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Species invasions and range shifts can lead to novel host–parasite commu-

nities, but we lack general rules on which new associations are likely to

form. While many studies examine parasite sharing among host species,

the directionality of transmission is typically overlooked, impeding our abil-

ity to derive principles of parasite acquisition. Consequently, we analysed

parasite records from the non-native ranges of 11 carnivore and ungulate

species. Using boosted regression trees, we modelled parasite acquisition

within each zoogeographic realm of a focal host’s non-native range, using

a suite of predictors characterizing the parasites themselves and the host

community in which they live. We found that higher parasite prevalence

among established hosts increases the likelihood of acquisition, particularly

for generalist parasites. Non-native host species are also more likely to

acquire parasites from established host species to which they are closely

related; however, the acquisition of several parasite groups is biased to phy-

logenetically specialist parasites, indicating potential costs of parasite

generalism. Statistical models incorporating these features provide an accu-

rate prediction of parasite acquisition, indicating that measurable host and

parasite traits can be used to estimate the likelihood of new host–parasite

associations forming. This work provides general rules to help anticipate

novel host–parasite associations created by climate change and other anthro-

pogenic influences.

1. Introduction
Species invasions, introductions and range shifts can alter community compo-

sition and lead to novel host–parasite interactions [1]. Accelerating climate

change and growing anthropogenic influences, such as land conversion and

urbanization, will continue to perpetuate such community-level changes [2,3],

thereby increasing the chances that species encounter novel parasites [4]. The

spread of newly acquired parasites can lead to unexpected and catastrophic

disease outbreaks, as seen for example with chytridiomycosis, a fungal patho-

gen that is a major threat to global amphibian biodiversity [5]. The effects

extend to humans as well, such as through economic losses or direct morbidity

and mortality from zoonotic pathogens [5,6].

While much progress has been made in understanding parasite sharing in

general [7–12], studies including directional transmission are often specific

case studies (e.g. [13–15]). Zoonotic transmission from animals to humans is

a well-documented, special case of directional cross-species transmission, and

has revealed that both host and parasite traits are important in understanding

parasite acquisition [16–19]. However, in terms of behaviour and mobility,

among other factors, humans are not representative of animals at large, calling

for the broader study of parasite acquisition in other species and establishment

of general rules governing cross-species transmission. In rare examples of direc-

tional transmission studied in natural host communities, host phylogeny and

geographic range overlap were found to regulate cross-species transmission

© 2021 The Author(s) Published by the Royal Society. All rights reserved.
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of bat rabies viruses [20], a finding echoed in comparative

studies of primate parasites [10,21]. By contrast, over

relatively short time periods, introduced populations of

salmonid fish species attained similar levels of parasite diver-

sity compared to their original range [22], indicating the high

ecological, versus coevolutionary, potential for parasite

acquisition. These observations invite a comparative study

of parasite acquisition across species, which we present

using a large dataset on terrestrial mammals [23] to deter-

mine the key factors controlling the acquisition of a

taxonomically diverse set of parasites by several host species

in their non-native ranges. Because such rules should not be

specific to host and parasite species, we use 11 host species

and 775 parasite species, and evaluate the ability of models

developed for each host species to predict parasite acquisition

by the other host species.

The establishment of general rules governing parasite

acquisition by non-native hosts also promises to strengthen

our understanding of related ecological theory. Parasite spill-

back theory [24] aims to quantify the increase in parasite

pressure to a native community as a result of the introduction

of a non-native host species competent for some set of the

native parasites. Characterizing such competency in terms

of host and parasite traits would aid in assessing which para-

sites in the novel community are most likely to be involved in

this process, as well as determining how likely the non-native

host is to acquire each of the parasites in the subset. Addition-

ally, from the perspective of an invasive host moving from its

native to non-native range, the enemy release hypothesis

posits that the invasive host might enjoy a competitive

advantage over native species by leaving behind natural ene-

mies, including parasites [25–27]. The estimation of the

likelihood of acquiring new parasite species in the non-

native range allows for an assessment of how transient

enemy release is likely to be. Finally, vacated niche theory

suggests that parasite release creates an opportunity for a

functionally similar parasite species to colonize a host popu-

lation in the non-native range [28]. The study of the tendency

for this to occur across invasive host species could allow the

extent of the role of vacated niches in parasite acquisition to

be established.

We expect both parasite and host community traits to

drive patterns of parasite acquisition. Variation in parasite

life histories might mean certain parasites have a greater pro-

pensity to jump the species barrier; such differences can be

captured through, for example, parasite taxonomy (e.g. hel-

minth versus virus) and transmission modes (e.g. close

contact versus vector-borne). Parasite type will affect the pro-

duction of genetic variation, among numerous other factors;

parasites with higher genetic diversity and faster adaptation,

such as viruses, might spread more easily to new hosts [29].

Meanwhile, transmission mode affects how, when and where

interspecific transmission opportunities arise [30].

The degree of specialism or generalism exhibited by a

parasite is also likely to affect its acquisition by new hosts.

In theory, generalist parasites should have a greater chance

of acquisition because they can infect a wider variety of

hosts and thus are expected to jump between hosts more

readily than specialists. In terms of mechanisms, generalist

parasites have the intrinsic advantage of making use of a

large set of often taxonomically distinct host species [31],

which can help them attain large geographic ranges [32]. It

can also protect them from extinction, as they are not reliant

on a single host species which might itself experience local

extinction or exhaustion of susceptible individuals [33]. How-

ever, while weak interspecific transmission can facilitate

generalist parasite persistence in certain hosts [33], insuffi-

cient transmission between species can also lead to those

same hosts losing local association with generalist parasites,

which might, at the extreme, be deprived of cross-species

transmission if some of the hosts become globally or locally

extinct [34]. Further, generalist parasite strategies are likely

to be associated with costs related to inefficient exploitation

of hosts. These include the reduction of within-host replica-

tion as host range increases [35], the loss of fitness on the

original host species as a parasite adapts to a new one [36],

or maladaptive virulence, where the parasite is able to

infect species phylogenetically distant from original hosts

but causes harm to the new host, including mortality, limiting

further transmission opportunities [37–39]. This ambiguity

on the relative advantages of specialist and generalist parasite

strategies, and the fact that they might manifest differently

across parasite taxa, calls for consideration of parasite

specificity as a predictor of acquisition by novel host species.

Host–parasite community composition is also likely to

influence parasite acquisition. For example, parasites can

exhibit different levels of infection prevalence across host

species, where prevalence is defined as the proportion of

sampled hosts that are infected. We expect this variation in

force of infection to influence parasite spread to new hosts;

that is, non-native hosts are more likely to acquire parasites

that pre-exist at high prevalence in established host popu-

lations [40]. Parasites will also vary in the number of host

species they infect within a given community. Under the

common assumption that host competency and abundance

are positively correlated [41], if the transmission is density-

dependent and host community size increases with host

species richness, the effect of host count on parasite acqui-

sition is typically analogous to that of prevalence: contact

and transmission opportunities for a parasite will scale posi-

tively with the number of host species it infects [42].

However, in cases with different competency–abundance

relationships, frequency-dependent transmission or host

communities at carrying capacities, opposite patterns are

possible [42,43]. Consequently, host count has the potential

to explain parasite acquisition via several latent mechanisms.

We can also consider the non-native host’s ecological and

evolutionary ‘compatibility’ with the community into which

it enters. Host trait compatibility (defined as the similarity

between hosts based on ecological traits) might facilitate

parasite acquisition by a non-native host [44]; in other

words, parasites acquired by the non-native host might be

associated with established hosts that share more traits with

the non-native host, such as diet [45,46]. Similarly, phyloge-

netic compatibility (measured as the phylogenetic distance

between hosts) is also likely to affect parasite acquisition

[46,47]; we expect that acquired parasites will be associated

with hosts closely related to the non-native host. The phylo-

genetic distance between non-native and other hosts

determines the size of the host jump required for parasite

acquisition, which may modify the cost–benefit trade-off of

being a generalist parasite.

Our goal in this study was to synthesize the theories dis-

cussed above in an exploration of parasite acquisition by

terrestrial mammals that move into non-native ranges. We

used host–parasite records from the recently published
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Global Mammal Parasite Database (GMPD) [23], which uses

comprehensive literature review and error checking involving

over 2700 publications to assemble our current under-

standing of host–parasite associations for wild carnivore,

ungulate and primate host species. We modelled parasite

acquisition as a function of both parasite and host community

traits within the non-native range. Our results, which span 11

focal hosts and 3 zoogeographic realms, identify parasite

prevalence, host phylogenetic compatibility and number of

hosts per parasite as particularly influential factors. Overall,

our analyses suggest that patterns of parasite acquisition are

broadly generalizable and predictable, shaped by interacting

effects of host and parasite characteristics.

2. Methods
As an overview, we collected parasite data for each zoogeo-

graphic realm of each focal host’s non-native range as distinct

dataframes. Each row of a dataframe corresponded to a parasite

recorded in that portion of the host range (see table 1 ‘no. non-

native parasites’ column for sample sizes). To this, we added

15 predictors describing parasite and host community traits

(table 2; electronic supplementary material). Here, host commu-

nity traits refer to metrics that describe communities versus

species, such as average relatedness between species, and not

ecological interactions. We then created our response variable:

a binary indicator of parasite acquisition status (whether or not

each parasite was newly recorded in the focal host in the non-

native range). These data were used to fit boosted regression

tree (BRT) models; we ran 50 iterations per dataframe (i.e. 13 ×

50 = 650 models). We assessed model performance using AUC

and cross-validation and extracted relative influence values to

summarize predictor importance.

All data preparation, analysis and modelling were done in R,

v. 3.5.1–3.6.1 [49].

(a) Data preparation
(i) Native versus non-native ranges
We obtained host–parasite associations and location data from

the GMPD [23]. The GMPD contains over 24 000 records of para-

sites sampled from mammal hosts (carnivores, primates and

ungulates), along with latitude–longitude data for most samples.

For our study, we focused only on terrestrial hosts scored in

the GMPD as having parasite records in both native and non-

native ranges (n = 33). Because accurate boundaries are needed

to define range-specific host–parasite associations, we reclassified

each host’s GMPD records based on buffered IUCN native ranges

([50]; see the electronic supplementary material, text and figure S1

for details), with records outside these ranges classified as non-

native. This resulted in 29 focal hosts (of our original 33) with

GMPD records in both native and non-native ranges.

To translate non-native points into ecologically feasible non-

native range areas, we overlapped GMPD records for our 29 focal

hosts with The Nature Conservancy’s Terrestrial Ecoregions map

[51] (shapefiles from http://maps.tnc.org/gis_data.html). We

defined non-native ranges as the sets of ecoregions in which

non-native points were found. Ecoregions provide a meaningful

way to approximate broad invasion areas, without relying on

local buffering of individual sampling locations; using point-

specific, localized areas would potentially lead to highly frag-

mented non-native ranges that miss nearby suitable areas. This

approach has recently been assessed as viable in the field of

host–parasite biogeography (e.g. the ‘ecoregion filling method’

of [52]). We deemed species distribution models (also known

as ecological niche models) inappropriate for our study because

invasive species are rarely in equilibrium with the environment,

which violates assumptions of such models [53].

(ii) Non-native host–parasite communities
We analysed all terrestrial GMPD records to identify commu-

nities of hosts and parasites with which a focal host might

Table 1. Focal host names, realms, parasite data summary and AUC scores for the 13 clusters (focal host x realm combinations). Realms: N = Nearctic,

P = Palearctic, S = Sino-Japanese. Sample sizes for modelling are given in the column ‘no. non-native parasites’. AUC scores are median values followed by

minimum and maximum values in parentheses.

cluster host species realm

host common

name

host

group

no.

acquired

parasites

no. non-

native

parasites AUC score

1 Cervus elaphus N red deer ungulate 14 262 0.861 (0.748, 0.889)

2 Cervus nippon N sika deer ungulate 7 97 0.944 (0.911, 0.984)

3 Cervus nippon P sika deer ungulate 7 174 0.910 (0.841, 0.938)

4 Dama dama N fallow deer ungulate 13 142 0.923 (0.877, 0.924)

5 Dama dama P fallow deer ungulate 40 350 0.930 (0.891, 0.941)

6 Genetta genetta P common genet carnivore 13 191 0.937 (0.903, 0.959)

7 Lynx pardinus P Iberian lynx carnivore 5 143 0.554 (0.506, 0.701)

8 Neovison vison P American mink carnivore 28 344 0.915 (0.875, 0.932)

9 Nyctereutes

procyonoides

P raccoon dog carnivore 26 237 0.954 (0.945, 0.962)

10 Procyon lotor S common raccoon carnivore 11 102 0.834 (0.786, 0.859)

11 Rupicapra

rupicapra

P chamois ungulate 9 205 0.865 (0.773, 0.898)

12 Sus scrofa N wild boar ungulate 7 202 0.837 (0.760, 0.881)

13 Vulpes vulpes N red fox carnivore 13 319 0.816 (0.756, 0.862)
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interact in its non-native range. We first associated each GMPD

record with an ecoregion (dropping those without latitude–longi-

tude data) and then checked whether that ecoregion was found

in each focal host’s non-native ecoregion set.

Parasite classification. For the purposes of these analyses, we

specifically wanted to identify parasites acquired by each focal

host in its non-native range and compare those against parasites

not acquired in the same range. We identified all unique GMPD

parasites associated with each of our 29 focal hosts and created a

binary classification in which acquired parasites were assigned 1

and not-acquired parasites were assigned 0. Using our previous

classification of GMPD records as native or non-native, we

assessed whether each parasite had been sampled from the

host in its non-native, but not native, range. Parasites that met

these criteria were flagged as having been acquired by the focal

host in its non-native range. We then compared each focal

host’s set of acquired parasites to the full non-native parasite

pool to identify those parasites present in the non-native range

but not acquired by the focal host. Overall, many more parasites

were not acquired than were (electronic supplementary material,

figure S2).

(iii) Focal hosts
We excluded two focal hosts that had no GMPD records for other

host species overlapping their non-native ranges, as we could not

compare acquired parasites against others for these species.

Seven more hosts were dropped because their acquired parasites

were not sampled from any other mammal hosts in their non-

native range. To ensure sufficient data for further range refine-

ment (see below), we also excluded eight hosts whose non-

native ranges contained fewer than 100 parasites and/or that

had fewer than 5 acquired parasites. These removals left us

with 12 focal hosts.

(iv) Refining non-native range definitions
Non-native ranges for several of our 12 focal hosts spanned mul-

tiple continents, which meant that grouping them into a single

non-native community would make little ecological sense. To

create more ecologically meaningful non-native ranges, we

used Holt et al.’s [54] zoogeographic realms, which use both

species distributions and phylogenetic relationships to demarcate

geographic space.

We grouped each focal host’s non-native ecoregions into

realm-specific clusters, such that a cluster contained all non-

native ecoregions for a single focal host within a single zoogeo-

graphic realm (table 1, columns 1–3). A focal host could have

more than one associated cluster if its non-native ecoregions

fell in more than one realm (figure 1).

Splitting a focal host’s non-native range into clusters meant

parasite records were reduced. Thus, we re-checked parasite

counts and dropped clusters with fewer than 50 parasites total

and/or fewer than 5 acquired parasites, with the goal of mini-

mizing negative effects of low sample sizes on model

performance [55]. This left us with 13 clusters for 11 focal hosts

and 3 zoogeographic realms (table 1).

(v) Predictors
For each cluster, we created a dataframe in which rows corre-

sponded to parasites found in the cluster and added the binary

classification of parasite acquisition status (1 = acquired, 0 = not

acquired). This column was used as our response variable. We

then collected 15 predictor variables to describe each cluster’s

non-native parasite community, both in terms of parasite charac-

teristics and associated non-native hosts (table 2; see the

electronic supplementarymaterial formore detailed descriptions).

(b) Modelling
We used BRT as our modelling method due to its ability to

accommodate many predictors of different types with missing

data, and its flexibility in fitting complex responses and inter-

actions [56]. We fitted our models in the ‘gbm’ package

(version 2.1.5; [57]; see the electronic supplementary material

for model details). We trained each model on all available data,

in part due to limited records and in part because we were

more interested in understanding patterns than producing pre-

dictions on withheld data; however, we did test the models on

Table 2. Variables used to predict parasite acquisition. For trait.diff.mean and trait.diff.min, ‘host trait scores’ come from a principal component analysis of

PanTHERIA, a database of mammal traits ([48]; see the electronic supplementary material for details).

category predictor description

characteristics of

parasites

ParType parasite taxonomic group: arthropod, bacteria, helminth, protozoa or virus

close, nonclose, vector,

intermediate

parasite transmission mode(s), each scored separately as a binary variable

n.modes parasite’s number of transmission modes

prev.mean, prev.max mean and maximum parasite prevalence across infected hosts in the non-native range,

excluding the focal host

n.hosts number of non-focal hosts in which the parasite was found in a focal host’s non-native

range

all.hosts number of known mammal hosts per parasite across all GMPD records, excluding the focal

host

z.score standardized measurement of a parasite’s phylogenetic range breadth; negative values

indicate greater degree of host specialism

characteristics of

parasites’ hosts

PD.mean, PD.min mean and minimum pairwise phylogenetic distances between a parasite’s hosts (those

tallied in n.hosts) and the relevant focal host; units are millions of years ago (Ma)

trait.diff.mean,

trait.diff.min

mean and minimum difference in host trait scores between a parasite’s hosts (those tallied

in n.hosts) and the relevant focal host
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new data, as described below. To assess the stability of our

modelling results, we fitted 50 models for each cluster.

(i) Model evaluation and validation
We calculated AUC scores for each of the 50 models per cluster,

based on the internal cross-validation during model fitting. AUC

(area under the curve of the receiver operating characteristic) is a

threshold-independent performance measure for binary classifi-

cation; an AUC of 1 indicates a perfect positive correlation

between predictions and observations, 0 a perfect inverse corre-

lation and 0.5 no correlation (random). The range of AUCs for

each cluster allowed us to assess model stability across rep-

etitions. We then identified each cluster’s best model—the one

with the highest AUC score (table 1)—and selected these

models for further investigation.

This definition of ‘best models’ applies specifically to our

models as tools to understand patterns in our data. We note,

however, that this definition will not be appropriate or accurate

in all circumstances. For example, models that receive good

scores on internal validation metrics will not necessarily per-

form well when applied to new data (i.e. extrapolation [58]).

As such, we tested extrapolative performance by validating

each cluster’s best model on the other 12 clusters’ data and cal-

culating AUC scores for each cross-cluster prediction. Aside

from assessing extrapolative model performance, this ‘cross-

cluster validation’ method helps us understand the degree to

which rules of parasite acquisition are generalizable across

host species and realms. To assess the consistency of our

results, we repeated this process with models receiving the

median or minimum AUC scores for each cluster; however,

we found minimal differences in performance among these

models, so we only present results from the best model cross-

cluster validation.

(ii) Predictor assessment
We obtained relative influence values for all 15 predictors in the

focal hosts’ best models; these measures, which sum to 100 in a

given model, account for how often a predictor is used for data

classification in model fitting, weighted by the resultant

improvement to the model [56]. We calculated the mean and

variance of these values for each predictor across all 13 clusters,

to assess consistency in predictor influence. We also created

partial dependence plots (PDPs) for the most influential predic-

tors, to examine cluster-specific predictor relationships with

parasite acquisition. As interactions were included in our

model, we further used Friedman’s H statistic to test for the

strength of two-way interactions among predictors [59]. Fried-

man’s H ranges from 0 to 1 and represents the proportion of

variance explained by an interaction [60]; naturally, interaction

strength can be small in models already containing 15 potential

main effects.

3. Results and discussion
Models for each cluster show fairly stable performance; maxi-

mum and minimum AUC scores differ by at most 0.195

(cluster 7) and on average by 0.09 (table 1; electronic sup-

plementary material, figure S3a). This suggests that BRT is

a robust modelling approach for our data and that we can

make comparable statements for each cluster on the basis of

any one of its models. Twelve clusters typically had AUCs

greater than 0.8, indicating fairly strong positive correlations

between predictions and observations (table 1; electronic sup-

plementary material, figure S3a). The one remaining cluster

(cluster 7: L. pardinus, P) still achieved AUCs greater than

0.5, or better-than-random performance (table 1; electronic

supplementary material, figure S3a); we attribute the lower

scores for this cluster to the fact that it contained the fewest

acquired parasites (table 1).

To explore model performance across different focal hosts

and realms, we conducted cross-cluster validation using each

cluster’s best model, again finding good model performance

with most AUC values greater than 0.7. This analysis showed

that internal evaluation scores (AUCs from model fitting) do

not necessarily correspond with extrapolative predictive per-

formance (electronic supplementary material, figure S3). We

also observe that, broadly speaking, ‘shared host’ cross-vali-

dation (that is, models applied to data for the same host

species) leads to the best results, followed by ‘shared realm’

and then ‘neither shared’ (electronic supplementary material,

figure S3b, points).

Four clusters’ models under-performed relative to the

others on cross-cluster validation: clusters 3 (C. nippon, P),

10 (P. lotor, S), 11 (R. rupicapra, P) and 13 (V. vulpes, N;

electronic supplementary material, figure S3b). We note that

these four clusters are among those with fewer acquired para-

sites (table 1). Cluster 10 is the only cluster unique in both

host and realm; in addition, its PDPs (electronic supplemen-

tary material, figure S4b,c) show predictor relationships with

parasite acquisition that differ from the general trends for

other hosts, meaning this model might not have captured

widely relevant patterns of acquisition. Interestingly, cluster

13 performed fairly well on clusters in the same zoogeo-

graphic realm; its overall performance was brought down

by its application to clusters with which it shared neither

host nor realm (electronic supplementary material, figure

S3b, points). Variation aside, we can make reasonably accu-

rate predictions across clusters; all models still perform well

(electronic supplementary material, figure S3b). This suggests

that common predictors drive parasite acquisition across

focal hosts.

20°N

30°N

40°N

50°N

60°N

100°W 80°W 60°W 40°W 20°W 0° 20°E 40°E

ranges

native

non-native: Nearctic realm

non-native: Palearctic realm

GMPD records

Figure 1. Range map developed for example focal host Dama dama, whose non-native range consists of separate clusters in two zoogeographic realms. For map

clarity, the unbuffered IUCN native range is shown. (Online version in colour.)
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We found that both parasite and host community traits

predict parasite acquisition. Across all clusters, the predictors

with the highest mean relative influence were mean parasite

prevalence ( prev.mean, mean relative influence = 15.322),

mean phylogenetic distance (PD.mean, mean relative influ-

ence = 11.989) and global mammal host count (all.hosts,

mean relative influence = 11.374; electronic supplementary

material, table S1). The importance of these three predictors

demonstrates the value of incorporating data at multiple

spatial scales, as they describe both range-specific and

global factors that drive parasite acquisition.

These same three predictors were among those with the

highest variance in relative influence. The partitioning of

influence among predictors varied considerably across clus-

ters, even though certain predictors were repeatedly among

the most influential. We also saw variation across clusters

in the specific relationship of each predictor with parasite

acquisition, despite the consensus on predictor influence

(electronic supplementary material, figure S4). This was par-

ticularly true for mean prevalence, where the relationship

was highly variable at low prevalence values, before gener-

ally trending upwards at higher values (electronic

supplementary material, figure S4a).

To look for broad-scale patterns in how our most influen-

tial predictors affect parasite acquisition, we examined the

relationships in data pooled across all clusters, faceted by

parasite type for insight into potential interactions (figure 2).

Combining data from different communities obscures some

of the specific detailed trends seen in the PDPs (electronic

supplementary material, figure S4), but brings to light
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Figure 2. Box plots of parasite acquisition (1 = acquired, 0 = not acquired) for the most influential predictors: (a) mean parasite prevalence, (b) mean phylogenetic

distance and (c) global mammal host count. Data pooled across all 13 clusters. Centre lines of boxes correspond to the median value; lower and upper hinges
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additional universal trends. These visualizations do not

depict model output; rather, we are looking at patterns in

the raw data.

Mean prevalence, mean phylogenetic distance and global

mammal host count show weak interactions with parasite

type (mean Friedman’s H across clusters = 0.062, 0.042, and

0.043, respectively); the importance of these predictors for

parasite acquisition is not strongly dependent on the type

of parasite. Across all parasite types, acquired parasites

tend to be found at slightly higher prevalences, in established

hosts more closely related to the non-native focal hosts (i.e.

lower mean phylogenetic distance), and with higher global

mammal host counts (figure 2). The bacteria group contains

parasites which are acquired in spite of high mean phylo-

genetic distance between the focal host and other hosts in

the community (figure 2b), perhaps because they tend to be

less specialist than other parasite types [31]. Interestingly,

bacteria also show some sensitivity to prevalence (figure 2a),

whereby acquired parasites often pre-exist at relatively high

prevalence in other hosts; in other parasite groups, the impor-

tance of having a high prevalence in established hosts might

be outweighed by high parasite specificity. However, proto-

zoa, which tend towards higher levels of specialism [31],

also show a trend in which acquisition is associated with rela-

tively high prevalence (figure 2a). Consequently, a case could

also be made that costs of specialism, especially infrequent

encounters between infected individuals and novel hosts,

could be offset by high prevalence. Collectively, these

nuanced effects of prevalence signal interesting areas for

future study. Taken in combination with evidence for trans-

mission between related host species being more likely,

these results hint at variation in both the force of infection

and susceptibility among species, which may support

future studies characterizing variation in cross-species

transmission from a mechanistic basis.

Meanwhile, viruses stand out as the only parasite taxon

insensitive to global mammal host count (figure 2c). How-

ever, in line with other parasite taxa, they are strongly

impacted by the phylogenetic relatedness between estab-

lished hosts in a community and the non-native focal host

(mean phylogenetic distance; figure 2b). Consequently,

while the ability to infect a large number of species is broadly

predictive of parasite acquisition, the distance of the species

jump in the host community required for acquisition is

more consistently informative across parasite taxa. Typically,

viruses have larger numbers of hosts globally, which could

contribute to their relative insensitivity to global mammal

host count. Additionally, pooling viral subgroups (e.g. DNA

versus RNA) could obscure separate trends, given the vari-

ation in viral ecology, transmission and evolution [61].

Overall, community-level characteristics are more predictive

of virus acquisition and underscore the importance of consid-

ering interactions between community and parasite traits, as

there may be exceptions to general rules or patterns driven by

a minority of parasite species.

Given the consistent and distinct relationship between

parasite acquisition and mean phylogenetic distance across

parasite types (figure 2b), we investigated its potential inter-

actions with other predictors. We expected that parasite

specialism might modulate the importance of phylogenetic

compatibility, and indeed, we found that mean phylogenetic

distance interacts weakly with parasite specificity, as

measured by phylogenetic z-score (mean Friedman’s H

across clusters = 0.067; electronic supplementary material,

figure S5). Focal hosts that are more distantly related to para-

sites’ host sets (101–200 Ma) show an overall tendency to

acquire more generalist parasites, as evidenced by the

z-scores for acquired parasites being more positive than those

for not-acquired parasites. By contrast, when the focal host is

more closely related to a parasite’s host set (0–100 Ma), it is

more likely to acquire specialists. This tendency suggests a

potential fitness advantage to specialists over generalists at

smaller phylogenetic distances. Such a trend could arise if

phylogenetically specialist parasites have beneficial adap-

tations through infection of closely related hosts that offer no

advantage in more distantly related hosts. Alternatively, this

could be evidence of costs of generalism for the parasites,

manifesting as a low probability of infection of hosts they are

phylogenetically expected to be able to infect.

We can also break down each of the phylogenetic related-

ness bins in the electronic supplementary material, figure S5

by parasite type (figure 3). While sample sizes render the

strength of three-way interactions small, we observe that for

smaller phylogenetic distances (figure 3a), acquired arthro-

pods, bacteria and helminths tend towards greater levels of

specialism than those not acquired. At greater phylogenetic

distances (figure 3b), acquired helminths and viruses tend

to be more generalist than those not acquired. Further

research is required to clarify why generalist parasites of

certain taxa are less likely to be acquired in this context; is

this evidence of specialist fitness advantages or costs of

generalizm?We note that such study should take into account

the interaction seen here between parasite taxonomy and host

phylogenetic relatedness, particularly evidenced by the virus

group; at smaller phylogenetic distances viruses do not show

a cost of generalism (figure 3a), but at larger distances, they

show a pronounced cost of specialism (figure 3b).

We acknowledge imperfections in our data and predic-

tors. GMPD prevalence data, for example, is fairly noisy

and includes multiple sampling methods. In addition,

sampling effort is not evenly distributed across the

GMPD—certain hosts, parasite types, geographic areas and

time periods are more thoroughly sampled than others.

Such variation will influence our definitions of non-native

ranges, as well as our identification of acquired parasites.

Some of our results could have been produced if, for example,

researchers studying an invasive species are more likely to

sample preferentially for locally prevalent parasites, or non-

random, globally widespread pathogens [32]. While it is dif-

ficult to accurately predict the effects of such biases, the

finding that global mammal host count is commonly a posi-

tive predictor of parasite acquisition might represent, in part,

that parasite species commonly looked for, or easily detect-

able, are disproportionately represented among the

acquired parasite species; the same could be said for the

importance of parasite prevalence in predicting acquisition.

Missing host–parasite associations would also affect the accu-

racy of estimated predictors capturing minimum ecological or

phylogenetic distances, since a missing host could revise

down the value of a predictor. To mitigate this effect, we

used both minimum and mean distances, where the mean

is less sensitive to a missing observation, and typically

found mean distances to have higher predictive importance

than minimum distances. However, the assembly of the

underlying database is comprehensive in design with error-

checking steps included [23]. We also note that our selection

royalsocietypublishing.org/journal/rspb
Proc.

R.
Soc.

B
288:

20210341

7

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 3

1
 A

u
g
u
st

 2
0
2
1
 



of predictors is, by necessity, far from exhaustive. Relevant

information might also be provided by metrics quantifying

the geographical opportunity for parasite acquisition

(e.g. range overlap among host species) or environmental

similarity between native and non-native ranges.

4. Conclusion
In conclusion, our work shows that parasite acquisition is

non-random and predictable across multiple non-native

terrestrial mammals occurring in several zoogeographic

realms. We found parasite prevalence, host phylogenetic

compatibility (phylogenetic distance) and global mammal

host count to be particularly influential predictors. In

addition, parasite taxonomy interacts with these predictors,

which suggests that parasite and host community character-

istics cannot necessarily be disentangled; each provides an

important context in which to understand the influence of

the other. Specifically, we identify both costs and benefits

of generalist parasite infection strategies across host

species that differ according to parasite group. While the

number of host species considered is limited by data avail-

ability, our work greatly expands on previous case studies

of directional parasite transmission; we show promising

extrapolative performance of our models, even when predict-

ing to different host species in distinct zoogeographic realms,

supporting the idea that general rules for parasite acquisition

apply broadly across host taxa and geographical locations.

Our analytic framework may therefore provide a useful

starting point from which to explore patterns of parasite

acquisition for host species, locations, and contexts not yet
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Figure 3. Parasite phylogenetic z-scores (z.score) by binned mean phylogenetic distances (Ma, PD.mean) and coloured by parasite taxonomic groups, summarized

across all clusters. n denotes the number of parasite records per parasite type per phylogenetic distance bin. Parasite types: arth = arthropod, bact = bacteria,

helm = helminth, prot = protozoa. Ma = millions of years ago. (Online version in colour.)
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studied. Further, this approach may even be extended to pre-

dict other types of symbiotic interactions likely to be altered

by anthropogenic impacts, such as plant–fungal mutualisms

[62], plant–pollinator associations [63] and host–parasitoid

interactions [64].
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