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Abstract: Weprove a variety of quantumunique ergodicity (QUE) results for Eisenstein
series in the level aspect. A new feature of this variant of QUE is that the main term
involves the logarithmic derivative of a Dirichlet L-function on the 1-line. A zero of
this L-function near the 1-line can thus have a distorting effect on the main term. We
obtain quantitative control on the test function and thereby prove an asymptotic formula
in the level aspect version of the problem with test functions of shrinking support.
Surprisingly, this asymptotic formula shows some obstruction to equidistribution that
may retrospectively be interpreted as being caused by the growth of Eisenstein series
in the cusps. We also make some coarse descriptions on the unevenness of the mass
distribution of level N Eisenstein series on the fibers of the canonical projection map
from Y0(N ) to Y0(1).

1. Introduction

1.1. Foreword. Let M = �\H be a hyperbolic manifold of finite volume, and {u j } be
the sequence of L2-normalized eigenfunctions of increasing eigenvalues for theLaplace–
Beltrami operator �. The quantum unique ergodicity (QUE) conjecture of Rudnick and
Sarnak [RS] predicts

∫
M

|u j |2φdμ−→ 1

Vol(M)

∫
M

φdμ, (1.1)

for all fixed nice (e.g., continuous and bounded) test functions φ as j → ∞.
The QUE conjecture sparked a lot of work for different families of automorphic

forms. One of the earliest unconditional QUE results is for the classical Eisenstein
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series Et := E(z, 1
2 + i t) on M = SL2(Z)\H equipped with the Poincaré measure

dμ = y−2dxdy. Since Et is not square integrable, we need to further assume φ is
compactly supported, and in this scenario, Luo and Sarnak [LS] showed as t → ∞,

1

log( 14 + t2)

∫
M

|Et |2φdμ−→ 1

Vol(M)

∫
M

φdμ. (1.2)

The second author [Y1] estimated the rate of convergence with a power saving bound for
the error terms, which allowed the test function φ = φt to change mildly, e.g., by having
shrinking support. In particular, for each fixed point z ∈ M, (1.2) holds if φt is the
characteristic function of a ball of radius r = r(t) centered at z, with r = t−δ , for some
δ > 0. We refer readers to [L,So], and [HS] for some of the significant developments
on QUE in either eigenvalue or weight aspect; a survey paper [Sa] by Sarnak is good to
begin with.

Kowalski, Michel and VanderKam [KMV] formulated the level aspect analog of
QUE. Let f (N ) be a sequence of holomorphic newforms of fixed evenweight on Y0(N ) =
�0(N )\H, which are L2(Y0(N ))-normalized with the measure dμ. They conjectured

∫
Y0(N )

| f (N )|2φdμ −→ 1

Vol(Y0(1))

∫
Y0(1)

φdμ, (1.3)

for fixed φ of level 1, as N → ∞. The conjecture is now known due to [N1] and [NPS],
which in fact proved QUE in both weight and level aspects. For the case of Eisenstein
series, Koyama [K, Theorem 1.2] showed

1

2 log N

∫
Y0(N )

|E (N )|2φdμ −→ 1

Vol(Y0(1))

∫
Y0(1)

φdμ, (1.4)

for fixed T ∈ R, as N → ∞ traversing all prime numbers, andwhere E (N ) = E (N )∞ (z, 1
2 +

iT ) are Eisenstein series of weight zero, level N and trivial central character.
We should clarify that (1.4) is perhaps not the closest analog of (1.3) for Eisenstein

series, because these E (N ) of trivial central character are oldforms. The newform Eisen-
stein series Eχ1,χ2 defined in [Y2] should be the perfect counterpart of holomorphic
newforms in [KMV], where χi is primitive mod qi , for i = 1, 2, and q1q2 = N , and the
equidistribution problems around these Eisenstein series are noteworthy, attractive, and
closer in spirit to (1.3). As we later argue, a large number of such newforms are actually
of the form E (N )

a with primitive central character, for which QUE is given in Theorem
1.4 below.

1.2. First results.

Convention 1.1. We comply with the following notational conventions throughout this
paper.

• We denote the space of smooth automorphic functions of central character χ on the
manifold Y0(N ) by A(Y0(N ), χ). We may suppress χ if it is trivial.
• Wewrite 〈 f, g〉N by

∫
Y0(N )

f ·gdμ, if f, g ∈ A(Y0(N ), χ). So, 〈1, 1〉N = Vol(Y0(N )).

• When N = 1, we write ‖ f ‖p short for 〈| f |p, 1〉1/p
1

.
• For a Dirichlet character χ (mod N ), we always assume it is induced by primitive
ψ (mod q), for some q | N . We regard the character (mod 1) as primitive.
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• We let θ be so that the pth Hecke eigenvalues of Maass newforms are uniformly
bounded by pθ + p−θ . The value θ = 7/64 is allowable by [KS].
• When writing f � g or f = O(g) we typically add a subscript to denote depen-
dence of the implied constant on ambient parameters; an exception to this is that we
do not display this when a constant depends on ε.

Theorem 1.2. Let E = E∞(z, s, χ) be the Eisenstein series of level N , weight zero and
central character χ (see (3.1) for definition), with s = 1

2 + iT for fixed real T 	= 0. For
all compactly supported φ0 ∈ A(Y0(1)), we have

〈|E |2, φ0〉N = 〈1, φ0〉1
〈1, 1〉1

(
2 log N + 4
 L ′

L
(1 + 2iT, ψ)

)

+OT,φ0
((log log N )5) + OT (N− 1

8 +ε( Nq )−
3
8 +θ‖φ0‖2). (1.5)

Remark 1.3. Here we discuss the case T = 0. When q 	= 1, (1.5) also holds as L ′
L (s, ψ)

is well-defined at s = 1; if q = 1, then both the two sides of (1.5) turn out to vanish on
all levels, for which we refer to Remarks 3.8 and 7.4.

Theorem 1.2 treats only Eisenstein series attached to the cusp ∞, but for arbitrary
central characters. The case where χ is primitive has some simplifications that enable
us to handle Eisenstein series attached to more general cusps.

Theorem 1.4. Suppose χ (mod N ) is primitive, and a is a cusp singular for χ . Then
(1.5) holds for E = Ea(z, s, χ).

Remark 1.5. Theorems 1.2 and 1.4 also hold if E = Ea(z, s, χ) is of weight one. In this
scenario, the error terms can be similarly bounded, while the main term are formally
the same as (1.1), for odd χ . The main term resemblance in these two cases are well-
reasoned, and we present more details in Remark 1.14. Because of the Maass raising
(weight +2) and lowering (weight −2) operators [Ma,DFI], we then can study QUE
for Eisenstein series of all integer weights. The difference between Eisenstein series in
terms of weight is known explicitly by [Y2]. See [PRR, Theorem 1.6] for a related result.

Remark 1.6. The term 4
 L ′
L (1 + 2iT, ψ) makes our QUE results qualitatively different

from others that we have mentioned above. Since it is unknown if 4
 L ′
L (1 + 2iT, ψ) =

oT (log q), we must include it as part of the main term. Of course, such a bound holds
on GRH (see [IK, Theorem 5.17]). This extra term in turn connects QUE for T ≈ 0 and
Siegel zeros.

One can also surely adapt our techniques to treat some other cases, such as letting

s 	= 1/2, but we refrain from considering these generalizations in favor of simplicity
in exposition.

1.3. Shrinking sets in the level aspect. In (1.3), (1.4), and Theorems 1.2 and 1.4, the
test function φ is assumed to be SL2(Z)-invariant. A mild generalization of (1.3) is to
fix a positive integer M and a test function φ = φ(M) on Y0(M), and to confine N ≡ 0
(mod M). See [Hu] for a similar generalization to [NPS]. In analogy to the shrinking
set version of QUE, where φ = φt is allowed to change with the spectral parameter t ,
we are led to consider the much more difficult generalization of letting φ depend on N .
A natural way to do this is to let M grow with N , constrained by M |N , and to choose
φ = φ(M) on Y0(M) depending on M . To maintain uniform analytic properties of the
test functions φ(M) of varying levels, we often make the following system of choices.
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Convention 1.7. Once and for all fix an SL2(Z)-invariant smooth function φ0 = φ(1)

with compact and connected support. For simplicity, suppose that the support of φ0 ,
when restricted to the standard fundamental domain D of SL2(Z), is contained in its
interior. Suppose that�0(1) = ∪ν(M)

j=1γ j�0(M) as a disjoint coset decomposition. For each

positive integer M , choose φ(M) = φ
(M)

j to be one of the following ν(M) functions. Set

φ
(M)

j (γk�0(M)z) equal to φ0(z) if j = k, and zero if j 	= k, where k ∈ {1, 2, ..., ν(M)}.
One can interpret this definition intuitively by noting that ∪ν(M)

j=1γ jD is a fundamental

domain for Y0(M), and so φ
(M)

j agrees with φ0 on one translate of D and vanishes at all
others.

The system of test functions satisfying Convention 1.7 has the following pleasant prop-
erties. We have φ0 = ∑

ν(M)

j=1 φ
(M)

j , where the supports of these φ
(M)

j are pairwise disjoint.

Moreover, we have
∫
Y0(M)

φ
(M)

j dμ = ∫
Y0(1)

φ0dμ, for each j . Since

M−1−ε �φ0

Vol(Supp(φ(M)))

〈1, 1〉M
�φ0

M−1+ε,

we intuitively see that Suppφ(M) “shrinks”, if M → ∞ as N → ∞.

Remark 1.8. The above construction is merely one way of generating a system of test
functions that looks natural. Part of such an idea is borrowed from [K]. A similar treat-
ment is adopted in [LMY, Theorem 1.4] on counting Heegner points with changing
levels.

Theorem 1.9. Let E be as in Theorem 1.2. Choose a system of test functions according
to Convention 1.7. Then there exists E ∈ A(Y0(N )), such that |E |2 − E ∈ L2(Y0(N )),
and

〈|E |2 − E, φ〉N �ε,T ,φ0
N− 1

2 +ε( Nq )θ Q(M, q)‖φ0‖2 , (1.6)

with

Q(M, q) = M
1
4 q

3
8 + M

1
2 (M, q)

1
4 q

1
4 .

Under the generalized Lindelöf hypothesis, (1.6) holds with Q(M, q) = √
M. Finally,

we have

〈E, φ〉N = 〈1, φ0 〉1
〈1, 1〉M

(
log

N 2

M(M, N/q)
+ 4
 L ′

L
(1 + 2iT, ψ)

)
+ OT,φ0

( (log log N )5

〈1, 1〉M
)
+ αφ,

(1.7)

where αφ is a quantity (see (7.4) for an expression) satisfying

|αφ | �φ0 ,T (log log 100M)3. (1.8)

Note that if M � N
1
10−δ , then the bound in (1.6) is better than the first displayed main

term in (1.7) of size≈ M−1+o(1) log N . This is analogous to the power-saving error term
in the QUE problem for Eisenstein series of level 1 in the spectral aspect, as in [Y1].
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Remark 1.10. Theorem1.9 alsoholds for E = Ea(z,
1
2+iT, χ)withχ (mod N ) primitive

as in Theorem 1.4, and pleasantly, its corresponding E is much simpler (see Proposition
8.1).

From the fact that 〈1, 1〉M = M1+o(1) , we may derive the following weak corollary.

Corollary 1.11. Under the assumptions of Theorem 1.9, QUE holds for all M �
(log N )1−δ for δ > 0, and specifically when M is a constant.

1.4. Main term discussion. To our surprise, if we construct the system of test functions
according to Convention 1.7, then QUE turns out not to hold for all test functions
φ = φ

(M)

j , at least, if M � N δ for some δ > 0. The problem is that for some choices of
φ, the contribution ofαφ to themain term is dominant and large enough to show thatQUE
does not hold. In retrospect, one might expect problematic behavior for test functions
with support escaping too quickly into a cusp. This is clear in the level 1 case (in the
spectral aspect), since very high in the cusp the Eisenstein series is well-approximated
by its constant term. In the level aspect, it is a bit tricky to say what it means for a test
function to have support escaping into a cusp, not least because the cusp can be changing
with the level.

To help explain the complication caused by αφ , we study the case when M | N is
prime with M � (log N )1+δ and χ (mod N ) is primitive. We conclude here and leave
the computation in Sect. 7.3. LetG(z) denote the constant term in the Laurent expansion
of E(z, s) around s = 1 (see [IK, (22.69)] for an expression), which is SL2(Z)-invariant,
and which satisfies G(x + iy) ∼ y for y → ∞. Then

〈E, φ〉N = c0〈1, φ〉M + c1〈G, φ〉M + cM 〈G|M , φ〉M , (1.9)

where G|M (z) = G(Mz) is a �0(M)-invariant function,

c0 = 1

〈1, 1〉M
(
log

N 2

M
+ 4
 L ′

L
(1 + 2iT, χ) + OT,φ0

(1)
)
, (1.10)

and c1, cM = M−1 +O(M−2). The term c0〈1, φ〉M is the naively-expected main term. If
φ = φ

(M)

j is chosen according to Convention 1.7, then note 〈G, φ〉M = 〈G, φ0〉1 , which
is independent of j and M , so the term c1〈G, φ〉M is bounded acceptably. However, the
term cM 〈G|M , φ〉M may be much larger than the expected main term, as we now explain.
Suppose that the restriction of φ0 to the standard fundamental domain D for Y0(1) has
support with 2 ≤ y ≤ 3 and that φ0 is non-negative. There exists a fundamental domain
FM for Y0(M) so that D ⊂ FM , and there exists a value of j so that φ

(M)

j (z) = φ0(z)

for z ∈ D, and φ
(M)

j (z) = 0 for z ∈ FM , z 	∈ D. For this value of j , we have

cM 〈G|M , φ〉M ≈ M−1
∫ 3

2

∫ 1

0
G(Mz)φ(z)

dxdy

y2
,

which can be� 1, sinceG(Mz) ∼ My uniformly on the region of integration (see Propo-
sition 3.22). Note that in this situation, cM 〈G|M , φ〉M is much larger than c0〈1, φ〉M �
M−1 log N . This choice of φ = φ

(M)

j should be interpreted as having support high in
the cusp ∞. Nevertheless, we have the following theorem, with an elementary proof in
Sect. 7.4.
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Theorem 1.12. There exists an absolute constant δ > 0, such that for all primes M, there
are at least δM test functions {φ(M)

j }ν(M)

j=1 chosen according to Convention 1.7 satisfying

the QUE conjecture on shrinking sets. That is, for these φ = φ
(M)

j , we have

|c1| · |〈G, φ〉M | + |cM | · |〈G|M , φ〉M | � M−1‖φ0‖1 ,

while the term c0〈1, φ〉M is expected to be approximately 6 log N
πM 〈1, φ0〉1 .

Remark 1.13. Note that E is a linear combination of Eisenstein series attached to cusps
on level N , which appears naturally in Zagier’s regularization process that we elaborate
later in Sect. 4. From the above discussions we can see the mass distribution of |E |2 can
be extremely uneven over supports of φ

(M)

j for different j . We conjecture that this δ can
be improved to 1 − ε for general M . Also, we have an estimation of

∑
φ αφ in (7.8).

1.5. Limitations toQUE. Recall that the second author proved (1.2) forφt with shrinking
support of radius r � t−δ as t → ∞ for some δ > 0. A natural question is how large
can this δ be. Humphries [Hum2] showed that δ cannot exceed 1, as (1.2) then fails for
infinitely many z’s. On the other hand, he proved small scale QUE holds for almost all
z ∈ H as long as δ < 1 (see [Hum2, Corollary 1.20] for the precise statement).

In the level aspect, the discussion in Sect. 1.4 shows that QUE does not hold for all
systems of test functions constructed according to Convention 1.7. This is in contradic-
tion to the claimed result of Koyama [K, Theorem 1.3], which in our notation would
correspond to N = M prime and q = 1. A recent corrigendum by Kaneko and Koyama
[KK] rewrites [K, Theorem 1.3] in the form of our (1.4), and we refer the readers to it
for more details.

1.6. Strategy of the proof and QUE for newform Eisenstein series. The reader may
wonder why all of our QUE results are limited to only certain types of Eisenstein series.
It is a natural question to prove QUE for general newform Eisenstein series (see Sect. 3.1
for definition), but unfortunately it does not appear that the inner products 〈|E |2, u j 〉N
are computed in full detail in the literature. This appears to be the only obstacle, as we
expect that our techniques can be adapted to treat 〈E, φ〉 for the newform Eisenstein
series. Moreover, we remark that Theorem 1.4 does indeed treat all newform Eisenstein
series of squarefree level or of primitive central character (see Remark 3.4 below for
justification). Paul Nelson has kindly informed us that the desired inner products may be
computed using [MiVe, (4.26)] and [N2, Theorem 49, part II], but we leave this pursuit
for a future occasion.

In broad strokes, the strategy for a proof of QUE (for cusp forms) is well-known.
Via a spectral decomposition and calculation of period integrals due to Watson/Ichino
[Wa,Ic], the problem reduces to a sufficiently strong subconvexity bound for certain
triple product L-functions. Unfortunately, power-saving subconvexity bounds in this
generality have not been proved. A pleasant feature of the QUE problem for Eisenstein
series is that the relevant L-functions factor into lower degree L-functions, for which
subconvexity is known.

In practice, there are two main obstacles for proving Theorems 1.2, 1.4 and 1.9.
The first difficulty is that |E |2 is not in L2(Y0(N )), so the spectral decomposition can
not be applied directly. Our work-around for this problem is to execute a regulariza-
tion procedure of Zagier [Z] and Michel and Venkatesh [MiVe]. We construct E , a
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linear combination of Eisenstein series of level N and trivial central character, so that
|E |2 − E ∈ L2(Y0(N )). The spectral decomposition can be applied to |E |2 − E , and the
aforementioned subconvexity bounds eventually lead to a satisfactory estimate on this
quantity.

The next significant problem is to asymptotically evaluate 〈E, φ〉N as accurately as
possible. For this, we need to identify E , which in turn requires a careful study of the
growth of |E |2 at all the cusps, not just the ones that are singular with respect to the
central character χ . This necessitates the precise calculation of the Fourier expansion
of the Eisenstein series Ea. Koyama [K] carried this out in the case that N is prime.
Recently, the second author [Y2] developed explicit formulas for the Fourier expansions
of a larger collection of Eisenstein series, including the case of E (N )∞ for arbitrary N and
any central character, which is vital for the calculation of E . The function E is given in
Proposition 5.2 below.

Remark 1.14. When E is weight one, we can similarly obtain an E so that 〈|E |2−E, φ〉N
has a power-saving bound as well. For the main term, E is again a linear combination of
Eisenstein series of trivial central characters and weight zero. The only difference is E
has different coefficients for each Ea(z, sa), as the cuspidal behavior of |E |2 depends on
its weight. However, as one sees in the proof of Proposition 5.2 or 8.1, the coefficients
are products of the entries of the scattering matrix, which does not change much under
the weight shift. See [Hum1, Sec. 2] for the computation in the case of primitive χ .

1.7. Structure of the paper and sketch of proof of (1.6). To expose everything as clearly
as possible, we initially prove Theorem 1.9, which contains Theorem 1.2. The main
body of the proof lies in Sects. 5–7, for which we sketch the argument for (1.6) later
in this subsection; the supportive part consists of prerequisites about cusps in Sect. 2,
Eisenstein series featured by a comprehensive description of their cuspidal behaviors in
Sect. 3, and regularized integrals in Sect. 4. Finally, we prove Theorem 1.4 in Sect. 8.

The spectral decomposition applied to 〈|E |2 − E, φ〉N gives

〈|E |2 − E, φ〉N ≈
∑
t j�T

∑∗

u j

〈|E |2, u j 〉N 〈u j , φ〉M + continuous spectrum,

where the inner sum is over all L2(Y0(M))-normalized Hecke–Maass newforms of level
M with spectral parameter t j , and recall that E = E∞(z, 1

2 + iT, χ). This regularized
spectral decomposition is the topic of Sect. 5, and Sect. 6mainly focuses on the following
estimation.

Proposition 1.15. With the above notations, we have

〈|E |2, u j 〉N �T,t j N
− 1

2 +εM− 1
2 ( Nq )θ |L( 12 , u j )L( 12 + 2iT, u j ⊗ ψ)|.

The following crucial subconvexity bound for twisted L-functions then finishes the
job.

Theorem 1.16 (Blomer, Harcos [BH]). If ψ is primitive (mod q) and u j is a newform
of level M, then

L( 12 + 2iT, u j ⊗ ψ) � (|T | + 1)
1
2 (M

1
4 q

3
8 + M

1
2 (M, q)

1
4 q

1
4 ).

The contribution of the continuous spectrum to 〈|E |2 − E, φ〉N is similar. Section 7
addresses the main terms, about which we have briefly discussed earlier in this section.
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2. Cusps and Their Widths

It is well-known that �0(N ) = {( a b
c d ) ∈ SL2(Z)| c ≡ 0 (mod N )} acts on H via

( a b
c d )z �→ az+b

cz+d . In this section we introduce some background knowledge of cusps
on �0(N ). We counsel experienced readers to skip this section except for Sect. 2.3 on
relative width, and refer other readers to [NPS, Sect. 3.4] and [Iw1, Sects. 2.1–2.4] for
more details.

2.1. Cusps. The group action can be extended to P
1(Q), the set of cusps. We often

employ the letters a, b, c,..., to denote cusps. We say two cusps a and b are equivalent

on level N and write a
N= b, if there exists γ ∈ �0(N ) such that a = γ b. That is to say,

equivalence classes of cusps on level N are the �0(N )-orbits in P
1(Q).

By [Iw1, Proposition 2.6], a full set of inequivalent cusps on level N can be written
as

C(N ) := {a∣∣ a = u
f , f | N , u = minR(N , f, v), v ∈ (

Z/NZ
)×}, with

R(N , f, v) := {u ≡ v (mod ( f, N/ f )), u ≥ 1}.
(2.1)

Remark 2.1. Throughout this paper we write ua and fa such that a
N= ua

fa
∈ C(N ), if

necessary. Also, if we write u
f ∈ C(N ), then we always assume that the fraction is in

the lowest terms.

Let�N
a be the stabilizer of a in�0(N ). It is clear that for all N ,�N∞ = {±( 1 n

0 1 )|n ∈ Z},
so we may write �∞ as well. In addition, there are scaling matrices σa,N ∈ SL2(R)

such that σa,N∞ = a, and σ−1
a,N�N

a σa,N = �∞. If the level is clear, we may suppress N
in these symbols.

2.2. (Absolute) width. If τ ∈ � = SL2(Z) and τ∞ = a, then τ−1�N
a τ is a subgroup

of �∞. Since τ�∞τ−1 = �1
a, we have [�∞ : τ−1�N

a τ ] = [�1
a : �N

a ], which does not
depend on the choice of τ . Define this index as the (absolute) width of a on level N and
write it W 1

N (a).

Convention 2.2. When there is no ambiguity on levels, wemaywrite the (absolute) width
of a by Wa as well. Width of a cusp is a common terminology, so we add “absolute”
only if it is necessary to distinguish it from relative width introduced in the following
subsection.

Remark 2.3. For future usage we cite [Iw1, (2.31)] to note that for fixed γa ∈ SL2(Z)

sending ∞ to a, γa
(
W 1/2

a 0

0 W−1/2
a

)
serves as a scaling matrix σa = σa,N .

Lemma 2.4 [Iw1, (2.29)]. For each a = u
f ∈ C(N ) in (2.1), we have

Wa = N

(N , f 2)
.

Remark 2.5. Let M | N , and a = u
f ∈ C(N ). Then by [KY, Proposition 3.1], a is

equivalent to a cusp of the form u′
(M, f ) ∈ C(M), with width

W 1
M (a) = M

(M, (M, f )2)
.
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2.3. Relative width. Now we fix �0(N ) but let � = �0(M) for any M | N instead. We
define the index [�M

a : �N
a ] as the relative width of a ∈ C(N ) from level M , and denote

it by WM
N (a). Note that the absolute width is a special case of the relative width when

M = 1.

Remark 2.6. From the definition we can also see if a
N= b, then WM

N (a) = WM
N (b). This

results from the fact �∗
b = τ�∗

aτ
−1, for any τ ∈ �0(N ) with τa = b and ∗ = M, N .

The following lemma follows directly from the definition.

Lemma 2.7. For each cusp a ∈ C(N ), we have

WM
N (a) = W 1

N (a)

W 1
M (a)

.

Lemma 2.8. For a, b ∈ C(N ), we have

#{γ ∈ �0(N )\�| γ b
N= a} =

{
WM

N (a) if a
M= b;

0 otherwise.

Proof. If a is not �-equivalent with b, then the set is empty. Now assume a
M= b with

τa = b for some τ ∈ �. We have the following bijective map

{γ ∈ �0(N )\�| γ b
N= a} → {γ ∈ �0(N )\�| γ a

N= a}
γ �→ γ τ

so it suffices to compute #Sa, where Sa = {γ ∈ �0(N )\�| γ a
N= a}. Note that �M

a

acts transitively on Sa (on the right) with stabilizer �N
a . Hence, by the Orbit-Stabilizer

Theorem (see e.g., [A, Chapter 5, Proposition (7.2)]), we have #Sa = [�M
a : �N

a ] =
WM

N (a). ��

2.4. Singularity. Given an even Dirichlet character χ (mod N ), i.e., χ(−1) = 1, we
define

χ : �0(N ) → C
∗

by χ(γ ) = χ(dγ ), where dγ stands for the lower-right entry of γ . It is easy to see that
χ preserves multiplication of the two sides, and hence it is a group homomorphism.

Convention 2.9. We write χ1 � χ2 if they are induced by the same primitive character.

We say a is singular for χ , if the kernel of χ contains �N
a . If χ1 � χ2, then the

singularity of a for χ1 is equivalent to that for χ2. For fixed χ (mod N ), singularity and
non-singularity of a cusp extends to its �0(N )-equivalence class, for the same reason as
for Remark 2.6.

Convention 2.10. Forχ (mod N ), wewrite the subset of singular cusps forχ by Cχ (N ).
Note Cχ (N ) = C(N ) if χ is trivial.

We have a criterion for singularity from [Y2, Lemma 5.4]. Recall from Convention
1.1 that q is the conductor of χ .

Proposition 2.11. The cusp u
f ∈ C(N ) is singular for χ if and only if q | [ f, N

f ].
One interesting case is when χ is primitive (mod N ). By Proposition 2.11, only

cusps a = u
f ∈ C(N ) with ( f, N/ f ) = 1 are singular for χ . Moreover, from (2.1) we

can see u = 1. These cusps are known as the Atkin–Lehner cusps.
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3. Eisenstein Series of Weight Zero

This section deals with knowledge about Eisenstein series of weight zero. We suggest
advanced readers skip this section with a glance on Propositions 3.15 and 3.18 on de-
scriptions of their cuspidal behaviors. Good references include [DS, Chapter 4] and
[Iw1].

3.1. Two kinds of Eisenstein series. On level N , there are Eisenstein series attached to
cusps and Eisenstein series attached to characters.

The Eisenstein series of central character χ (mod N ) attached to the cusp a is

Ea(z, s, χ) =
∑

γ∈�a\�0(N )

χ(γ )(Im σ−1
a γ z)s .

To make this well-defined, we require χ to be even, and a to be singular for χ . The
definition does not depend on the choice of σa. Since Eγa = χ(γ )Ea for γ ∈ �0(N ),
we can always represent Ea in terms of Ea′ with a′ ∈ Cχ (N ) (see Convention 2.10 for
definition and Remark 3.3 for practice).

For Dirichlet characters χi (mod qi ) with i = 1, 2, having the same parity, the
Eisenstein series attached to χ1, χ2 is

Eχ1,χ2(z, s) = 1

2

∑
(c,d)=1

(q2y)sχ1(c)χ2(d)

|cq2z + d|2s .

If both χ1 and χ2 are primitive, Eχ1,χ2 is a newform Eisenstein series of level q1q2.
Both types of Eisenstein series converge absolutely for 
s > 1, with meromorphic

continuations to C.

Convention 3.1. When χ = χ0,N , we write Ea(z, s) in short of Ea(z, s, χ). If N = 1,
then the classical Eisenstein series E is the only one in both types, so we write it in place
of E1,1. If we want to emphasize Ea is an Eisenstein series of level N , then we may
write E (N )

a instead.

These two kinds of Eisenstein series are closely connected. Recently, the second
author [Y2] found the change-of-basis formulas between them, which is also done by
Booker, Lee, and Strömbergsson [BLS].

Theorem 3.2. [Y2, Theorem 6.1] Keeping notations in Conventions 1.1 and 2.10, and
denoting the Euler totient function by ϕ, we have for a = u

f ∈ Cχ (N )

Ea(z, s, χ) = W−s
a f −s

ϕ(( f, N
f ))

∑
q1| Nf

∑
q2| f

∑∗

χ1,χ2

χ2(−u)
L(2s, χ1χ2)

L(2s, χ1χ2χ0,N )

∑
a| f

∑
b| Nf

μ(a)μ(b)χ1(b)χ2(a)

(ab)s
Eχ1,χ2

( b f

aq2
z, s

)
,

where the asterisked sum is over all primitive χi (mod qi ), i = 1, 2, satisfying χ1χ2 �
χ .
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Remark 3.3. In [Y2], the cusp choice a = 1
u f was made, and we transfer it for conve-

nience. It is remarked in [Y2, Sect. 5.2], that for all u
f ∈ C(N ), there is γ ∈ �0(N ) such

that γ u
f = 1

u f , and has lower-right entry equal to u (mod N ). Then we have

E u
f

= χ(u)E 1
u f

.

We are interested in two special cases: when f = N , and when q = N .

Since ∞ N= 1
N via γ = (

1 0
N 1

)
, we have E∞ = E 1

N
. By Theorem 3.2, we have

E∞(z, s, χ) = N−s L(2s, ψ)

L(2s, χ)

∑
a|N

μ(a)ψ(a)

as
E1,ψ

( N

aq
z, s

)
. (3.1)

If χ is primitive (mod N ), then only Atkin–Lehner cusps are singular for it, as is
discussed in Sect. 2.4. Assuming a = 1

f ∈ Cχ (N ), we have

Ea(z, s, χ) = N−s Eχ1,χ2(z, s), (3.2)

where χ1 is primitive (mod N/ f ) and χ2 is primitive (mod f ), with χ = χ1χ2.

Remark 3.4. Now we see why Theorem 1.4 implies QUE for all newform Eisenstein
series of squarefree levels. If N is squarefree, then by definition, a newform Eisenstein
series of level N is Eχ1,χ2(z, s) for some primitive χi mod qi , i = 1, 2, with q1q2 = N
and (q1, q2) = 1. Then (3.2) says E = Ns E 1

q2
(z, s, χ1χ2), to which Theorem 1.4

applies.
In addition, if we relax the squarefree assumption on N and instead assume E =

Eχ1,χ2 is a newformEisenstein series of level N andprimitive central characterχ � χ1χ2
(mod N ), for χi mod qi , i = 1, 2, then since q1q2 = N , we must have (q1, q2) = 1.
The above argument again shows QUE for E = Ns E 1

q2
(z, s, χ1χ2).

3.2. Fourier expansions. One merit of Eisenstein series attached to primitive characters
is their explicit Fourier expansions with multiplicative Fourier coefficients. Define the
completed Eisenstein series by

E∗
χ1,χ2

(z, s) := θχ1,χ2(s)Eχ1,χ2(z, s),

with χi primitive (mod qi ), i = 1, 2, and

θχ1,χ2(s) = qs2π
−s

τ(χ2)
�(s)L(2s, χ1χ2). (3.3)

Then we have the Fourier expansion

E∗
χ1,χ2

(z, s) = e∗
χ1,χ2

(y, s) + 2
√
y
∑
n 	=0

λχ1,χ2(n, s)e(nx)Ks− 1
2
(2π |n|y), (3.4)

where the constant term is

e∗
χ1,χ2

(y, s) = δq1=1θ1,χ2(s)(q2y)
s + δq2=1θ1,χ1(1 − s)(q1y)

1−s,

λχ1,χ2(n, s) = χ2(
n
|n| )

∑
ab=|n| χ1(a)χ2(b)(

b
a )s− 1

2 , τ(χ) is the Gauss sum of χ , and Kα

is the K -Bessel function of order α ∈ C, so that the series in (3.4) decays exponentially,
as y → ∞. See Huxley [Hux], and Knightly and Li [KL, Sect. 5.6] for more details.
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Remark 3.5. From the definition we see that when s = 1
2 + iT , |λχ1,χ2(n, s)| ≤ d(n) �

nε.

Remark 3.6. If χ is primitive (mod q) for q > 1, then Eχ,χ (z, s) is regular at s = 1.

Remark 3.7. The newformEisenstein series are eigenfunctions of all theHecke operators
Tn , and indeed TnEχ1,χ2(z, s) = λχ1,χ2(n, s)Eχ1,χ2(z, s).

Remark 3.8. We can also see from (3.4) that E∗
1,1(z, s) is analytic for s ∈ C except

s = 0, 1, and in particular, it is well-defined at s = 1
2 . On the other hand, since θ1,1 has

a pole at s = 1
2 , then E1,1(z,

1
2 ) = 0. Thus by (3.1), we have E∞(z, 1

2 ) = 0.

For future application, we write out two special cases. When χ1 = 1, and χ2 = ψ

primitive (mod q), we have

E1,ψ (z, 1
2 + iT ) = e1,ψ (y, 1

2 + iT ) + 2ρ1,ψ ( 12 + iT )
√
y
∑
n 	=0

λ1,ψ (n)e(nx)KiT (2π |n|y),

(3.5)

where eχ1,χ2(s) = ρχ1,χ2(s)e
∗
χ1,χ2

(y, s),ρχ1,χ2(s) = 1
θχ1,χ2 (s) ,λχ1,χ2(n) = λχ1,χ2(n, 1

2+

iT ), and

ρ1,ψ ( 12 + iT ) = O(qε(1 + |T |)εe π |T |
2 ) (3.6)

by Stirling’s formula, see e.g. [IK, (5.73)] and [MoVa, (11.18)]. Another case is when
q1q2 = N with (q1, q2) = 1, and χi is primitive (mod qi ) for i = 1, 2. We then have

Eχ1,χ2(z,
1
2 + iT ) = ρχ1,χ2(

1
2 + iT )

√
y
∑
n 	=0

λχ1,χ2(n)e(nx)KiT (2π |n|y), (3.7)

and similarly,

ρχ1,χ2(
1
2 + iT ) = O(N ε(1 + |T |)εe π |T |

2 ). (3.8)

Next we discuss some aspects of the Fourier expansion of Ea(z, s, χ). For the fol-
lowing discussion, assume a, b are cusps singular for χ . When y → ∞ (see e.g., [Iw1,
(13.15)])

Ea(σbz, s, χ) = δaby
s + ϕab(s, χ)y1−s + O(y−P ), (3.9)

for all P ∈ N, where δab = 1 if a
N= b, and vanishes otherwise, and ϕab is meromorphic

in s ∈ C. Each ϕab is an entry of the scattering matrix, which we compute explicitly
later. Iwaniec writes ϕab as an infinite sum, see [Iw1, (13.16)–(13.18)], and we have an
alternative finite expression in Proposition 3.15 below.

Convention 3.9. Analogously to Convention 3.1, if χ = χ0,N , then we suppress it from
ϕab(s, χ); if necessary, we write ϕ

(N )

ab to emphasize it comes from E (N )
a .

Proposition 3.10 (Selberg [Iw1] (13.30)). For
s = 1
2 , thematrix�(s, χ) = (

ϕab(s, χ)
)
a,b

is unitary. In particular, we have
∑

a∈Cχ (N ) |ϕ∞a(s, χ)|2 = 1 for s = 1
2 + iT .
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3.3. Functional equations. Eisenstein series attached to Dirichlet characters satisfy the
following simple functional equation. Recall σa = σa,N is a scaling matrix as in Remark
2.3.

Proposition 3.11 (Huxley [Hux]). For primitive χ1 and χ2, we have

E∗
χ1,χ2

(z, s) = E∗
χ2,χ1

(z, 1 − s).

When (q1, q2) = 1 and a = 1
q2
, Weisinger [We] essentially showed (see also [Y2,

(9.1)])

Eχ1,χ2 |σa = εχ1,χ2E1,χ1χ2 , where |εχ1,χ2 | = 1. (3.10)

3.4. Identifying traced Eisenstein series. Define the trace operator TrNM : A(Y0(N )) →
A(Y0(M)) via

f �→
∑

γ∈�0(N )\�0(M)

f |γ . (3.11)

Now we can determine the exact shape of TrNM E (N )
a (z, s) by (3.9).

Lemma 3.12. We have the following equality of meromorphic functions:

TrNM E (N )

a (z, s) = (WM
N (a))1−s E (M)

a (z, s).

Remark 3.13. We have to point out that when a is a cusp for Y0(N ), there might be
ambiguities for the symbol of E (M)

a . However, since the central character is trivial, the
choice of representative for a inY0(M) does not affect the resulted function, asmentioned
in Sect. 3.1.

Proof. Let 
s > 1. By [Iw2, Lemma 6.4], TrNM E (N )
a (z, s) is a linear combination of

E (M)

b (z, s) for b ∈ C(M). Furthermore, this linear combination is unique, since the
only linear combination of Eisenstein series that decays rapidly at all cusps is the zero
combination. In light of this, if TrNM E (N )

a (σb,Mz, s) = cbys + O(1) as y → ∞, then it is
identical to

∑
b cbE

(M)

b (z, s), because their difference has rapid decay. Nowwe compute
the ys-coefficients.

For each b pick σb,M = γb
(
W 1/2 0
0 W−1/2

)
as in Remark 2.3, where γb ∈ SL2(Z),

γb∞ = b, and W = W 1
M (b). As y → ∞, we have by (3.9), Lemmas 2.8, 2.7 and

Remark 2.6,

TrNM E (N )

a (σb,Mz, s) =
∑

γ∈�0(N )\�0(M)

E (N )

a (γ γbWz, s) =
∑

γ∈�0(N )\�0(M)

E (N )

a

(
σγb,N

W
W 1

N (γb)
z, s

)

=
∑

γ∈�0(N )\�0(M)

δ
γb

N=a

(
W

W 1
N (γb)

y
)s

+ O(1)

= δ
b
M=a

WM
N (a)

(
W 1

M (a)

W 1
N (a)

y
)s

+ O(1) = δ
b
M=a

WM
N (a)1−s ys + O(1).

On the other hand, (WM
N (a))1−s E (M)

a |σb has exactly the same formula as above by (3.9),
which finishes the proof. ��
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3.5. Explicit calculations with scattering matrices and related quantities. As is men-
tioned in Sect. 1.2, we need to study the behavior of |E∞(z, s, χ)|2 at each cusp in C(N ),
not just these in Cχ (N ). The change-of-basis formula, Theorem 3.2, now helps.

3.5.1. Preparation We begin with proving a lemma.

Lemma 3.14. Let K ≥ 1, and γ = (
u v
f w ) ∈ SL2(Z) with f | N. Then there exist

meromorphic Cχ1,χ2(s) and Dχ1,χ2(s) (depending on K and γ ) such that

Eχ1,χ2(Kγ z, s) = Cχ1,χ2(s)y
s + Dχ1,χ2(s)y

1−s + o(1), (3.12)

as y → ∞. Precisely,

Cχ1,χ2(s) = δq2| f
(q2K , f )2s

qs2K
s

χ1

( − f

(q2K , f )

)
χ2

( q2Ku

(q2K , f )

)
,

Dχ1,χ2(s) = δq1| f
θχ2,χ1(1 − s)

θχ1,χ2(s)

(q1K , f )2−2s

q1−s
1 K 1−s

χ1

( q1Ku

(q1K , f )

)
χ2

( − f

(q1K , f )

)
.

(3.13)

Proof. Observe Eχ1,χ2(Kγ z, s) is periodic with some integer period. By [Iw2, Propo-
sition 1.5], (3.12) holds. To obtain (3.13), we proceed directly. By definition, we have

Eχ1,χ2(Kγ z, s) = 1

2

∑
(c,d)=1

(q2�(Kγ z))sχ1(c)χ2(d)

|cq2Kγ z + d|2s

= 1

2

∑
(c,d)=1

(q2Ky)sχ1(c)χ2(d)

|(cq2Ku + d f )z + (cq2Kv + dw)|2s

= 1

2

∑
�∈Z

∑
(c,d)=1

cq2Ku+d f =�

(q2Ky)sχ1(c)χ2(d)

|�z + (cq2Kv + dw)|2s .

For any
s > 1,we see that as y → ∞, uniformconvergence allows us to interchange
the limit and the sums, yielding

Eχ1,χ2(Kγ z, s) = C(s)ys + o(1), for C(s) = 1

2

∑
(c,d)=1

cq2Ku+d f=0

(q2K )sχ1(c)χ2(d)

|cq2Kv + dw|2s .

Then (3.12) implies that C(s) = Cχ1,χ2(s), and we can calculate Cχ1,χ2(s) by simplify-
ing the above expression. Solving cq2Ku + d f = 0 for (c, d) = 1 and χ1(c)χ2(d) 	= 0,
we can easily see the solutions exist only if q2 | f , and they are

{
c = ± f

(q2K , f )

d = ∓ q2Ku
(q2K , f ) .

Since uw−v f = 1 and χ1χ2(−1) = 1, we arrive at the desired expression forCχ1,χ2(s).
By Proposition 3.11, we have

Dχ1,χ2(s) = θχ2,χ1 (1−s)
θχ1,χ2 (s) Cχ2,χ1(1 − s).

Inserting the formula of Cχ2,χ1 , we complete the proof. ��
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3.5.2. Entries of scattering matrices Recall �(s, χ) in Proposition 3.10, which is a
matrix of entries ϕab(s, χ) for all a, b ∈ Cχ (N ). With Lemma 3.14, we can write out
every entry of �. The logarithmic derivative of the determinant of scattering matrices
are important for their occurrence in the Selberg Trace Formula.

Proposition 3.15. If a, b ∈ Cχ (N ), then

ϕab(s, χ) = f −1
a W−s

a W 1−s
b

ϕ(( fa,
N
fa

))

∑
q1|( N

fa
, fb)

∑
q2| fa

∑∗

χ1,χ2

χ1(ub)χ2(ua)
L(2s, χ1χ2)

L(2s, χ1χ2χ0,N )

θχ2,χ1(1 − s)

θχ1,χ2(s)

(
q2
q1

)1−s
∑
a| fa

∑
b| N

fa

μ(a)μ(b)χ1(b)χ2(a)

a2s−1b
(q1

b fa
aq2

, fb)2−2s

χ1

( q1
b fa
aq2

(q1
b fa
aq2

, fb)

)
χ2

( fb

(q1
b fa
aq2

, fb)

)
,

where the asterisked sum is over all primitive χi (mod qi ) for i = 1, 2 with χ1χ2 � χ

(see Convention 2.9 for definition).

Proof. For b = ub
fb

as is in (2.1), we have by Theorem 3.2

ϕab(s, χ) = f −s
a W−s

a

ϕ(( fa,
N
fa

))

∑
q1| N

fa

∑
q2| fa

∑∗

χ1,χ2

χ2(−ua)
L(2s, χ1χ2)

L(2s, χ1χ2χ0,N )

∑
a| fa

∑
b| N

fa

μ(a)μ(b)χ1(b)χ2(a)

(ab)s
�

(
Eχ1,χ2

(b fa
aq2

σbz, s
))

,

where �(Eχ1,χ2) stands for the coefficient of the y
1−s-term of Eχ1,χ2 . Since the choice

of σb does not affect the constant term in the Fourier expansion, we can take

σb = γb

(
W 1/2

b 0

0 W−1/2
b

)

by Remark 2.3, where γb = (
ub v
fb w ) ∈ SL2(Z). Then for K = b fa

aq2
, and γ = γb, (3.13)

gives

�
(
Eχ1,χ2

(b fa
aq2

σbz, s
))

= δq1| fb
θχ2,χ1(1 − s)

θχ1,χ2(s)

(q1
b fa
aq2

, fb)2−2s

q1−s
1 (

b fa
aq2

)1−s

χ1

( ubq1
b fa
aq2

(q1
b fa
aq2

, fb)

)
χ2

( − fb

(q1
b fa
aq2

, fb)

)
W 1−s

b .

Then we complete the proof after substitution. ��
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There are two special cases of Proposition 3.15 of special interest in this paper.
Firstly, we consider the case a = ∞. Notice that

(
1 0
N 1

)
a = a′ = 1

N , by Remark 3.3,
so we have ϕab = χ(1)ϕa′b = ϕa′b. In addition, we have the following closed-form
formula.

Corollary 3.16. For b = u
f ∈ Cχ (N ) in (2.1), we have

ϕ∞b(s, χ) = δ f | Nq τ(ψ)
W−s

b f 1−2s

ϕ(( f, N
f ))

�(2 − 2s, ψ)

�(2s, ψ)

∏
p|N

(
1 − ψ(p)

p2s

)−1 ∏
p| f

(1 − 1

p
)
∏
p| Nf

(
1 − ψ(p)

p2s−1

)
,

where � is the completed Dirichlet L-function. In particular, ϕ∞∞(s, χ) = 0 if χ 	=
χ0,N , and ϕ∞a(

1
2 ) = −δ

a
N=∞.

Sketch of proof. We need to substitute fa = N , fb = f into Proposition 3.15. Briefly,
after some local analysis over different types of prime numbers, we have

∑
a|N

μ(a)ψ(a)

a2s−1

( N

aq
, f

)2−2s
ψ

( f

( N
aq , f )

)
= δ f | Nq f 2−2s

∏
p| Nf

(
1 − ψ(p)

p2s−1

) ∏
p�

N
f

(
1 − 1

p

)
.

One can verify the rest easily and complete the proof. ��
Secondly, we assume χ is primitive (mod N ), where only Atkin–Lehner cusps are
singular for χ . Given an Atkin–Lehner cusp a = 1

f ∈ C(N ), we call a∗ := 1
N/ f ∈ C(N )

the Atkin–Lehner complement of a (on level N ). The following calculation by N. Pitt
depicts a special property of Atkin–Lehner complement. Humphries [Hum1] computed
it in full details, and on general weights.

Corollary 3.17. [Iw1, Proposition 13.7] If a, b ∈ C(N ) areAtkin–Lehner, andχ = χ1χ2

with χ1 primitive (mod N
fa

) and χ2 primitive (mod fa), then we have

ϕab(s, χ) =
{

χ1(−1)τ (χ1)τ (χ2)N−s �(2−2s,χ1χ2)
�(2s,χ1χ2)

if b = a∗;
0 otherwise.

3.5.3. The behavior of Eisenstein series at cusps that are not singular As we have
mentioned in Sect. 1.2, the cuspidal behavior of Eisenstein series at cusps not singular
for the central character affects the precise description of E .
Proposition 3.18. If a ∈ Cχ (N ), and b ∈ C(N )\Cχ (N ), then as y → ∞, we have

Ea(σbz, s, χ) = os(1).

Selberg proved (yet not published) the proposition for primitive χ ; see [Se, Thm. 7.1,
p.641]. Here we give an alternative proof, for which we need some preparation.

Convention 3.19. We denote the p-adic order function by νp(·).
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Lemma 3.20. Let χi be primitive (mod qi ) for i = 1, 2, and χ = χ1χ2 be induced by
primitive ψ (mod q). Assume there is f | N such that q1 | N

f and q2 | f , and K | N
satisfying:

νp(K ) ≤
{

νp(N ) − νp(q2) if p � q1, p | q2;
νp( f ) − νp(q2) if p | q1. (3.14)

If Eχ1,χ2(Kσbz, s, χ) is unbounded as y → ∞ for some b ∈ C(N ), then b ∈ Cχ (N ).

Proof. If Eχ1,χ2 |Kσb is unbounded, then by Lemma 3.14, either Cχ1,χ2(s) 	= 0 or
Dχ1,χ2(s) 	= 0.

In the former case, we have q2 | fb, and for all prime numbers p | q1,

νp(K ) ≥ νp( fb) − νp(q2).

From (3.14), we know νp(K ) ≤ νp( f ) − νp(q2), which gives νp( f ) ≥ νp( fb). Then
by assumption on f , we have

νp(q1) ≤ νp(N/ f ) ≤ νp(N/ fb),

indicating q1 | N
fb
. Together with q2 | fb, we find q = [q1, q2] | [ fb, N

fb
], which means

b is singular for χ by Proposition 2.11.
In the latter case, we have q1 | fb, and for all prime numbers p | q2,

νp( fb) ≤ νp(q1) + νp(K ).

We want to show

νp(q2) ≤ νp(N ) − νp( fb) (3.15)

for all p | q2, since this implies q2 | N
fb
, and hence that b is singular for χ1χ2 for the

same reason in the previous case. We further bifurcate the discussion. Say p also divides
q1. Then

νp( fb) ≤ νp(q1) + νp(K ) ≤ νp(q1) + νp( f ) − νp(q2) ≤ νp(N ) − νp(q2),

Thus (3.15) holds. On the contrary, if p � q1, then νp( fb) ≤ νp(K ) ≤ νp(N ) − νp(q2),
giving (3.15) again. ��
Proof of Proposition 3.18. By Theorem 3.2, Ea(σbz, s, χ) equals a linear combination
of Eχ1,χ2(Kσbz, s, χ), where χi is primitive(mod qi ) for i = 1, 2, χ1χ2 � χ , and
K | N satisfies (3.14). By Lemma 3.20, none of these Eχ1,χ2(Kσbz, s, χ) contributes
any ys or y1−s-terms, so the proof is complete. ��

243



J. Pan, M. P. Young

3.6. The formal inner product of Eisenstein series. It is well-known that Eisenstein
series are not in L2. It is nevertheless useful to consider the formal inner product of
two Eisenstein series inspired by [Iw2, Sect. 7.1]. Concretely, if a, b ∈ C(N ), then the
formal inner product of Ea and Eb is defined by

〈Ea(·, s), Eb(·, s)〉Eis
N

:= 4πδab,

when s = 1
2 + iT . For more details, see Sect. 5, where we adopt newform Eisenstein

series to build an alternative orthonormal basis. To accomplish this,wehave the following
lemma as a special case of [Y2, Lemma 8.3].

Lemma 3.21. For primitive ψ (mod q) with q2 | N, we have

〈Eψ,ψ , Eψ,ψ 〉Eis
N

= 4πN
∏
p|q

(1 − p−1)
∏
p|N

(1 + χ0,q (p)p
−1).

3.7. Laurent expansions of Eisenstein series.

Proposition 3.22. There is an SL2(Z)-invariant function G such that

E(z, s) = 3/π

s − 1
+ G(z) + O(|s − 1|),

and as y → ∞,

G(z) = y + O(log y). (3.16)

Proposition 3.22 follows directly from [IK, (22.66)–(22.69)], sowe omit the proof. These
formulas also show that G(z) ∈ A(Y0(1)) can be expressed in terms of the logarithm of
the Dedekind eta function, but all we need for our later purposes is (3.16).

It is also important to explicitly evaluate the Laurent expansion of Ea(z, s) around
s = 1 in terms of the newform Eisenstein series.

Proposition 3.23. For a = u
f ∈ C(N ), we have

Ea(z, s) = Vol(Y0(N ))−1

s − 1
+ ca,0 +

∑
g|N

ca,gG|g

+
∑

1<r |( f,N/ f )

∑∗

η(r)

η(u)
∑

g|Nr−2

ca,η,g Eη,η(gz, 1) + O(|s − 1|),

where ca,η,g are independent of u,

ca,0 = 1

Vol(Y0(N ))

(
log

( f, N
f )

N
+

∑
p|N

log p

p + 1
−

∑
p|( f,N/ f )

log p

p − 1

)
, (3.17)

and

ca,g = ( f, N/ f )

Nϕ(( f, N/ f ))

ζ(2)

L(2, χ0,N )

∑
a| f

∑
b| Nf

δb f/a=g
μ(a)μ(b)

ab
. (3.18)
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Proof. By Theorem 3.2, Ea(z, s) can be expressed as a linear combination of Eη,η|g for
primitive η (mod r ) with r | ( f, N/ f ), and suitable g|N . The contribution from r > 1
is

W−s
a f −s

ϕ(( f, N/ f ))

∑
1<r |( f,N/ f )

∑∗

η

η(−u)
L(2s, η2)

L(2s, η2χ0,N )

∑
a| f

∑
b| Nf

μ(a)μ(b)η(ab)

asbs
Eη,η

(b f
ar

z, s
)
,

which can be expressed as
∑

1<r |( f,N/ f )
∑∗

η(r) η(−u)
∑

g|Nr−2 ca,η,gEη,η(gz, 1) with
ca,η,g independent of u. By Proposition 3.22, the contribution from r = 1 equals

W−s
a f −s

ϕ(( f, N/ f ))

ζ(2s)

L(2s, χ0,N )

∑
a| f

∑
b| Nf

μ(a)μ(b)

asbs

( 3/π

s − 1
+ G

(b f
a
z
)
+ O(s − 1)

)
.

Let

Fa(s) = W−s
a f −s

ϕ(( f, N/ f ))

ζ(2s)

L(2s, χ0,N )

∑
a| f

∑
b| Nf

μ(a)μ(b)

asbs
. (3.19)

It is well-known that Ress=1Ea(z, s) = (Vol(Y0(N )))−1, so 3
π
Fa(1) = Vol(Y0(N ))−1;

of course, for consistency this can be checked directly from (3.19). Hence the contribu-
tion of r = 1 to the Laurent expansion of Ea(z, s) is of the form

Vol(Y0(N ))−1

s − 1
+ 3

π
F ′
a(1) +

∑
g|N

ca,gG|g + O(s − 1), (3.20)

for ca,g given by (3.18). The term F ′
a(1) gives rise to ca,0, which is computed by

F ′
a

Fa
(1) = − log N + log( f, N

f ) +
∑
p|N

log p

p + 1
−

∑
p|( f,N/ f )

log p

p − 1
.

��
Although the level 1 Eisenstein series is an eigenfunction of the Hecke operators, the

same is not quite true for the function G.

Lemma 3.24. For n ≥ 1, we have

Tn(G) = λ(n)G +
3

π

√
n

∑
a|n

a−1 log
n

a2
,

where Tn is the nth Hecke operator, and λ(n) = λ1,1(n, 1) = n1/2
∑

b|n b−1 as is in
(3.5).

Remark 3.25. Our normalization of the Hecke operator Tn is so that Tnu j = λ j (n)u j
(and see Convention 1.1).

Proof. Recall that G(z) = Ress=1(s − 1)−1E(z, s), so by Remark 3.7 we have

Tn(G) = Res
s=1

(
(s − 1)−1λ(n, s)E(z, s)

)
.

By Proposition 3.22 and since λ(n, s) = ∑
ab=n(

b
a )s−1/2, we finish the proof. ��
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3.8. Some inequalities. Here we perform some elementary calculations related to ϕ∞a,
which are critical for future arguments. To begin, we have the following standard lemma.

Lemma 3.26. There exists an absolute constant C so that

∑
p|N

1

p
≤ log log log(N + 15) + C, and

∑
p|N

log p

p
≤ log log(N + 2) + C.

Convention 3.27. For integers A and B, we denote limn→∞(A, Bn) by AB and A
AB

by
A⊥
B .

From the fact N⊥
q | N

q , we have the following corollary.

Corollary 3.28. If s = 1
2 + iT and ψ is primitive (mod q) for q | N, then

∑
p|N

ψ(p) log p

ψ(p)p2s − 1
� log log( Nq + 2).

Then we can bound the coefficients in Proposition 3.23.

Corollary 3.29. For a = u
f ∈ C(N ), we have

ca,0 = 1

Vol(Y0(N ))

(
log

( f, N/ f )

N
+ O(log log N )

)
, (3.21)

and
∑
g|N

|ca,g| � N−1(log log N )3. (3.22)

Proof. The equation (3.21) follows from Lemma 3.26. By (3.18), we have

∑
g|N

|ca,g| ≤ ( f, N/ f )

Nϕ(( f, N/ f ))

ζ(2)

L(2, χ0,N )

∑
a| f

∑
b| Nf

|μ(a)μ(b)|
ab

= N−1
∏

p|( f,N/ f )

(1 − p−1)−1
∏
p|N

(1 − p−2)−1
∏
p| f

(1 + p−1)
∏
p| Nf

(1 + p−1).

Then Lemma 3.26 completes the proof of (3.22). ��
Convention 3.30. Given n ≥ 1, we denote the number of prime divisors of n by ω(n).

Proposition 3.31. For any positive integers k and L,

∑
g|L

log g

g
kω(g) �k (log log(L + 2))k+1.
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Proof. Decomposing log g into
∑

p|g νp(g) log p, we have

∑
g|L

log g

g
kω(g) =

∑
p|L

log p
∑
g|L

g≡0(p)

νp(g)

g
kω(g) =

∑
p|L

log p

νp(L)∑
i=1

i
∑
g|L

νp(g)=i

kω(g)

g

=
∑
p|L

log p

νp(L)∑
i=1

ik

pi
∑
g|L

g 	≡0(p)

kω(g)

g

= k
∑
p|L

log p

νp(L)∑
i=1

i

pi

︸ ︷︷ ︸
A

B(p)︷ ︸︸ ︷
∏
p′|L
p′ 	=p

(
1 + k

νp′ (L)∑
j=1

1

(p′) j
)
.

It is not hard to find that 0 < A � ∑
p|L

log p
p � log log(L + 2) by Lemma 3.26. Since

1 ≤ B(p) ≤ ∏
p′|L

(
1 + k

∑∞
j=1

1
(p′) j

) =: B, we have again by Lemma 3.26

log B =
∑
p|L

log
(
1 + k

∞∑
j=1

1

p j

) = k
∑
p|L

1

p
+ Ok(1) ≤ k log log log(L + 15) + Ok(1).

Then B �k (log log(L + 2))k implies
∑

g|L
log g
g kω(g) ≤ AB �k (log log(L + 2))k+1.

��
Corollary 3.32. For a = ua

fa
∈ C(N ) as in (2.1), and s = 1

2 + iT , we have

∑
a

|ϕ∞a(s, χ)|2 log N

q fa
�

(
log log

(N

q
+ 2

))5; (3.23)

∑
a

|ϕ∞a(s, χ)|2
∑
p| N

fa

ψ(p) log p

ψ(p)p2s−1 − 1
�

(
log log

(N
q

+ 2
))5; (3.24)

∑
a

|ϕ∞a(s, χ)|2 log fa = log
N

q
+ O

((
log log

(N
q

+ 2
))5)

. (3.25)

Proof. Define S f (s, χ) := ∑
a: fa= f |ϕ∞a(s, χ)|2 for f | N

q . By Corollary 3.16, we
have

S f (s, χ) = C f (s, χ)
∏
p| Nf

S p
f (s, χ),

where

C f (s, χ) = q f

N

∏
p|( f, Nf )

(1 − p−1)
∏

p|N⊥
(N/ f )

|1 − ψ(p)p−2s |−2(1 − p−1)2 ≤ q f

N
,
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and

S p
f (s, χ) =

∣∣∣1 − ψ(p)p1−2s

1 − ψ(p)p−2s

∣∣∣2 ≤
{
4 if p � q,

1 if p | q.

There being at most ω(( Nf )⊥
q ) ≤ ω( N

q f ) such p that S p
f (s, χ) > 1 in the last product,

we have

S f (s, χ) ≤ q f

N
4ω( N

q f ) =: S f (χ). (3.26)

Then (3.23) follows from Proposition 3.31 and the fact
∣∣∣ ∑

a

|ϕ∞a(s, χ)|2 log N

q fa

∣∣∣ ≤
∑
f | Nq

S f (χ) log
N

q f
.

We similarly have

∑
a

|ϕ∞a(s, χ)|2
∑
p| N

fa

∣∣∣ ψ(p) log p

ψ(p)p2s−1 − 1

∣∣∣ ≤
∑
f | Nq

∑
p| N

q f

∣∣∣S f (s, χ)
ψ(p) log p

ψ(p)p2s−1 − 1

∣∣∣.

Noticing that |S p
f (s, χ) 1

ψ(p)p2s−1−1
| = |1−ψ(p)p1−2s |

|(1−ψ(p)p−2s )|2 ≤ 2
(1−p−1)2

≤ 8, we have

∣∣∣ S f (s, χ)

ψ(p)p2s−1 − 1

∣∣∣ � S f (χ).

Consequently,

∑
f | Nq

∑
p| N

q f

∣∣∣S f (s, χ)
ψ(p) log p

ψ(p)p2s−1 − 1

∣∣∣ �
∑
f | Nq

S f (χ)
∑
p| N

q f

log p ≤
∑
f | Nq

S f (χ) log
N

q f
,

and (3.24) follows from Proposition 3.31. Equation (3.25) results from (3.23) and that∑
a |ϕ∞a(s)|2(log fa + log N

q fa
) = log N

q

∑
a |ϕ∞a(s)|2 = log N

q by Proposition 3.10.
��

4. Integral Renormalization

4.1. Equivalent definitions of integral regularizations. We start by recalling Zagier’s
definition of integral regularizations on Y0(1). Assume F(z) is SL2(Z)-invariant and
satisfies

F(z) = ψF (y) + O(y−P ) (4.1)

as y → ∞ for all integers P , where ψF = ∑m
i=1 ci y

αi , with ci ∈ C
∗, distinct αi ∈

C\{1}, i = 1, 2, ...,m, and m = m(F) ≥ 1. When m 	= 0 and 
αi ≥ 1 for some i ,
F is not integrable in the usual sense. Nevertheless, F is “renormalizable” (in Zagier’s
terminology). Write R.N .(

∫
Fdμ), the renormalization of

∫
Fdμ, defined by

• ∫
y<R Fdμ +

∫
y≥R(F − ψF )dμ +

∫ R y−2ψF (y)dy.
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Here the first two integrals are performed over the standard fundamental domain F for
SL2(Z), with their displayed additional restrictions, and the third is the “anti-derivative"
with respect to R, i.e., a linear combination of R-powers without a nonzero constant
term. Zagier’s definition is independent of R, as we verify in the following subsection.
Moreover, as we let R → ∞, the second term tends to zero, giving an alternative
definition:

• lim
R→∞

( ∫
y<R Fdμ − ∫ R y−2ψF (y)dy

)
.

The third description is also called the regularization of the integral
∫
Fdμ by Michel

and Venkatesh [MiVe]:

• ∫ (
F − ∑

1≤i≤m

 αi≥1/2

ci E(z, αi )
)
dμ,

which is based on R.N .
( ∫

E(z, s)dμ
) = 0, a direct result of the following theorem.

Theorem 4.1 (Zagier [Z]).Assume F is continuous, hasFourier expansion
∑

an(y)e(nx)
and satisfies all above assumptions. Then E(z, s)F(z) is also renormalizable for 
s
large, and for any R > 1 the following function

∫ R

0
a0(y)y

s−2dy +
∫ ∞

R
(a0(y) − ψF (y))ys−2dy −

∫ R

ψF (y)ys−2dy (4.2)

has meromorphic continuation and equals R.N .(
∫
E(z, s)F(z)dμ).

4.2. Generalization of Zagier’s result to arbitrary level. By [Iw2, Proposition 2.4],
there exists a fundamental domain for Y0(N ), whose vertices are �0(N )-inequivalent
cusps. Let F be such a fundamental domain. For R > 1, if we write Fa(R) to be the
cuspidal zone, i.e., the image of the truncated strip 0 < x < 1, y > R under σa, and
F(R) = F\(⊔

a Fa(R)
)
.

Assume F(z) ∈ A(Y0(N )) has Fourier expansion
∑

an(y)e(nx), and at each cusp
a, there is ψa = ∑

i ca,i yαa,i , such that i = 1, 2, ...,ma for some ma ≥ 1, and

F(σaz) = ψa(y) + O(y−P ), (4.3)

for all integers P as y → ∞, where ca,i ∈ C\{0} and αa,i ∈ C\{1}. Then we call F
renormalizable, because

∫
Fdμ can be renormalized as follows for all R > 1:

R.N .
(∫

F
F(z)dμ

)
:=

∫
F(R)

Fdμ +
∑
a

( ∫
Fa(R)

(
F(z)

− ψa(Im (σ−1
a z))

)
dμ −

∫ R

ψay
−2dy

)
.

Again, the expression of the renormalized integral is independent of R: pick 1 <

R1 < R2, then the difference between the right hand sides of the equation evaluated at
R2 and R1 is
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∫
(F(R2)−F(R1))

Fdμ −
∑
a

( ∫
σa(F∞(R1)−F∞(R2))

(
F(z) − ψa(� (σ−1

a z))
)
dμ

−
∫ R1

R2

ψa(y)y
−2dy

)

=
∫
F∞(R1)−F∞(R2)

∑
a

ψa(y)dμ −
∑
a

∫ R1

R2

ψa(y)y
−2dy = 0.

Remark 4.2. Just as in Zagier’s level 1 case, if the integrand is integrable already, the
renormalized integral agrees with the usual integral.

Now suppose F ∈ A(Y0(N ), χ) satisfies (4.3) and has Fourier expansion
∑

aan (y)e(nx)
at each a, with

∑
n 	=0 |aan (y)| = O(y−P ) as y → ∞ for all P ≥ 1. Define Ra(F; s) :=∫ ∞

0 (aa0 (y) − ψa(y))ys−2dy, which converges for 
s large by work of Dutta-Gupta
[D-G].

Hulse, Kuan, Lowry-Duda and Walker essentially generalized Zagier’s theory to
higher levels. Their original claim only concerns case χ being trivial, but it takes no
extra effort to see that the same argument works for general central characters.

Theorem 4.3 [HKL-DW, Proposition A3]. If 
s is sufficiently large, and a ∈ Cχ (N ),
then

R.N .
(〈Ea(·, s, χ), F(·)〉N

) = Ra(F; s).

Consequently, the renormalized integral of a single Eisenstein series, attached to
any cusp, vanishes, which justifies the third definition in Zagier’s work, as well as our
generalization:

R.N .
( ∫

Fdμ
)

=
∫ (

F −
∑
a

∑
Reαa,i≥1/2

Ea(z, αa,i )
)
.

We also call this the regularization of 〈F, 1〉N and write it 〈F, 1〉reg
N
.

Corollary 4.4. For any a and b singular for χ and s1, s2 ∈ C\{0, 1}, we have
〈Ea(·, s1, χ), Eb(·, s2, χ)〉reg

N
= 0.

Remark 4.5. Note the difference between 〈·, ·〉reg
N

above and 〈·, ·〉Eis
N

from Lemma 3.21.

5. Spectral Decomposition

Here we take the notation in [Iw2] of Bδ(Y0(N )) with δ ≥ 0, which stands for the space
of smooth automorphic functions f on Y0(N ), satisfying

f (σaz) � yδ as y → ∞,

for all a ∈ C(N ). We note that for δ < 1
2 , Bδ(Y0(N )) ⊂ L2(Y0(N )).
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5.1. Classical theory. For F ∈ Bδ(Y0(N )) with δ < 1/2, we have spectral decomposi-
tion:

F(z) = 〈F, 1〉N
〈1, 1〉N

+
∑

u∈O(N )

〈F, u〉N u(z) +
1

4π

∑
a∈C(N )

∫ ∞

−∞
〈F, Ea(·, 1

2 + i t)〉N Ea(z, 1
2 + i t)dt.

Remark 5.1. In our work, the choice of Ea as an orthogonal basis in the spectral de-
composition is convenient for computations with the main terms, but not for the error
terms.

5.2. Regularization for spectral decomposition. To apply the spectral decomposition,
we need to regularize |E |2. See [MiVe, Sect. 4.3–4.4] for more about the general theory.

Proposition 5.2. For E = E∞(z, 1
2 + iT, χ) as in Theorem 1.9, we have |E |2 − E ∈

Bε(Y0(N )) for arbitrarily small ε > 0 with

E := 2

(
ϕ∞∞( 12 + iT, χ)E∞(z, 1 − 2iT )

)

+ lim
β→0+

(
E∞(z, 1 + β) +

∑
a∈Cχ (N )

ϕ∞a( 12 + iT, χ)ϕ∞a( 12 + β − iT, χ)Ea(z, 1 − β)
)
.

Remark 5.3. Wenote that as long as T 	= 0,E iswell-defined as an element inBε(Y0(N )).
See [Wu, Sect. 2] for an extension for the case of T = 0.

Proof. This is done by comparing ψFβ
(see (4.1) for definition) with ψEβ

for

Fβ(z, T ) = E∞(z, 1
2 + iT, χ)E∞(z, 1

2 + β − iT, χ) and

Eβ(z, T ) = ϕ∞∞( 12 + iT, χ)E∞(z, 1 + β − 2iT ) + ϕ∞∞( 12 + β − iT, χ)E∞(z, 1 − β + 2iT )

+ E∞(z, 1 + β) +
∑
a

ϕ∞a( 12 + iT, χ)ϕ∞a( 12 + β − iT, χ)Ea(z, 1 − β).

The constant terms in the Fourier expansion of E∞ can be calculated via (3.1) and (3.5),
and that of E |σa is computable with Proposition 3.15. Now that ψFβ and ψEβ

agree for
all sufficiently small β > 0, their difference lies in Bε(Y0(N )), for all ε > β. ��

5.3. Regularized spectral decomposition in a new choice of orthonormal basis. Define

O j (M) :=
{
u<�>

j (z) =
∑
d|�

ξ�(d)u j |d
∣∣∣ u j ∈ Hi t j (M1), � | M2, M = M1M2

}
,

(5.1)

where Hi t j (M1) stands for the set of L2(Y0(M))-normalized Hecke–Maass newforms
of level M1 and spectral parameter t j , and ξ�(d) are certain coefficients satisfying the
bound

ξ�(d) � �ε(�/d)θ− 1
2 , (5.2)
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as is described in [BM, (5.6)]. Here each u j can be written as ρ j u∗
j , where

u∗
j (z) = √

y
∑
n 	=0

λ j (n)Kit j (2π |n|y)e(nx), (5.3)

stands for the Hecke-normalized cusp form, and

ρ j = ‖u∗
j‖−1

2 = O(M− 1
2 +εe

π |t j |
2 ). (5.4)

Blomer and Milićević1 showed that O j (M) is an orthonormal basis of the space of
cusp forms of spectral parameter t j . Consequently, O(M) := ⊔∞

j=1O j (M) makes an
orthonormal basis of Maass cusp forms of level M .

Parallelly, as explained in [Y2, Sect. 8.3],

OEis
t (M) :=

{
E<�>

η,η (z, 1
2 + i t) =

∑
d|� ξEis� (d)Eη,η(dz,

1
2 + i t)

‖E (M)
η,η‖Eis2

∣∣∣ η (mod r), r2� | M
}

(5.5)

forms a formal orthonormal basis, where ξEis� (d) also satisfy the same bound as ξ�(d)

in (5.2), being obtained in the same way via substitutions of the Hecke eigenvalues. By
Lemma 3.21,

‖E (M)

η,η‖Eis2 :=
√

〈E (M)
η,η, E

(M)
η,η〉EisM

= √
4πM

∏
p|r

(1 − p−1)
1
2

∏
p|M⊥

r

(1 + p−1)
1
2 = M

1
2 +o(1).

From the definition of renormalized integral and Corollary 4.4, we have 〈|E |2 −
E, 1〉N = 0. Since 〈E, u〉N = 0, applying the Plancherel formula to 〈|E |2 − E, φ〉N
yields

〈|E |2 − E, φ〉N =
∑

u∈O(M)

〈|E |2, u〉N 〈u, φ〉M +
∫ ∞

−∞

∑
Et∈OEis

t (M)

〈|E |2, Et 〉regN
〈Et , φ〉M dt.

(5.6)

Consequently we can take (5.1) and (5.5) back to (5.6), and obtain

〈|E |2 − E, φ〉N =
∑
j≥1

∑
M1M2=M

∑
u j∈Hi t j

(M1)

∑
�|M2

〈|E |2, u<�>
j 〉N 〈u<�>

j , φ〉M

+
∫ ∞
−∞

∑
r2L=M

∑∗

η (mod r)

∑
�|L

〈|E |2, E<�>
η,η (·, 1

2 + i t)〉reg
N

〈E<�>
η,η (·, 1

2 + i t), φ〉M dt,

(5.7)

where the asterisked sum is over all primitive Dirichlet characters (mod r). We estimate
the terms in (5.6), or equivalently (5.7), and 〈E, φ〉N in the following sections.

1 See https://www.uni-math.gwdg.de/blomer/corrections.pdf for corrections of [BM].
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6. Error Term Estimation

6.1. Calculation with Fourier coefficients.

Lemma 6.1. Let
s be sufficiently large. Suppose f ∈ A(Y0(N ), χ) and g ∈ A(Y0(N ))

have Fourier expansions

f (z) = a0(y) +
√
y
∑
n 	=0

λ f (n)a(ny)e(nx)

g(z) = √
y
∑
n 	=0

λg(n)b(ny)e(nx),

where λ f and λg are multiplicative and λ∗(−n) = λ∗(−1)λ∗(n) for ∗ = f or g. Then
we have

〈E (N )∞ (·, s, χ), f · g〉N = (λ f (−1) + λg(−1))h(s)
∑
n≥1

n−sλ f (n)λg(n),

where h(s) = ∫ ∞
0 ys−1a(y)b(y)dy.

Proof. This is easy by unfolding and integration on x . ��
Corollary 6.2. With the same assumptions as Lemma 6.1, if we further have f |A ∈
A(Y0(N ), χ) and g|B ∈ A(Y0(N )) for some A, B | N, then

〈E (N )∞ (·, s, χ), f |A · g|B〉N = (λ f (−1) + λg(−1))h(s)ZA,B(s),

with

ZA,B(s) =
√
AB

[A, B]s
∑
n≥1

n−sλ f

( [A, B]
A

n
)
λg

( [A, B]
B

n
)
.

6.2. Cuspidal contribution. The following corollary is a special case of Corollary 6.2
with (5.3) and (3.5).

Corollary 6.3. For all A | N
q and B | N, we have

〈E (N )∞ (·, 1
2 + iT, χ), E1,ψ |A · u j |B〉N = FT (t j )ZA,B( 12 + iT, ψ, u j ),

where

ZA,B( 12 + iT, ψ, u j ) =
√
AB

[A, B] 12 +iT
∑
n≥1

λ1,ψ ( [A,B]
A n)λ j (

[A,B]
B n)

n
1
2 +iT

, and

FT (t j ) = ρ1,ψ ( 12 + iT )ρ j (λ1,ψ (−1) + λ j (−1))
∫ ∞

0
y− 1

2 +iT KiT (2πy)Kit j (2πy)dy.
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From (3.6), (5.4), and [GR, (6.576.4)], we see FT (t j ) � N εM− 1
2 eHT (t j )P(t j , T )

for some polynomial P(x, y), where

HT (t j ) =
{
0 if |t j | ≤ 2|T |,
π
2 (2|T | − |t j |) if |t j | > 2|T |. (6.1)

As for ZA,B( 12 + iT, ψ, u j ), we can rewrite the Dirichlet series as an Euler product

√
AB

[A, B] 1
2 +iT

∏
p

(∑
n≥0

λ1,ψ (pn+νp(
[A,B]
A ))λ j (pn+νp(

[A,B]
B ))

pn( 12 +iT )

)
= Fj (A, B)

∑
n≥1

λ1,ψ (n)λ j (n)

n
1
2 +iT

,

where Fj (A, B) is a finite Euler product over prime divisors of [A, B]. Inserting the

bounds fromRemark3.5 andConvention1.1,wehave Fj (A, B) = O(N ε(A, B)
1
2 (A⊥

M )θ ).
Applying the Rankin–Selberg method (see e.g. [Iw1, (13.1)]), we have

∑
n≥1

λ1,ψ (n)λ j (n)

n
1
2 +iT

= L( 12 , u j )L( 12 + 2iT, u j ⊗ ψ)

L(1 + 2iT, ψ · χ0,M )
.

Recalling equation (3.1) and the fact |L(1 + 2iT, ψ)| �T q−ε, we have the following
lemma.

Lemma 6.4. Keeping above notations and s = 1
2 + iT , we have for all d | M

〈|E∞(·, s, χ)|2, u j |d 〉N �T eHT (t j )N− 1
2 +εM− 1

2 ( N
q , d)

1
2 ( N

q )θ |L( 12 , u j )L( 12 + 2iT, u j ⊗ ψ)|.

Notice Lemma 6.4 implies Proposition 1.15. Now we can estimate the first part of (5.6).

Proposition 6.5. Keeping all notations in Theorems 1.2 and 1.9, we have

∑
u∈O(M)

〈|E∞(·, 1
2 + iT, χ)|2, u〉N 〈u, φ〉M �T N− 1

2 +ε( Nq )θ M
1
2 q

3
8 ‖φ‖2.

Before proving Proposition 6.5, we claim a lemma.

Lemma 6.6. We have
∑

t j≤2|T |+2 log N

∑
u j∈Hi t j (M1)

|L( 12 , u j )|2 �T,ε N εM1.

The proof follows from the spectral large sieve inequality, so we omit it. See Motohashi
[Mo, (3.4.4)] for an example on the case M = 1.

Remark 6.7. A bound of the same quality actually holds for the fourth moment of central
values of these L-functions, which follows from the spectral large sieve for �0(M)

developed by Deshouillers and Iwaniec [DI]. Motohashi [Mo, Theorem 3.4] shows this
for the case M = 1.
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Proof of Proposition 6.5. By (5.1), (5.7) and Cauchy–Schwarz, we have

∑
u∈O(M)

|〈|E∞|2, u〉N 〈u, φ〉M | =
∑
j≥1

∑
u j∈O j (M)

|〈|E∞|2, u j 〉N 〈u j , φ〉M |

≤
(∑

j≥1

∑
u j∈O j (M)

|〈|E∞|2, u j 〉N |2
) 1

2
(∑

j≥1

∑
u j∈O j (M)

|〈u j , φ〉M |2
) 1

2
.

Observe that by Bessel’s inequality,
∑
j≥1

∑
u j∈O j (M)

|〈u j , φ〉M |2 ≤ ‖φ‖22.

As for the other factor, we recall (5.1) and (5.2), and apply Cauchy–Schwarz again to
see

|〈|E∞|2, u<�>

j 〉N | ≤
( ∑

d|�
|ξ<�>

d |2
) 1

2
(∑

d|�
|〈|E∞|2, u j |d 〉N |2

) 1
2 � �ε max

d|� |〈|E∞|2, u j |d 〉N |

�ε N− 1
2 +εM− 1

2 eHT (t j )
( N
q , �

) 1
2
( N
q

)θ
∣∣∣L( 1

2 , u j
)
L
( 1
2 + 2iT, u j ⊗ ψ

)∣∣∣,
where ξ<�>

d is defined in (5.1).Because of the factor eHT (t j ) (see (6.1) for its magnitude),
we may truncate the sum at |t j | ≤ 2|T | + 2 log N , with a very small error term.

Furthermore, for all |t j | ≤ 2|T | + 2 log N , we have

∑
l|M2

|〈|E∞|2, u<�>

j 〉N |2 �ε N−1+ε

∑
l|M2

( Nq , �)

M

( N
q

)2θ |L( 12 , u j )L( 12 + 2iT, u j ⊗ ψ)|2

= N−1+εM−1( Nq )2θ ( Nq , M2)|L( 12 , u j )L( 12 + 2iT, u j ⊗ ψ)|2,
and by Theorem 1.16 and Lemma 6.6, we have

∑
|t j |≤2|T |+2 log N

∑
u j∈Hi t j (M1)

∑
�|M2

|〈|E∞|2, u<�>

j 〉N |2

�T N−1+εM−1( Nq )2θ ( Nq , M2)M1 max{M
1
2
1 q

3
4 , M1(M1, q)

1
2 q

1
2 }.

In the summation over M1M2 = M , the term with M = M1 and M2 = 1 dominates, so

( ∑
|t j |≤2|T |+2 log N

∑
u j∈O j (M)

|〈|E∞|2, u j 〉N |2
) 1

2 �T N− 1
2 +ε( N

q )θ max{M 1
4 q

3
8 , M

1
2 (M, q)

1
4 q

1
4 }.

��
Remark 6.8. Following the same line as Lemma 6.6 we can similarly have

∑∗

η (mod r)

∫ 2|T |+2 log N

−2|T |−2 log N
|L( 12 , Eη,η(·, 1

2 + i t))|2dt �T N εr.
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6.3. Eisenstein contribution. Now we estimate the second part in (5.6). It is not hard to
see we have made every piece correspond well with their cusp form counterpart in the
rewritten formula (5.7), and that is why we chooseOEis

t (M) to be the orthonormal basis.

Lemma 6.9. Keeping all notations as in (5.7), we have

〈|E∞(·, s, χ)|2, Eη,η(d·, 1
2 + i t)〉reg

N

�T eHT (t)N− 1
2 +ε( Nq , d)

1
2 |L( 12 , Eη,η)L( 12 + 2iT, Eη,η ⊗ ψ)|,

HT (·) being the same as in (6.1). Here s = 1
2 + iT and Eη,η in the L-functions depends

on t.

The proof is almost the same as that of Lemma 6.4, so we omit the details.

Proposition 6.10. Keeping all notations from Theorems 1.2 and 1.9, we have
∫ ∞

−∞

∑
Et∈OEis

t (M)

〈|E |2, Et 〉regN
〈Et , φ〉M dt �T N− 1

2 +εq
3
8 M

1
2 ‖φ‖2 .

Sketch of proof. After Lemma 6.9, the calculation can be reduced to some multiple of

∑∗

η (mod r)

∫ 2|T |+2 log N

−2|T |−2 log N
|L( 12 , Eη,η)L( 12 + 2iT, Eη,η ⊗ ψ)|2dt,

with a similarly negligible tail. Then we can just perform the same procedure of proving
Proposition 6.5, except for taking the Burgess bound for |L( 12 + 2iT, Eη,η ⊗ψ)| instead
of Theorem 1.16, and putting the equation in Remark 6.8 in place of Lemma 6.6. ��
Remark 6.11. One may improve this error term by using the Weyl bound for Dirichlet
L-functions [PY1,PY2], reducing the exponent of q on the right hand side from 3/8 to
1/3. However, this does not improve the overall error term which is limited by the cusp
form contribution.

7. Main Term Estimation

The main goal of this section is to prove (1.7) and (1.8), which are the main term aspects
of Theorem 1.9. Throughout this section we adopt all notations in previous sections.

7.1. Preparation. Recall W 1
N (a) is the width of a (see Sect. 2.2 for definition).

7.1.1. Weighted average

Lemma 7.1. For s = 1
2 + iT , we have

−
∑

a∈Cχ (N )

|ϕ∞a(s, χ)|2
(ϕ′∞a(s, χ)

ϕ∞a(s, χ)
+ logW 1

N (a)
)

= 2 log N + 4
 L ′(1 + 2iT, ψ)

L(1 + 2iT, ψ)

+OT (1) + O
((
log log

( N
q + 2

))5)
.

256



Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect

Proof. According to Corollary 3.16, for a = u
f ∈ Cχ (N ) with f | N

q , we have

−ϕ′∞a( 12 − iT, χ)

ϕ∞a( 12 − iT, χ)
= −(logϕ∞a( 12 − iT, χ))′ = log

f N

( f, N
f )

+4
�′(1 + 2iT, ψ)

�(1 + 2iT, ψ)
+ 2

∑
p|N

ψ(p)p−1+2iT log p

1 − ψ(p)p−1+2iT − 2
∑
p| Nf

ψ(p)p2iT log p

1 − ψ(p)p2iT
,

where � is the completed L-function. Moreover, by Lemma 2.4 and Proposition 3.10,
we have

∑
a∈Cχ (N )

−|ϕ∞a( 12 + iT, χ)|2
(ϕ′∞a( 12 − iT, χ)

ϕ∞a( 12 − iT, χ)
+ logW 1

N (a)
)

=
∑

a∈Cχ (N )

|ϕ∞a( 12 + iT, χ)|2

·
(
2 log f + 4
�′(1 + 2iT, ψ)

�(1 + 2iT, ψ)
+ 2

∑
p|N

ψ(p)p−1+2iT log p

1 − ψ(p)p−1+2iT − 2
∑
p| Nf

ψ(p)p2iT log p

1 − ψ(p)p2iT

)
.

Recalling Corollaries 3.28 and 3.32, we arrive at the lemma. ��

7.1.2. Traced Eisenstein series Applying the trace operator TrNM (see the definition in
(3.11)) to E , we have (see [AL, Lemma 12])

〈E, φ〉N = 〈TrNM E, φ〉M .

To calculate furtherwith this, we need to identify TrNM E . ByLemma3.12 andProposition
5.2, we have for all T 	= 0

TrNM E = 2

(
ϕ(N )∞∞( 12 + iT, χ)E (M)∞ (z, 1 − 2iT )

)
+ lim

β→0+

(
E (M)∞ (z, 1 + β)

+
∑

a∈Cχ (N )

ϕ(N )∞a(
1
2 + iT, χ)ϕ(N )∞a(

1
2 + β − iT, χ)(WM

N (a))βE (M)

a (z, 1 − β)
)
.

(7.1)

It is still necessary to simplify (7.1) further.

Proposition 7.2. When T 	= 0, we have

TrNM E = c0 +
∑
g|M

cgG|g +
∑
g|M

c′
gE(·, 1 + 2iT )|g,

where

c0 = 1

〈1, 1〉M
(
log

N 2

M(M, N/q)
+ 4
 L ′(1 + 2iT, ψ)

L(1 + 2iT, ψ)
+ OT ((log log( Nq + 2))5)

)
,

(7.2)

and the coefficients cg, c′
g satisfy∑
g|M

(|cg| + |c′
g|) � M−1(log logM)3. (7.3)
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Remark 7.3. One of the pleasant features in Proposition 7.2 is that there is no contribu-
tion from the newform Eisenstein series with r > 1. In addition, by taking M = N ,
Proposition 7.2 gives an alternative expression for E itself. Finally, we note from Corol-
lary 3.16 that ϕ(N )∞∞(s, χ) vanishes unless χ is trivial, which means c′

g = 0 for all g | M
whenever χ is nontrivial.

Proof. Taking the limit β → 0+ in (7.1) with help of Propositions 3.10 and 3.23, we
have

TrNM E = c0 +
∑
g|M

cgG|g +
∑

1<r2|N

∑∗

η(r)

∑
g|Nr−2

cη,gEη,η(gz, 1)

+2

(
ϕ(N )∞∞( 12 + iT, χ)E (M)∞ (z, 1 − 2iT )

)
,

where

c0 = c∞,0 +
∑

a∈Cχ (N )

|ϕ(N )∞a(
1
2 + iT, χ)|2ca,0

− 1

〈1, 1〉M
∑

a∈Cχ (N )

|ϕ(N )∞a(
1
2 + iT, χ)|2

(ϕ′∞a(
1
2 − iT, χ)

ϕ∞a(
1
2 − iT, χ)

+ logWM
N (a)

)
,

cg = c∞,g +
∑

a∈Cχ (N )

|ϕ(N )∞a(
1
2 + iT, χ)|2ca,g,

and

cη,g =
∑

a∈Cχ (N )

|ϕ(N )∞a(
1
2 + iT, χ)|2η(ua)ca,η,g.

For clarity, we remark that the coefficients ca,0 and ca,g correspond to the notation
from Proposition 3.23, but on level M . To simplify, first observe that when η (mod r ) is
primitivewith r > 1, then cη,g = 0 for all g | M . This holds because for eachfixed f | N ,

Cχ (N ) contains all cusps u
f with u ∈ (

Z/( f, N/ f )Z
)×. Then, since |ϕ(N )∞a(

1
2 + iT, χ)|2

and ca,η,g are independent of ua, the sum over ua vanishes.
Next we simplify c0. By Lemmas 2.7 and 2.4, Corollary 3.29, and Remark 2.5, we

have logWM
N (a) = logW 1

N (a) − log( M
(M,(M, f )2)

), and so

Vol(Y0(M))c0 = − logM +
∑

a∈Cχ (N )

|ϕ(N )∞a(
1
2 + iT, χ)|2

(
− log( f, M)

−ϕ′∞a(
1
2 − iT, χ)

ϕ∞a(
1
2 − iT, χ)

− logW 1
N (a)

)
+ O(log logM).

Next we apply some approximations to simplify this further. From Corollary 3.16,
we see that ϕ∞a(s, χ) = 0 unless f | Nq , and hence only terms with (M, f ) | (M, N/q)

are in the sum. Moreover, we have (M,N/q)
(M, f ) | N/q

f . By (3.23), we can replace log ( f, M)

by log (M, N/q)with an acceptable error term, which gives the claimed estimation (7.2)
for c0.
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The estimation of
∑

g|M |cg| comes from Corollary 3.29 and the fact that∑
g|M

|cg| ≤
∑
g|M

|c∞,g| +
∑
a

|ϕ∞a(
1
2 + iT, χ)|2

∑
g|M

|ca,g|.

For fixed T 	= 0, we have

E (M)∞ (z, 1 + 2iT ) = M−1−2iT ζ(2 + 4iT )

L(2 + 4iT, χ0,M )

∑
g|M

μ(M/g)

(M/g)1+2iT
E(gz, 1 + 2iT )

=
∑
g|M

c′
gE(gz, 1 + 2iT ),

with c′
g = μ(M/g)M−2−2iT g1+iT ζ(2+4iT )

L(2+4iT,χ0,M )
. It is obvious that |c′

g| ≤ |cg|, so the

bound of
∑

g |cg| applies to ∑
g |c′

g|. ��

7.2. Proof of (1.7) and (1.8). Recalling Proposition 7.2, we have

〈E, φ〉N = 〈c0, φ〉M +
∑
g|M

cg〈G|g, φ〉M +
∑
g|M

c′
g〈E(g·, 1 + 2iT ), φ〉M ,

where cg and c′
g are the constants from Proposition 7.2. Define

αφ =
∑
g|M

cg〈G|g, φ〉M +
∑
g|M

c′
g〈E(g·, 1 + 2iT ), φ〉M . (7.4)

By Lemma 7.1 and Remark 2.6, we have

〈TrNM E, φ〉M = c0〈1, φ〉M + αφ.

Then (7.2) gives (1.7), and (1.8) follows from (7.3) and (7.4).

Remark 7.4. Now consider the case M = q = 1, and let T → 0. In this case, we have
by (3.20) that

ϕ∞∞( 12 + iT )E∞(z, 1 − 2iT )

=
(
ϕ∞∞( 12 ) + ϕ′∞∞( 12 ) · (iT )

)
· 1

VolY0(N )
· 1

−2iT
+ ϕ∞∞( 12 ) · G∞(z) + O(|T |),

for some �0(N )-invariant function G∞ (the constant term in the Laurent expansion of
E (N )∞ (z, s) around s = 1), and so

2

(
ϕ∞∞( 12 + iT )E∞(z, 1 − 2iT )

)
= ϕ∞∞( 12 + iT )E∞(z, 1 − 2iT )

+ϕ∞∞( 12 − iT )E∞(z, 1 + 2iT )

= − ϕ′∞∞( 12 )

VolY0(N )
+ 2ϕ∞∞( 12 ) · G∞(z) + O(|T |).

(7.5)

Since ϕ∞∞( 12 ) = −1 and ϕ∞a(
1
2 ) = 0 for all a ∈ C(N ), a 	= ∞, we have by (7.1) and

(7.5)

〈E, φ〉N = 1

VolY0(N )

(
ϕ∞∞(

1

2
)ϕ′(1

2
) − ϕ′∞∞(

1

2
)
)
+ O(|T |).

Letting T → 0, we see 〈E, φ〉N → 0 as desired.
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7.3. Limitations to QUE (continued). Here we provide the additional details of the
example discussed in Sect. 1.4. Recall in the example that χ is primitive (mod N ) and
M is a prime divisor of N . Then by Proposition 5.2, Remark 2.6, Lemma 2.7 and
Corollary 3.17, we have

TrNM E = lim
β→0+

(
E (M)∞ (z, 1 + β) +

( N
M

)β
ϕ

(N )

∞0(
1
2 + iT, χ)ϕ

(N )

∞0(
1
2 + β − iT, χ)E (M)

0 (z, 1 − β)
)
.

Next, Theorem 3.2 says

E (M)∞ (z, 1 + β) = M−1−β ζ(2 + 2β)

L(2 + 2β, χ0,M )

(
E(Mz, 1 + β) − M−1−βE(z, 1 + β)

)
,

and

E (M)

0 (z, 1 − β) = M−1+β ζ(2 − 2β)

L(2 − 2β, χ0,M )

(
E(z, 1 − β) − M−1+βE(Mz, 1 − β)

)
.

Then since 〈E, φ〉N = 〈TrNM E, φ〉M , by Proposition 3.22 we obtain (1.9) with

c1 = cM = ζ(2)

L(2, χ0,M )

(
M−1 − M−2

)
= M−1 + O(M−2). (7.6)

The estimation (1.10) of c0 is contained in (7.2).

7.4. Proof of Theorem 1.12. Recall (1.9) for M prime. It suffices to show that there are
at least δM choices of j so that G and G|M are both bounded (uniformly in M) on the
support of φ = φ

(M)

j , since then 〈G, φ〉M and 〈G|M , φ〉M are bounded by O(‖φ0‖1), as
desired.

Let M ≥ 1 be an integer, and consider the following sets. Let D denote the standard
fundamental domain for SL2(Z), and let

BM = {x + iy : x ∈ R, M−1 < y ≤ 20000M−1}. (7.7)

For R > 1, let D(R) = {z ∈ D : Im(z) ≥ R}, and let Dc(R) = D\D(R).

Remark 7.5. We point out that the only distinct points in BM that are �0(M)-equivalent
are integer translates of each other. This follows because if z ∈ BM , then |cz + d| > 1
for all coprime integers c, d with M |c, c 	= 0. That is, if z ∈ BM , and γ ∈ �0(M), then
Im(γ z) < Im(z) unless c = 0. In fact, the set {z ∈ H | 0 < x < 1, |cz +d| > 1, ( ∗ ∗

c d ) ∈
�0(M)} consists of the interior points of a fundamental domain of �0(M), known as the
Ford domain.

Lemma 7.6. There exists an absolute constant δ0 > 0 so that for all M large, there exists
at least δ0M �0(M)-inequivalent coset representatives �0(M)γ so that γ (Dc(100)) ⊂
BM.

Proof of Theorem 1.12. Note that G is bounded onDc(100) and hence on γ (Dc(100)),
for any γ ∈ SL2(Z). Meanwhile, G|M is bounded on BM , so both G and G|M are
bounded on γ (Dc(100)). Thus, the test functions φ

(M)

j corresponding to these δ0M coset
representatives satisfy the QUE conjecture on shrinking sets, as stated in Theorem 1.12.

��
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Proof of Lemma 7.6. We proceed with an explicit construction. Firstly, we point out
that if �0(M)γ1 = �0(M)γ2 with γi = (

∗ ∗
ci di ), and with c1, c2 ≥ 0, then γ1γ

−1
2 =

(
∗ ∗

c1d2−c2d1 ∗ ) ∈ �0(M), and hence c1d2 ≡ c2d1 (mod M). If−M < c1d2 − c2d1 < M ,
then the congruence is an equality, forcing c1 = c2 and d1 = d2. With this observation,
we take the following set:

S = {(c, d) ∈ Z
2 |

√
M

100 ≤ c ≤
√
M

20 , 0 ≤ d ≤ c
4 , (c, d) = 1}.

By the discussion above, the cosets �0(M)( ∗ ∗
c d ), with (c, d) ∈ S, are distinct.

We claim that for γ = ( ∗ ∗
c d ) ∈ SL2(Z) with (c, d) ∈ S, then γ (Dc(100)) ⊂ BM ,

and we now proceed to prove this claim. First we observe that if z ∈ Dc(100), then

Im(γ z) = y

(cx + d)2 + c2y2
≤ y

c2y2
≤ 2√

3c2
≤ 20000

M
,

since c ≥
√
M

100 . This gives the desired upper bound on the imaginary part. For the lower
bound, we have

Im(γ z) ≥ y

( c2 + d)2 + c2y2
≥ y

(3c/4)2 + c2y2
,

using (c/2+d)2 ≤ (3c/4)2. It is not hard to check that h(y) = y
(3c/4)2+c2 y2

is decreasing
in y for y ≥ 3/4, so the above lower bound on Im(γ z) is minimizedwhen y = 100. Thus
�(γ z) ≥ αc−2 with α = 100

1002+(3/4)2
. Using c2 ≤ M/202, we obtain �(γ z) ≥ 202α/M .

Checking 202α > 3.999 > 1 finishes the proof of the desired lower bound on the
imaginary part. It is easy to check by standard methods that #S ∼ δ0M , for some
δ0 > 0. ��

7.5. Comparison of main terms. An astute reader may notice an apparent inconsistency
between the main terms displayed in Theorems 1.2 and 1.9, and we devote this section to
compare these main terms and resolve this paradox. Recall that Theorem 1.9 estimates
〈|E |2, φ〉N , where φ = φ

(M)

j is chosen from the system described in Convention 1.7.
One can recover Theorem 1.2 in two different ways from Theorem 1.9; the first way
is to simply take M = 1 in Theorem 1.9, which visibly reduces to Theorem 1.2, and
the second is to form φ0 as the sum of φ

(M)

j . That is, summing over φ = φ
(M)

j for
j = 1, 2, ..., ν(M), we have

∑
φ

〈|E |2, φ〉N = 〈|E |2, φ0 〉N ∼
∑
φ

〈1, φ〉M
〈1, 1〉M

(
log

N 2

M(M, N/q)
+ 4
 L ′

L
(1 + 2iT, ψ)

)
+

∑
φ

αφ

= 〈1, φ0 〉1
〈1, 1〉1

(
log

N 2

M(M, N/q)
+ 4
 L ′

L
(1 + 2iT, ψ)

)
+

∑
φ

αφ.

This expression has a different shape than that from Theorem 1.2, which says

〈|E |2, φ0〉N ∼ 〈1, φ0〉1
〈1, 1〉1

(
log N 2 + 4
 L ′

L
(1 + 2iT, ψ)

)
.
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For consistency, we must have
∑
φ

αφ ∼ 〈1, φ0〉1
〈1, 1〉1

log(M(M, N/q)). (7.8)

Wewish to check this directly, at least in some special cases. For simplicity of exposition,
we take q = N (i.e., χ is primitive), and M prime.

In (7.4), we have c′
g = 0 since q 	= 1, whence

∑
φ

αφ =
∑
φ

∑
g|M

cg〈G|g, φ〉M =
∑
g|M

cg〈G|g, φ0〉M .

Since φ0 is SL2(Z)-invariant, we have

∑
g|M

cg〈G|g, φ0〉M =
∑
g|M

cg
ν(M)

ν(g)
〈Trg1(G|g), φ0〉1 .

On the other hand, one can check directly (see [DS, Sects. 5.1–5.4]) that

Trg1( f |g) = √
gTg( f ),

for any automorphic function f of level 1. Hence by Lemma 3.24 and (7.6),
∑
φ

αφ =
∑
g|M

cg
ν(M)

ν(g)

√
g〈Tg(G), φ0〉1

=
∑
g|M

cg
ν(M)

ν(g)

√
g
(
λ(g)〈G, φ0〉1 +

3

π

√
g
( ∑

a|g
a−1 log

g

a2

)
〈1, φ0〉1

)

= 〈1, φ0〉1
〈1, 1〉1

(logM)(1 + O(M−1)) + 〈G, φ0〉1(2 + O(M−1)),

which indeed agrees with (7.8).

8. QUE for Eisenstein Series Attached to Other Cusps

This section concentrates on proving Theorem 1.4. Assume χ is primitive modulo N
throughout this section. By Proposition 2.11, Cχ (N ) consists of Atkin–Lehner cusps.
Recall for a cusp a = 1

f ∈ Cχ (N ), we denote the cusp 1
N/ f ∈ Cχ (N ) by a∗ and call it

the Atkin–Lehner conjugate of a. It is easy to see by Lemma 2.4 that Wa = N/ f , and
Wa∗ = f .

8.1. Identification of E . Corollary 3.17 and Proposition 3.18 give the cuspidal behav-
ior of |Ea|2 at any b ∈ C(N ). The following proposition can be proved similarly as
Proposition 5.2.

Proposition 8.1. For E = Ea(z,
1
2 + iT, χ) as in Theorem 1.4, we have |E |2 − E ∈

Bε(Y0(N )) for arbitrarily small ε > 0 with

E = lim
β→0+

(
Ea(z, 1 + β) + ϕaa∗( 12 + iT, χ)ϕaa∗( 12 + β − iT, χ)Ea∗(z, 1 − β)

)
.

The following subsections deal with 〈|E |2 − E, φ0〉N and 〈E, φ0〉N separately.
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8.2. Error term. Since |E |2 − E ∈ Bε(Y0(N )) and M = 1, the analog of (5.7) is

〈|E |2 − E, φ0〉N =
∑
j≥1

〈|E |2, u j 〉N 〈u j , φ0〉1

+
1

4π

∫ ∞

−∞
〈|E |2, E(·, 1

2 + i t)〉reg
N

〈E(·, 1
2 + i t), φ0〉1dt.

Recall from (3.2) that Ea(z, s, χ) = N−s Eχ1,χ2(z, s), where χ = χ1χ2 with χ1
modulo N/ f and χ2 modulo f . As a result, with (5.3), (3.10) and (3.7) we have for
some ε with |ε| = 1

〈|Ea(·, s, χ)|2, u j 〉N = χ1(−1)N−s
∫ 1

0

∫ ∞

0
ys−2Eχ1,χ2 |σau j (σaz)dxdy

= εN−s
∫ 1

0

∫ ∞

0
ys−2E1,χ1χ2u j (

N
f z)dxdy

= 2εFT (t j )

Ns(2π)sθ1,χ1χ2

(λ1,χ1χ2 (−1) + λ j (−1))
∑
n≥1

λ1,χ1χ2 (
N
f n, s)λ j (n)

ns
.

Then we can meromorphically continue the above equation to the whole complex plane,
and take s = 1

2 + iT , where the Dirichlet series equals a finite Euler product of size
O(N ε) times

L( 12 , u j )L( 12 + 2iT, u j ⊗ χ1χ2)

L(1 + 2iT, χ1χ2)
,

which has Burgess bound N
3
8 +ε. Hence, in total we have

〈|Ea(·, s, χ)|2, u j 〉N �T e
π
2 HT (t j )N− 1

8 +ε,

for the same HT (t j ) as in (6.1). Mimicking the proof of Proposition 6.5, we have

∑
u∈O(1)

〈|Ea|2, u〉N 〈u, φ0〉1 =
∑
j≥1

〈|Ea|2, u j 〉N 〈u j , φ0〉1 �T N− 1
8 +ε‖φ0‖2 ,

and likewise,

1

4π

∫ ∞

−∞
〈|Ea|2, E(·, 1

2 + i t)〉reg
N

〈E(·, 1
2 + i t), φ0〉1dt �T N− 1

8 +ε‖φ0‖2 .

8.3. Main term. Since Wa∗ = f by Lemma 2.4, we can derive from Lemma 3.12 and
Proposition 8.1 that

〈E, φ0〉N = 〈TrN1 E, φ0〉1 = lim
β→0+

(
( Nf )−β〈E(·, 1 + β), φ0〉1

+ϕaa∗( 12 + iT, χ)ϕaa∗( 12 + β − iT, χ) f β〈E(·, 1 − β), φ0〉1
)
.
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Substituting the Laurent expansion by Proposition 3.22, we have

〈E, φ0〉N = 〈1, φ0〉1
〈1, 1〉1

(
− log N

f − log f − ϕ′
aa∗

ϕaa∗
( 12 − iT, χ)

)
+ 2〈G, φ0〉1 ,

while from Corollary 3.17 we see that

ϕ′
aa∗

ϕaa∗
( 12 − iT, χ) = −3 log N − 4
 L ′

L
(1 + 2iT, χ1χ2) + OT (1).

After subtraction we arrive at

〈E, φ0〉N = 〈1, φ0〉1
〈1, 1〉1

(
2 log N + 4
 L ′

L
(1 + 2iT, χ1χ2) + OT (1)

)
+ 2〈G, φ0〉1 .
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