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Abstract: We prove a variety of quantum unique ergodicity (QUE) results for Eisenstein
series in the level aspect. A new feature of this variant of QUE is that the main term
involves the logarithmic derivative of a Dirichlet L-function on the 1-line. A zero of
this L-function near the 1-line can thus have a distorting effect on the main term. We
obtain quantitative control on the test function and thereby prove an asymptotic formula
in the level aspect version of the problem with test functions of shrinking support.
Surprisingly, this asymptotic formula shows some obstruction to equidistribution that
may retrospectively be interpreted as being caused by the growth of Eisenstein series
in the cusps. We also make some coarse descriptions on the unevenness of the mass
distribution of level N Eisenstein series on the fibers of the canonical projection map
from Yy(N) to Yp(1).

1. Introduction

1.1. Foreword. Let M = I'\H be a hyperbolic manifold of finite volume, and {u ;} be
the sequence of L2?-normalized eigenfunctions of increasing eigenvalues for the Laplace—

Beltrami operator A. The quantum unique ergodicity (QUE) conjecture of Rudnick and
Sarnak [RS] predicts

2 ;/
/M |uj| ¢du—>V01(M) Mtbdu, (1.1)

for all fixed nice (e.g., continuous and bounded) test functions ¢ as j — oo.
The QUE conjecture sparked a lot of work for different families of automorphic
forms. One of the earliest unconditional QUE results is for the classical Eisenstein
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series E; := E(z, % +it) on M = SL(Z)\H equipped with the Poincaré measure
dp = y~2dxdy. Since E; is not square integrable, we need to further assume ¢ is
compactly supported, and in this scenario, Luo and Sarnak [LS] showed as t — oo,

1
log(}f +12)

2 1 /
/M |E1| (MM_)Vol(M) Mcﬁdu- (1.2)

The second author [Y 1] estimated the rate of convergence with a power saving bound for
the error terms, which allowed the test function ¢ = ¢, to change mildly, e.g., by having
shrinking support. In particular, for each fixed point z € M, (1.2) holds if ¢; is the
characteristic function of a ball of radius r = r(r) centered at z, with r = 1%, for some
6 > 0. We refer readers to [L,So], and [HS] for some of the significant developments
on QUE in either eigenvalue or weight aspect; a survey paper [Sa] by Sarnak is good to
begin with.

Kowalski, Michel and VanderKam [KMV] formulated the level aspect analog of
QUE. Let ™ be a sequence of holomorphic newforms of fixed even weight on Yo(N) =
[o(N)\H, which are L?(Yo(N))-normalized with the measure d . They conjectured

f L™ P¢du — pdu, (1.3)
Yo(N)

Vol(Yo(1)) Jyya)

for fixed ¢ of level 1, as N — oo. The conjecture is now known due to [N1] and [NPS],
which in fact proved QUE in both weight and level aspects. For the case of Eisenstein
series, Koyama [K, Theorem 1.2] showed

1 1
[EMPody — ———— ¢d s, (1.4)
21og N Jy,(v) Vol(Yo(1) Jyy(1)

forfixed T € R,as N — oo traversing all prime numbers, and where V' = EJ) (z, %+
iT) are Eisenstein series of weight zero, level N and trivial central character.

We should clarify that (1.4) is perhaps not the closest analog of (1.3) for Eisenstein
series, because these E™ of trivial central character are oldforms. The newform Eisen-
stein series Ey, 4, defined in [Y2] should be the perfect counterpart of holomorphic
newforms in [KMV], where x; is primitive mod ¢g;, fori = 1, 2, and g1g2 = N, and the
equidistribution problems around these Eisenstein series are noteworthy, attractive, and
closer in spirit to (1.3). As we later argue, a large number of such newforms are actually
of the form E" with primitive central character, for which QUE is given in Theorem
1.4 below.

1.2. First results.

Convention 1.1. We comply with the following notational conventions throughout this
paper.
e We denote the space of smooth automorphic functions of central character x on the
manifold Yo(N) by A(Yo(N), x). We may suppress yx if it is trivial.
o Wewrite (f. g)y by [y, oy, f8d1.if f. g € A(Yo(N). x).So. (1. 1), = Vol(Yo(N)).
e When N = 1, we write || ||, short for (| |7, 1)}/7.
e For a Dirichlet character x (mod N), we always assume it is induced by primitive
¥ (mod g), for some g | N. We regard the character (mod 1) as primitive.
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e We let 6 be so that the pth Hecke eigenvalues of Maass newforms are uniformly
bounded by p? + p~. The value # = 7/64 is allowable by [KS].

e When writing f <« g or f = O(g) we typically add a subscript to denote depen-
dence of the implied constant on ambient parameters; an exception to this is that we
do not display this when a constant depends on ¢.

Theorem 1.2. Let E = Exo(z2, S, x) be the Eisenstein series of level N, weight zero and
central character x (see (3.1) for definition), with s = % +iT for fixed real T # 0. For
all compactly supported ¢, € A(Yy(1)), we have

(1, &),
(1, 1),

+07.4, ((loglog N)°) + O (N ¥ (1)~ g o). (L.5)

% _
(EI”. ¢y)y = <210gN+4§)%Z(1+2iT, w)

Remark 1.3. Here we discuss the case T = 0. When g # 1, (1.5) also holds as %(s, E)
is well-defined at s = 1; if ¢ = 1, then both the two sides of (1.5) turn out to vanish on
all levels, for which we refer to Remarks 3.8 and 7.4.

Theorem 1.2 treats only Eisenstein series attached to the cusp oo, but for arbitrary
central characters. The case where x is primitive has some simplifications that enable
us to handle Eisenstein series attached to more general cusps.

Theorem 1.4. Suppose x (mod N) is primitive, and a is a cusp singular for x. Then
(1.5) holds for E = Eq(z, s, X)-

Remark 1.5. Theorems 1.2 and 1.4 also hold if E = E4(z, s, x) is of weight one. In this
scenario, the error terms can be similarly bounded, while the main term are formally
the same as (1.1), for odd x. The main term resemblance in these two cases are well-
reasoned, and we present more details in Remark 1.14. Because of the Maass raising
(weight +2) and lowering (weight —2) operators [Ma,DFI], we then can study QUE
for Eisenstein series of all integer weights. The difference between Eisenstein series in
terms of weight is known explicitly by [Y2]. See [PRR, Theorem 1.6] for a related result.

Remark 1.6. The term 49‘% (1+2iT, W) makes our QUE results qualitatively different

from others that we have mentioned above. Since it is unknown if 49%%(1 +2iT, ) =
or(log g), we must include it as part of the main term. Of course, such a bound holds
on GRH (see [IK, Theorem 5.17]). This extra term in turn connects QUE for 7' =~ 0 and
Siegel zeros.

One can also surely adapt our techniques to treat some other cases, such as letting
s # 1/2, but we refrain from considering these generalizations in favor of simplicity
in exposition.

1.3. Shrinking sets in the level aspect. In (1.3), (1.4), and Theorems 1.2 and 1.4, the
test function ¢ is assumed to be SL>(Z)-invariant. A mild generalization of (1.3) is to
fix a positive integer M and a test function ¢ = ¢™ on Yy(M), and to confine N = 0
(mod M). See [Hu] for a similar generalization to [NPS]. In analogy to the shrinking
set version of QUE, where ¢ = ¢ is allowed to change with the spectral parameter ¢,
we are led to consider the much more difficult generalization of letting ¢ depend on N.
A natural way to do this is to let M grow with N, constrained by M|N, and to choose
¢ = ¢™ on Yy(M) depending on M. To maintain uniform analytic properties of the
test functions ¢ of varying levels, we often make the following system of choices.
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Convention 1.7. Once and for all fix an SL(Z)-invariant smooth function ¢, = ¢
with compact and connected support. For simplicity, suppose that the support of ¢,
when restricted to the standard fundamental domain D of SL;(Z), is contained in its

interior. Suppose that 'y (1) = U;(fl) y;iTo(M) as adisjoint coset decomposition. For each

positive integer M, choose ¢ = ¢;M) to be one of the following v(M) functions. Set
¢;M>(ykr0(M)z) equal to ¢, (z) if j = k, and zero if j # k, where k € (1,2, ..., v(M)}.
One can interpret this definition intuitively by noting that U;(fl) v;D is a fundamental

domain for Yo(M), and so qb;M) agrees with ¢, on one translate of D and vanishes at all
others. '

The system of test functions satisfying Convention 1.7 has the following pleasant prop-

erties. We have ¢, = >~ ¢, where the supports of these ¢ are pairwise disjoint.

Moreover, we have [, ¢>}M)du = [yo(1) Pod i, for each j. Since

Vol(Supp(¢™"))

M—l—E
A RTIE T

<<¢0 M—l+8’

we intuitively see that Supp ¢ “shrinks”, if M — oo as N — oo.

Remark 1.8. The above construction is merely one way of generating a system of test
functions that looks natural. Part of such an idea is borrowed from [K]. A similar treat-
ment is adopted in [LMY, Theorem 1.4] on counting Heegner points with changing
levels.

Theorem 1.9. Let E be as in Theorem 1.2. Choose a system of test functions according
to Convention 1.7. Then there exists £ € A(Yo(N)), such that |E|* — & € L2(Yo(N)),
and

1
(EP =€ ¢y gy, N2E QM )l 1 (1.6)
with
QM. q) = Migh + M3(M.q)iq?.

Under the generalized Lindelof hypothesis, (1.6) holds with Q(M, q) = ~/ M. Finally,
we have

_ (L), N? L' o — (loglog N)?
(€9 = 1y (1o LN P (AT, )+ OT"’")(*(L i )+
(1.7)
where ay is a quantity (see (7.4) for an expression) satisfying
lag| Kg,., (loglog 100M)°. (1.8)

Note that if M < N %_5, then the bound in (1.6) is better than the first displayed main
termin (1.7) of size & M~ log N. This is analogous to the power-saving error term
in the QUE problem for Eisenstein series of level 1 in the spectral aspect, as in [Y1].
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Remark 1.10. Theorem 1.9 alsoholdsfor £ = E,(z, %+i T, x) with x (mod N) primitive
as in Theorem 1.4, and pleasantly, its corresponding £ is much simpler (see Proposition
8.1).

From the fact that (1, 1),, = M'*°()  we may derive the following weak corollary.

Corollary 1.11. Under the assumptions of Theorem 1.9, QUE holds for all M <«
(log N)' =8 for § > 0, and specifically when M is a constant.

1.4. Main term discussion. To our surprise, if we construct the system of test functions
according to Convention 1.7, then QUE turns out not to hold for all test functions
¢ = ¢;.M), at least, if M >> N° for some § > 0. The problem is that for some choices of
¢, the contribution of s to the main term is dominant and large enough to show that QUE
does not hold. In retrospect, one might expect problematic behavior for test functions
with support escaping too quickly into a cusp. This is clear in the level 1 case (in the
spectral aspect), since very high in the cusp the Eisenstein series is well-approximated
by its constant term. In the level aspect, it is a bit tricky to say what it means for a test
function to have support escaping into a cusp, not least because the cusp can be changing
with the level.

To help explain the complication caused by o, we study the case when M | N is
prime with M > (log N y!*% and x (mod N) is primitive. We conclude here and leave
the computation in Sect. 7.3. Let G(z) denote the constant term in the Laurent expansion
of E(z, s)around s = 1 (see [IK, (22.69)] for an expression), which is S L, (Z)-invariant,
and which satisfies G(x +iy) ~ y for y — oc. Then

(€, )y = co(l, @)y +c1(G, D)y +cm(Gly, d)y, (1.9)
where G|y (z) = G(Mz) is a 'g(M)-invariant function,

1 2 /

co = (m N o amEasur o0 00 (1.10)
0—<1’1>M gM T » X T.¢, ) .

andcy, ey = M~ +0O(M~2). The term co(l, ¢),, is the naively-expected main term. If
¢ = qS;M) is chosen according to Convention 1.7, then note (G, ¢),, = (G, ¢,),, which
is independent of j and M, so the term ¢ (G, ¢),, is bounded acceptably. However, the
term ¢y (G|,,, ¢),, may be much larger than the expected main term, as we now explain.

Suppose that the restriction of ¢, to the standard fundamental domain D for Y (1) has
support with 2 < y < 3 and that ¢, is non-negative. There exists a fundamental domain

Fu for Yo(M) so that D C Fyy, and there exists a value of j so that ¢>§.M) (2) = ¢,(2)
for z € D, and d);-M) (z) =0 for z € Fy, z € D. For this value of j, we have

! dxdy
cm(Gly. @)y M GCM2)p(2)—5—,
2 Jo y
whichcanbe < 1, since G(Mz) ~ My uniformly on the region of integration (see Propo-
sition 3.22). Note that in this situation, c¢p(G|,,, ¢),, is much larger than co(1, ¢),, <
M~'log N. This choice of ¢ = gb;M) should be interpreted as having support high in

the cusp co. Nevertheless, we have the following theorem, with an elementary proof in
Sect. 7.4.
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Theorem 1.12. There exists an absolute constant § > 0, such that for all primes M, there
are at least §M test functions {¢;M)}']’.(Z1) chosen according to Convention 1.7 satisfying
the QUE conjecture on shrinking sets. That is, for these ¢ = qb}M) , we have

le1] - (G, @)y |+ lea] - (Gl @)yl < M iyl

while the term co(1, ¢),, is expected to be approximately fo,IN (L, @),

Remark 1.13. Note that £ is a linear combination of Eisenstein series attached to cusps
on level N, which appears naturally in Zagier’s regularization process that we elaborate
later in Sect. 4. From the above discussions we can see the mass distribution of | E|% can
be extremely uneven over supports of ¢>;M ) for different j. We conjecture that this § can

be improved to 1 — ¢ for general M. Also, we have an estimation of Z«b ag in (7.8).

1.5. Limitations to QUE. Recall that the second author proved (1.2) for ¢; with shrinking
support of radius > 1% as t — oo for some § > 0. A natural question is how large
can this 6 be. Humphries [Hum2] showed that § cannot exceed 1, as (1.2) then fails for
infinitely many z’s. On the other hand, he proved small scale QUE holds for almost all
z € Haslong as 6 < 1 (see [Hum2, Corollary 1.20] for the precise statement).

In the level aspect, the discussion in Sect. 1.4 shows that QUE does not hold for all
systems of test functions constructed according to Convention 1.7. This is in contradic-
tion to the claimed result of Koyama [K, Theorem 1.3], which in our notation would
correspond to N = M prime and ¢ = 1. A recent corrigendum by Kaneko and Koyama
[KK] rewrites [K, Theorem 1.3] in the form of our (1.4), and we refer the readers to it
for more details.

1.6. Strategy of the proof and QUE for newform Eisenstein series. The reader may
wonder why all of our QUE results are limited to only certain types of Eisenstein series.
It is a natural question to prove QUE for general newform Eisenstein series (see Sect. 3.1
for definition), but unfortunately it does not appear that the inner products (| E 12, Uj)y
are computed in full detail in the literature. This appears to be the only obstacle, as we
expect that our techniques can be adapted to treat (£, ¢) for the newform Eisenstein
series. Moreover, we remark that Theorem 1.4 does indeed treat all newform Eisenstein
series of squarefree level or of primitive central character (see Remark 3.4 below for
justification). Paul Nelson has kindly informed us that the desired inner products may be
computed using [MiVe, (4.26)] and [N2, Theorem 49, part II], but we leave this pursuit
for a future occasion.

In broad strokes, the strategy for a proof of QUE (for cusp forms) is well-known.
Via a spectral decomposition and calculation of period integrals due to Watson/Ichino
[Wa,Ic], the problem reduces to a sufficiently strong subconvexity bound for certain
triple product L-functions. Unfortunately, power-saving subconvexity bounds in this
generality have not been proved. A pleasant feature of the QUE problem for Eisenstein
series is that the relevant L-functions factor into lower degree L-functions, for which
subconvexity is known.

In practice, there are two main obstacles for proving Theorems 1.2, 1.4 and 1.9.
The first difficulty is that |E 12 is not in L2(Yo(N)), so the spectral decomposition can
not be applied directly. Our work-around for this problem is to execute a regulariza-
tion procedure of Zagier [Z] and Michel and Venkatesh [MiVe]. We construct &, a
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linear combination of Eisenstein series of level N and trivial central character, so that
|E|2 —-£fe€ L2(Y0 (N)). The spectral decomposition can be applied to |E|2 — &, and the
aforementioned subconvexity bounds eventually lead to a satisfactory estimate on this
quantity.

The next significant problem is to asymptotically evaluate (£, ¢), as accurately as
possible. For this, we need to identify £, which in turn requires a careful study of the
growth of |E|? at all the cusps, not just the ones that are singular with respect to the
central character x. This necessitates the precise calculation of the Fourier expansion
of the Eisenstein series E,. Koyama [K] carried this out in the case that N is prime.
Recently, the second author [Y2] developed explicit formulas for the Fourier expansions
of a larger collection of Eisenstein series, including the case of ES for arbitrary N and
any central character, which is vital for the calculation of £. The function £ is given in
Proposition 5.2 below.

Remark 1.14. When E is weight one, we can similarly obtain an € so that (|E|> — &, Oy
has a power-saving bound as well. For the main term, £ is again a linear combination of
Eisenstein series of trivial central characters and weight zero. The only difference is £
has different coefficients for each E4(z, 5q), as the cuspidal behavior of | E |2 depends on
its weight. However, as one sees in the proof of Proposition 5.2 or 8.1, the coefficients
are products of the entries of the scattering matrix, which does not change much under
the weight shift. See [Huml1, Sec. 2] for the computation in the case of primitive .

1.7. Structure of the paper and sketch of proof of (1.6). To expose everything as clearly

as possible, we initially prove Theorem 1.9, which contains Theorem 1.2. The main

body of the proof lies in Sects. 5-7, for which we sketch the argument for (1.6) later

in this subsection; the supportive part consists of prerequisites about cusps in Sect. 2,

Eisenstein series featured by a comprehensive description of their cuspidal behaviors in

Sect. 3, and regularized integrals in Sect. 4. Finally, we prove Theorem 1.4 in Sect. 8.
The spectral decomposition applied to (|E|> — &, ¢) v gives

3
(|E|2—€,¢>)N ~ Z Z (|E|2,uj)N(uj,¢)M+continuous spectrum,
T uj

where the inner sum is over all L2(Y(M))-normalized Hecke—Maass newforms of level
M with spectral parameter ¢;, and recall that £ = E(z, % +iT, x). This regularized
spectral decomposition is the topic of Sect. 5, and Sect. 6 mainly focuses on the following
estimation.

Proposition 1.15. With the above notations, we have
1 _1 . —
(EP uj)y <1y NT2PM72 (DL, up) L3 +2iT, uj @ P)I.

The following crucial subconvexity bound for twisted L-functions then finishes the
job.
Theorem 1.16 (Blomer, Harcos [BH]). If y is primitive (mod q) and u j is a newform
of level M, then

LG +20T,u; @ 9) < T+ DI(Migh + M3 (M, q)q5).

The contribution of the continuous spectrum to (| E |2 —&, ) v 1s similar. Section 7
addresses the main terms, about which we have briefly discussed earlier in this section.
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2. Cusps and Their Widths
It is well-known that ['g(N) = {(‘;Z) € SLy(Z)| ¢ = 0 (mod N)} acts on H via

(¢5)z > ZZZ—:S. In this section we introduce some background knowledge of cusps

on I'g(N). We counsel experienced readers to skip this section except for Sect. 2.3 on
relative width, and refer other readers to [NPS, Sect. 3.4] and [Iw1, Sects. 2.1-2.4] for
more details.

2.1. Cusps. The group action can be extended to P1(Q), the set of cusps. We often
employ the letters a, b, c,..., to denote cusps. We say two cusps a and b are equivalent

on level N and write a = b, if there exists y € ['g(V) such that a = yb. That is to say,
equivalence classes of cusps on level N are the ['g(/N)-orbits in P! Q).

By [Iwl1, Proposition 2.6], a full set of inequivalent cusps on level N can be written
as

C(N) :={a|a= G [ 1IN u=minR(N, f,v),v € (Z/NZ)™}, with
R(N, f,v) :={u=v (mod (f, N/f)),u > 1}.

2.1)

Remark 2.1. Throughout this paper we write u, and f, such that a £ ”—Z € C(N), if
necessary. Also, if we write % € C(N), then we always assume that the fraction is in
the lowest terms.

Let I'Y be the stabilizer of ain I'o(N). Itis clear that forall N, T, = {+(}7)In € Z},
so we may write ['s as well. In addition, there are scaling matrices oq v € SL2(R)
such that o4,y00 = a, and o, },Fé\' 0a.nv = I'o. If the level is clear, we may suppress N
in these symbols.

2.2. (Absolute) width. If t € ' = SLy(Z) and Too = a, then r_lFfIVt is a subgroup
of T'g. Since 1Toot ™! = I'l, we have [['oo : 77!T¥ 7] = [I'} : T'¥], which does not
depend on the choice of 7. Define this index as the (absolute) width of a on level N and
write it WI{, (a).

Convention 2.2. When there is no ambiguity on levels, we may write the (absolute) width

of a by W, as well. Width of a cusp is a common terminology, so we add “absolute”

only if it is necessary to distinguish it from relative width introduced in the following

subsection.

Remark 2.3. For future usage we cite [Iw1, (2.31)] to note that for fixed yq, € SL2(Z)
172

sending oo to a, ya( 8 W_,/2> serves as a scaling matrix oy = oq N .
a

Lemma 2.4 [Iwl, (2.29)]. For each a = % € C(N) in (2.1), we have

oo N
(N, f2)
Remark 2.5. Let M | N, and a = % € C(N). Then by [KY, Proposition 3.1], a is
equivalent to a cusp of the form (ML/” € C(M), with width
Wiy (a) = M

(M, (M, )
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2.3. Relative width. Now we fix I'g(N) butlet I' = I'g(M) for any M | N instead. We
define the index [I" Q/I : é\’ ] as the relative width of a € C(N) from level M, and denote

it by Wf\‘,” (a). Note that the absolute width is a special case of the relative width when

M =1.

Remark 2.6. From the definition we can also see if a = b, then W/\‘,’I (a) = WII\‘,’I (b). This

results from the fact 'y = err‘l, forany v € ['o(N) withta =band x = M, N.
The following lemma follows directly from the definition.

Lemma 2.7. For each cusp a € C(N), we have

Wy (a)

Wi (@) = ——.

Wy ()

Lemma 2.8. For a, b € C(N), we have

W (@) ifa=b;

#{y € To(N\T'| yb = a} = :
0 otherwise.

Proof. If a is not I"-equivalent with b, then the set is empty. Now assume a £ b with
ta = b for some T € I'. We have the following bijective map

{y € Do(N\T'| yb = a} — {y € To(N\I'| ya = a)
Y=yt
so it suffices to compute #S,, where Sq = {y € To(N)\I'| ya L a}. Note that FQ’I
acts transitively on S, (on the right) with stabilizer Fflv . Hence, by the Orbit-Stabilizer
Theorem (see e.g., [A, Chapter 5, Proposition (7.2)]), we have #S, = [FQ’I : Fév] =
W¥(a). O

2.4. Singularity. Given an even Dirichlet character x (mod N), i.e., x(—1) = 1, we
define

x :To(N) — C*
by x(y) = x(dy), where d,, stands for the lower-right entry of y. It is easy to see that
X preserves multiplication of the two sides, and hence it is a group homomorphism.
Convention 2.9. We write x1 = x» if they are induced by the same primitive character.

We say a is singular for x, if the kernel of x contains Fflv . If x1 =~ xo, then the
singularity of a for x; is equivalent to that for x». For fixed x (mod N), singularity and
non-singularity of a cusp extends to its I'o (/N )-equivalence class, for the same reason as
for Remark 2.6.

Convention 2.10. For x (mod N), we write the subset of singular cusps for x by C, (N).
Note C, (N) = C(N) if x is trivial.

We have a criterion for singularity from [Y2, Lemma 5.4]. Recall from Convention
1.1 that ¢ is the conductor of .
Proposition 2.11. The cusp % € C(N) is singular for x if and only if q | [ f, %].

One interesting case is when x is primitive (mod N). By Proposition 2.11, only
cusps a = % € C(N) with (f, N/f) = 1 are singular for x. Moreover, from (2.1) we
can see u = 1. These cusps are known as the Arkin—Lehner cusps.
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3. Eisenstein Series of Weight Zero

This section deals with knowledge about Eisenstein series of weight zero. We suggest
advanced readers skip this section with a glance on Propositions 3.15 and 3.18 on de-
scriptions of their cuspidal behaviors. Good references include [DS, Chapter 4] and
[Iwl].

3.1. Two kinds of Eisenstein series. On level N, there are Eisenstein series attached to
cusps and Eisenstein series attached to characters.
The Eisenstein series of central character x (mod N) attached to the cusp a is

Eozos, )= Y, X(mog'y2)".
y€la\Lo(V)

To make this well-defined, we require x to be even, and a to be singular for x. The
definition does not depend on the choice of oq. Since Eyq = X (y)Eq for y € T'o(N),
we can always represent E, in terms of Ey with a’ € C, (N) (see Convention 2.10 for
definition and Remark 3.3 for practice).

For Dirichlet characters x; (mod ¢;) with i = 1,2, having the same parity, the
Eisenstein series attached to xp, x2 is

(q2¥)° x1(c) x2(d)
leqaz +d|%

1
Exi o (2,8) = D) Z

(c,d)=1

If both x1 and x; are primitive, £, ,, is a newform Eisenstein series of level g1g>.
Both types of Eisenstein series converge absolutely for fis > 1, with meromorphic
continuations to C.

Convention 3.1. When x = x,, ,, we write Eq(z, s) in short of Eq(z, s, x). If N =1,
then the classical Eisenstein series E is the only one in both types, so we write it in place
of £y 1. If we want to emphasize Eq is an Eisenstein series of level N, then we may
write E{" instead.

These two kinds of Eisenstein series are closely connected. Recently, the second
author [Y2] found the change-of-basis formulas between them, which is also done by
Booker, Lee, and Strombergsson [BLS].

Theorem 3.2. [Y2, Theorem 6.1] Keeping notations in Conventions 1.1 and 2.10, and
denoting the Euler totient function by ¢, we have for a = % € Cy(N)

Wo ™ *__ L(2s, x1x2)
Bateos ) = VT S g gty LG
o) arl Y alf a0 L@s. xoeXon)

Z Z u(a)(b) x1(b) x2(a) E <b_fZ S)
alf p|& (ab)® e agy "/
17

where the asterisked sum is over all primitive x; (mod g;),i = 1, 2, satisfying x1x2 =
X-
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Remark 3.3. In [Y2], the cusp choice a = % was made, and we transfer it for conve-
nience. It is remarked in [ Y2, Sect. 5.2], that for all % € C(N), thereis y € I'g(N) such

that y% = #, and has lower-right entry equal to # (mod N). Then we have
E% = X(M)E#.

We are interested in two special cases: when f = N, and wheng = N.

; N1 (10 _
Since co = N viay (N 1 ), we have Eo E% By Theorem 3.2, we have

s L@ Y) o @)Y (a) N
Eoolz, 5,0 = N™ 52— aXN: —E 5 ( et s)- (3.1)

If x is primitive (mod N), then only Atkin—Lehner cusps are singular for it, as is
discussed in Sect. 2.4. Assuming a = % € Cy(N), we have

Eq(z,5, ) = NTEy 1, (2,9), (3.2)
where y is primitive (mod N/f) and y» is primitive (mod f), with x = x1x2.

Remark 3.4. Now we see why Theorem 1.4 implies QUE for all newform Eisenstein

series of squarefree levels. If N is squarefree, then by definition, a newform Eisenstein

series of level N is E,, 4,(z, s) for some primitive x; mod g;,i = 1,2, withqig = N

and (¢q1,¢2) = 1. Then (3.2) says E = N*E 1 (z, s, x1x2), to which Theorem 1.4
a2

applies.
In addition, if we relax the squarefree assumption on N and instead assume E =
E ., isanewform Eisenstein series of level N and primitive central character x >~ x1x2
(mod N), for x; mod ¢g;, i = 1, 2, then since q1q» = N, we must have (g1, g2) = 1.
The above argument again shows QUE for £ = N*E 1 (z, s, X1X2)-
a2

3.2. Fourier expansions. One merit of Eisenstein series attached to primitive characters
is their explicit Fourier expansions with multiplicative Fourier coefficients. Define the
completed Eisenstein series by

Ey 0(@8) =0y, 00 () Ey (2, 8),

with x; primitive (mod ¢;),i = 1, 2, and

—s

BT
T(x2)

0100 (8) = T(s)L(2s, x1x2)- (3.3)

Then we have the Fourier expansion

By @8) = ¢ () + 205 ) (. )ema)K 1 Qrlnly), (3.4
n#0

where the constant term is
& o (008) = 8,101, 5, (5)(q2)° +8gp=101. 5 (1 — $)(q1y)' .

— _1 .
Ayrp(n,s) = XZ(ﬁ) > ab=in| X1 (a)xz(b)(g)s 2, 7(x) is the Gauss sum of x, and Ky
is the K -Bessel function of order & € C, so that the series in (3.4) decays exponentially,
as y — o00. See Huxley [Hux], and Knightly and Li [KL, Sect. 5.6] for more details.
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Remark 3.5. From the definition we see that when s = % +iT, Ay o, 8)] <d(n) K

nt.

Remark 3.6. If x is primitive (mod ¢q) for g > 1, then E, , (z, s) is regular at s = 1.

Remark 3.7. The newform Eisenstein series are eigenfunctions of all the Hecke operators
Ty, and indeed T, E, y,(2,8) = Ay o (1, ) Ey, 4, (2, 8).

Remark 3.8. We can also see from (3.4) that E ’f’l(z, s) is analytic for s € C except
s = 0, 1, and in particular, it is well-defined at s = 1 On the other hand, since 011 has
apole ats = %, then E1 1(z, %) = 0. Thus by (3.1), we have Ex(z, %) =0.

For future application, we write out two special cases. When x; = 1, and x2 = ¥
primitive (mod ¢), we have

E 5@ 3 +iT) =€, 5y, 3 +iT) +2p, 5 (3 +iT)/y Y &y y(me(nx) Kir 2 |nly),
n#0
(3.5)

1 1
where ey, (s) = IOX1,X2(S)€;1,X2()’7 $)s Pyi,xa (8) = W’)‘Xl,xz(n) =A@, 3+
iT), and

. 77|
pl,a(% +iT) = 0@ (1 +|TDh%e ) (3.6)
by Stirling’s formula, see e.g. [IK, (5.73)] and [MoVa, (11.18)]. Another case is when
q192 = N with (g1, ¢2) = 1, and y; is primitive (mod ¢;) for i = 1, 2. We then have
Eyn@ 5 +iT) = py o3 +iT)/Y Y Ay o Memx)Kir Qrnly),  (3.7)
n#0

and similarly,

. #|T|
P (3 +iT) = ON*(1+|T)e 2). (3.8)

Next we discuss some aspects of the Fourier expansion of Eq(z, s, x). For the fol-
lowing discussion, assume a, b are cusps singular for x. When y — oo (see e.g., [Iwl,
(13.15)])

Ea(0b2, 5, X) = 8aby* +@an(s, x)y' 7+ 00, (3.9)

forall P € N, where 84, = lifa £ b, and vanishes otherwise, and ¢4 is meromorphic
in s € C. Each ¢qp is an entry of the scattering matrix, which we compute explicitly
later. Iwaniec writes ¢qp as an infinite sum, see [Iw1, (13.16)—(13.18)], and we have an
alternative finite expression in Proposition 3.15 below.

Convention 3.9. Analogously to Convention 3.1, if x = ¥, then we suppress it from
@ab (s, x); if necessary, we write gog\;) to emphasize it comes from E{".

Proposition 3.10 (Selberg [Tw1](13.30)). For%is = 1, thematrix ®(s, x) = (¢ab(s. x ) ab
is unitary. In particular, we have ZaeCX(N) [@soa(s, x)12 =1fors = % +iT.
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3.3. Functional equations. Eisenstein series attached to Dirichlet characters satisfy the
following simple functional equation. Recall o4 = o0y, is a scaling matrix as in Remark
2.3.

Proposition 3.11 (Huxley [Hux]). For primitive x| and x2, we have
* _ %
By 009) = By (e 1-5)

When (q1,¢2) = 1 and a = ql—z, Weisinger [We] essentially showed (see also [Y2,
9.DD

Eyi xoloe = €x1,0E1, 01500 where  [€,, 5| = 1. (3.10)

3.4. Identifying traced Eisenstein series. Define the trace operator Tr% c AYo(N)) —
A(Yo(M)) via

fr Yoo Sl (3.11)

y€lo(N)\To(M)

Now we can determine the exact shape of Trﬁ’,, E le) (z,8) by (3.9).

Lemma 3.12. We have the following equality of meromorphic functions:
Try EY(z.5) = (W (@) 7 EL" (2. 5).

Remark 3.13. We have to point out that when a is a cusp for Yp(N), there might be
ambiguities for the symbol of E ElM) . However, since the central character is trivial, the
choice of representative for a in Yo (M) does not affect the resulted function, as mentioned
in Sect. 3.1.

Proof. Let s > 1. By [Iw2, Lemma 6.4], Trﬁv,, EéN) (z, s) is a linear combination of
E"(z,s) for b € C(M). Furthermore, this linear combination is unique, since the
only linear combination of Eisenstein series that decays rapidly at all cusps is the zero
combination. In light of this, ifTrf‘V,, E&N)(Ub,Mz, s) =cpy'+0(1)as y — oo, thenitis
identicalto ) " cp E E,M )(z, 5), because their difference has rapid decay. Now we compute
the y®-coefficients.

For each b pick 0, = )/(,(W(l)/2 W91/z) as in Remark 2.3, where yp € SLy(Z),
Yp00 = b,and W = W,{,,(b). As y — oo, we have by (3.9), Lemmas 2.8, 2.7 and
Remark 2.6,

N ) _ ™) _ (N) w
Try EV (0p,mz, 8) = Z E;"(yyeWz,s) = Z E, (UVI’*NWZ’S>
y€lo(N)\T'o(M) y€lo(N)\To(M)

_ W s
= > ‘Syaﬁu(wmmy> +om
Y Lo (NN o (M)

Wi (@)
Wy (@)

:(Sbguwf\‘f(a)< y)x+0(1) =38, WA @'y +0(D).

On the other hand, (W (a))! = E{"|,, has exactly the same formula as above by (3.9),
which finishes the proof. O
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3.5. Explicit calculations with scattering matrices and related quantities. As is men-
tioned in Sect. 1.2, we need to study the behavior of | Ex (2, s, x)|? ateach cuspin C(N),
not just these in C, (N). The change-of-basis formula, Theorem 3.2, now helps.

3.5.1. Preparation We begin with proving a lemma.

Lemma3.14. Let K > 1, and y = (?,'j)) € SLy(Z) with f | N. Then there exist
meromorphic Cy, y,(s) and Dy, y,(s) (depending on K and y ) such that

Ey 0Kz, 8) = Cyy 3y ()Y + Dyy 4o (5)y' 5 +0(1), (3.12)

as y — o00. Precisely,

(2K, f)* ( —f ) (quu)
sk M\@k, )@k H)
Gﬁﬁ(l—s)(mlf,f)z’zs_( q1Ku >_( —f )

Dy, (s) =8 X1 X
aaBI T Ty ) g ks M\ @K )@k )

Proof. Observe E,, ,(Kyz,s) is periodic with some integer period. By [Iw2, Propo-
sition 1.5], (3.12) holds. To obtain (3.13), we proceed directly. By definition, we have

Cyi.x2(8) =gy ¢
(3.13)

1 Z (@23(Ky2))* x1(c) x2(d)

EleXZ(KVZy S): |quK)/Z+d|2s

\S]

(c,d)=1
_1! ) (2Ky)* x1(c) x2(d)
[(cqaKu +df)z+ (cqgaKv +dw)|*

(c,d)=1

_1 (@2Ky)* x1(c) x2(d)
N 22 Z 1€z + (cqaKv +dw)|>

LeZ  (c,d)=1
cqr Ku+df=¢t

Forany fs > 1, weseethatas y — oo, uniform convergence allows us to interchange
the limit and the sums, yielding

1 (@2K)° x1(c) x2(d)
E Kyz,s)=C S+o0(1), f C = - .
xi.x2 (Kvz,s) ($)y* +o(1), for C(s) 5 (CEd)_l lcq2Kv +dw]®
cqrKu+d f=0

Then (3.12) implies that C(s) = Cy, 4, (s), and we can calculate C, ,,(s) by simplify-
ing the above expression. Solving cga Ku +df = 0 for (¢, d) = 1 and x1(c)x2(d) # 0,
we can easily see the solutions exist only if ¢ | f, and they are

. f
c= ﬂE(quK,f)

— QR U
d=Fgurpn

Sinceuw—vf = 1and xj x2(—1) = 1, we arrive at the desired expression for Cy, ,, (s).
By Proposition 3.11, we have

5,77 (1=5)
DleXZ(S) = %Cﬁ,ﬂ(l — S).

Inserting the formula of C3 %7, we complete the proof. O



Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect 241

3.5.2. Entries of scattering matrices Recall ®(s, x) in Proposition 3.10, which is a
matrix of entries pqp (s, x) for all a, b € C, (N). With Lemma 3.14, we can write out
every entry of ®. The logarithmic derivative of the determinant of scattering matrices
are important for their occurrence in the Selberg Trace Formula.

Proposition 3.15. Ifa, b € C, (N), then

fa ' Wa Wy
o((fa, 1))

2. X

q1|(}la,fb)q2|fu

L2s, x1x2) b —s)
L2s, xix2Xo.n)  Ox1.x2(8)

Qap(s, x) =

> X we) xaua)

X1:X2
s /L(a)u(b)m(b))(z(a) . s
(;j_?)l ZZ a2s-1p 252 f)2 ?
a\fablfa
A )
(611,,(]2 fb) (611253 fo)/

where the asterisked sum is over all primitive x; (mod g;) fori = 1,2 with x1x2 =~ x
(see Convention 2.9 for definition).

Proof. Forb = ”72- asisin (2.1), we have by Theorem 3.2

L(2s, x1x2)
Pab (s, X) = ———7— Z > Z Xo(—ua) 7>
((fﬂ’ )) |A"1q2|qu1 X2 L(2S XlXZXO N)

w(a)u(b) x1(b) x2(a) bfq
>3 OO g (5, (Yo ),

alfa b'f%

where W(Ey, y,) stands for the coefficient of the y!~5-term of Ey, ,,. Since the choice
of op does not affect the constant term in the Fourier expansion, we can take

1/2

Wy 0 )
0 W—l/z

by Remark 2.3, where yp = ( o ;})) € SLy(Z). Then for K = %, and y = yp, (3.13)
gives

Ob :J/b(

)2 2s

bf 055 5 (1 — 5) (@1 2= 7,
‘I"(EXL)(z(a_anZ’ S)) = g1l 1 X; 1 aqz bfayl—
q2 e (5) 611 Syt

aqz

NG s
((mﬁfg ?b)) ((611%,%))%} .

Then we complete the proof after substitution. O
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There are two special cases of Proposition 3.15 of special interest in this paper.

Firstly, we consider the case a = co. Notice that ( 1{, ?)a =d = %, by Remark 3.3,
so we have gqp = x(1)@a's = @op- In addition, we have the following closed-form
formula.

Corollary 3.16. For b = % € C4(N) in (2.1), we have

Wo 172 AR~ 25, 9)
o((f. ) AQs.¥)

1—[( W(p)> 1—[(1 )1—[( t/f(p))

PIN plf

(poob(s» X) = 5(,‘-%?(%)

where A is the completed Dirichlet L-function. In particular, ¢ooco(s, x) = 0 if x #
Yoy and @oca(3) = =8 n

Sketch of proof. We need to substitute f; = N, fp = f into Proposition 3.15. Briefly,
after some local analysis over different types of prime numbers, we have

S ) ) = IO BT )
aq’ N

P
alN Pl ¥ ptis

One can verify the rest easily and complete the proof. O

Secondly, we assume x is primitive (mod N), where only Atkin—Lehner cusps are
singular for x. Given an Atkin—Lehner cusp a = % € C(N),wecall a* := N;/f e C(N)
the Atkin—Lehner complement of a (on level N). The following calculation by N. Pitt
depicts a special property of Atkin—Lehner complement. Humphries [Hum1] computed
it in full details, and on general weights.

Corollary 3.17. [Iw1, Proposition 13.7] Ifa, b € C(N) are Atkin—Lehner, and x = x1%2
with x1 primitive (mod %) and xp primitive (mod fq), then we have

_ sAC=2571X2)  ifpy — %
Gan(s. 1) = (=Dt TORIN T =R 5n f=a%
0 otherwise.

3.5.3. The behavior of Eisenstein series at cusps that are not singular As we have
mentioned in Sect. 1.2, the cuspidal behavior of Eisenstein series at cusps not singular
for the central character affects the precise description of £.

Proposition 3.18. If a € C, (N), and b € C(N)\Cy (N), then as y — oo, we have
Ea(UbZa Sv X) - 05(1)'

Selberg proved (yet not published) the proposition for primitive y; see [Se, Thm. 7.1,
p-641]. Here we give an alternative proof, for which we need some preparation.

Convention 3.19. We denote the p-adic order function by v, (-).
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Lemma 3.20. Let x; be primitive (mod g;) fori = 1,2, and x = x1x2 be induced by
primitive ¥ (mod q). Assume there is f | N such that q | % andqy | f,and K | N

satisfying:

vp(N) —vp(q2) ifptqi,pla

3.14
vp(f) —vplq2) ifplaqr G.14)

Vp(K) = {

IfEy, x,(Kowz, s, x) is unbounded as y — oo for some b € C(N), then b € C, (N).
Proof. If Ey, y,|ko, 1s unbounded, then by Lemma 3.14, either Cy, ,,(s) # 0 or

Dy, () #0.
In the former case, we have g3 | fp, and for all prime numbers p | g1,

vy(K) > Vp(fb) —vp(q2)-

From (3.14), we know v, (K) < v,(f) — vp(g2), which gives v, (f) > v,(fp). Then
by assumption on f, we have

vp(q1) = vp(N/f) < vp(N/fe),

indicating g1 | % Together with g2 | fp, we find g = [q1, 2] | [ fb, /ﬁ.b], which means
b is singular for x by Proposition 2.11.
In the latter case, we have g1 | fp, and for all prime numbers p | ¢z,

Vp(fb) = Vp(‘]l) + Vp(K)-

We want to show
Vp(q2) < vp(N) —v,(fo) (3.15)

for all p | g, since this implies g2 | %, and hence that b is singular for x;x> for the
same reason in the previous case. We further bifurcate the discussion. Say p also divides
q1. Then

Vp(fb) < vp(q1) +vp(K) S vp(qr) + Vp(f) —Vp(q2) < vp(N) —vp(q2),

Thus (3.15) holds. On the contrary, if p 1 g1, then vy (fo) < vp(K) < vp(N) —vp(g2),
giving (3.15) again. O

Proof of Proposition 3.18. By Theorem 3.2, Eq(0p2, s, x) equals a linear combination
of Ey, y,(Kopz,s, x), where x; is primitive(mod ¢;) fori = 1,2, x1x2 >~ x, and
K | N satisfies (3.14). By Lemma 3.20, none of these E,, ,,(Kopz, s, x) contributes
any y® or y!~*-terms, so the proof is complete. 0O
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3.6. The formal inner product of Eisenstein series. It is well-known that Eisenstein
series are not in L2. It is nevertheless useful to consider the formal inner product of
two Eisenstein series inspired by [Iw2, Sect. 7.1]. Concretely, if a, b € C(N), then the
formal inner product of E, and Ep is defined by

(Eq(:,5), En(:, s))%iS =47 8qp,

when s = % + iT. For more details, see Sect. 5, where we adopt newform Eisenstein
series to build an alternative orthonormal basis. To accomplish this, we have the following
lemma as a special case of [Y2, Lemma 8.3].

Lemma 3.21. For primitive ¥ (mod q) with q2 | N, we have

(Eyy. Eyy)5 =danN[Ja = p D[]+ x0,(2p™.
plg PIN

3.7. Laurent expansions of Eisenstein series.

Proposition 3.22. There is an SL,(Z)-invariant function G such that

3/

E@.s)=—7+G@)+0(s — 1),

and as y — o0,
G(z) = y+ O(logy). (3.16)

Proposition 3.22 follows directly from [IK, (22.66)—(22.69)], so we omit the proof. These
formulas also show that G(z) € A(Yo(1)) can be expressed in terms of the logarithm of
the Dedekind eta function, but all we need for our later purposes is (3.16).

It is also important to explicitly evaluate the Laurent expansion of E,(z, s) around
s = 1 in terms of the newform Eisenstein series.

Proposition 3.23. For a = % € C(N), we have

Vol(Yo(N)) ™!
Eateo) = 0+ Y e Gl

gIN
3
+ Y DY 0w Y camgEnn(sz. D+ O(s — 1)),
L<r|(f,N/f) n(r) g|Nr—2
where cq ;. ¢ are independent of u,
1 (f, %) log p log p
Ca0 = log LD D D Dl § (3.17)
' Vol (Yo (N ( N +1 -1
olro (V) v P PN/ P

and

(fiN/f) ¢(2) Z Z‘S u(a)u(b)

Ca,g = (3.18)
No((f, N/f)) L2, xo.n)

alf b1
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Proof. By Theorem 3.2, E,(z, s) can be expressed as a linear combination of E;) ; |, for
primitive n (mod r) with r | (f, N/f), and suitable g|N. The contribution from r > 1
is

We = _ L(2s, %) w@pbyniab) . (bf
W' _ e (Y0
e((f,N/f) 1<r|§:N/f) ; e )L(Zv 1 Xon) aXu‘:MZN @b n.n(arZ s)

which can be expressed as Zl<r\(f N/f) PR IC DY g2 Cang Enn(gz, 1) with
Ca,n,g independent of u. By Proposition 3.22, the contnbutlon from r = 1 equals

W' f7 £s) w@ub) (3/x . (bf
(p((f,N/f))L(ZS,XO,N)ZZ asbs <s—1+ ( >+0(S—1))

Let

Fq(s) =

W' ™ ¢(@2s) ) wa@ub) (3.19)

OL NI L@ o) 7 15 @'

It is well-known that Res,—1 Eq(z, 5) = (Vol(Yo(N))) ™!, s0 2 Fy(1) = Vol(Yo(N))™!;
of course, for consistency this can be checked directly from (3.19). Hence the contribu-
tion of r = 1 to the Laurent expansion of E4(z, s) is of the form

Vol(Yo(N))~!

1 +2F () +) cagGlg+0(s— 1), (3.20)

gIN

for cq ¢ given by (3.18). The term Fc’l(l) gives rise to cq,0, which is computed by

logp Z logp‘

Fq N
F—a(l)z—logN+log(f,7)+Z o1

pIN PICEN/S)
0

Although the level 1 Eisenstein series is an eigenfunction of the Hecke operators, the
same is not quite true for the function G.

Lemma 3.24. For n > 1, we have
3 _ n
T,(G) = A(n)G + ;ﬁ;a log .,
an

where T, is the nth Hecke operator, and A(n) = Ay 1(n, 1) = nl/2 Zbln b~ asis in
(3.5).

Remark 3.25. Our normalization of the Hecke operator T, is so that T,u; = A;(n)u;
(and see Convention 1.1).

Proof. Recall that G(z) = Res;—1(s — D7LE(z, s), so by Remark 3.7 we have
T,(G) = Rels<(s — ) 'A(n, 9)E(, s)).
§S=

By Proposition 3.22 and since A(n, s) = Zab:n(f’—l)s_l/z, we finish the proof. O
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3.8. Some inequalities. Here we perform some elementary calculations related to ¢ooq,
which are critical for future arguments. To begin, we have the following standard lemma.

Lemma 3.26. There exists an absolute constant C so that

1 lo
Z — <logloglog(N +15)+C, and ogP < loglog(N +2) +C.

PIN PIN

Convention 3.27. For integers A and B, we denote lim,, (A, B") by Ap and by
Ai.

From the fact N, ; | % we have the following corollary.
Corollary 3.28. If s = % +iT and  is primitive (mod q) for q | N, then

Z Y (p)logp

o =1 < loglog(5 +2).

PIN

Then we can bound the coefficients in Proposition 3.23.

Corollary 3.29. For a = % € C(N), we have

_ (fiN/f)
Ca0 = Vol(YO(N))( og = + O(loglog N)), (3.21)
and
> leagl < N7'(loglog N)>. (3.22)

gIN

Proof. The equation (3.21) follows from Lemma 3.26. By (3.18), we have

LN/ E@) (@) (b)|
2_leasl < No((f. N/F) L2, xon) 22

gIN alf v
=N ] a-p ' TJa=-pD ' [Ta+pH[Ja+p™.
PILLNID pIN plf m%

Then Lemma 3.26 completes the proof of (3.22). O
Convention 3.30. Given n > 1, we denote the number of prime divisors of n by w(n).
Proposition 3.31. For any positive integers k and L,

1
3 P2E0® < (loglog(L +2)F*.
gIL
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Proof. Decomposing log g into ng v,(g)log p, we have

V]J(L)

lo v k@)
B = S togp 0 e — S hogp Yo i Y
a8 pIL ar  § pIL i=1 gL

¢=0(p) v, (g)=i
vp(L)
ik k@)
—ZlogPZ >
pIL gIL
g#0(p)
B(p)
o) v (L)
SO 30 (T Spe
(p)f
rIL p'IL
p'#p
A

Itis not hard to find that 0 < A < }° 1 lo;g)p « loglog(L +2) by Lemma 3.26. Since

1 <B(p) < Hp/|L (1 +k Ziozl ﬁ) =: B, we have again by Lemma 3.26

1
log B = log(l +kz =k 5 + Or(1) < klogloglog(L + 15) + O (1).
pIL pIL

Then B < (loglog(L +2))* implies >elL l°§gkw<g> < AB < (loglog(L +2))*+1.
O

Corollary 3.32. For a = ”7;! eC(N)asin(2.1),and s = % +iT, we have

Zlfpooa(s,x)|210g§ < (10g10g (g+2))5; (3.23)
Z|§Oooa(s 0 Z w(wgp)zi ng <loglog (g+2))5; (3.24)
Pl o
N N 5
Zu: |0s0a(s, )12 1og fa = log o 0((1oglog (? +2)) ) (3.25)

Proof. Define Sy (s, x) = Za:fa:f [@ooa (s, x)|? for f | %. By Corollary 3.16, we
have

Sp(s, ) = Crls, 0 [ 765, 0,
pl¥
where

Cf(S’X)Z% [Ta-»b 11 II—W(P)p‘zsI‘Z(l—p‘l)zf%,

I PINGy )
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and

—Y(p)p' =2

S[’
0 = 1—w@m4f

_ 4 ifptgq,
— |1 ifp|gq.

There being at most a)((%);) < w(%) such p that S?(s, x) > 1 in the last product,
we have '

Sp(s, x) < % 4261 =1 Sp(x). (3.26)

Then (3.23) follows from Proposition 3.31 and the fact

\Z 90ca(s, x)lzlogq—l;;‘ < fZNSf(x)log qlf

We similarly have

2 Y (p)logp Y (p)logp
Z|<Pooa(SX)| Z)I/f( -1 1 _ZZ‘S( W

Pl 15 eIl
1— 1-2s
Noticing that |Sf(s X)x//(p)pZS = I(ll—:/l;((iggfzs)l‘z < (1—5*1)2 < 8, we have
Srs, x) ‘
———— | L S0
pppr 1 T
Consequently,
v(p)l gP
DN S 0| < Zsf(X) D logp < ZSf(x)log—
— ~ 1#( )p
flg rlgr P|qf f|

and (3.24) follows from Proposition 3.31. Equation (3.25) results from (3.23) and that

3 a [Pooa(s)1*(log fq +log %) = log g > u [fcals) > = log % by Proposition 3.10.
O

4. Integral Renormalization

4.1. Equivalent definitions of integral regularizations. We start by recalling Zagier’s
definition of integral regularizations on Yy(1). Assume F(z) is SL;(Z)-invariant and
satisfies

F@=vy,(W+0u™ ") (4.1)

as y — oo for all integers P, where ¥, = Y /L, ¢;y%, with ¢; € C*, distinct o;; €
C\{1},i =1,2,....,m,and m = m(F) > 1. When m # 0 and Re; > 1 for some i,
F is not integrable in the usual sense. Nevertheless, F is “renormalizable” (in Zagier’s
terminology). Write R.N.([ Fduw), the renormalization of [ Fdu, defined by

® Jy<r Fd“"'fyzR(F_‘/fF)dM"‘fR Yy 2y (y)dy.
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Here the first two integrals are performed over the standard fundamental domain F for
SL>(Z), with their displayed additional restrictions, and the third is the “anti-derivative"
with respect to R, i.e., a linear combination of R-powers without a nonzero constant
term. Zagier’s definition is independent of R, as we verify in the following subsection.
Moreover, as we let R — 00, the second term tends to zero, giving an alternative
definition:

e lim (fy<R qu—fRy_zl/fF(y)dy).

R— 0

The third description is also called the regularization of the integral [ Fdu by Michel
and Venkatesh [MiVe]:

o [(F—=) 1<izm GE@ a))du,
Nay=1/2

which is based on R.N ( f E(z,s)d u) = 0, a direct result of the following theorem.

Theorem 4.1 (Zagier [Z]). Assume F is continuous, has Fourier expansiony_ an(y)e(nx)
and satisfies all above assumptions. Then E(z, s)F(2) is also renormalizable for Ns
large, and for any R > 1 the following function

R o0 R
/0 aog(y)y* 2dy + /R (a0 (y) — ¥, ())y* 2dy — / ey iy (4.2)

has meromorphic continuation and equals R.N.(f E(z,s)F(2)duw).

4.2. Generalization of Zagier’s result to arbitrary level. By [Iw2, Proposition 2.4],
there exists a fundamental domain for Yo(N), whose vertices are 'g(N)-inequivalent
cusps. Let F be such a fundamental domain. For R > 1, if we write F4(R) to be the
cuspidal zone, i.e., the image of the truncated strip 0 < x < 1, y > R under o,, and
FR) = F\(Lls Fa(R)).

Assume F(z) € A(Yp(N)) has Fourier expansion Y _ a,(y)e(nx), and at each cusp
a, there is Yq = Zi Ca.iy*ei,suchthati = 1,2, ..., mq for some my > 1, and

F(0q2) = Ya(y) + 0y~ "), 4.3)

for all integers P as y — oo, where cq; € C\{0} and o ; € C\{1}. Then we call F
renormalizable, because f Fdu can be renormalized as follows for all R > 1:

R.N.(/F F(z)du) :=fﬂR) qu+2(/fa(m (F(2)

a

R
— Ya(Im (0 '2)))dp —/ way’zdy)-

Again, the expression of the renormalized integral is independent of R: pick 1 <
R1 < R», then the difference between the right hand sides of the equation evaluated at
R> and R; is
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/ ran-y( [ (F) — Va(3 (0 '2)dns
(F(Rp)—F (R1)) o 0a(Foo(R1)—Foo(R2))

Ry

- %(y)y’zdy)

R

Ry
= aOdp — (V)Y 2dy = 0.
ffm > Va(du ;/sz@)y y

(R)—Fo(R2)

Remark 4.2. Just as in Zagier’s level 1 case, if the integrand is integrable already, the
renormalized integral agrees with the usual integral.

Now suppose F € A(Yo(N), x) satisfies (4.3) and has Fourier expansion ) _ aS (y)e(nx)
at each a, with Zn#o laf (M| = O(y_P) asy — oo forall P > 1. Define Ry (F; s) :=

fooo (ai(y) — Ya(¥)y’ —2dy, which converges for s large by work of Dutta-Gupta
[D-G].

Hulse, Kuan, Lowry-Duda and Walker essentially generalized Zagier’s theory to
higher levels. Their original claim only concerns case x being trivial, but it takes no
extra effort to see that the same argument works for general central characters.

Theorem 4.3 [HKL-DW, Proposition A3]. If Ws is sufficiently large, and a € C, (N),
then

R.N.((Ea(-,5. %), F())y) = Ra(F35).
Consequently, the renormalized integral of a single Eisenstein series, attached to

any cusp, vanishes, which justifies the third definition in Zagier’s work, as well as our
generalization:

R.N.(/qu> =/<F—Z > Eazaad).

o Reag;>1/2

We also call this the regularization of (F, 1), and write it (F, 1)'7.

Corollary 4.4. For any a and b singular for x and sy, s € C\{0, 1}, we have
(Ea(" S1, X)7 Eb(? 52, X))I;g =

Remark 4.5. Note the difference between (-, -)\*¢ above and (-, ~)Eis from Lemma 3.21.

5. Spectral Decomposition

Here we take the notation in [Iw2] of Bs(Yo(N)) with § > 0, which stands for the space
of smooth automorphic functions f on Yy(N), satisfying

f(0a2) €y° as y— oo,

for all a € C(N). We note that for § < %, Bs(Yo(N)) C L2(Y0(N)).
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5.1. Classical theory. For F € Bs(Yo(N)) with § < 1/2, we have spectral decomposi-
tion:

(F, 1)y

F@ = (1),

1 0 ) .
+ Y (F,upyu(@ + > / (F,Eq(, 3 +i0)y Ea(z, § +it)dt.
ueO(N) aeC(N) V>

Remark 5.1. In our work, the choice of E, as an orthogonal basis in the spectral de-
composition is convenient for computations with the main terms, but not for the error
terms.

5.2. Regularization for spectral decomposition. To apply the spectral decomposition,
we need to regularize | E|%. See [MiVe, Sect. 4.3—-4.4] for more about the general theory.

Proposition 5.2. For E = E(z, % +iT, x) as in Theorem 1.9, we have |E|*> — € €
B: (Yo(N)) for arbitrarily small ¢ > 0 with

&= 291(%000(% +iT, x)Eso(z, 1 — 2iT)>

+51g%+(Eoo(z,1+ﬂ)+ > GaHIT 0¢oa(3 + B~ iIT. DEalz 1 = B)).
aeCy (N)

Remark 5.3. Wenote thataslongas T # 0, £ is well-defined as an element in B, (Yo (N)).
See [Wu, Sect. 2] for an extension for the case of 7 = 0.

Proof. This is done by comparing ¥ s (see (4.1) for definition) with Wsﬁ for

Fg(z.T) = Eco(z. 5 +iT, x)Eco(z, 5 + B —iT. %) and
Ep(2, T) = poooo(§ +iT, X)Eoc(z, 1+ B = 2T) + poooo(§ + B — iT, D Ecc(z, 1 — B +2iT)

+Eco(z 14 B)+ Y pooal(h +iT. x)pooa(3 + B —iT. )Ea(z, 1= ).
a

The constant terms in the Fourier expansion of E, can be calculated via (3.1) and (3.5),
and that of E|,, is computable with Proposition 3.15. Now that /5, and ¢, agree for
all sufficiently small 8 > 0, their difference lies in B, (Yo(N)), foralle > . O

5.3. Regularized spectral decomposition in a new choice of orthonormal basis. Define

O;(M) = {u;" @ = Y & ujla | uj € Higy (M), €] Mo, M = My My,
dle
(5.1)

where H;; : (M) stands for the set of Lz(Yo(M ))-normalized Hecke—Maass newforms
of level My and spectral parameter ¢}, and &, (d) are certain coefficients satisfying the
bound

&(d) K Es(ﬁ/d)e_%, (5.2)
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as is described in [BM, (5.6)]. Here each u; can be written as p juj, where
W5@) =y Y ki) Ki; 2r|n|y)e(nx), (5.3)
n#0

stands for the Hecke-normalized cusp form, and
|t;]|
pj = Ul = O(M~#*e ), (5.4)

Blomer and Miliéevié! showed that © (M) is an orthonormal basis of the space of
cusp forms of spectral parameter ;. Consequently, O(M) := L]?i 1 O (M) makes an
orthonormal basis of Maass cusp forms of level M. ‘

Parallelly, as explained in [Y2, Sect. 8.3],

> aie & Eyp(dz, 3 +iD)
IE 115"

OtEiS(M) = {E<e>(z, 3 +it) = n (mod r), r2¢ | M}

(5.5)

forms a formal orthonormal basis, where SlEis(d) also satisfy the same bound as &;(d)
in (5.2), being obtained in the same way via substitutions of the Hecke eigenvalues. By
Lemma 3.21,

NESIES = J(ES, EfEs = VazM [Ja - p~)3 [] +p~H3 = mared,

plr pIME
From the definition of renormalized integral and Corollary 4.4, we have (|E)? —

&,1)y, = 0. Since (£, u), = 0, applying the Plancherel formula to (|E)? = €&, o)y
yields

(EP =& ¢)y= ) <|E|2,u>N<u,¢>M+/ > IEP E)E(E. ¢),dt.

ucO(M) —o0 E,cOFs (M)
(5.6)
Consequently we can take (5.1) and (5.5) back to (5.6), and obtain
(EP =€)y =Y. Yoo D UER ) Wi ¢y
jZlMlezMuje'H“ (M) €| My
o0 *
H[TOX X SRR B b i b in. o)y,
2= n(mod r) ¢|L
(5.7)

where the asterisked sum is over all primitive Dirichlet characters (mod r). We estimate
the terms in (5.6), or equivalently (5.7), and (€, ¢),, in the following sections.

1 See https://www.uni-math.gwdg.de/blomer/corrections.pdf for corrections of [BM].
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6. Error Term Estimation

6.1. Calculation with Fourier coefficients.

Lemma 6.1. Let Ns be sufficiently large. Suppose f € A(Yo(N), x) and g € A(Yo(N))
have Fourier expansions

f@) =ao(y)+ /3 Y Ap(ma(ny)e(nx)
n#0

8(2) =¥ Y hg(mb(ny)e(nx),
n#0

where Ay and Ag are multiplicative and L (—n) = A (=1)A(n) for x = f or g. Then
we have

(EL s, X0, £ 8y = Gop(=1) + A (=1)(s) D n ™A (n)hg(n),

n>1

where h(s) = oo v ra(y)b(y)dy.
Proof. This is easy by unfolding and integration on x. 0O

Corollary 6.2. With the same assumptions as Lemma 6.1, if we further have f|s €
AYo(N), x) and g|gp € A(Yo(N)) for some A, B | N, then

(B C5.00s fla - glp)y = Oup (=D + 3 (= D)) Za 5 (5),

with

Za p(s) = [ﬁs Zn_sk—f<[AAB]n>E<[AéB]n>.

n>1

6.2. Cuspidal contribution. The following corollary is a special case of Corollary 6.2
with (5.3) and (3.5).

Corollary 6.3. For all A | % and B | N, we have

(ESDCog +iT. x) Eygla-ujlp)y = Fr)Zas(s +iT, ¥, u)),

where

, and

JAB ZA A g (A (48 )

Zag(3+iT, Y uj) = .
[A,B]%-HT =1 n7+lT

B e o 1.
Fr(tj) = ,01@(% +iT)pj(r) 5 (=D +?»j(—1))/0 y_EHTKiT(Z”}’)Kitj 2ry)dy.
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From (3.6), (5.4), and [GR, (6.576.4)], we see Fr(t;) < NsM—%eHTUﬂP(rj, T)
for some polynomial P (x, y), where

if [t;] < 2|T1,

0
Hr (1)) =
r) i%(zm—m) if |1 > 2|T.

(6.1)

Asfor Z4 B (% +iT, Y, u;), we can rewrite the Dirichlet series as an Euler product

—_— [A.B]y — [A,B]
VAB H(ZM’WPM( AN (s >)) Fa, )y AR Ay () .
[A’B]%H'T Sl pn(%ﬂ'T) = n7+zT

where F;(A, B) is a finite Euler product over prime divisors of [A, B]. Inserting the

bounds from Remark 3.5 and Convention 1.1, wehave F; (A, B) = O(N°(A, B) 3 (A )9)y.
Applying the Rankin—Selberg method (see e.g. [Iwl, (13.1)]), we have

5 Mgmajm) LG upL +2iT, u; ®$).

= aiHT LA+2iT, ¥ - X0 )

Recalling equation (3.1) and the fact |L(1 +2iT, )| >7 ¢~¢, we have the following
lemma.

Lemma 6.4. Keeping above notations and s = % +iT, we have foralld | M

Yoar— 4 _1 1 . -
(EsoCys, 0P ujla)y <5 e DON"2M=2 (L a2 (5 IL(G up)L(5 +2iT,uj ® ¥).

Notice Lemma 6.4 implies Proposition 1.15. Now we can estimate the first part of (5.6).

Proposition 6.5. Keeping all notations in Theorems 1.2 and 1.9, we have
3 Eaol S +iIT 0P byl 9, < N2 M 265 6.
ueO(M)
Before proving Proposition 6.5, we claim a lemma.
Lemma 6.6. We have
> D LG upP <1 N°M.

1j<2|T|+2log N ujeH” (M)

The proof follows from the spectral large sieve inequality, so we omit it. See Motohashi
[Mo, (3.4.4)] for an example on the case M = 1.

Remark 6.7. A bound of the same quality actually holds for the fourth moment of central
values of these L-functions, which follows from the spectral large sieve for I'o(M)
developed by Deshouillers and Iwaniec [DI]. Motohashi [Mo, Theorem 3.4] shows this
for the case M = 1.
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Proof of Proposition 6.5. By (5.1), (5.7) and Cauchy—Schwarz, we have

> HExl, Ol =Y D Eal uj)y (). ¢),l

ueO(M) J=lu;jeO;(M)
1 1
2 2
=(X X WER ) (X X 1w enP)
J=1ujeO;(M) J=1u;jeO;(M)

Observe that by Bessel’s inequality,

S P < N9l

j=1 u_,'e(’)j(M)

As for the other factor, we recall (5.1) and (5.2), and apply Cauchy—Schwarz again to
see

1 1
) <0122 2 2)2 2
1EoeP 150 = (1677 P) (2 HEw P ujlany ) < £ max [ Evol?. )

die dle

< N—%+8M_%eHT(’f>(g,£)% % ‘L 2’”1) (%+2iT,uj®$)‘,

where & <> is defined in (5.1).Because of the factor /7)) (see (6.1) for its magnitude),
we may truncate the sum at [¢;| < 2|T| +2log N, with a very small error term.

Furthermore, for all |¢;] < 2|T| +2log N, we have

Y (5 0

2 <l> 2 —1
D S Y O T

1| M>
= NTM T DY L ML G LG + 2T @ DI,

26 . —
(E)TILGupLG+2iT,u; @ PP

and by Theorem 1.16 and Lemma 6.6, we have

> D D HEl ui™)y P

[tj1=2IT|+21og N u;€Hi; (My) €1M2
1
< NI (X M) My max{M[ T, My (M1, q)?q?).

In the summation over M| M, = M, the term with M = M| and M, = 1 dominates, so

=

3 > KBl )y P)T < NI max(MigE, M3 (M, q)dgH).
[tj|<2IT|+2log N u;€O; (M)

Remark 6.8. Following the same line as Lemma 6.6 we can similarly have

% 2|T|+21og N
/ IL(3, Epy(, 3 +i0)Pdt <, N°r.

n (mod 7y ¢ ~2T|=2log N
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6.3. Eisenstein contribution. Now we estimate the second part in (5.6). It is not hard to
see we have made every piece correspond well with their cusp form counterpart in the
rewritten formula (5.7), and that is why we choose OF‘S (M) to be the orthonormal basis.

Lemma 6.9. Keeping all notations as in (5.7), we have
(|Eoo(s 5, ), Eqy(d-, § +iD)}®
1 1 J—
&g MONT(EL d)2|L(5, Eyy)L(5 +2iT, Eyy @ Y,

Hr (-) being the same as in (6.1). Here s = % +iT and E, ; in the L-functions depends
ont.

The proof is almost the same as that of Lemma 6.4, so we omit the details.

Proposition 6.10. Keeping all notations from Theorems 1.2 and 1.9, we have

o° Clpe 31
D AEP ENE(E:, ¢)ydt <5 NTT¥q5 M2 ],
% E,cOFs (M)

Sketch of proof. After Lemma 6.9, the calculation can be reduced to some multiple of

% 2|T+2log N 1 —
/ |L(3, Ey.)L(3 +2iT, E;, ® ¥)|*dt,

7 (mod r) —2|T|-2log N

with a similarly negligible tail. Then we can just perform the same procedure of proving
Proposition 6.5, except for taking the Burgess bound for |L(% +2iT, Ey  ® )| instead
of Theorem 1.16, and putting the equation in Remark 6.8 in place of Lemma 6.6. O

Remark 6.11. One may improve this error term by using the Weyl bound for Dirichlet
L-functions [PY1,PY2], reducing the exponent of ¢ on the right hand side from 3/8 to
1/3. However, this does not improve the overall error term which is limited by the cusp
form contribution.

7. Main Term Estimation

The main goal of this section is to prove (1.7) and (1.8), which are the main term aspects
of Theorem 1.9. Throughout this section we adopt all notations in previous sections.

7.1. Preparation. Recall WI{,(a) is the width of a (see Sect. 2.2 for definition).

7.1.1. Weighted average

Lemma 7.1. For s = % +iT, we have

L'(1+2iT, )

;o —
2<§0ooa(SaX) 1 ) [\

— E s, ————— +logWy(a)) =2log N +4R —
[@ooa (s, X)I g Wy (a) g L(+2T.9)

aeCy (N) Yooa (S, X)

+0r(1)+ 0((loglog (¥ +2))°).
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Proof. According to Corollary 3.16, for a = if € Cy (N) with f | %, we have

a3 —iT. 30
Poca(3 —iT, %)

o N
= —(logpoca(L —iT, 7)) = log
’ . 5
/ . R —1+2iT 2iT
+4%A(1+21T,1/f)+22 Y (p)p log p 22 Y(p)p™' logp

CARAT ) L Tt e Ty ()T
T

where A is the completed L-function. Moreover, by Lemma 2.4 and Proposition 3.10,
we have

1, 2(Pooas —iT. 3 | 1, 2
Y a3 T 0P (I g Wy @) = 30 lomalh 4T 0

1 _
aeCy (N) Pooa(y —iT, acCy (N)

/ iT U —1+2iT 2T
-<210gf+49tA(1+2lT’1//)+22 Y(p)p logp_zz v(p)p logp>
N

AQ+2T ) o =9 (pp= 2T e L=y ()T
f

Recalling Corollaries 3.28 and 3.32, we arrive at the lemma. 0O

7.1.2. Traced Eisenstein series Applying the trace operator Tr% (see the definition in
(3.11)) to £, we have (see [AL, Lemma 12])

(€, )y = (Trh E. ),

To calculate further with this, we need to identify Tr% £.ByLemma 3.12 and Proposition
5.2, we have forall T # 0

Y & = zm(wgggo(% +iT, )EM (2,1 — 2iT)> + lim (Eg‘g)(z, 1+8)
0t

+ Y G HIT 00N G+ B T WY @ EL 1 - B)).
aeCy (N)
(7.1)

It is still necessary to simplify (7.1) further.
Proposition 7.2. When T # 0, we have

Teh € = o + ch(ﬂg + ch,E(-, 1+2iT)|,,

glM glM
where
1 N? L'(1+2iT, ¢
o = (1og wanEAH2T V) (Goglog(X + 2))5)),
(1,1, MM, N/q) L +2iT,¥) g
(7.2)
and the coefficients cg, c:g, satisfy
> legl + I 1) < M~ (loglog M)?. (7.3)

glM
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Remark 7.3. One of the pleasant features in Proposition 7.2 is that there is no contribu-
tion from the newform Eisenstein series with » > 1. In addition, by taking M = N,
Proposition 7.2 gives an alternative expression for £ itself. Finally, we note from Corol-
lary 3.16 that @S (s, x) vanishes unless y is trivial, which means c =O0forallg | M
whenever yx is nontrivial.

Proof. Taking the limit 8 — 07 in (7.1) with help of Propositions 3.10 and 3.23, we

have
ES
Try € =co+ Y cGlg+ Y. > Y cpgEyylgz. 1)
gIM 1<r2|N n(r) g|Nr=2
+23L(¢“V) A iT, )ED (@, 1 —21T)>
where

0 =coo0t Y. loWn(3+iT. x)*can0

aeCy (N)
1 Phoa(s —iT. %)
D G+ T><>|2(L log WY @),
(I, 1), aeCy (N) (Pooa(z T, %)

Cg =Coo,gt Z |§0(N)(2+1T X)| Ca,gs
aeC (N)

and

g = Y QNG +iT, 0P TUa)Ca g
aeCy (N)

For clarity, we remark that the coefficients cq,0 and cq ¢ correspond to the notation

from Proposition 3.23, but on level M. To simplify, first observe that when 7 (mod r) is

primitive withr > 1, then c77 ¢ = Oforall g | M.This holds because foreach fixed f | N,

C, (N) contains all cusps f withu € (Z/(f N/f)Z) . Then, since |pn (2 +iT, x)|?
and Ca,y,¢ are independent of u, the sum over u, vanishes.

Next we simplify cg. By Lemmas 2.7 and 2.4, Corollary 3.29, and Remark 2.5, we

M(ay — 1 M

have log Wy (a) = log Wy (a) — lOg((M,(M,f)Z))’ and so

Vol(Yo(M))eo = —log M+ D" [¢Skn( +iT, 01— log(f, M)

aeCy (N)

@l —iT.%)

— log Wll,(a)) + O(loglog M).
(poou(‘ —iT, %)

Next we apply some approximations to simplify this further. From Corollary 3.16,
we see that poq (s, x) = 0 unless f|%, and hence only terms with (M, f) | (M, N/q)

are in the sum. Moreover, we have (TMN]{?) | NT/q. By (3.23), we can replace log (f, M)

by log (M, N/q) with an acceptable error term, which gives the claimed estimation (7.2)
for cp.
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The estimation of ) elM |cg| comes from Corollary 3.29 and the fact that

D el £ lcoogl + Y 10ooa(3 +iT, 1P Y Ical-

glM glM a gIM
For fixed T # 0, we have

{2+4T) 3 n(M/g)

E(M) ,1+2.T :M7172iT :
o (@ 12 LQ+4T, xy.,) “~ (M]g) 2T

E(gz, 1+2iT)
glM
= ¢ E(gz, 1+2iT),
gIM
with ¢, = M(M/g)M*%ZiTgH"T%. It is obvious that |c}| < |cl, so the
bound of Zg lce| applies to Zg |c;,|. O

7.2. Proof of (1.7) and (1.8). Recalling Proposition 7.2, we have
(£ p)y = (co. Dy + Y co(Gle,d)y + Y Co{E(g 1+20T), p),,,
giM gIM
where ¢, and c(’,’, are the constants from Proposition 7.2. Define
ap =Y cg(Glg. @)y + > ColE(g- 1+2iT), p),,. (7.4)
glM glM
By Lemma 7.1 and Remark 2.6, we have
(Triy €.9)y = co(l. §),, +atg.
Then (7.2) gives (1.7), and (1.8) follows from (7.3) and (7.4).

Remark 7.4. Now consider the case M = g = 1, and let T — 0. In this case, we have
by (3.20) that

@Jooo(% +iT)Ex(z, 1 —2iT)
1

1 / 1 .
= =) + =) . T ) . .
(90D + e ) D) - oy o7
for some I'g(/V)-invariant function G, (the constant term in the Laurent expansion of
EX(z, s) around s = 1), and so

Zm((ﬂoooo(% +iT)Eno(z, 1 — 2iT)) = Pooco(3 +iT)Eno(z, 1 — 2iT)
+ocoe (3 = iT) Eco(z, 1 +2iT)

+ P00 (3) - Goo(2) + O(IT ),

_ $heo(3)

Volrg(v) +2#0ee(2) * Goo(2) + O(T).

(7.5)

Since (poooo(%) = —1and <pooa(%) =0 foralla € C(N), a # oo, we have by (7.1) and
(7.5)

co | LI I o
€ = Goige; (P39 5) ~ Pho(3)) + OUTD.

Letting T — 0, we see (£, ¢),, — 0 as desired.
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7.3. Limitations to QUE (continued). Here we provide the additional details of the
example discussed in Sect. 1.4. Recall in the example that x is primitive (mod N) and
M is a prime divisor of N. Then by Proposition 5.2, Remark 2.6, Lemma 2.7 and
Corollary 3.17, we have

Try € = Jim, (EL @1+ B+ (30) ol +iT 008G + B = iT.DES 2,1 = B)).
Next, Theorem 3.2 says

{@2+2p)

EP @1+ =M"F "
00 (z B) L(2+28, XO,M)

(E(Mz, 1+8)—M " PEG 1+ ﬁ)),

and
_ 2—-28) _
EM(z, 1 - _mp_$C =20 E(z,1—B8) =M "PEMz,1—-p)).
01— p) o2y F@1 =P ( p)
Then since (€, ¢), = (Tr% &, ¢),,, by Proposition 3.22 we obtain (1.9) with
&) -1 2 -1 2
= =—\M " —-M =M M . 7.6
a=cu=5 XO’M)( ) roOM?) (7.6)

The estimation (1.10) of ¢q is contained in (7.2).

7.4. Proof of Theorem 1.12. Recall (1.9) for M prime. It suffices to show that there are
at least §M choices of j so that G and G|,, are both bounded (uniformly in M) on the
support of ¢ = d:}M), since then (G, ¢),, and (G|,,, ¢),, are bounded by O(||¢, ), as
desired.

Let M > 1 be an integer, and consider the following sets. Let D denote the standard
fundamental domain for SL,(Z), and let

Bu={x+iy:xeR, M~ <y<20000M'}. (7.7)
For R > 1,let D(R) = {z € D : Im(z) > R}, and let D(R) = D\D(R).

Remark 7.5. We point out that the only distinct points in By, that are ['g(M)-equivalent
are integer translates of each other. This follows because if z € By, then [cz +d| > 1
for all coprime integers ¢, d with M|c, ¢ # 0. That is, if z € By, and y € ['g(M), then
Im(yz) < Im(z) unlessc = 0.Infact, theset{z e H |0 < x < 1, |cz+d| > 1,(}}) €
['o(M)} consists of the interior points of a fundamental domain of I'g(M), known as the
Ford domain.

Lemma 7.6. There exists an absolute constant o > 0 so that for all M large, there exists
at least S5oM T'o(M)-inequivalent coset representatives I'o(M)y so that y (D°(100)) C
Bu.

Proof of Theorem 1.12. Note that G is bounded on D¢ (100) and hence on y (D¢ (100)),
for any y € SLy(Z). Meanwhile, G| is bounded on Bj;, so both G and G|y are
bounded on y (D°(100)). Thus, the test functions qb;.M ) corresponding to these §o M coset
representatives satisfy the QUE conjecture on shrinking sets, as stated in Theorem 1.12.

O
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Proof of Lemma 7.6. We proceed with an explicit construction. Firstly, we point out
that if To(M)y1 = To(M)y, with y; = (. ;), and with ¢1, ¢z > 0, then y; yz_l =
(crdyscrdy 2) € To(M), and hence c1dy = c2di (mod M).If —M < cidy —cd) < M,
then the congruence is an equality, forcing ¢; = ¢, and d; = d». With this observation,
we take the following set:

S={ed)eZ? | ¥ <c<IM 0<d <& (c,d)=1).

By the discussion above, the cosets To(M)(} ), with (c, d) € S, are distinct.
We claim that for y = (%}) € SL2(Z) with (¢, d) € S, then y (D°(100)) C By,
and we now proceed to prove this claim. First we observe that if z € D(100), then
y _ Y 2 _ 20000’
(cx+d)?2+c2y?2 = c2y2 = 32~ M

Im(yz) =

VM

since ¢ > Y55 This gives the desired upper bound on the imaginary part. For the lower
bound, we have

y . y
+d)2+c2y2 T (3c/4)? + 2y’

Im(y2) = —
(5

using (¢/2+d)* < (3¢/4)?. Itis not hard to check that & (y) = m is decreasing

in y for y > 3/4, so the above lower bound on Im(y z) is minimized when y = 100. Thus

S(yz) > ac™? witha = %. Using ¢? < M/20%, we obtain J(yz) > 20%a/M.

Checking 20%a > 3.999 > 1 finishes the proof of the desired lower bound on the
imaginary part. It is easy to check by standard methods that #S5 ~ oM, for some
so>0. O

7.5. Comparison of main terms. An astute reader may notice an apparent inconsistency
between the main terms displayed in Theorems 1.2 and 1.9, and we devote this section to
compare these main terms and resolve this paradox. Recall that Theorem 1.9 estimates
(|E|?, ¢) ~» Where ¢ = ¢;M) is chosen from the system described in Convention 1.7.
One can recover Theorem 1.2 in two different ways from Theorem 1.9; the first way
is to simply take M = 1 in Theorem 1.9, which visibly reduces to Theorem 1.2, and
the second is to form ¢, as the sum of ¢}M>. That is, summing over ¢ = ¢;.M) for
j=1,2,...,v(M), we have

(1.¢) N? Lo
SUER @)y = (EP. ¢y ~ Y " (‘log HAR—(L+ 2T, 9)) + Y o
- . (1,1)M< M(M,N/q) L ) "
_ (L), (1 . N2
(1, 1), MM, N/q)

N -
+4N (14217, ¢)) +§a¢.

This expression has a different shape than that from Theorem 1.2, which says

(L, @), L

(E1, ¢), ~ o (1ogN2+4mf(1+2iT,E)>.
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For consistency, we must have
Z oy ~ 11 og(M (M, N/q)). (7.8)

We wish to check this dlrectly, atleast in some special cases. For simplicity of exposition,
we take ¢ = N (i.e., x is primitive), and M prime.
In (7.4), we have c/g = 0 since g # 1, whence

Dap =" celGlg.d)y =Y ce(Glg. by)y

) ¢ gIM gIM
Since ¢, is SLy(Z)-invariant, we have

> ca(Gle. d) Z cg——— (T} (Gl), by),-

( )

g\M

On the other hand, one can check dlrectly (see [DS, Sects. 5.1-5.4]) that
Tr (flg) = 8T (),

for any automorphic function f of level 1. Hence by Lemma 3.24 and (7.6),

Z ap =y g—fT(G> ),

gIM
0 AT )
— (1,¢0>1 los MY(1+ O (M~ G o 0!
=11y, Qg1 +OMTH) +(G,9,), 2+ OM™D),

which indeed agrees with (7.8).

8. QUE for Eisenstein Series Attached to Other Cusps

This section concentrates on proving Theorem 1.4. Assume y is primitive modulo N
throughout this section By Proposition 2.11, C, (N) consists of Atkin-Lehner cusps.
Recall for a cusp a = / € C,(N), we denote the cusp N/f € C,(N) by a* and call it

the Atkin—Lehner conjugate of a. It is easy to see by Lemma 2.4 that Wy = N/f, and
Wax = f.

8.1. Identification of £. Corollary 3.17 and Proposition 3.18 give the cuspidal behav-
ior of |E4|% at any b € C(N). The following proposition can be proved similarly as
Proposition 5.2.

Proposition 8.1. For E = E (z, +iT, x) as in Theorem 1.4, we have |E|*> — £ €
Be (Yo(N)) for arbitrarily small & > 0 with

€= Jim (Ea(z1+B)+paa (b 41T, Opaar (3 + B = iT. DEwr . 1= B)).

The following subsections deal with (|E|*> — &, ¢,)y and (£, ¢,), separately.
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8.2. Error term. Since |E|> — £ € B:(Yo(N)) and M = 1, the analog of (5.7) is

(E =€ )y = > (EP )y (uj. ¢y),

izl
L = 2 1, -\\reg 1,
*7 (IE1% EC, 5 +100)) S(EC, 5 +i1), ¢,),dt
T J-c0
Recall from (3.2) that Eq(z, s, x) = N E,, 5, (2, 5), where x = x1x2 with xi

modulo N/f and x, modulo f. As a result, with (5.3), (3.10) and (3.7) we have for
some € with [e| =1

(1EaC, s, 0P 1))y = x1(=DN // Eyi polog 1 (0az)dxdy

—eN /0 [y E oy

ZGFT(ZJ')

ZW(M i (— 1)+)»( 1))%

Al XIXZ(fn S‘))» (}’l)

nS

Then we can meromorphically continue the above equation to the whole complex plane,
and take s = % +iT, where the Dirichlet series equals a finite Euler product of size
O(N¥) times

L, uj)L(3 +2iT, u; ® x1x2)
L(1+2iT, x1x2)

’

which has Burgess bound N gre. Hence, in total we have
b4 1
(IEaCys. 0P uj)y < e2MTEINTE*,

for the same Hr(t;) as in (6.1). Mimicking the proof of Proposition 6.5, we have

3 (Bl o) (. dy), = Y (Ealoug)y (. 6y), <1 N5,

ueO(1) j=1

and likewise,
1 « 2 1 - \\Teg 1 . —Llie
P 7oo<|EaI JEG, 3 +10))THEG, 5 +i1), @), dt K7 N7377 (¢,
8.3. Main term. Since Wy+ = f by Lemma 2.4, we can derive from Lemma 3.12 and
Proposition 8.1 that
(. 90)y = (T £.9), = lim ((HPECT+8).6,),
B—0

+gaa (3T, 0aar (5 + B = iT.DHEC 1= B 6y), ).
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Substituting the Laurent expansion by Proposition 3.22, we have

(L, &),

/
(€ gul =y (—log § —log £ = T —iT.30) +2(G. 4y),
aa

(1, 1),

while from Corollary 3.17 we see that

/ . L/
Paat (1 _iT,7) = —3log N — 4R —(1 + 2T, X172) + Or(1).
Paa* L
After subtraction we arrive at
C(Lay), N
(Edy)y = W<2log1v +ANT (L4 26T 7070) + oT(1)> +2(G. ),
) 1

Acknowledgements. We thank Junehyuk Jung, Shin-ya Koyama, Riad Masri and Peter Sarnak for their dis-
cussions on this material. We also wish to express our gratefulness to Peter Humphries and Paul Nelson for
their insightful comments on multiple places of this paper. In addition, we hope to write out our indebtedness
to Ikuya Kaneko, who proofread this paper and helped us improve its readability by a great margin. Finally,
we appreciate the referees’ careful reading and suggestions for improvements.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

References

[A] Artin, M.: Algebra. Prentice Hall, Upper Saddle River (1991)

[AL] Atkin, A., Lehner, J.: Hecke operators on I'g(m). Math. Ann. 185, 134-160 (1970)

[BH] Blomer, V., Harcos, G.: Hybrid bounds for twisted L-functions. J. Reine. Angew. Math. 621,
53-79 (2008)

[BM] Blomer, V., Mili¢evié, D.: The second moment of twisted modular L-functions. Geom. Funct.
Anal. 25(2), 453-516 (2015)

[BLS] Booker, A., Lee, M., Strombergsson, A.: Twist-minimal trace formulas and the Selberg eigenvalue
conjecture. J. Lond. Math. Soc. (2020)

[DI] Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms.
Invent. Math. 70(2), 219-288 (1982)

[DS] Diamond, F., Shurman, J.: A First Course in Modular Forms, Graduate Texts in Mathematics,
228. Springer-Verlag, New York (2005)

[DFI] Duke, W., Friedlander, J.B., Iwaniec, H.: The subconvexity problem for Artin L-functions. Invent.
Math. 149, 489-577 (2002)

[D-G] Dutta-Gupta, S.: On the Rankin—Selberg Method for functions not of rapid decay on congruence
subgroups. J. Number Theory 62, 115-126 (1997)

[GR] Gradshteyn, 1.S., Ryzhik, I.M.: Table of integrals, series, and products. Translated from the Rus-
sian. Sixth edition. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.
Academic Press, Inc., San Diego (2000)

[HS] Holowinsky, R., Soundararajan, K.: Mass equidistribution for Hecke eigenforms. Ann. of Math.
(2) 172(2), 1517-1528 (2010)

[Hu] Hu, Y.: Triple product formula and mass equidistribution on modular curves of level N. Int. Math.
Res. Not. 9, 2899-2943 (2018)

[HKL-DW] Hulse, T., Kuan, C. I, Lowry-Duda, D., Walker, A.: Second Moments in the Generalized Gauss
Circle Problem, Forum of Mathematics, Sigma, 6, E24

[Hum1] Humphries, P.: Effective lower bounds for L(1, x) via Eisenstein series. Pacific J. Math. 288(2),
355-375 (2017)

[Hum2] Humpbhries, P.: Equidistribution in shrinking sets and L*-norm bounds for automorphic forms.
Math. Ann. 371(3-4), 1497-1543 (2018)

[Hux] Huxley, M.N.: Scattering matrices for congruence subgroups, Modular forms (Durham, 1983),

141-156



Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect 265

[Ic]
(Iwl]
(Iw2]
[IK]
[KK]
[KS]
(KY]
[KL]
[KMV]
(K]

(L]
[LMY]
[LS]
[Ma]
[MiVe]

[MoVa]

[Mo]
[N1]
(N2]
[PY1]
[PY2]
[NPS]
[PRR]
[RS]
[Sa]
[Se]
[So]

[Wa]
[We]

[Wu]

[Y1]

Ichino, A.: Trilinear forms and the central values of triple product L-functions. Duke Math. J.
145(2), 281-307 (2008)

Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17.
American Mathematical Society, Providence (1997)

Iwaniec, H.: Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol.
53, 2nd edn. American Mathematical Society, Providence (2002)

Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications, vol. 53. American
Mathematical Society, Providence (2004)

Kaneko, 1., Koyama, S.: Correction to: Equidistribution of Eisenstein series in the level aspect.
Commun. Math. Phys. 380, 523-533 (2020)

Kim, H., Sarnak, P.: Appendix 2: Refined estimates towards the Ramanujan and Selberg conjec-
tures. J. Am. Math. Soc. 16(1), 139-183 (2003)

Kiral, E., Young, M.: Kloosterman sums and Fourier coefficients of Eisenstein series. Ramanujan
J. 49(2), 391-409 (2019)

Knightly, A., Li, C.: Kuznetsov’s trace formula and the Hecke eigenvalues of Maass forms. Mem.
Am. Math. Soc. 224, 1055, vi+132 pp (2013)

Kowalski, E., Michel, P, VanderKam, J.: Rankin-Selberg L-functions in the level aspect. Duke
Math. J. 114(1), 123-191 (2002)

Koyama, S.: Equidistribution of Eisenstein series in the level aspect. Commun. Math. Phys.
289(3), 1131-1150 (2009)

Lindenstrauss, E.: Invariant measures and arithmetic quantum unique ergodicity. Ann. Math. (2)
163(1), 165-219 (2006)

Liu, S.-C., Masri, R., Young, M.: Subconvexity and equidistribution of Heegner points in the
level aspect. Compos. Math. 149(7), 1150-1174 (2013)

Luo, W., Sarnak, P.: Quantum ergodicity of eigenfunctions on PSLp (Z)\Hz. Inst. Hautes Etudes
Sci. Publ. Math. No. 81, 207-237 (1995)

Maass, H.: Die differential gleichungen in der theorie der elliptischen modulfunktionen. Math.
Ann. 121, 141-183 (1949)

Michel, P., Venkatesh, A.: The subconvexity problem for G L,. Publ. Math. Inst. Hautes Etudes
Sci. No. 111, 171-271 (2010)

H. Montgomery and B. Vaughan, Multiplicative Number Theory I: Classical Theory, Cambridge
Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007. xviii+552
pp

Motohashi, Y.: Spectral Theory of the Riemann Zeta-Function, Cambridge Tracts in Mathematics,
127. Cambridge University Press, Cambridge (1997)

Nelson, P.: Equidistribution of cusp forms in the level aspect. Duke Math. J. 160(3), 467-501
(2011)

Nelson, P.: Microlocal lifts and quantum unique ergodicity on GL3(Qp). Algebra Number
Theory 12(9), 2033-2064 (2018)

Petrow, 1., Young, M.: The Weyl bound for Dirichlet L-functions of cube-free conductor. Ann.
Math. 2(192), 437-486 (2020)

Petrow, 1., Young, M.: The fourth moment of Dirichlet L-functions along a coset and the Weyl
bound. arXiv:1908.10346

Nelson, P., Pitale, A., Saha, A.: Bounds for Rankin-Selberg Integrals and quantum unique er-
godicity for powerful levels. J. Am. Math. Soc. 27(1), 147-191 (2014)

Petridis, Y., Raulf, N., Risager, M.: Erratum to ‘Quantum limits of Eisenstein series and scattering
states. Canad. Math. Bull. 56(4), 814-826 (2013)

Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Com-
mun. Math. Phys. 161(1), 195-213 (1994)

Sarnak, P.: Recent progress on the quantum unique ergodicity conjecture. Bull. Am. Math. Soc.
(N.S.) 48(2), 211-228 (2011)

Selberg, A.: Collected Papers I. Springer Collected Works in Mathematics. Springer, Germany
(2003)

Soundararajan, K.: Quantum unique ergodicity for SL,(Z)\H. Ann. of Math. (2) 172(2), 1529—
1538 (2010)

Watson, T.: Rankin triple products and quantum chaos, Thesis (Ph.D.) Princeton University, 2002
Weisinger, J.: Some results on classical Eisenstein series and modular forms over functional
fields, Thesis (Ph.D.) Harvard University, (1977)

Wau, H.: Deducing Selberg trace formula via Rankin-Selberg method for G L,. Trans. Am. Math.
Soc. 372(12), 8507-8551 (2019)

Young, M.: The quantum unique ergodicity conjecture for thin sets. Adv. Math. 286, 958-1016
(2016)


http://arxiv.org/abs/1908.10346

266 J. Pan, M. P. Young

[Y2]

Young, M.: Explicit calculations with Eisenstein series. J. Number Theory 199, 1-48 (2019)
[Z]

Zagier, D.: The Rankin—Selberg method on automorphic forms which are not of rapid decay. J.
Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), No. 3, 415-437 (1982)

Communicated by J. Marklof



	Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect
	Abstract:
	1 Introduction
	1.1 Foreword
	1.2 First results
	1.3 Shrinking sets in the level aspect
	1.4 Main term discussion
	1.5 Limitations to QUE
	1.6 Strategy of the proof and QUE for newform Eisenstein series
	1.7 Structure of the paper and sketch of proof of (1.6)

	2 Cusps and Their Widths
	2.1 Cusps
	2.2 (Absolute) width
	2.3 Relative width
	2.4 Singularity

	3 Eisenstein Series of Weight Zero
	3.1 Two kinds of Eisenstein series
	3.2 Fourier expansions
	3.3 Functional equations
	3.4 Identifying traced Eisenstein series
	3.5 Explicit calculations with scattering matrices and related quantities
	3.5.1 Preparation
	3.5.2 Entries of scattering matrices
	3.5.3 The behavior of Eisenstein series at cusps that are not singular

	3.6 The formal inner product of Eisenstein series
	3.7 Laurent expansions of Eisenstein series
	3.8 Some inequalities

	4 Integral Renormalization
	4.1 Equivalent definitions of integral regularizations
	4.2 Generalization of Zagier's result to arbitrary level

	5 Spectral Decomposition
	5.1 Classical theory
	5.2 Regularization for spectral decomposition
	5.3 Regularized spectral decomposition in a new choice of orthonormal basis

	6 Error Term Estimation
	6.1 Calculation with Fourier coefficients
	6.2 Cuspidal contribution
	6.3 Eisenstein contribution

	7 Main Term Estimation
	7.1 Preparation
	7.1.1 Weighted average
	7.1.2 Traced Eisenstein series

	7.2 Proof of (1.7) and (1.8)
	7.3 Limitations to QUE (continued)
	7.4 Proof of Theorem 1.12
	7.5 Comparison of main terms

	8 QUE for Eisenstein Series Attached to Other Cusps
	8.1 Identification of mathcalE
	8.2 Error term
	8.3 Main term

	Acknowledgements.
	References




