesn’t satisfy Gauss-Bonnet Condition then

2: Locate the vertices on M with local maximal Gaussian curvature as poles,

or with local minimal curvature as zeros;

3: Add these vertices to the divisor D, such that D satisfies the Gauss-

Bonnet condition.

4: end if

5: Locate the zeros of ϕ to obtain the divisor (ϕ);

6: Compute Φ(D) and Φ(4(ϕ)) using Eqn. 21;

7: Compute the Abel-Jacobi µ(D − 4(ϕ))map by optimization using integer

programming (Eqn.24);

8: for All each pole and zero pi in D do

9: Locate the face ∆i containing pi, isometrically embed ∆i on the complex

plane;

10: Compute the local representation ϕj(zi) = hij(zi)dzi;

11: end for

12: while ‖µ(D − 4(ϕ))‖2 > ε do

13: for All each pole and zero pi in D do

14: Compute the gradient of the energy (Eqn.25);

15: if pi − λ∂∇E/∂pi is inside ∆i then

16: Update the positions of the singularities pi ← pi − λ∂∇E/∂pi;

17: else

18: Compute the intersection qi = {pi − t∂E/∂pi} ∩ ∂∆i;

19: Update the positions of the singularity pi ← qi;

20: Update the face ∆i to the neighboring face ∆′i along −∂E/∂pi;

21: Isometrically embed ∆′i and update the local representation ϕj(z
′
i);

22: end if

23: Recompute the Abel-Jacobi map µ(D − 4(ϕ));

24: end for

25: end while

26: return The divisor D.
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Algorithm 2 Generate Quad-mesh from T-mesh

Input: Closed mesh M with genus g; A group of singularities D; T-mesh T ;

Output: Quad-mesh Q.

1: Compute a fundamental domain M̄ of the mesh M ;

2: Compute the handle and tunnel loops {ai, bi}gi=1;

3: Select a singularity v0 ∈ D, find the path γi ⊂ M̄ from v0 to vi ∈ S;

4: for each loop γ in {ai, bi}gi=1 do

5: Compute the face path homotopic to γ;

6: Represent the deck transformation τ corresponding to γ by the edge

lengths of the T-mesh T ;

7: Construct the linear equation for the deck transformation constraint

Eqn. 15, namely the translation of τ is rational;

8: end for

9: for All each singularity vi ∈ D do

10: Compute the face path homotopic to γi;

11: Represent the parametric position of vi by the edge lengths of the T-mesh

T ;

12: Construct the linear equation for the singularity position constraint

Eqn. 14, namely the position of vi is rational;

13: end for

14: for All faces f ∈ F except the last one do

15: Construct the linear equation for the face side length constraint Eqn. 16

16: end for

17: Solve the linear system;

18: Update the edge length of T ; Scale by the least common multiple;

19: Isometrically immerse a fundamental domain of T on the plane, such that

v0 is mapped to the origin, the edges of T are either horizontal or vertical;

20: The planar integer grid induces a quad-mesh Q on the fundamental domain,

and then on M .

21: return The quad-mesh Q.
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