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Abstract

This work proposes a rigorous and practical algorithm for quad-mesh gen-
eration based the Abel-Jacobi theory of algebraic curves. We prove sufficient
and necessary conditions for a flat metric with cone singularities to be compat-
ible with a quad-mesh, in terms of the deck-transformation, then develop an
algorithm based on the theorem. The algorithm has two stages: first, a mero-
morphic quartic differential is generated to induce a T-mesh; second, the edge
lengths of the T-mesh are adjusted by solving a linear system to satisfy the deck
transformation condition, which produces a quad-mesh.

In the first stage, the algorithm pipeline can be summarized as follows: calcu-
late the homology group; compute the holomorphic differential group; construct
the period matrix of the surface and Jacobi variety; calculate the Abel-Jacobi
map for a given divisor; optimize the divisor to satisfy the Abel-Jacobi condition
by integer programming; compute a flat Riemannian metric with cone singular-
ities at the divisor by Ricci flow; isometrically immerse the surface punctured at
the divisor onto the complex plane and pull back the canonical holomorphic dif-
ferential to the surface to obtain the meromorphic quartic differential; construct

a motorcycle graph to generate a T-Mesh.
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In the second stage, the deck transformation constraints are formulated as a
linear equation system of the edge lengths of the T-mesh. The solution provides
a flat metric with integral deck transformations, which leads to the final quad-
mesh.

The proposed method is rigorous and practical. The T-mesh and quad-
mesh results can be applied for constructing Splines directly. The efficiency and
efficacy of the proposed algorithm are demonstrated by experimental results on
surfaces with complicated topologies and geometries.

Keywords: Quadrilateral Mesh, T-mesh, Spline, Abel-Jacobi, Flat
Riemannian Metric, Geodesic, Discrete Ricci flow, deck transformation,

Divisor

1. Introduction

In computational mechanics, computer-aided-design, geometric design, com-
puter graphics, medical imaging, digital geometry processing and many other
engineering fields, quadrilateral mesh is a universal and crucial boundary sur-
face representation. Although quadrilateral meshes have been broadly applied
in the real industrial world, the theoretic understanding of their geometric struc-
tures remains primitive. Recently, [29] made a breakthrough from the algebraic
geometric view: basically a quad-mesh induces a conformal structure and can
be treated as a Riemann surface. Furthermore, a quad-mesh is equivalent to
a meromorphic quartic differential with closed trajectories, and the singulari-
ties satisfy the Abel-Jacobi condition. This discovery provides a solid theoretic

foundation for quad-meshing.

1.1. Abel-Jacobi Condition

Suppose a closed surface (3, g) is embedded in Euclidean space R? with the
induced Euclidean Riemannian metric g. Suppose the surface is represented
as a quadrilateral mesh Q, then Q induces a special combinatorial structure, a

Riemannian metric structure, and a conformal structure.



Combinatorial structure: Suppose the number of vertices, edges, faces of Q are

V,E,F, then E = 2F and the Euler formula holds, V 4+ F — E = x(X), where

Xx(X) is the Euler characteristic number of ¥. The vertices with topological

valence 4 are called normal; otherwise they are singular.

Riemannian metric structure: A flat metric with cone singularities gg can be

induced by Q by treating each face as a unit planar square. A vertex with
4—k

k-valence has the discrete curvature =5, and the total curvature satisfies the

Gauss-Bonnet condition:

> A o), 1)

v
where val(v) is the topological valence of v. The holonomy group induced by
the metric gg on the surface ¥ \ S with punctures at the singular vertices S is

the rotation group
Hol(S\ §.8q) = {3,k € Z}. (2)

This is the so-called holonomy condition [11].

Furthermore, let (3, 7) be the universal covering space of the punctured surface
2\ S, where 7 : & — ¥\ S is the projection map. Then 7 pulls back the
quad-mesh metric g to gg. If the Deck transformation group of Y is Deck(i),
then each deck transformation 7 € Deck(X) is an isometric automorphism of

(%, £0), and satisfies the relation mo7 = 7. Furthermore, it must have the form

Vr € Deck(X), 7(z) =e'%Fz+ (u,v), ku,veZ, (3)

We call this as the deck transformation condition.

Conformal structure: The quad-mesh Q induces a conformal structure, and can
be treated as a Riemann surface Sg; furthermore, it induces a meromorphic
quartic differential wg, whose horizontal and vertical trajectories are finite. The
vertices of @ with valence less than 4 are the poles of wg, the vertices with
valence greater than 4 are the zeros of wg. The divisor of wg represents the

configuration of singularities of Q, denoted as (wg). Suppose ¢ is a holomorphic



1-form on Sg, then ¢* is a holomorphic quartic differential. Then (wg) and
4(p) are equivalent, and satisfy the Abel-Jacobi condition, the image of the
Abel-Jacobi map, p((wg) — 4(p)), is zero in the Jacobi variety (J(Sq)).

1.2. T-mesh and Quad-mesh generation

The procedure to generate quadrilateral meshes can be summarized as two
stages: the first stage is to construct a meromorphic quartic differential, which
leads to a T-mesh; the second stage updates the edge lengths of the T-mesh
to satisfy the deck transformation condition by solving a linear system, the

updated metric induces the desired quad-mesh.

T-mesh generation. The algorithm for T-meshing is as follows: 1) choose an
arbitrary set of points on surface as the initial singularities, which capture the
geometric features of the surface, such as the extreme points of the Gaussian
curvature; 2) improve the initial singularity set to satisfy the Abel-Jacobi con-
dition; the resulting singularity set is denoted as S; 3) construct a meromorphic
quartic differential w, whose divisor (w) equals to & with multiplicity; 4) trace
the horizontal and vertical critical trajectories of w to form a motorcycle graph
T, which is the T-mesh.

If the initial singularities do not satisfy the Gauss-Bonnet condition 1, we
will add more poles and zeros at the critical points of Gaussian curvature. Then
we compute the Abel-Jacobi map, minimize the squared norm of the image of
the divisor using gradient descent method. Once the divisor satisfies the Abel-
Jacobi condition, we use surface Ricci flow to compute a flat cone metric, and
isometrically immerse the surface with punctures at the singularities into the
plane. On the plane C, there is a canonical holomorphic quartic differential
(dz)*, which can be pulled back to the surface by the immersion map to a
meromorphic quartic differential w, which is globally defined on the original
surface by construction. The critical trajectories of w form a motorcycle graph,

which partitions the surface to a T-mesh.



Quad-mesh Generation. We adjust the edge lengths of the T-mesh, preserve
all the faces to be rectangular, make all the translational components of deck
transformations to be rational and ensure the parametric positions of singular-
ities are rational as well. These conditions are formulated as a square linear
system, the solution gives us a flat metric with cone singularities, which satis-
fies the Abel-Jacobi condition and the rational deck transformation condition

formulated in Theorem 3.23. The metric leads to a quad-mesh directly.

1.8. Contributions

This work proves the sufficient and necessary conditions for a flat metric
with cone singularities to be compatible with a quad-mesh, namely the deck
transformation condition described in theorem 3.22 and 3.23. The work then
proposes a novel algorithm to generate T-meshes and quad-meshes based on
the Abel-Jacobi theory and the deck transformation condition theorems. The
algorithm first finds a meromorphic quartic differential, which leads to a seam-
less parameterization and a T-mesh, then deforms the T-mesh metric to satisfy
the deck transformation condition, which leads to the desired quad-mesh. To
the best of our knowledge, this is the first work that constructs meromorphic
quartic differentials for quad-meshing. The experimental results demonstrate
the algorithm is rigorous, effective and efficient.

The work is organized as follows: Section 2 briefly reviews the most related
works; Section 3 introduces the theoretic background; Section 4 explains the
algorithm in details; the experimental results are reported in Section 5; finally,

the work concludes in Section 6.

2. Previous Works

This section briefly reviews the most related works. We refer readers to [5]
for more thorough reviews. Quad-mesh generation has a vast literature. In the

following we only discuss some of the most popular approaches.



Triangle Mesh Conversion. Catmull-Clark subdivision method can be applied
to convert triangular meshes to quad-meshes, and then the original vertices
become singularities. Another intuitive way is to merge two triangular faces
adjacent to the same edge to a quadrilateral as proposed in [38, 33, 21, 41].
These type of methods can only produce unstructured quad-meshes, without

much quality control.

Patch-Based Approach. In order to generate semi-regular quad-meshes, this
type of methods calculates the skeleton first, then partitions the mesh into
several quadrilateral patches. Each patch is regularly tessellated into quads.
There are different strategies to cluster the faces to form each patch. One way
is to merge neighboring triangle faces based on the similarity among the nor-
mals [23]. The other is based on the distance among the centers of the faces
[3, 10]. Poly-cube map is a normal based method to deform the surface to a poly-
cube shape, such as [44, 43, 31, 22]. The Morse-Smale complex of eigenfunction
of the Laplace operator naturally produces a skeleton structure, which is uti-
lized to generate quad-meshes. The spectral surface quadrangulation method

applies this method in [15, 24].

Voronoi Based Approach. This approach puts samples on the input surface,
then computes a Voronoi diagram on the surface using different distances. For
example, if LP norm is applied, then the cells are similar to rectangles [28]. This

method can only generate a non-structured quad-mesh.

Cross field Based Approach. This approach generates a cross field first, then by
tracing the stream lines of the cross field [37] or iso-parametric lines of the pa-
rameterization induced by the field [5], the quad-mesh can be constructed. The
cross fields are represented in different ways, such as the N-RoSy representation|[35],
the period jump technique [30] and the complex value representation [27]. Then
by minimizing the discrete analogy to the harmonic energy [25], the cross field
can be smoothed. The work in [42] relates the Ginzberg-Landau theory with

the cross field for genus zero surface case. The theoretical foundation of [42]



is only for the topological disk case, though other proofs in the work apply for
more general surfaces. This type of method is difficult to control the positions
of the singularities and the global structure of the quad layout. Cross fields can
be treated as the horizontal and vertical directions of a meromorphic quartic

differential without magnitudes.

General Parameterization Based Approach . The parameteization method maps
the surface onto a planar domain, constructs a quad-mesh on the parameter do-
main, and then pulls it back to the surface. There are different ways to compute
the parameterization, such as using discrete harmonic forms [40], periodic global
parameterization [1] and branched coverings method [26]. Several algorithms
have been proposed to generate global parameterizations aligned with the cross
field. The work in [34] proposed a global parameterization algorithm for the
purpose of T-Spline construction, which aligns with a prescribed field robustly.
Integrable polyvector fields method is developed in [13], which generates a
global parameterization aligned with the fields by constructing a curl-free vec-
tor field. All these methods rely on solving elliptic partial differential equations

on surfaces.

Seamless Parameterization Based Approach. The concept of seamless parame-
terization was first proposed in [36]. According to Definition 1 in that work,

the transition maps between the local parameterizations have the form
T(u++v—-1v) =e *1§”(u +vV-1v) + (s+V—-1t), keZ.

Equivalently, a seamless parameterization defines a flat metric with cone singu-
larities, the holonomy group consists of rotations of %W, hence the deck transfor-
mations have rotations of gw. In turn, a seamless parameterization is equivalent
to a meromorphic quartic differential, hence its singularities satisfy the Abel-

Jacobi condition.

Later Campen and Zorin developed the concept of seamless similarity parametriza-

tion or seamless similarity map for the purpose of T-Spline construction [7].



Here the deck transformation has the form
T(u+v—1v) = ce _13”(11 +vV-Iv)+ (s+v-1t), keZceRy,

where ¢ represents the key scaling transformation. Therefore, the seamless sim-
ilarity parameterization generalizes the seamless parameterization. There are
distinctions between the two concepts: the seamless similarity parameteriza-
tion only defines a connection satisfying the holonomy condition, but not a
Riemannian metric with cone singularities; in contrast, the seamless parame-
terization defines a metric. Furthermore, the conformal structure given by the
seamless parameterization covers the whole surface (including the singularities),
but that of seamless similiarty parametrization doesn’t cover the singularities.
In our current work, we directly compute the seamless parameterization using

the Abel-Jacobi condition.

Campen and Zorin [9, 8] proposed to obtain a seamless similarity param-
eterization by convex optimization using Newton’s method. By constructing
a motorcycle graph [17], a T-mesh can be obtained and further converted to
a quad-mesh [7]. Note that, because a seamless similarity parameterization
doesn’t give a metric, (but an affine structure for the punctured surface, which
is sufficient for the purpose of constructing T-Splines), their method can not
define the edge lengths of the T-mesh. Then they treat the edge lengths as
unknowns, and add two types of constraints: a. each edge length is a non-
negative integer (or rational); b. each face of the T-mesh is a rectangle, namely
the lengths of opposite sides are equal. The constraints form a linear Diophan-
tine equation system, its solution leads to a quad-mesh. In a recent work [32],
they improved the algorithm by adding more constraints to the edge lengths to
reduce the angle distortions introduced by quantization.

Our current work finds a meromorphic quartic differential, gets a seamless
parameterization, constructs a motorcycle graph [17] and obtains a T-mesh.
Since the seamless parameterization defines a metric, the T-mesh has initial

edge lengths. Then we adjust the edge lengths to satisfy the deck transforma-



tion conditions, (including singularity position constraints, deck transformation
constraints and the face side constraints), and the changes of edge lengths are
treated as unknowns. According to our Theorem 3.23, these constraints are suf-
ficient and necessary conditions for quad-meshing. The constraints in Campen
and Zorin’s work are sufficient conditions, but not necessary. For example, an
edge length connecting a singularity and a T-junction needn’t to be integer for
the purpose of quad-meshing. Therefore, the number of our constraints is less
than that of their method, the linear system is easier to solve. (In fact, the

initial metric is a solution to the same linear system. )

Integer-grid Mapping Based Approach. As a parameterization method, integer-
grid mappings, similar to finite trajectories parameterization, have been widely
applied to the high-quality quad mesh generation [40, 26, 6, 7, 4, 16]. The
additional integer constraints are imposed on the translation part, as opposed

to the seamless parameterization, the transition maps have the form
T(u+vV—1v) =e _1%”(u +vV—-1v)+ (s +V—-1t), k,s,teZ.

The essence is to construct a local injective mapping from the surface to the
planar integer-grid, so that the grid is pulled back to produce a quad mesh.
In addition to computing integer-grid mappings directly [40], most approaches
[7, 6, 4, 26] tend to obtain a seamless parameterization and then adopt some
form of rounding method to adjust it to an integer-grid mapping, called quanti-
zation. Sometimes the degradation of resulting parameterization as well as the
infeasibility of constrained problem are inevitable. In our work, we introduce
the deck transformation condition, which has fewer constraints and the linear
system is easier to solve.

Comparing to the existing approaches, our method has explicit theoretic
analysis for the singularities, the dimension of solution space, the deck trans-
formation conditions for quad-meshing. Therefore the theoretic rigor will help

improve the efficiency and efficacy for quad-mesh generation.



3. Theoretic Background

This section briefly introduces the most related mathematical concepts and
theorems. We refer readers to [14] for the basic concepts and theorems in Rie-
mann surface theory, [39] for those in algebraic topology, and [29] for the detailed
proof of Theorem 3.16 and Theorem 3.17.

8.1. Basic Concepts of Riemann Surface

Definition 3.1 (Riemann Surface). Suppose X is a two dimensional topological
manifold, equipped with an atlas A = {(Uq, @a)}, every local chart has complex
coordinates ¢, : Uy, — C, denoted as z,, and every transition map @ag 1s

biholomorphic,
Pap : PaUaNUp) = 0g(Ua NUp), 24— 2,

then the atlas is called a conformal atlas. A topological surface with a conformal

atlas is called a Riemann surface.

Suppose (X, g) is an oriented surface with a Riemannian metric g. For each
point p € X, we can find a neighborhood U(p), inside U(p) the isothermal
coordinates (u,v) can be constructed, such that g = €**(“*)(du? + dv?). The
atlas formed by all the isothermal coordinates is a conformal atlas, therefore we

obtain the following:
Theorem 3.2. All oriented, metric surfaces are Riemann surfaces.

Definition 3.3 (Meromorphic Function). A complex function on a domain
Q C C to CU {oo} is called meromorphic, if there exists a sequence of points

P1, P2, - with no limit point in 0 such that

1. f:Q\A{p1,p2,...} — C is holomorphic;

2. f has poles at p1,pa, ..., namely lim,_,,. |f(z)| = co.

Definition 3.4 (Meromorphic Function on Riemann Surface). Suppose a Rie-

mann surface (X,{(Ua,a)}) is given. A complex function is defined on the

10



surface f: X — CU{oo}. If on each local chart (Uy, ¢a), the local representa-
tion of the functions fo ;' : C — CU{cc} is meromorphic, then f is called a

meromorphic function defined on X.

A meromorphic function can be treated as a holomorphic map from the

Riemann surface to the unit sphere.

Definition 3.5 (Zeros and Poles). Given a meromorphic function f(z), if its

Laurent series has the form

f(Z) = Z an(z _p)n,
n=~k

if k > 0, then p is called a zero point of order k; if k < 0, then p is called a pole
of order k; if k =0, then p is called a regular point. We denote v,(f) = k.

Definition 3.6 (Meromorphic Differential). Given a Riemann surface (2,{za}),

w is a meromorphic differential of order n, if it has the local representation,

w = fa(za)(dza)",

where fo(za) is a meromorphic function, n is an integer; if fo(zq) is a holo-
morphic function, then w is called a holomorphic differential of order n. If z,
is a pole (or a zero) of fo with order k, then z, is called a pole (or a zero) of

the meromorphic differential w of order k.

A holomorphic differential of order 2 is called a holomorphic quadratic dif-
ferential. A meromorphic differential of order 4 is called a meromorphic quartic

differential.

Definition 3.7 (Divisor). The Abelian group freely generated by points on a
Riemann surface is called the divisor group, every element is called a divisor,

which has the form

D:anp, ny, € Z,
P

where only a finite number of points p’s have non-zero coefficients n,. The

degree of a divisor is defined as deg(D) = 3 np. Suppose D1 = 3 npp,

11



Dy =3, mpp, then D1 & Dy =3 (n, £ my)p; D1 < Da if and only if for all

D, Np < My

Definition 3.8 (Meromorphic Differential Divisor). Suppose w is a meromor-
phic differential on a Riemann surface X, suppose p € X is a point on %, we

define the order of w at p as

vp(w) = vp(fp)s

where f, is the local representation of w in a neighborhood of p, w = f,(2)(dz)™.

The divisor of w is defined as

(@)=Y vp(w)p.

3.2. Abel-Jacobi Theorem

Figure 1: Canonical fundamental group basis.

Suppose {a1,b1,...,a4,by} is a set of canonical basis for the homology group
Hy(X,Z) as shown in Fig. 1. Each a; and b; represent the curves around the
inner and outer circumferences of the ith handle.

Let {w,wa,...,wy} be a normalized basis of Q!(X), the linear space of all
holomorphic 1-forms over C. The choice of basis is dependent on the homology

basis chosen above; the normalization signifies that
/wj:(;ij, i,j:1,2,...,g.
a;

12



For each curve v in the homology group, we can associate a vector A, in CY by

integrating each of the g 1-forms over 7,

T
Ay = </w1,/w2,...,/w9) .
¥ v v

Definition 3.9 (Period Matrix). The matriz (A, B) where
A:()‘a1a)‘a2a"'7Aa9)7 B:()‘blvaza"'7)‘bg>
1s called the period matriz of the Riemann surface.

We define a 2g-real-dimensional lattice A in C9,

) g
A= Zsl )\ai—FZt]’ Abj7 Si,tjGZ
i=1 j=1

Definition 3.10 (Jacob Variety (Jacobian)). The Jacobi variety (Jacobian) of
the Riemann surface X, denoted J(X), is the compact quotient C9/A.

Definition 3.11 (Abel-Jacobi Map). Fiz a base point pg € 3. The Abel-Jacobi
map is a map p: X — J(X). For every point p € ¥, choose a curve 7y from pg

to p; the Abel-Jacobi map i is defined as follows:

u(p) = (/w/w/w) mod A,

where the integrals are all along .

It can be shown that u(p) is well-defined, that the choice of curve v doesn’t
affect the value of u(p).

Theorem 3.12 (Abel-Jacobi). Let D be a divisor of degree 0 on X, then D is
the divisor of a meromorphic function f if and only if u(D) = 0 in the Jacobian
J(X).

8.8. Quad-Meshes and Meromorphic Quartic Forms

We summarize the intrinsic relation between a quad-mesh and a meromor-

phic quartic differential.

13



Definition 3.13 (Quadrilateral Mesh). Suppose X is a topological surface, Q
1s a cell partition of 3, if all cells of Q are topological quadrilaterals, then we

say (X, Q) is a quadrilateral mesh.

On a quad-mesh, the topological valence of a vertex is the number of faces

adjacent to the vertex.

Definition 3.14 (Singularity). Suppose (£, Q) is a quadrilateral mesh. If the
topological valence of an interior vertex is 4, then we call it a regular vertex,
otherwise a singularity; if the topological valence of a boundary vertex is 2, then
we call it a regular boundary vertex, otherwise a boundary singularity. The

index of a singularity is defined as follows:

4 —wval(v;) v €9(E, Q)

Ind(v;) =
) 2 —val(v;) v; € 90(3,Q),

where Ind(v;) and val(v;) are the index and the topological valence of v;.

The following theorems bridge quad-meshes with meromorphic quartic dif-
ferentials, and the singularities with Abel-Jacobi condition. Detailed proof can

be found in [29].

Theorem 3.15 (Quad-Mesh to Meromorphic Quartic Differential [29]). Sup-

pose (2, Q) is a closed quadrilateral mesh, then

1. the quad-mesh Q induces a conformal atlas A, such that (X, A) form a
Riemann surface, denoted as Sq.

2. the quad-mesh Q induces a quartic differential wg on Sg. The valence-k
singular vertices correspond to poles or zeros of order k — 4. Furthermore,

the trajectories of wg are finite.

Theorem 3.16 (Quartic Differential to Quad-Mesh [29]). Suppose (X, A) is a
Riemann surface, w is a meromorphic quartic differential with finite trajectories,
then w induces a quadrilateral mesh Q, such that the poles or zeros with order

k of w corresponds to the singular vertices of Q with valence k + 4.

14



Figure 2: Left: the kitten surface ¥ with a loop «; Middle: the universal covering space
3 and one fundamental domain ¥, the red rectangle; Right: v C X is lifted to a path
¥ C 5. The translations of the plane which maps a fundamental domain to another is a Deck

transformation.

Theorem 3.17 (Quad-mesh singularity Abel-Jacobi condition). Suppose Q is a
closed quadrilateral mesh, Sq is the induced Riemann surface, wq is the induced
meromorphic quartic form. Assume wq is an arbitrary holomorphic 1-form on
Sq, then

#((we) —4wo)) =0 mod A (4)

in the Jacobian J(Sq).

8.4. Deck Transformation Condition

Definition 3.18 (Covering Space). Let X be a topological space. A covering
space of X is a topological space X together with a continuous surjective map
T X > X, such that for every p € X, there exists an open neighborhood U
of p, such that m=*(U) is a union of disjoint open sets in X, each of which is

mapped homeomorphically onto U by .

Definition 3.19 (Universal Covering Space). Suppose X is a topological space,
(X', ) is called the universal covering space of X if it is a covering space of X,

and it is simply connected, namely, its fundamental group m (X) = (e).

Definition 3.20 (Deck Transformation). Suppose X is a topological space,

(X,ﬂ') is a covering space of X, an automorphism 7 : X — X is called a

15



deck transformation, if m o T = w. All the deck transformations form a group,

which is called the deck transformation group of X and denoted as Deck;(f().

Definition 3.21 (Fundamental Domain). Suppose ¥ is a surface, S is the
universal covering space of X.. Let p € Y be a point, the images of p under the
Deck transformation group action is call an orbit. A fundamental domain of ¥
18 a simply connected subset of Y which contains exactly one point from each of

these orbits.

Fig. 2 illustrates these concepts, universal covering space, fundamental do-
main and the Deck transformation for a genus one closed surface. The left
frame shows the surface , the middle frame the universal covering space X,
which is the plane. The red rectangle is one fundamental domain, the whole
plane is tessellated to infinite many fundamental domains. Each planar transla-
tion, mapping one fundamental domain to the other is a Deck transformation.
A closed loop v on the surface is lifted to a path on the universal covering
space, connecting two fundamental domains and associated with a unique deck
transformation.

Given a surface X with a quad-mesh @, the singularity set of @ is S, S =
{vo,v1,v2,...,v,}. The punctured surface X\ S is obtained by removing S from
Y. Suppose we choose a fundamental domain ¥ of ¥, such that the boundary
0% doesn’t go through any singularity point. Then we choose a base point py,

and consider the generators of the fundamental group 71 (2 \ S, po),

771(2\57290) = <a17b17a27b27"' 7agubgv’yla727"' 7’7n>a (5)

where a;, b; are the tunnel and handle loops corresponding to the i-th handle, the
loop ~y; starts from pg to v;, goes around v; and returns to pg. Furthermore, we
require all the generators 7;’s are contained in the fundamental domain Y. We
isometrically immerse ¥ on the plane using gg, such that vy is at the origin, the
face edges are along horizontal and vertical directions, the mapping is denoted
as ¢ : ¥ — C. All the singularities are on the integer grid, the coordinates of v;
are (m;,n;).

o(v;) = (mi,m;), mi,n; € Z, Yv; €. (6)

16



The Deck transformation group of the universal covering space Deck(X) is iso-
morphic to the fundamental group of the base space 7 (X \ S,vg). Suppose
v; € S with valence val(v;), corresponds to the loop 7; in (X \ S,v), and 7;
in the Deck transformation group of 3. Since S satisfies the Abel condition, we

have

7:(2) = VT, + (u; + V—=1v;),k; € Z, (7)

where the valence and the rotation angle satisfy:
k; +val(v;)) =0 mod 4, Vv, €S (8)

and the translation part satisfies

(0,0) ki =0 mod4
m; —ng;,m; +n;) ki=1 mod4
(ui,v;) = (s ) (9)
2(mg, ;) k; =2 mod4
(m; +niyn; —m;) ki = mod 4.

Note that, for singularities whose valence are not 4k, (u;,v;) and (m;,n;) can
mutually determine each other; for singularities with valence 4k, no matter what

(mj, n;) are, the (u;,v;) are always (0,0).

Theorem 3.22 (From Quad-mesh to Deck Transformation). Suppose ¥ is a
closed surface with a quad-mesh Q. The singularity set of Q is S. The quad-
mesh induces a flat Riemannian metric gg with cone singularities at S. The
universal covering space of the punctured surface ¥\ S is S with the pull back

metric m*gg. Then each deck transformation 7 € Deck:(f)) has the form:
m(z) =eV 15 4 (u+ V=1v), k,u,veZ

Furthermore, if the fundamental group generators are chosen as Eqn. (5), then
for each singularity v; € S, the parametric coordinates induced by the isomet-
ric immersion are integers Eqn. (6), the corresponding deck transformation is
Eqn. (7), the valence and the rotation angle satisfy Eqn. (8), and the translation
is given by Eqn. (9).

17



Proof. Suppose Q is a quad-mesh of X, then if each face is treated as a unit
square, we obtain the flat metric gg.

The universal covering space Y with the pull back metric 7* g can be isomet-
rically immersed in the plane, where the pre-images of the singularities are the
branched points.

We fix a face fy € Q, and define a face loop,

= f07f17f27"' afn—lvfna

where each pair of adjecent faces f;, fi+1 share a common edge, and f,, = fo.
Then we can lift  to a face path 4 C X, 7(5) = 4. We define an orthonormal
frame on fy, whose origin is at the center of the face, axes are parallel to the
edges of fp, and transport the frame along 7 in parallel, when it reaches f,
(coinciding with fy), the frame has a rotation angle e’3* k € Z. This gives
the holonomy condition Eqn. 2. Furthermore, the transportation is lifted to a
translation along 4 in the universal covering space. Since at every step, the
translation from f; to fi+1 is either horizontal or vertical unit translation, the
total translation u + iv is integral.

Furthermore, suppose we choose a fundamental domain ¥ of ¥\ S, such that
the boundary 0% doesn’t go through any singularity point. We isometrically
immerse ¥ using gg. By a translation and rotation, we assume vy = (0,0) and
the quad-edges are horizontal or vertical, the position of each singularity v; is
(mi,n;), mi,n; € Z, namely Eqn. (6) holds. Suppose the deck transformation
corresponding to v; is 7;, then by direct computation, we can obtain the relation
between the valence of v; and the rotation angle of 7; as Eqn. (8), and the
translation of 7; as Eqn. (9). Since all (m;,n;)’s are integers, the corresponding
(u;,v;)’s are also integers.

Consider each handle, we choose a face path homotopic to a;, and flatten the face
path using gg, then we get the deck transformation, the translation component
must be integer. This holds for deck transformation corresponding to b; as well.
Since all the generators of the deck transformation group satisfy Eqn. 7, all the

deck transformations have integer translation components. O
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The inverse is also true.

Theorem 3.23 (From Deck Transformation to Quad-Mesh). Suppose ¥ is a
closed surface, a flat metric g with cone singularities S is defined on 3. The
universal covering space of the punctured surface ¥\ S is S with the pull back

metric *g. Suppose each T € Deck(X) has the form:
m(z) = eV 130 4 (u+ V=1v), k,u,veZ.

Furthermore, suppose a fundamental domain X of ¥\ S is chosen, 0% doesn’t go
through any singularity, vg € S is selected, a set of generators of the fundamen-
tal group m (X\ S,v0) are chosen as Eqn. (5). If for each singularity v; € S, the
parametric positions are integers as Eqn. (6), the corresponding deck transfor-
mation T; has the form as Eqn. (7), the valence and the rotation angle have the
relation Eqn. (8), the translation is given by Eqn. (9), then there is a quad-mesh
Q defined on ¥ with the singularity set S, which induces the metric go = g.

Proof. The universal covering space (f], 7*g) can be isometrically immersed on
the plane. We consider the image of one fundamental domain ¥, by a trans-
lation, Eqn. (6) ensures the parametric positions of all singularities are on the

integer lattice,
A= {(m,n)|m,n e Z}.

Since each deck transformations 7 € Deck(X) has the form Eqn. 7, the para-
metric positions of all the pre-images of singularities 7=*(S) are on the lattice
A. Furthermore, all the deck transformations are isometric, and preserve the
integer lattice. Therefore, the projection of the lattice w(A) defines a quad-mesh

Q of the original surface X. O

Again, note that the position of singularities Eqn. (6) and the integer trans-
lation of deck transformations Eqn. 9 are not fully independent, except those

for 4k-valence singularities.
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8.5. Quad-Meshing

This subsection explains how to deform a T-mesh parameterization into a
quadrilateral mesh parameterization. We adjust the edge lengths of the T-mesh
to satisfy a set of constraints. According to Theorem 3.23, these constraints
are sufficient to guarantee a quadrilateral mesh. This reduces to solve a square
linear system. Teichmiiller theory is required to furter determine the rank of
the linear system.

Suppose ¥ is a closed surface with genus g, D is a divisor satisfying the Abel-
Jacobi condition, w is the meromorphic quartic differential, 7 is the motorcycle

graph, (or equivalently the T-Mesh), induced by w.

Lemma 3.24. Suppose ¥ is a genus g closed oriented surface, S is the sin-
gularity set, for each v; € S, its valence is k;. Suppose the motorcycle graph

T =(V,E,F), where V,E, F are vertex, edge and face set respectively, then

1. The total valence of singularities
S k=415 -8+ 8, (10)
v, ES

2. The number of edges
E[=2) ki, (11)

v, €S

3. the number of vertices
VI=1S1+ D ki (12)
v, €S
4. the number of faces
IFl=(2-29)+ > (ki —1). (13)
v, €S

Proof. 1.For Equn (10), for each singularity v; € S, the curvature is (4 — k;) 7,

according to Gauss-Bonnet,

> (- kg =2m(2 - 2),

v, €S
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hence

> ki =4|S| -8+ 8g.
v, €S
2.For Eqn. (11), every trajectory T; emitted from v; will terminate when it in-

tersects another trajectory T; emitted from v; orthogonally. The termination
point divides a segment in 7j into two sub-segments. Therefore, initially there
are Zvi cg ki trajectories, and they will produce the same number of termina-
tion points. Hence the total number of edges equals to 2 Zvie ki

3.For Eqn. (12), there are two types of vertices, the singularities and the termi-

nation points. The former has |S| vertices, the later has > k; vertices.

v, €S

4.For Eqn. (13), according to the Euler formula
VI +[F| - |E] =2—2g,

hence

[F|=|E|—|V|+2-29=> ki —|S|+(2-29).
v; €S
O

For each edge e € F, its length under the flat metric is denoted as d.. We
can change the length by amount x.. Therefore, all the unknowns are in the set
{z.:e € E}.

Singularity Position Constraint Suppose the singularities are {vg,v1, ..., Vs }.
We compute a fundamental domain ¥, the boundary % doesn’t go through any
singularity, and construct paths I'; C 2,7 =1,2,...,n, each I; is contained in 3
and connects vy with v;. By isometrically embedding the faces along I';, we can
obtain the parametric position of v;, denoted as ¢(v;). We require o(v;) € Q2.
Each path consists of edges of T, ¢(v;) can be represented by the edge lengths
d. and z. as follows: suppose I'; consists of edges, horizontal edges with posi-
tive (negative) orientations are H;™ (H, ), vertical edges with positive (negative)

orientations are Vf (V;7), then the parametric position of v; is given by

o(vi) = Z (de + xe) — Z (de + ze), Z (de + o) — Z (de + ) | € Q2

e€H; ecH, ecV;" eeV,”
(14)
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Hence there are |S| — 1 constraints for z,’s.

Deck Transformation Constraint The Deck transformation group has 2¢g +
|S|—1 generators, corresponding to the fundamental group generators in Eqn. (5),
each generator corresponds to a constraint. The singularity position constraints
Eqn.( 14) imply the deck transformation constraints of 4;’s in the generators of
m1(X\ S,v9). (For valence 4k singularities, with k a positive integer, the deck
transformation conditions are automatically satisfied, independent of the edge
lengths.)

Suppose the canonical handle and tunnel loops of ¥ are {ay, b1, a2, b2, , a4, b4},
each of them is a loop with starting point vyg. We can find a homotopically equiv-
alent curve comprised of edges in F, then flatten the faces along the loop one
by one. When we return to the starting point, we can flatten the initial face
again. The rigid transformation between two embedding of the initial face gives
us the deck transformation. Suppose the deck transformation 7; corresponds

ki we add the constraints to the

to a;. The rotation part of 7; is already e’z
translation part, such that both x and y components are rational numbers. 7;
can be represented by the edge lengths d. and z. as follows: suppose a; con-
sists of edges, horizontal edges with positive (negative) orientations are Hf
(H;), vertical edges with positive (negative) orientations are V;* (V,7), then

K3

the translation component of 7; is given by

Z (de‘i‘we) - Z (de +me)7 Z (de+xe) - Z (de"‘xe) € QQ-

ecH; e€H; eeV;t e€V;~
(15)

Hence there are 2g constraints for x.’s.

Face Constraints Each face has two constraints, the total length of one side
is equal to that of the opposite side. The constraint can be represented by
the edge lengths d. and z. as follows, suppose f; has four sides sg, s1, S2, S3
counter-clockwisely, then

(Z(de te) = > (de+xe), > (de+2e) = Y (de + xe)> = (0,0). (16)

e€so ecsy e€sy e€ss

Note that, the equation for the last face linearly depends on those of other faces.
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Hence there are 2(|F|—1) = 2(>_ k; —|S|+1—2g) face constraints for z,’s.

v; €S
Furthermore, the face constraints in Eqn. (16) may not be linearly independent.
For example, the face constraints for an cube with 8 corner as singularities are
linearly dependent.

Linear System Here we discuss the linear system of the constraints of the

singularity position, the deck transformation and the face sides. We show that

the linear system is a square matrix.

Lemma 3.25. Given a closed surface & of genus g with singularity set S, and
a T-mesh T, the linear system Eqn. (14), Eqn. (15) and Eqgn. (16) forms a

|E| x |E| square matriz.

Proof. The number of singularity position constraints Eqn. (14) is 2(]S| — 1),
the number of deck transformation constraints corresponding to the handle and
tunnel loops is 4¢, the number of face constraints is 2(|F| — 1). So the total

number of constraints is

28| = 1) +4g+2(|F) - 1) =2(]S| — 1) + 49 — 2 + 2| F|.
By Eqn. (13), |F| = (2 —2g) + >_, cs ki — |S], the above equals to

2/S| —4+4g+2[F|=2|S| —4+4g+ (4—49) +2 > ki —2[S| =2 ki
v, ES v, ES

By Eqn. (11), |[E| =2}_, g ki, hence the total number of constraints equals to
|E|. On the other hand, we know the number of unknowns equals to |E|. Hence

the linear system is a square matrix. O

This shows the number of unknowns {z.} is more than the number of con-
straints. Note that, the initial edge lengths of the T-mesh are a solution to
linear system with different constraints on the right hand side. The number of
constraints is less than that of the method in [7].

The initial metric is a solution to the linear system, therefore this step de-
forms the conformal structure of the original surface (and the T-mesh) such

that the meromorphic quartic differential (equivalently the divisor) satisfies all
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the constraints. The thorough analysis involves Teichmiiller theory, and will be
investigated in our future work.

The proposed algorithm solves the linear system Eqn. (14), Eqn. (15) and
Eqn. (16). The unknowns z.’s are real numbers, and won’t be quantized. The
only quantization is for the right hand sides of equations. The initial deck
transformations induced by the meromorphic quartic differential give the initial

m;

values for the right hand sides, then we quantize them to 7. The solutions

will be multiplied by the least common multiple. n;’s are chosen to balance the
distortion and the number of quad-faces.

The Algorithm 1 doesn’t require mesh subdivision. After Algorithm 1 is
completed, the Ricci flow step requires the modification of the triangulation at
the new extraordinary points. If a new extraordinary point is in the interior
of a triangle face, we subdivide the face into 3 smaller triangles. Because the
dynamic Ricci flow alogirthm can handle triangle meshes with bad qualities,
this simple subdivision is good enough for the purpose.

Surfaces with Boundaries All the theorems, lemmas discussed in this section
focus on closed oriented surfaces, they can be directly generalized to compact
oriented surface with boundaries using the ”doubling” operator as follows: sup-
pose X is a compact oriented surface with boundaries, we make a copy of %,
denoted as ¥’ then we reverse the orientation of ', isometrically glue 3 and
¥ along their corresponding boundaries. The obtained surface is denoted as X,
which is a closed oriented surface with a special symmetry. All the theoretic
results hold on ¥ and can be translated to ¥. In general, the boundaries are
along the edges of the quad-mesh.

For non-oriented surface X, we can cover it into an oriented surface by “double
covering”: suppose X is triangulated, for each face f € X, we construct two faces
f* and f~ with opposite orientations (i.e. different ordering of vertices), then
we glue the oriented faces fljE and fzjE along a common edge, if the non-oriented
faces f; and fy are adjacent in X, and the common edges are with opposite
orientations in fli and f2i respectively. The obtained double covering mesh is

oriented.
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4. T-Mesh and Quad-Mesh Generation Algorithms

The algorithmic pipeline can be divided into two stages, the first stage com-

putes a meromorphic differential w, its critical graph induces a T-mesh (motor-

cycle graph); the second stage further deforms the T-mesh to a quad-mesh.

4.1. T-Mesh Generation

This subsection explains the algorithm for T-mesh generation in detail. The

input surface is represented as a triangle mesh X; the output is a meromorphic

quartic differential w, and the flat metric with cone singularities at the poles

and zeros induced by w. The pipeline of the algorithm is as follows:

1.
2.

Compute the homology group generators of 3, {a1, - ,ag; b1, -+, bg};
Compute the dual holomorphic 1-form basis {1, - , ¢4 }; Construct a holo-
morphic differential ¢ on the Riemann surface ¥ through a linear combina-
tion of basis {¢y}{_;, locate the zeros of ¢;

Compute the period matrix (A, B) of surface and construct the lattice A,
Jacobi variety J(2);

Define the initial divisor D as the extremal points of the Gaussian curvature
function, extremes with positive curvature are poles, extremes with negative
curvature are zeros;

Compute the Abel-Jacobi map of the initial divisor D in the Jacobi variety
J(X);

Optimize the divisor D to satisfy the Abel-Jacobi condition;

Compute the flat metric with cone singularities at the divisor D by surface
Ricci Flow;

Compute a cut-graph not going through any singularity, connect each singu-
larity to the cut graph by the shortest path, slice the surface along the cut
graph and the shortest paths to obtain a fundamental domain .
Isometrically immerse ¥ into the complex plane. The immersion pulls (dz)*

back to the surface and produces a meromorphic quartic differential w.
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10. Trace the critical horizontal and vertical trajectories of w, namely isopara-
metric curves through singularities, to generate a motorcycle-graph, which

gives the T-mesh.

In the following, we explain every single step in details. Each subsection

corresponds to one step.

4.1.1. Homology group basis

In practice, we compute a special canonical homology group basis, the tunnel
loops {a;} and handle loops {b;}, such that each a; and b; intersect each other
at one point. The homology group basis will determine the holomorphic 1-form
basis, the cut graph. For the simplicity of presentation and the ease for debug-
ging, we compute a canonical homology group basis. Our algorithm is mainly
based on the work of Dey et al.[12], which avoids tetrahedral tessellation and
modification of the original triangle mesh. The algorithm utilizes the concept
of a Reeb graph and the linking number to produce different sets of homology
basis.

As shown in Fig. 3 left frame, the algorithm may generate a homology basis

which doesn’t satisfy the intersection condition,
ai-bjzéij, alwaj:O, bi-bj:O, i,jzl,...,g, (17)

where « - B represents the algebraic intersection number between « and 3, g
is the genus of the mesh. We compute the algebraic intersection between the
tunnel loops and handle loops; if the intersection condition 17 is violated, we
randomly reset the height function used for constructing a Reeb graph, and
obtain a new set of handle loops and tunnel loops. After several iterations, we

can get a canonical homology group basis, as shown in Fig. 3 right frame.

4.1.2. Holomorphic 1-form Basis
The algorithm of computing holomorphic 1-form is based of the work of Gu et
al. [18], which is based on Hodge theory. For a genus g closed Riemann surface,

the space of holomorphic one-forms has g complex dimensions, or equivalently
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Figure 3: Sculpt model. Left: the handle loop b; intersects both tunnel loops a; and aas,
where we call the handle loop b; illegal. Right: each handle loop b; only intersects its

conjugate a; once.

Figure 4: A holomorphic 1-form basis on a genus two surface, the Sculpt model.

2g real dimensions.

Step 1. For each loop 7, we slice the mesh ¥ along v to get an open mesh Xf,y
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with boundaries X, = 4" —~~, then we construct a function

1 v; €T
gy (v5) = 0 v; €Y

random otherwise.
Then the discrete 1-form A, = dg, is a closed 1-form. In this way, we construct
a cohomology group basis Ag,, Aoy, 5 Ag,, Ab, -
Step 2. For each closed 1-form A, we construct a function f : ¥ — R, such
that A\ + df is harmonic, namely the function f satisfies the Poisson equation
Af = =)\ In this way, we diffuse the cohomology basis to a harmonic 1-form
group basis, denoted as wq,,Ws,, "+ ,Wa, > Wh,-
Step 3. Each harmonic 1-form w is equivalent to a curl-free vector field on
¥, we rotate the vector field by 7 about the normal to the surface to obtain
a divergence free vector field, which is equivalent to another harmonic 1-form
*w. The pair w + +/—1*w is a holomorhic 1-form. In this way, we construct a

holomorphic 1-form basis {¢a,, @b, ,- - Pa,, b, }, Where
Oy =wy +V—1"wy,y € {ar,...,a4,b1,...,b4}.

According to the Riemann-Roch theory, the above set of holomorphic 1-forms

span the linear space of all holomorphic 1-forms Q!(X), namely for any ¢ €

Q(x),
(%) , ,
o= arpa, +_ B, (18)
k=1 =1

where the oy, f; are real linear combination coefficients.

In practice, in order to compute the zeros of ¢ more accurately, we choose
the linear combination coefficients, such that the conformal factor function of
© is as uniform as possible. (By integrating ¢, we can obtain a conformal
parameterization of the surface. The ratio between the surface area element and
the parametric area element is defined as the conformal factor, which measures
the area distortion cased by the parameterization.) In our implementation, we
assign all a;’s and 5;’s to be 1. Heuristically, the resulting holomorphic 1-form

meets our accuracy requirement.
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4.1.3. Period matrixz and Lattice
We can further construct a set of holomorphic 1-form basis {¢1, p2,..., g},

such that
/@j:@j,i,jzl,Q,...,g. (19)

7

This can be accomplished as follows: we represent each ¢; as a linear combina-
tion of the basis {¢a,,¥s } as in Eqn. (18), then build a linear system by the
constraints in Eqn. (19) and solve the linear combination coefficients {ay, 8;}.

Then for each v in the homology basis, we construct a g dimensional vector

Ay € C9,
Ay = </</J1,/s@2,---,/<pg>-
Y Y Y

The period matrix (A4, B) can be constructed as

Joor Joon o o, e fyor Jyer oy, e
A = ‘/‘al.g{)2 faQ' @2 ’ fag. @2 B _ fb1'<‘02 be.SOQ ’ fb9.<p2 (20)
fal Pg fa2 Pg fag Pg fbl Pg be Pg fbg Pg

by our construction, A is the g x g identity matrix, the imaginary part of B is

positive definite [19]. Then we construct a lattice A in C9,

g
A= {Z(Sk/\ak +tk)\bk>7 Sky ke GZ}.

k=1
4.1.4. Abel-Jacobi Map
Given a canonical homology group basis, we slice the surface along the basis
to obtain a topological disk ¥. Fix a base point in the interior of 3, py € X, for

any point p € M, we can choose arbitrarily a path v C ¥ connecting p and py,
the Abel-Jacobi map p: M — J(M), J(M) = C9/A, is defined as

u(p) = @(p) mod A,

®(p) = <Lw1,sz7~-- ,A@g)T- (21)

where



Similarly, given a divisor D = Y _[" | n;p;, choose paths v; C ¥ from pg to p;,

M(D):iniﬂ(pi):ini (/i%,/iwz,-“ ,/%gog)T mod A.

i=1

Abel-Jacobi condition claims that if D is a principle divisor, then p(D) is 0,

namely

(I)(D) —A|l | -B|:| =1, Siytj € Z. (22)

By expansion, we obtain the equation

2 nif@l Zizl(Skf P1 +tkf 1) 0
Vi ak by,
n

' ) g t f
D im1 i \/;l ¥2 > =1 (sk Lk P2 + 1 . ©2) _ 0 7 (23)

>ict ”if‘@g EZ:I(Skf Spg“‘tkf ©g) 0
L Vi L ag b .

where sg, t; are integers. The base point pg can be arbitrarily chosen, and

the same condition holds. This condition is stronger than the Gauss-Bonnet

theorem.

4.1.5. Abel-Jacobi Condition Optimization

Initially, the singularities are located at the extremal points of Gaussian
curvature. For extremal points with positive curvatures, we set the valence to
be 3, those with negative curvature to be 5. Suppose the initial divisor Dg
doesn’t satisfy the Gauss-Bonnet condition, namely deg(Dg) # 8g — 8, we can
add extra poles or zeros to obtain D = >""" | n;p;, such that deg(D) = 8g — 8.
We also choose a holomorphic 1-form ¢.

Our goal is to adjust the divisor D such that pu(D — 4(p)) is zero, where p
is the Abel-Jacobi map. We define the energy to be the squared norm, namely
(D — 4(9))||?. By definition, u(D — 4(y)) equals to ®(D — 4(¢)) modulus
the lattice A. Each grid-point of the lattice A is labeled by ¢ pairs of integers

{(sk,tr),k =1,...,g}. Hence our optimization includes two steps: the first step
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is to determine the cell inside the lattice containing ®(D — 4(p)). We can find
the grid point {(sg,tx),k =1,..., g} closest to (D —4(yp)), then a cell adjacent
to the closest grid-point contains ®(D — 4(p)). By definition, it is obvious that
such kind of cell exists, but may not be unique. The second step is to further
optimize the squared norm of p(D — 4(y)) within the fixed cell with respect to
the positions of all singularities, counting their multiplicities. The singularities
can be merged or split. Since there are meromorphic quartic differentials, the
solution for the second step also exists. During the optimization, ®(D — 4(p))
may transit to adjacent cells. The algorithm dynamically trace the current cell
containing it. In Algorithm 1, the current cell is dynamically determined at
the step 23.

First, we determine the integer coefficients s, and tx, k = 1,2,...,¢g in the
Abel-Jacobi condition (23) by minimizing the squared norm
2

min
Sk tkEZL

(24)

(D) = > skda, — > trdn, — P(4())
k=1 k=1

This can be accomplished by standard integer programming method [2]. When
the norms of (sg,tr)’s go to infinity, the energy goes to infinity. Hence we can
search the solution in a compact set Q C R?9, where the number of integer grid
points {(sk,tx)}7_, is finite, hence the minimizer {(sk,tx)}]_, always exists.
In practice, we can simply use enumeration of integer grid points within the
compact set € to find the optimum.

Second, once the integer coefficients {(sg,tx)}7_, are determined, we mini-
mize the squared norm of (D) with respect to the positions of the poles and
the zeros,

2

min
P1=--<10n62

®(D) — Z SkAay, — Ztk)\bk — (4(p))
k=1 k=1

The positions of the singularities are the variables, they may be the vertices of
the mesh or the interior points of triangle faces. If a singularity p is with multi-
plicity n,, then these n, points are treated as n, different variables and moved

independently. Therefore the singularities can be split during the optimization.
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They can also be merged together, even cancel out each other. Since there are
meromorphic quartic differentials, the solution always exists, but may be de-
generated. For example, consider a closed torus with one valence 3 singularity
at ¢ and one valence 5 singularity at p. Then the initial divisor is Dy = p — q,

the optimization process will merge p and ¢ then return the final divisor D = 0.

Let d € CY be the constant complex vector

g g
0= shar =3 tidey — D)),
k=1 k=1

then the above energy becomes

2

E(p17"'7p’ﬂ) ::Z

j=1

n Di
n; / P —d;
= Po

For each point p;, we choose a local neighborhood A; of p;, with local parameter

i=1

z;, then the holomorphic 1-form ¢; has the local representation,
p; = hj(z)dz,

where h;(zz) is a holomorphic function defined on A;. By direct computation,

we obtain the gradient of the energy,

oF g . n Pi _ B N n i
on, = Z nih(p;) E m/ @j —dj | +nihi(p:) § m/ oi—d; ||,
! i=1 Po i=1 Po

j=1
(25)

we can use gradient descent method to minimize the energy |u(D)||?. In prac-
tice, we choose the triangle face containing p; as A;. We isometrically embed
A; onto the plane, and the planar coordinates give local parameter z;. ¢; can
be represented as a complex linear function on A;, which is h; (z;). We update
the position of p; along the negative direction of the gradient, until we reach
the boundary of the current face A;. Then we travel to the adjacent face A
along the negative gradient direction, then compute the local parameter z, and
the local representation of ¢;. By repeating this procedure, we can minimize

the squared norm of p(D). The algorithm is presented briefly in Alg. 1.
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Figure 5: The singularities of the Buddha surface. The valences of the singularities are 3

(red), 5(blue) and 6 (green) respectively.

Fig. 5, Fig. 6 and Fig. 7 show an example computed using Alg. 1. The
input Buddha surface is of genus 3 with complicated geometry, the number of
vertices, edges and faces are 59.4k, 178.1k and 118.7k respectively. The initial
singularities are selected at the extreme points of the Gaussian curvature, then
the algorithm modifies the initial divisor to satisfy the Gauss-Bonnet condition.
Then, we compute the Abel-Jacobi map of the divisor, ®(D). By minimizing
the energy in Eqn. (24), we obtain the lattice point (sg,tx) for k = 1,2,3, and
get u(D) by quotient the lattice. Then for each singularity p; € D, we find the
triangle A; containing p;, for each base holomorphic 1-form ¢;, we get the local
linear representation h; We compute the gradient of the square norm with
respect to p; using Eqn. (25), and move p; inside A; along the negative gradient
direction. If p; exceeds A; and transits to a neighboring face, we update the local
representation of ¢;, namely h; and repeat. In this way, the energy is minimized
using the gradient descent method and eventually the norm of u(D) is less than
a threshold, the divisor is close to a canonical divisor and satisfies the Abel-
Jacobi condition. There are 34 valence 3 singularities, 36 valence 5 singularities

and 7 valence 6 singularities on the Buddha surface as shown in Fig . 5. The
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divisor D uniquely determines a meromorphic quartic differential w, the critical
trajectories of w induce the motorcycle graph as shown in Fig. 6, and the flat
metric of w induces an immersion of the surface as shown in Fig. 7, namely a
seamless parameterization. We then visualize the seamless parameterization by
checkerboard texture mapping. By examining these figures, we can see the right
corner angles of checkers are well preserved, hence the parameterization has high
conformality. By examining Fig. 7, we can see all the faces of the motorcycle
graph are mapped to planar rectangles, this shows the holonomy conditions are
satisfied. The threshold for this experiment is 3.0e — 4, the iterations in the
optimization are 670539 and the running time is 2.021 seconds. This shows the

efficiency of this algorithm.

4.1.6. Discrete Surface Ricci Flow
Suppose we have obtained the divisor D = Z?:l n;p;, if there is a non-
vertex point p; € D, then we add p; as a vertex and modify the mesh structure

accordingly. After that we set the target curvature for all vertices,

K(’Ul‘) _ (4 - nl)g
0 V; gD

v; €D

(Here we assume the surface is closed. For surfaces with boundaries, we use
double covering technique to convert them to be closed ones.) For each vertex
v; € M, we set the initial conformal factor as u; = 0. Then the edge length is

given by vertex scaling, for edge e;; = [v;, v;], its length is given by
lij = € Bize™,

where (;; is the initial edge length, usually induced by the Euclidean metric of
R3. The corner angles are calculated using Euclidean cosine law,
5+ =13

0"/ -1
2lixljr

i = cos

the discrete Gaussian curvature is given by
2r =32, 00 v g oM

K(vi) = :
T— ijGf-k v; € OM.
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The discrete Ricci energy is defined as

(u17...,u”) n _
i=1

The gradient of the energy is given by
VE = (K, - K,Ky — Ky,--- , K, — K,,)T.
The Hessian matrix is given by the cotangent edge weight [20]

O’F (cot 9,? + cot 9?)/2 eij ¢ OM

Ouidu; | cot 9?/2 eij € OM.

and
P’E Z 0’FE
ou?  ~ Ou;0u;’
inj
We can use Newton’s method to optimize the Ricci energy, during the optimiza-
tion, we update the triangulation to be Delaunay all the time. The work [20]

proves the convergence and the finiteness of the edge flips. We can compute

holonomy using the resulting Riemannian metric.

4.1.7. Isometric Immersion and Meromorphic Quartic Differential

We have obtained a canonical homology group basis {a1,...,a4,b1,...,b4}.
The union of the basis forms a cut graph I' of the mesh. For each pole or zero
p; in D, we find a shortest path v; connecting p; to the cut graph under the
original metric, furthermore, all such shortest paths ~;’s are disjoint. Then we
slice 3 along the cut graph and the shortest paths, T’ U{Uf:1 vi}, to obtain a
fundamental domain 3.

Then we flatten X face by face using the metric obtained by the discrete
surface Ricci flow. This produces an immersion ¢ : ¥ — C. On the complex
plane, there is a canonical differential dz*, the pull back differential p*dz* is a
meromorphic quartic differential w well defined on 3. We can use ¢ as a pa-
rameterization, and use checker board texture mapping to visualize the quartic

differential w.
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Figure 6: In the left two frames, the red curves form the motorcycle graph, the blue curves

are the original cut graph. The right two frames show the T-Mesh of the Buddha surface.

4.1.8. T-Mesh Generation

We trace the critical trajectories of the meromorphic quartic differential
p*dz*. Suppose the valence of v; is k;, then k; trajectories are traced. Each
trajectory is denoted as v (sk), where s is the arc length parameter of ~, its
image ¢(7) is the horizontal and vertical lines through the singularity ¢(v;) on
the parameter plane. If 7;(s;) intersects 7;(s;) at some point ¢, and s; < s; at
q, then ; stops at g, y; continues. This procedure will generate the motorcycle
graph [17] on the surface, as shown in the left two frames in Fig. 6.

The surface is partitioned into rectangular patches as shown in the right two
frames of Fig. 6. Each surface patch is parameterized to a planar rectangle, as
shown in Fig. 7. The corresponding surface patch and the planar rectangle are
rendered using the same color. The motorcycle graph gives the T-mesh of the

original surface X.

4.2. Quad-Mesh Generation

Suppose we have obtained the T-mesh T = (V, E, F) from the first stage in
the algorithm pipeline, where each face f € F' is a planar rectangle. We denote
the length of the edge e € F as d., and the change of the length as z..

In the step of isometric immersion and meromorphic quartic differential
4.1.7, the cut graph I' is found, the fundamental domain Y is obtained, and

the shortest paths 7;’s connecting py and p; are computed. We homotopically
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a) zoomed in b) planar images
(a) p g

Figure 7: Each surface patch is parameterized to a planar rectangle.

deform the arcs of the cut graph I' and the shortest paths +;’s to be aligned
with the edges in T, and cut the T-mesh T to get a fundamental domain 7. We
flatten face by face to isometrically immerse T on the plane. Then we obtain the
parametric positions of the singularities ¢(p;) = (u;,v;), ¢ = 1,2,...,n. Each
position ¢(p;) is represented by the lengths of the edges in T. Then we quantize
(ui,v;) to be rational numbers (m;,n;) and construct the linear equations for

singularity position constraints Eqn. (14).

In the step of homology group basis, the handle and tunnel loops have been
computed {a1,b1,a2,b2,- - ,a4,bs}. For each a;, we find a face path in T con-
taining a;, and flatten the path face by face, until we return to the first face
again. The rigid motion between the two images of starting face is the deck
transformation 7; corresponding to a;. By our construction, 7; can be repre-
sented by the edge lengths of the faces in the face path. Suppose the trans-
lation component of 7; is (u;,v;), we quantize (u;,v;) to rational coordinates
(m;,m;). Hence, we obtain a linear equation for the deck transformation con-

straints Eqn. (15).
Finally, for each face f; € F (except the last face), we construct an equation

requiring the opposite sides have the same length, namely the face constraint

as Eqn. (16).
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The linear system of Eqn. (14), Eqn. (15) and Eqn. (16) is solved using con-
ventional least square method to obtain {z.}, then each edge length is deformed
to de + x.. The flat metric of the updated T-mesh satisfies the conditions de-
scribed in Theorem 3.23. We then find the least common multiple A of all the
constants on the right hand side of the linear system, and scale the T-mesh by
the factor . Again we flatten the fundamental domain 7' on the plane using
the updated metric, such that ¢(po) is the origin, the images of the face edges
are horizontal or vertical on the plane. Then we tessellate T' by the inter grid
on the plane, this induces the quad-mesh of the original surface. The pipeline

of the quad-mesh generation algorithm is summarized in Alg. 2.

5. Experimental Results

In this section, we report our experimental results. All the experiments were
conducted on a PC with 1.60GHz Intel(R) core(TM) i5-8250U CPU, 16.0GB
RAM and 64-bit Windows 10 operating system. The running time is reported
in Table 1 and Table 4.

5.1. T-Mesh Generation

The singularities and the resulting T-meshes are illustrated in the figures.
As shown in Fig. 8, the singularities are color-encoded, the red, blue and green
circles represent the +1, —1 and —2 indices respectively. The white circles
represents the T-junction points. Different surface patches are color-encoded
differently. By carefully examining the texture patterns in Fig. 8, we can see that
the adjacent patches differ by horizontal and vertical translations composed with
rotations by angle k%5, k € Z. Therefore, the parameterizations are seamless
parameterizations. We can construct T-Splines on these T-meshes directly.

By examining Table 1, one can see that the running time for holomorphic
1-form is much longer than that of other steps in the algorithm pipeline. Be-

cause the computation involves many steps (homology basis, cohomology basis,
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Figure 8: Singularities, white: T-junctions, blue: valence 5, green: valence 6, red :valence 3.

harmonic 1-form basis and holomorphic 1-form basis), the intermediate results
are stored in mesh files, and passed by files. The file IO takes most of the time.
This process can be optimized by performing all the tasks inside the memory

without any file 10.

Table 1: Singularities Computation Running time

Mesh Information Holo 1-form | Holo zeros Legalization of Singularities Ricci Flow | Iso. Immersion
Model #V #E #F | #Genus | Time(sec.) | Time(sec.) | Error Threshold | Iterations | Time(sec.) | Time(sec.) Time(sec.)
Kitten 10.2k | 30.7k | 20.4k 1 10.247 3.0e-4 2132 0.002 0.013 0.006
Ornament 28.8k | 86.5k | 57.7k 1 47.954 — 3.0e-4 3382 0.005 6.177 0.014
Rocker arm | 40.2k | 120.5k | 80.4k 1 39.014 — 3.0e-4 2049 0.004 12.134 0.021
Dancer 43.0k | 129.1k | 86.0k 1 43.913 — 3.0e-4 6069 0.005 10.0659 0.027
Bull head 75.8k | 227.3k | 151.5k 1 95.904 — 3.0e-4 2313 0.003 18.160 0.054
Sculpture 4.0k | 12.2k | 8.0k 2 4.828 0.029 1.0e-3 37601 0.052 1.485 0.002
Starcup 30.0k | 90.0k | 60.0k 2 51.682 0.301 3.0e-4 1167 0.005 6.654 0.013
Monk 38.5k | 115.5k | 77.0k 2 86.741 4.037 3.0e-4 17551 0.108 8.624 0.022
Hermanubis | 39.9k | 119.8k | 79.9k 2 96.122 1.441 3.0e-4 17540 0.043 10.370 0.025
Amphora 82.6k | 246.5k | 164.3k 2 174.396 0.883 3.0e-4 5129 0.016 21.4288 0.046
Loveme 86.7k | 260.2k | 173.5k 2 191.663 1.156 3.0e-4 5776 0.020 25.7747 0.057
Buddha 59.4k | 178.1k | 118.7k 3 179.568 2.623 3.0e-4 670539 2.021 13.117 0.026
Kiss 61.7k | 185.2k | 123.5k 3 201.353 6.274 3.0e-4 94620 0.546 14.633 0.027
3Holes 65.0k | 195.0k | 130.0k 3 218.954 0.819 1.0e-3 343710 0.9333 16.756 0.032
Witch 75.0k | 225.0k | 150.0k 4 363.533 10.877 3.0e-4 304729 1.033 20.343 0.051
CPU RAM
Hardware
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 16.0GB

5.2. Abel-Jacobi and Holonomy Condition Verification
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Mesh of the Loveme model.

Figure 9: Singularities and T-

Hermanubis

Dancer

Ornament

Figure 10: Singularities and T-Meshes of high genus surfaces.
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Witch model Kiss model Monk model

Figure 11: Singularities and T-Meshes of the surfaces with complicated geometries.

(a) Kitten model (b) Amphora model (c) Bull head

Figure 12: Singularities and T-Meshes of various surfaces.
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Star cup model Sculpture model

Figure 13: Singularities and T-Meshes of high genus surfaces.

Rocker arm 3 holes surface

Figure 15: Singularities and T-Meshes of high genus surfaces.
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Figure 16: The loops on the genus two Garniture model : aj, a2 are the tunnel loops; b1,

bo are the handle loops; t1, t2, t3 surround index +1, —2, —1 singularities respectively; t4

encloses three singularities, with index +1, —1, —2 respectively.

Table 2: The holonomy of the loops in Fig. 16, rotation components.

Loops a; b1 az b2
Rotation degree(°) 90.31809 -0.12269 0.19303 89.81468

Loops t1 t2 ts ta
Rotation degree(°) 270.00047 | 540.00136 | 450.00192 | 539.99818

We verify the holonomy condition for a genus two surface as shown in Fig. 16.

We compute the tunnel loops aj,as and handle loops by, by, and several loops

enclosing different number of singularities. Then we compute their holonomies

by parallel transportation on the flat metric computed using Ricci flow, the

rotation components are reported in the Table 2. We can see that all the

holonomies are very close %71', where k is an integer.

Furthermore, for every surface, we compute the image of the singularities

under the Abel-Jacobi map, all the results are reported in Table 3. We can see

that all the images are very close to the zero point in the Jacobian lattice, this

shows the singularities satisfy the Abel-Jacobi condition. This demonstrates the
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(a) Kiss model (b) Dancer model (¢) Monk model (d) Witch model

Figure 17: Singularities and Quad-meshes of various surfaces.

accuracy of our proposed algorithm.

5.8. Quad-Mesh Generation

The T-meshes are converted to quad-meshes by solving the linear system
of singularity position constraints Eqn. (14), deck transformation constraints
Eqn. (15) and face constraints Eqn. (16). The numbers of vertices, edges, faces
of T-meshes are listed in Tab. 5 and follow the predictions of Lemma 3.24.The
running time for quad-mesh generation is reported in Table 4. Since the con-
nectivity of a T-mesh is generally very simple, this step is highly efficient. The
quad-meshes are directly converted from T-meshes, and illustrated in Fig. 17
and Fig. 18. The singularities of quad-meshes are exactly the same as those of
T-meshes, the red, blue and green circles represent singularities with valence
3, 5 and 6 respectively. The quad-meshes are obtained by adjusting the edge
lengths of T-meshes without any optimization, however we can see all the quad-
faces are close to planar squares, this shows the quad-mesh is highly conformal
to the original Riemannian metric, the sizes of the quad-faces vary smoothly,

this shows the high regularity of conformal factors.
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(a) Amphora model

(b) Bull head model

(¢) Rocker-arm model

Figure 18: Singularities and Quad-meshes of various surfaces.

Table 3: Abel Jacobian mapping result

Model Abel Jacobian Mapping Model Abel Jacobian Mapping
Kitten (2.139719-04 + 1% 7.09315e-05) Ornament (-1.095019-08 +1ix 5.733076-08)
Rockerarm (-6.05103e-05 +ix* 6.272666-06) Dancer (-3.14143e-05 + 1% 1.579916-05)
Bull (-1.55144e-05 + 1% 6.56513e-06)

4.59275e-05 — i % 1.27194e-04 -1.37142e-05 — i« 1.84819e-04
Starcup Monk

8.14751e-05 — i * 2.32289e-04 4.70251e-05 + i x 1.90921e-04

-1.05753e-04 — i x 8.17228e-05 1.16072e-04 — i x 1.37645e-04
Hermanubis Amphora

9.29236e-05 + i * 4.96067e-05 1.32789e-05 — i * 1.56983e-04

-9.65795e-05 + i * 3.60684e-05 -3.72147e-04 — i x 9.82485e-04
Loveme Sculpt

-3.69644e-05 — i x 1.48141e-04 8.03122e-04 +i* 6.25321e-04

2.90402e-04 — i * 2.89651e-04 6.85741e-05 + i * 9.32962¢-04
Kiss 2.13554e-04 — i * 5.80312e-05 3Holes 3.55608e-05 — i * 8.67721e-04

1.70373e-04 + i x 2.77541e-04 -1.36089e-05 + i * 5.60214e-04

-1.29378e-04 — i x 2.40348e-04 1.16965e-04 + i x 2.90814e-04

-2.75192e-04 + i * 1.98399e-04 -1.28974e-04 — i % 7.77251e-06
Witch Buddha

2.23835e-04 + i x 2.55373e-04 1.55074e-04 — i x 2.54977e-04

-2.64736e-04 + i x 2.39598e-04

6. Conclusion

This work proposes a rigorous and practical algorithm for T-mesh and quad-
mesh generation based on Abel theorem. We prove the sufficient and necessary
condition for a flat metric with cone singularities to be compatible with a quad-

mesh 3.23, then develop the algorithm based on the Abel-Jacobi condition and
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this theorem. The first stage of the algorithm is to generate a T-mesh: the
initial divisor is optimized to satisfy the Abel-Jacobi condition, a meromorphic
quartic differential is induced, the critical trajectories of the meromorphic quar-
tic differential lead to the T-mesh. The second stage is to generate a quad-mesh:
the edge lengths of the T-mesh is adjusted to satisfy the deck-transformation
conditions by solving a linear system, a fundamental domain of the T-mesh is
isometrically immersed in the plane using the updated metric, the immerse pulls
back the planar integer-grid to the surface to produce the quad-mesh.

Our experimental results demonstrate that the method can handle surfaces
with complicated topology and geometry. The algorithm is efficient and accu-
rate. The resulting T-meshes can be used to construct T-Splines directly. The
quad-meshes can be applied for NURBS construction.

In the future, from algorithmic point of view, we will further explore how to
optimize the configurations of singularities and align the stream lines of the T-
mesh/quad-mesh with the feature curves of the surfaces to improve the quality
of the Spline surfaces; from theoretic point of view, we will further explore the
intrinsic connection between quad-meshing and conformal geometry, especially
the Teichmiiller space theory and give more thorough analysis for the existence

of quad-meshes with special requirements.

Table 4: Quad Mesh Generation Running time

Mesh Information #Singularities Motor Cycle Graph | Finite trajectories parametrization |  Quad Mesh
Model #V | #E | #F | #Genus | #Valence3 | #Valences | #Valence6 | #V | #E | #F | Time(sec.) Time(sec.) #F | Time(sec.)
Rockerarm | 40.2k | 120.5k | 80.4k 1 13 11 1 125 | 200 | 75 0.019 73.219 21998 0.381
Dancer 43.0k | 129.1k | 86.0k 1 42 40 1 415 | 664 | 249 0.043 66.269 16650 0.311
Bull 75.8k | 227.3k | 151.5k 1 20 18 1 195 | 312 | 117 0.035 122,526 35610 0.791
Monk 385k | 115.5k | TT.0k | 2 2 2 5 263 | 424|159 | 0.033 24.980 10660 | 0.174
Amphora | 82.6k | 246.5k | 1643k | 2 14 22 0 188 | 304 | 114 | 0.039 127.218 12242 0.362
2Kids 61.7k | 185.2k | 123.5k 3 21 29 4 286 | 464 | 174 0.037 41.341 16112 0.334
‘Witch 75.0k | 225.0k | 150.0k 4 46 32 19 509 | 824 | 309 0.069 134.691 84258 0.849
CPU RAM
Hardware
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 16.0GB
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Table 5: T-Mesh Connectivity

Model Resulting T-Mesh Information

#V | #E | #F | #Genus | #Valence3 | #Valenceb | #Valence6 | Y k;
KITTEN 115 | 184 | 69 1 12 10 1 92
ROCKERARM 125 | 200 | 75 1 13 11 1 100
ORNAMENT 120 | 192 | 72 1 12 12 0 96
DANCER 415 | 664 | 249 1 42 40 1 332
BULL 195 | 312 | 117 1 20 18 1 156
SCULPT 148 | 240 | 90 2 10 18 0 120
STARCUP 283 | 456 | 171 2 28 18 9 228
MONK 263 | 424 | 159 2 24 22 5 212
HERMANUBIS | 228 | 368 | 138 2 23 11 10 184
AMPHORA 188 | 304 | 114 2 14 22 0 152
LOVEME 163 | 264 | 99 2 14 12 5 132
BUDDHA 401 | 648 | 243 3 34 36 7 324
2KIDS 286 | 464 | 174 3 21 29 4 232
3HOLES 111 | 184 | 69 3 3 13 3 92
WITCH 509 | 824 | 309 4 46 32 19 412
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Algorithm 1 Optimize a Divisor to Satisfy the Abel-Jacobi Condition
Input: Closed mesh M; A group of singularities D; A holomorphic 1-form;

Precision threshold e.
Output: Optimized divisor D Abel-Jacobi condition.
1: if D doesn’t satisfy Gauss-Bonnet Condition then
2:  Locate the vertices on M with local maximal Gaussian curvature as poles,
or with local minimal curvature as zeros;
3:  Add these vertices to the divisor D, such that D satisfies the Gauss-
Bonnet condition.
4: end if
5: Locate the zeros of ¢ to obtain the divisor (p);
6: Compute ®(D) and ®(4(p)) using Eqn. 21;
7. Compute the Abel-Jacobi pu(D — 4(p))map by optimization using integer
programming (Eqn.24);
8: for All each pole and zero p; in D do
9:  Locate the face A; containing p;, isometrically embed A; on the complex
plane;
10:  Compute the local representation ;(z;) = h’(2;)dz;;
11: end for
12: while |u(D —4(p))||*> > ¢ do

13:  for All each pole and zero p; in D do

14: Compute the gradient of the energy (Eqn.25);

15: if p; — AOVE/Op; is inside A; then

16: Update the positions of the singularities p; < p; — A\OVE/dp;;

17: else

18: Compute the intersection q; = {p; — tOE/0p;} N OA;;

19: Update the positions of the singularity p; < g;;

20: Update the face A; to the neighboring face Al along —9F/dp;;

21: Isometrically embed A/ and update the local representation ¢;(2});
22: end if

23: Recompute the Abel-Jacobi map p(D — 4(p));

24: end for
25: end while 93

26: return The divisor D.




Algorithm 2 Generate Quad-mesh from T-mesh

Input: Closed mesh M with genus g; A group of singularities D; T-mesh T';
Output: Quad-mesh Q.

1

2

3

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

: Compute a fundamental domain M of the mesh M;
: Compute the handle and tunnel loops {a;, b; }9_;;
. Select a singularity vy € D, find the path v; C M from vy to v; € S;

. for each loop v in {a;,b;}7_; do
Compute the face path homotopic to ~;
Represent the deck transformation 7 corresponding to v by the edge
lengths of the T-mesh T7;
Construct the linear equation for the deck transformation constraint
Eqn. 15, namely the translation of 7 is rational,

: end for

. for All each singularity v; € D do

Compute the face path homotopic to ;;
Represent the parametric position of v; by the edge lengths of the T-mesh
T;
Construct the linear equation for the singularity position constraint
Eqn. 14, namely the position of v; is rational;
end for
for All faces f € F except the last one do
Construct the linear equation for the face side length constraint Eqn. 16
end for
Solve the linear system;
Update the edge length of T'; Scale by the least common multiple;
Isometrically immerse a fundamental domain of T on the plane, such that
v is mapped to the origin, the edges of T" are either horizontal or vertical,
The planar integer grid induces a quad-mesh @) on the fundamental domain,

and then on M.

return The quad-mesh Q.
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