Matteo Lavit Nicora

Institute of Intelligent Industrial Technologies and

Systems for Advanced Manufacturing,
National Research Council of Italy,
Via Previati 1/,

Lecco 23900, Italy

e-mail: matteo. lavit@stiima.cnr.it

Roberto Ambrosetti
Department of Mechanical Engineering,
Politecnico di Milano,

Milano 20156, Italy

e-mail: robertoa@gimac-Int.com

Gloria J. Wiens'
Fellow ASME

Department of Mechanical and
Aerospace Engineering,
University of Florida,
Gainesville, FL 32611-6250
e-mail: gwiens@ufl.edu

Irene Fassi
Mem. ASME

Institute of Intelligent Industrial Technologies and

Systems for Advanced Manufacturing,
National Research Council of Italy,
Via Alfonso Corti 12,

Milano 20133, Italy

Human-Robhot Collabhoration in
Smart Manufacturing: Robot
Reactive Behavior Intelligence

To enable safe and effective human—robot collaboration (HRC) in smart manufacturing,
seamless integration of sensing, cognition, and prediction into the robot controller is crit-
ical for real-time awareness, response, and communication inside a heterogeneous environ-
ment (robots, humans, and equipment). The specific research objective is to provide the
robot Proactive Adaptive Collaboration Intelligence (PACI) and switching logic within
its control architecture in order to give the robot the ability to optimally and dynamically
adapt its motions, given a priori knowledge and predefined execution plans for its assigned
tasks. The challenge lies in augmenting the robot’s decision-making process to have greater
situation awareness and to yield smart robot behaviors/reactions when subject to different
levels of human—robot interaction, while maintaining safety and production efficiency.
Robot reactive behaviors were achieved via cost function-based switching logic activating
the best suited high-level controller. The PACI’s underlying segmentation and switching
logic framework is demonstrated to yield a high degree of modularity and flexibility. The
performance of the developed control structure subjected to different levels of human—
robot interactions was validated in a simulated environment. Open-loop commands were
sent to the physical e.DO robot to demonstrate how the proposed framework would
behave in a real application. [DOI: 10.1115/1.4048950]

Keywords: human—robot collaboration, cobot, smart factory, task segmentation, control
and automation, robotics and flexible tooling

e-mail: irene.fassi@stiima.cnr.it

Introduction

Recent advancements in sensing, computational intelligence, and
big data analytics have been rapidly transforming and revolut-
ionizing the manufacturing industry toward robot-rich and digitally
connected factories. As reported by IFR [1], the number of collab-
orative robots (cobots) installed is still very low, with a share of
3.24% of the total market, but with a promising 23% increase of
annual installations from 2017 to 2018. Moreover, market research
shows that the so-called “mass-customization” of products is
already evolving toward a “mass-personalization” [2], raising the
need for extremely flexible solutions, such as collaborative robotics.
However, effective, efficient, and safe coordination between
humans and robots on the factory floor has remained a significant
challenge. In order to overcome the current limitations of human—
robot collaboration (HRC), an international collaboration composed
of U.S. universities (Missouri University of Science and Technol-
ogy, University of Florida, Case Western Reserve University, and
SUNY Stony Brook), the National Research Council of Italy
(STIIMA-CNR), and Comau LLC (COnsorzio MAcchine Utensili)
has recently launched a novel project called “Intelligent HRC for
Smart Factory.” The aim is to develop an integrated set of algo-
rithms and robotic testbeds to sense, understand, predict, and
control the cooperation of human workers and robots in collabora-
tive manufacturing cells, for significantly improved productivity of
hybrid human-robot production systems toward deployment in
future “smart factories.” The authors of this paper are participants
in the above international collaboration, tasked with addressing
the integration of the cognition and prediction with the robot’s plan-
ning and control. The long-term goal of the authors is to develop a
multi-layer and modular control structure that allows stable mode

!Corresponding author.
Manuscript received May 22, 2020; final manuscript received June 6, 2020;
published online December 16, 2020. Assoc. Editor: Y. Lawrence Yao.

Journal of Manufacturing Science and Engineering

switching for flexibility in defining the “optimized” real-time
robot response, to safely adapt to human worker planned and
unplanned interactions, and to maintain production efficiency.
The core of this control structure, labeled as Proactive Adaptive
Collaboration Intelligence (PACI), is in charge of modifying the
robot motion on the basis of inputs related to the predicted human
actions and body motion trajectories and to the preplanned robot
trajectories and task breakpoints. Kinematic segmentation is pro-
posed for effectively parsing the data received from the predictor
and for identifying impact on current/preplanned robot trajectories.
The specific task at hand is then kinematically adapted in real-time
for safe controlled robot motions, to optimize the collaboration and
to mitigate production disruptions. The authors, building upon the
proof of concept provided in Ref. [3], envision a robotic system
having the following features: flexibility (seamless adaptability of
the system to a wide variety of applications and advanced customiz-
ability of the product), accessibility (intuitive, fast, and easy pro-
grammability of the robotic system, accessible to non-expert
users), modularity (enhanced reusability of the code that allows
developers to easily update the system), safety (real-time awareness
and response capabilities ensuring safety of humans, robots, and
equipment co-operating within the manufacturing cell), and produc-
tivity (smart robot reactions aimed at mitigating productivity disrup-
tion). In order to develop a robotic system able to provide a
framework coherent with the long-term goal of the project and
capable of providing the above desired features, the authors
propose a control architecture composed of two multi-layer
modules, as shown in Fig. 1. The first component, the Offline
Module, is equipped with a graphical user interface (GUI) that
takes as input the requests of the user and feeds the processed infor-
mation to a second module, which is in charge of the kinematic seg-
mentation of the task(s) and the preplanning and management of the
created segments. The second component, the Online/Real-time
Module, receives as input the information provided by the first
module, and collected data about the human presence and the

MARCH 2021, Vol. 143 / 031009-1

Copyright © 2020 by ASME

mailto:matteo.lavit@stiima.cnr.it
mailto:robertoa@gimac-Int.com
mailto:gwiens@ufl.edu
mailto:irene.fassi@stiima.cnr.it

OFFLINE MODULE
Task Segmentation and Planning 1

» Kinematic segmentation
> Segments preplanning
> Segments management

v

ONLINE/REAL-TIME MODULE
High-level controllers
Elflulated Robot Behaviors r Stop and Go
Edronest > Task Kinematic Adaptation o geplan

> Optimized Collaboration 4 Nec:[nnect

> Decision Switch FUEE
Emulated > Human Contact

Human > Fail Safe

1 Industrial
Lo o o o e o e e e e e e ROBOT

Fig. 1 Control structure

external environment in order to perform the online kinematic adap-
tation of the robot motion and achieve optimized collaboration with
the operator. A decision switch layer is triggered to activate in real-
time the high-level controller that best suits the specific human—
robot interaction scenario at hand. Due to the early stages of the
project at the time of the authors’ research, the control architecture
has been implemented within an emulated environment with open-
loop commands sent to the physical e.DO robot in order to demon-
strate the potentiality of the system in a real collaborative
application.

Section 2 provides a brief presentation of the materials and
methods exploited for this research. Section 3 provides the reader
with a general overview of the state-of-the-art of human-robot col-
laboration. Detailed descriptions of the Offline Module and the
Online/Real-Time Module are reported in Secs. 4 and 5, respectively.
A case study is then analyzed in Sec. 6 in order to evaluate and vali-
date the capabilities of the developed robotic system. Finally, a dis-
cussion about the significant results of the research is presented in
Sec. 7 followed by a conclusive summary of the work in Sec. 8.

Materials and Methods

The authors chose to exploit ROS Melodic Morenia [4] running
on an Ubuntu 18.04 Bionic Beaver system. It is today’s widely
adopted standard platform for robotic research and allows the devel-
opment of a scalable system, easily adaptable to several robotic
cells, guaranteeing high levels of maintainability of the system
itself. The availability of numerous path planning algorithms and
robot controllers in the open-source library Movelt! [5] was also
leveraged in order to develop the envisioned control architecture.
All the codes have been written in C++. The work was validated
within an emulated environment with open-loop commands sent
to an e.DO robot by Comau [6], demonstrating an experimental col-
laborative assembly scenario with simple building blocks.

State of the Art

In order to achieve seamless human-robot interaction, many solu-
tions have been proposed in the past, but success is limited due to
the disruption of system productivity, caused while ensuring the
required level of safety. A very interesting approach has been pro-
posed in Ref. [7] in which the authors envision “complex robot
behaviors to emerge in real time from the interplay of several con-
currently running elemental controllers.” A predefined library of
skills optimized beforehand is made available by the authors of
the mentioned paper, and their proper reactive sequencing is
obtained through so-called Behavior Trees, introduced in Ref. [8].
Additional collaborative approaches are available in the literature.
For example, a deformation-tracking impedance control method
was validated with a robot performing a cooperative assembly
task with the human worker acting as the time-varying environment
[9]. Using a parallel combination of a baseline time-invariant

031009-2 / Vol. 143, MARCH 2021

controller and a safety controller enforcing a time-varying safety
constraint, others are working to establish a set of design principles
for a safe and efficient robot collaboration system (SERoCS). Their
approach consists of efficiency and safety goals treated separately,
modularized structure, compatible with existing robot motion
control algorithms, online safety controller, robot motion confined
to safe regions according to predicted human motion, and reduced
computations by modeling humans as single or multiple sphero-
cylinders with portions of the control policy solved offline [10]. A
collision avoidance strategy is presented in Ref. [11] for online
replanning of the robot motion and creates a safe network for
unsafe devices (distributed layers of data cross-checking and valida-
tion of sensors, PLCs, PCs) as an infrastructure for achieving func-
tional safety. An optimal control problem formulated for a physical
HRC-based robot motion control is augmented with a social HRC in
Ref. [12], improving interactions in assembly tasks by increasing
the human worker’s trust in his/her robot partner. However,
because the generation of safe robot trajectories is limited due to
the inherent uncertainty of robot trajectory execution time,
STIIMA-CNR estimated a confidence interval on robot trajectory
execution time for scenarios in which human-robot space sharing
is required [13]. Another relevant research topic for the field of col-
laborative robotics is the way cobots are managed and taught. It is of
fundamental importance to provide human operators with intuitive
interfaces that ease the process of communication and therefore
leave the operator free to concentrate on the task and goals at
hand. Many solutions are available in the literature and are currently
being investigated, such as walk-through programming, in which
the operator physically moves the end-effector of the robot
through the main positions of the task [14] and programming by
demonstration, in which the robot is not purely reproducing the
motion of the operator but is also able to generalize it into new sce-
narios [15]. Offline programming, instead, aims at the minimization
of the downtime of the robot by using software tools to virtually
replicate the shop floor on a computer [16]. Finally, much interest
has recently been devoted to augmented and virtual reality for man-
ufacturing applications. Novel examples of their application have
shown how these approaches can yield improved productivity of
the system and enhanced human safety [17]. It is clear that many
solutions have been proposed to address specific applicative cases
but, in today’s rapidly changing industrial environments, each
product may have particular requirements. In this paper, a flexible
and modular framework is developed that accommodates different
HRC approaches and exploits them whenever needed. Thus, provid-
ing an efficient integration of multiple controller logic via task seg-
mentation enforcing behavioral preferences/constraints.

Offline Module: Task Segmentation and Planning

A general observation of real industrial cases leads to the realiza-
tion that every scenario can be thought of as composed of a series of
discrete subtasks (set of actions). These subtasks can represent a
movement of the robot between two configurations in space, a spe-
cific action of the end-effector performed by the robot in a certain
position, or a combination of the two. The offline module in
Fig. 1 has been developed in accordance with this logic: a collabo-
rative application is divided into subtasks in a process called “seg-
mentation” and each subtask is addressed to as a “segment.” This
approach opens up the possibility to independently manage each
segment both in terms of how the robot’s motion trajectory is
planned offline and of how the robot will react online to unexpected
obstacles (e.g., human encounters) during the execution of the men-
tioned trajectory. The authors expect the segmentation process to
yield flexibility, easy programmability, and customizability in the
definition of the production process. A dedicated algorithm, repre-
senting a node in the ROS environment, has been written in order to
implement said approach and is composed of four sections: input
reading (translation of the information given by the user through
the GUI into efficient code language), offline planning (trajectory

Transactions of the ASME

generation for each segment according to the user’s requests), seg-
ments connection (segments analysis to ensure proper connection
between sections), and segments execution (to ensure correct
timing and sequencing for the execution of the segments).

Graphical User Interface. In order to enhance the accessibility
of the robotic system and lower the skill threshold required to
program the robot, an intuitive GUI has been developed. Thanks
to this tool, the segmentation is performed in an iterative offline
process by the user being guided through the full definition of
robot’s task and prompted for specifying the levels of human—
robot interaction allowed for each segment. This anticipatory
offline preplanning approach embeds into the robot controller the
underlying intelligence for enabling planned and unplanned indus-
trial collaborative scenarios to occur seamlessly in real-time. Each
time a new segment is created, a choice of offline planning techni-
ques and the type of permissible online robot behavior(s) are
assigned to it by the user. According to this selection, more detailed
information is requested in order to completely define the character-
istics of the segment that are later used in generating the robot’s
reaction/interaction to the presence of a human within its work-
space. Once the robot’s task has been programmed segment by
segment, the algorithm takes care of all the remaining offline plan-
ning steps (input reading, offline planning, and connection analy-
sis). As said, the first step performed by the ROS node is a
process of input reading. All the information provided by the user
through the GUI is read by the algorithm and translated into a
code-efficient language, exploiting structure objects of C4++ to
store the data related to each created segment.

Offline Planning. With the aim of ensuring easy programmabil-
ity while maintaining great freedom in the definition of the task, a
set of offline planning techniques is provided to the user for select-
ing the technique best suited for the task. In order to address the
main needs of common industrial applications, four methodologies
are made available and collected in Table 1.

The first offline planning technique, called User-defined Algo-
rithm, addresses all the cases in which the operator is only interested
in defining start and goal configurations of the robot for the
segment, not the particular trajectory connecting them, and has no
a priori knowledge of the task. First, the user chooses to specify
the robot configuration in joint space or Cartesian space. According
to this choice, either the pose of the end-effector or all joint angles
are required in order to determine the start and goal configurations
of the robot for the segment. A list of planners, offered by the
OMPL library in Movelt!, can then be used to select the best
suited algorithm. The code developed by the authors takes as
input these requests and gives as output a feasible trajectory that

Table 1 Summary of the implemented skills

Implemented skills

Offline planning techniques User-defined algorithm
Human occupancy volumes
Relevant trajectory

Tool operation

High-level controllers Stop and go
Replan
Reconnect
Alert

Allowed contact

Fail safe

Robot behaviors Limited time stop

Unlimited time stop

Robot trajectory (non-restrictive)
Robot trajectory (restrictive)

Human contact

Journal of Manufacturing Science and Engineering

respects the hardware limits set for the robot. Two scaling factors
are also available if, for any reason, the user needs to further
reduce the preset speed and acceleration limits.

The second approach, called Human Occupancy Volumes
(HOVs), is inspired by Pellegrinelli et al. [13] and has been devel-
oped in order to address the case in which the user is still interested
in simply defining start and goal configurations of the robot for the
segment, but experimental data about the human presence for the
specific task are available. In Ref. [13], a cooperative operation is
described as a spatial and statistical distribution of HOVs.
Through an experimental campaign, each point in space is assigned
a probability of being occupied by the operator during the specific
task and points belonging to a certain probability range are grouped
into an HOV. It is immediately clear that a trajectory avoiding all
the volumes has a higher execution time because a longer path is
needed to circumnavigate the whole workspace, but a smaller varia-
bility since, ideally, the probability of encountering the operator is
bound to zero. On the other hand, a trajectory crossing one or more
of the HOVs is shorter and therefore faster but, at the same time,
more likely to undergo variations due to stops or changes in
speed required to avoid collisions with the operator. The procedure
above is used in this research in order to define a priori the path to be
followed by the manipulator. The computed path is, statistically, the
one expected to minimize the execution time by simultaneously
considering its length and the probability of disturbance. For the
sake of brevity, the implemented procedure is not explained in
detail here and, therefore, the authors suggest referring directly to
Ref. [13] for further information. The role of the user in all of
this is simply to input start and goal configurations of the robot
for the segment either in joint or Cartesian space, upload the previ-
ously defined volumes and, if needed, specify scaling factors for the
limits on speed and acceleration.

As opposed to the previous cases, there are many situations in
which the user has to completely define the trajectory of a
segment. For instance, if the robot has to perform some kind of activ-
ity along with its motion (e.g., arc welding, cutting, and pouring
molten metal), a particular path, defined point by point, must be fol-
lowed. The Relevant Trajectory offline planning technique has been
developed specifically for this purpose. The path is built by the user
point by point, either in joint or Cartesian space. Once all the points
have been defined, the algorithm automatically analyzes them to
create a feasible trajectory that respects all the limits of speed and
acceleration. The offline planning allows the user to lower the
speed and acceleration limits via specification of a zero-to-one
scaling factor.

The last mode implemented by the authors for the offline planning
of the task is called Tool Operation. The aim of this mode is not to
plan a movement of the robotic arm between two configurations
but to plan an action performed by the end-effector in a certain
pose. In this mode, the user specifies the position inside the work-
piece where one of the actions represented in Fig. 2 has to be per-
formed: Open (open the gripper’s prongs to a certain distance),
Close (close the gripper’s prongs to a certain distance), or Wait.
The “Wait” operation enables direct contact with the manipulator,
for example in order to inspect the end-effector or perform an oper-
ation on the carried workpiece. Since this operation is performed
while the robot is stationary, no harm can be done to the operator.
The motion of the manipulator is allowed to restart only when the
operator gives a confirmation signal by pressing the ENTER key
on the keyboard.

As already introduced, one of the goals of the authors is to guar-
antee the modularity of the robotic system. For this reason, this ROS
node has been structured so that any new offline planning technique
can be simply added to the list of available choices by introducing
the dedicated algorithm inside the code.

Segment Connection and Execution. Supposing that the user
has defined all the segments that compose the task at hand and
that the robot’s trajectories have been computed offline by the

MARCH 2021, Vol. 143 / 031009-3

i

Fig. 2 (a) Open gripper, (b) close gripper, and (c) wait operation

algorithm, an additional step is required in order to ensure the
correct connection of the subtask trajectories/actions. Two sequen-
tial segments can be considered properly connected if the final way-
point of the first one coincides, within a certain tolerance, with the
starting waypoint of the following one. The algorithm therefore per-
forms a complete analysis of the generated paths and automatically
creates connections where needed, in order to compensate for any
mistake or inaccuracy of the user. The sequencing of the connecting
segment is critical during this step. For instance, considering a
sequence <Segment_I, Segment_2>, if a connection is needed
between the two segments, the resulting sequence must be
<Segment_1, Connection_Segment, Segment_2>. The last duty
assigned to this ROS node is to make sure that the execution of
each segment is commanded with the correct timing. In particular,
two conditions must be satisfied before the algorithm is allowed to
start the execution of a segment: the readiness of the particular high-
level controller responsible for the supervision of the subtask must
be ensured and a feedback signal communicating the successful
completion of the previous segment must be received.

Online Module: Behaviors and High-Level Controllers

The Online/Real-Time Module in Fig. 1 provides the robotic
system with a set of capabilities that can be used to react to different
changes in the manufacturing environment. In particular, the
concept of “robot behavior” is introduced as a reactive switching
logic that enables the manipulator to activate in real-time the high-
level controller best suited for the specific human—robot interaction
scenario. Due to the segmentation process, the user is able to assign
a choice of behavior independently to each segment. In order to
implement this second module, two codes, both nodes inside the
ROS environment, have been developed. The first one provides a
set of high-level controllers, while the second one is used to imple-
ment a series of cost function-based switching logics (behaviors).

High-Level Controllers. A high-level controller represents a
particular approach available to the robot for its interaction with
the environment and the human operator. Having a set of possibil-
ities enables the robotic system to adapt to a great variety of situa-
tions typical of an industrial environment. For this reason, the
authors implemented six different high-level controllers, grouped
in Table 1, within a modular structure that allows for additions to
the robot’s portfolio of high-level controllers to be easily made.

The first controller developed for the project is called Stop and
Go, and a representation of its functionality is depicted in Fig. 3.
The distance between the body of the robot and any obstacle
sensed in the environment during the execution of a trajectory is
constantly monitored. If the distance decreases to a certain prede-
fined threshold, an immediate stop of the robot motion is com-
manded in order to avoid a possible collision. Similar, to
safety-rated monitored stop (SMS) approaches found in the

031009-4 / Vol. 143, MARCH 2021

v

Fig. 3 Representation of the functionality of the Stop and Go
controller

literature, the robotic system remains active after the stop so that,
as soon as the obstacle moves far enough away from the robot,
the motion can be restarted in order to complete the original trajec-
tory. The threshold is set at code level and represents minimum dis-
tance between the moving robot and the environment/operator
considered acceptable in terms of safety.

A different obstacle avoidance approach has been implemented
for the second controller called Replan. As before, the robot is
stopped if its distance from an external obstacle drops to a certain pre-
defined threshold. At this point, instead of waiting for the original
path to be cleared, the robot looks for a new feasible trajectory
from its stop position to the goal of the segment and immediately exe-
cutes it. This instantaneously static replanning operation is per-
formed considering a virtual obstacle of increased dimensions so
that the new path is forced to maintain a minimum value of clearance
from the real physical object and no unsafe maneuver is allowed.
If, for any reason, the robot should move inside the virtual volume
of the inflated obstacle, this would be considered a collision in the
emulated environment and the robot’s motion would be immediately
stopped, while in the real world, a safety clearance would still
be maintained. A representation of this procedure is shown in Fig. 4.

A variant of this solution is proposed for the third high-level con-
troller, called Reconnect. Again, the robot stops in front of the
obstacle and looks for a new path but, instead of replanning all
the way to the goal of the segment, it tries to reconnect to the orig-
inal trajectory. Basically, the algorithm analyzes the points of the
remaining part of the original trajectory to find the first one not
obstructed by the obstacle. A path connecting the stop position of
the robot and that point is then computed and augmented with the
section of the original trajectory that brings the robot to the goal
of the segment.

A different idea has driven the development of the Alert control-
ler. The above controllers are aimed at giving priority to the external
environment and adapting the motion of the robot to it. The goal of
the Alert controller is to provide the robot with the ability to com-
municate its need for a clear path. In practice, this has been realized

Fig. 4 Representation
controller

of the functionality of the Replan

Transactions of the ASME

by emitting a sound alarm every time that an obstacle is detected in
the proximity of the manipulator.

The Allowed Contact controller is another option, which is auto-
matically activated every time that the user creates a “Tool Opera-
tion” segment using the “Wait” action. Since the robot is stationary
in a certain position and no harm can be done to the operator, the
distance threshold for external obstacles is deactivated in order to
allow direct contact with the manipulator. The safety checks are
immediately restored as soon as the operator presses the ENTER
key (confirmation signal) and the robot starts moving again.

Finally, a Fail-Safe controller has been developed so that, every
time that an emergency situation occurs, the system is shut down
and maximum priority is given to the safety of the operator. The
effect is similar to what an emergency-stop button would do and,
in order to restart the operation, the whole system must be rebooted.

Robot Behaviors. The second major component of the Online/
Real-Time Module in Fig. 1 is the determination of an optimized
human-robot collaboration and subsequent decision switch logic
in charge of activating the best suited high-level controller. In
order to guarantee flexibility and modularity of the robotic
system, a series of “Robot Behaviors” have been implemented in
the form of cost function-based switching logics. Every behavior
is associated to a specific group of high-level controllers and, by
means of a dedicated cost function, evaluates a “cost of activation”
for each one of them. The cost represents the impact of the activa-
tion of a specific controller on the performance of the system in
terms of both safety and productivity. The high-level controller
with the lowest cost gets activated in real-time by the switching
logic, with the exception of the occurrence of any emergency situa-
tion in which case the Fail-Safe controller immediately overrides
every other command. Each cost function is structured as the sum
of three components: base cost (constant value used to give prefer-
ence to a specific controller when the other parameters are irrele-
vant), distance cost (accounts for human safety, inversely
proportional to the distance between manipulator and the closest
obstacle (e.g., human body part)), and delay cost (account for pro-
ductivity, proportional to the duration of any stop of the robot
motion caused by an obstacle)

Cost = Cpase + (Cyisr + Distance) + (Cyelqy X Delay) (1)

Each decision switch logic is equipped with a table containing the
values of the three coefficients in Eq. (1) for each active controller.
The values set in this table, and the specific controllers considered
are what differentiates one behavior from the other. A representa-
tion of the online procedure implemented with this ROS node can

SEGMENT UNDER
EXECUTION

» Offline Planning > Chosen technique
* Online Behavior - Chosen behavior

EXTERNAL
ENVIRONMENT

Measured delay

Distance from closest obstacle

be seen in Fig. 5.

As the execution of a segment starts, the behavior selected by the
user is immediately activated. The cost of each active controller is
evaluated on the basis of data collected from the external environ-
ment (obstacle distance and induced delay), and the least expensive
controller is activated in real-time. The result of such an approach is
somewhat similar to what is suggested in Ref. [7]: complex robot
behaviors emerge in real-time from the interplay of properly
sequenced high-level controllers. Further noting, due to the modu-
larity of the system as many behaviors as needed can be imple-
mented. For the research presented herein, the following are the
behaviors developed and implemented to represent different scenar-
ios one anticipates for human-robot interaction within a smart
factory:

o Limited Time Stop: exploiting the Stop and Go and Replan/
Reconnect controllers, this behavior allows the manipulator
to stop in front of an obstacle and decide whether to wait for
the path to be cleared or to replan around it;

o Unlimited Time Stop: version of the previous behavior that
forces the robot to wait for the path to be cleared, no matter
for how long;

e Robot Trajectory (Non-Restrictive): exploiting the Alert and
Stop and Go controllers, the robot is able to alert the operator
if an obstacle is disturbing a critical operation and to stop in
case a collision is imminent;

e Robot Trajectory (Restrictive): version of the previous beha-
vior that does not leave any possibility for modification of
the robot’s motion. If an emergency situation occurs, the
system is shut down by the Fail-Safe controller;

e Human Contact: this behavior is simply used to activate the
Allowed Contact controller in order to allow direct interac-
tion with the manipulator until a confirmation signal is given
by the user.

Case Study

In order to validate the control architecture of Fig. 1 incorporating
both the Offline Module and Online Module operating per the
online switching logic depicted by Fig. 5, an experimental activity
has been performed within a virtual environment, emulating
dynamic data related to the movement of the operator’s forearm
and considering the rest of the body as a static obstacle. A
random component of + 1 cm is introduced as a fictitious sensor tol-
erance. Refresh rate has been set to 5 Hz, and no delay is assumed.
Open-loop commands are also sent to a physical e.DO robot,
equipped with a mechanical two-prong gripper able to perform
pick and place operations, in order to demonstrate the potential of

* Controller 1

CHOSEN BEHAVIOR . controller2

Real time

COST least
FUNCTION expensive
controller

* Controller switch code
* Threshold

CHOSEN
CONTROLLER

Fig. 5 Working principle of the online switching logic

Journal of Manufacturing Science and Engineering

MARCH 2021, Vol. 143 / 031009-5

Fig. 6 Schematic of the two customizations of the product and
testbed setup

the control architecture in a real application. The authors chose to
validate the robotic system by means of a simple assembly task,
representative of common industrial scenarios. The manipulator
and human share the same workspace, and the assembly of the
product is carried out in a collaborative manner. As depicted in
Fig. 6, the product under analysis is made up of four components,
in this case colored building blocks (as labeled), which are placed
in different locations in the workspace [components inserted into
the assembly process: Location A (process starting point) —
Yellow or Blue Blocks; Location B — Green Blocks; Location
C - Yellow Blocks; Location D — Blue Blocks]. Some of the assem-
bly operations are assigned to the human (green/red blocks), others
are assigned to the robot (yellow/blue blocks), and some direct
interaction between the human and robot is required. During this
collaboration, the human may intersect the motion of the manipula-
tor, generating the need for smart robot reactions in order to ensure
the safety of the operator while at the same time attempting to min-
imize the disruption of production efficiency.

Always with reference to Fig. 6, two customizations, each consist-
ing of an ordered stack of blocks assembled from a set of components
(herein, the four color choices of blocks), are considered and used to
test the flexibility of the system. The difference between the two ver-
sions is the location of their components. Either the robotic task must
be reprogrammed, or the operator can easily adapt to the new duties.
As shown in Fig. 7 (images #1-8), the robot is assembling Custom-
ization A. The robot moves from a vertical stand-by position toward
the first component in location A (#1). The part is moved toward the
second component, in location C, while the operator prepares
the assembly area located in B (#2). Once the robot has completed
the assembly of the first two parts (#3), it moves away and waits
for a confirmation signal given by the human that has to inspect
the workpiece (#4). After the signal, the robot picks up the subassem-
bly and starts moving it toward the common assembly area where the
operator places the third component with the correct orientation (#5).
Before further assembling, the robot once again lets the operator
inspect the carried workpiece to ensure the alignment of all the
parts (#6). When allowed, the robot performs its last assembly task
(#7) and moves back to its stand-by vertical position, while the oper-
ator assembles the fourth and last component and retrieves the fin-
ished product (#8). In order to program the robotic collaborative
task at hand, the developed GUI was used to independently charac-
terize each segment (SEGM). Regarding the offline planning techni-
que, the segments requiring a motion of the robotic arm use the
User-Defined Algorithm mode, while the segments representing an
action of the end-effector exploit the Tool Operation mode. In
terms of online robot behaviors, the authors made the following
choices:

e Large motions of the manipulator use the “Limited Time Stop
behavior” in order to smartly react to possible interactions with
the operator (segments 1, 5, 18, and 19);

e Operations that require high precision and must not be dis-
turbed, such as insertions or gripping/releasing of components,
exploit the “Robot Trajectory (Restrictive)” behavior (seg-
ments 2, 3, 6, 7, 10, 11, 15, and 16);

031009-6 / Vol. 143, MARCH 2021

SEGMI-8,9°

Fig. 7 Main assembly steps: customization A

e Operations that are still critical but with a lower level of
required precision are assigned the “Robot Trajectory (Non-
Restrictive)” behavior (segments 4, 8, 12, and 17);

e Segments used for inspection of the workpiece and of the sub-
assembly use the “Human Contact” behavior (segments 9 and
14); and

e Segment 13 exploits the “Unlimited Time Stop” behavior
because, if interference with the human happens, it will most
likely consist in an obstruction of the goal of the segment
and therefore no replanning is possible.

Moreover, three levels of human-robot interaction for each cus-
tomization of the product have been analyzed. The first case repre-
sents a situation of perfect synchronization, and the motion of the
robot is never disturbed by the presence of the operator. For the
second case, the fixturing of the common assembly area takes
slightly longer than expected, meaning that the robot finds its
path obstructed by the operator when moving the first component
from location A to location C and waits until the operator moves
away and the path is clear (segment 5, limited time stop). The
third situation analyzed addresses the case in which an unexpected
issue occurs in the fixturing process, forcing the operator to keep
working in the area for an even longer time. Therefore, once
again the robot finds its preplanned path (segment 5) occupied by
an obstacle and has to react in order to minimize the disruption of
productivity. This time it replans its path and goes around the
operator.

Results and Discussion

Offline performance: As expected, the graphical user interface
sensibly enhanced the accessibility of the system, enabling users to
intuitively program the robotic task with minimal advanced

Transactions of the ASME

knowledge. Moreover, timers have been implemented in the codes in
order to measure the amount of time required for all of the offline
operations. Regarding the scenario under analysis, the measured
time is equal to around 780 ms. On the other hand, the time needed
for the manual data insertion by the user was not precisely measur-
able, but in the order of minutes. Given the fact that more complex
scenarios would require longer times both for the computational
part and for the manual data input, it is safe to say that the latter is
the process with the highest impact on the offline performance of
the system. Using the GUI, this step is required only the first time
that a process is introduced in the production system. The interface
enables the user to store the program, creating a library of scenarios
that are always accessible for immediate use according to production
requirements. Moreover, the ability to reopen and modify already
existing programs significantly eased the process of customization
of the product. Instead of reprogramming the whole robotic task
for Customization B from scratch, the user was able to open the
program of Customization A, modify it according to the new
process, and store it as a new independent scenario, therefore
saving much time in manual data input. For all these reasons, the
system is demonstrated to have great flexibility, adaptability, and
customizability in its offline capabilities, fundamental features for
Pull Manufacturing and Industry 4.0 environments.

Online performance: The plot in Fig. 8 reports the accumulation
of execution times measured for the three levels of interaction
applied to the scenario of Customization A. As shown, the three
lines coincide up to the end of segment 4 (robot trajectory, non-
restrictive) since, up to that point, no human interaction occurs
for any of the cases and therefore the same execution times are mea-
sured. Segment 5 is where the three cases start to differentiate. Case
1 represents an efficiency reference, being a situation of perfect syn-
chronization. Cases 2 and 3, instead, generated longer execution
times due to the disturbance provoked by the operator’s forearm
along the path of the manipulator. After that, since no further
delay is induced, the three curves develop in parallel up to
segment 13, where, once again, longer times where measured for
Cases 2 and 3 due to the human presence.

In order to evaluate the online performance of the robotic system,
it is interesting to analyze how the robot reacted to the emulated
human’s interference that occurred in segment 5. Figure 9 presents
the trend of the cost of activation of the controllers during the exe-
cution of segment 5 for Cases 2 and 3.

In Case 2, the cost of the Stop and Go controller remains the
lowest for the entire duration of the motion. Consequently, the reac-
tion of the robot was to stop in front of the obstacle, wait for the path
to be cleared and then restart its motion along the original trajectory.
For Case 1, 4.5 s was needed to complete the segment 5. For Case 2,
the authors measured a time of completion of 7.3 s, accounting for
the time in which the robot was paused due to the human’s presence.
If, instead, the robot would have chosen to immediately replan
around the forearm, the goal of the segment would have been

Execution times - Customization A

——CASE 1 P!
50 r|= = 'CASE 2 e

0F e
- 1

1
I
1
1
I
]
1
1

O ~_,\“I | | | { | | | | | | | I | | | |
012 3 4 56 7 8 9 1011 12 13 14 15 16 17 18 19
Segment

Fig.8 Plot of the execution times for the three interaction cases
of customization A

Journal of Manufacturing Science and Engineering

Cost of activation - Case 2

150 | = = *Stop and Go
L TN - Reconnect
o '_f‘ ‘\
2 100 - !
o 4 1
/g 1
” ~
50 | 5 —nn i
o ‘—
1 Il 1 1 1 Il ‘-l
0 1 2 3 4 5 6 7

Time [s]
Cost of activation - Case 3

- = +Stop and Go 41

200 Reconnect
®
o 150 -
(@] =
__/ i
100 £ ’
J
"4 1 1 1
0 2 4 6 8

Time [s]

Fig. 9 Trend of the costs of the controllers for the execution of
segment 5

reached in 14.7 s. Therefore, the Stop and Go reaction actuated
by the robot is the most time saving one for Case 2. On the other
hand, regarding Case 3, the cost of the Stop and Go controller
becomes larger than the cost of the Reconnect controller at 6.8 s,
meaning that a switch is triggered. In practice, the robot stopped
in front of the obstacle. But, since the induced delay was excessive,
the system decided to replan its path and complete the segment. The
execution time measured for this reaction was 19.1s, versus the
21.5 s that would have been needed if the robot had to wait for
the operator to clear the path. This means that, once again, the reac-
tion chosen by the robot was the most appropriate for the situation
under analysis, with a consequent 11% reduction of the productivity
disruption.

Parameters analysis: To quantify the performance of the HRC
control architecture, a series of parameters on safety and productiv-
ity of the robotic system are now defined. Figure 10 provides a
representation of the parameters under analysis: a proximity thresh-
old (¢), used to stop the robot within a predefined distance from the

<, d=t—R
CASE 1 K
——— New Plan
Original Trajectory /
| S e R PR -+ Y
START 1 N
|4 : |
o, | |
CASE 2 %,
New Plan _.-~
gﬁ&f """"" " “Original Trajectory |
d | N\ Inflated
t | Obstacle
% pam
CASE3 % it N
New Plan .-*
Real Obstacle._
> —— R . | __ e
START 1 ‘Original Trajectory GOAL
d
t Inflated
Obstacle

Fig. 10 Schematic representation of reaction distance and infla-
tion radius

MARCH 2021, Vol. 143 / 031009-7

obstacle, and a virtual inflation radius (R), used to guarantee a
certain clearance from the obstacles in the execution of replanned
trajectories. The first one (7) can be considered a sort of “reaction
distance,” the second one (R) an indicator of safety, while the exe-
cution time represents the productivity of the system. Figure 10 pre-
sents three examples, each one of them characterized by different
values for these parameters. Due to the different shapes of the
replanned trajectories for the three cases, the authors expect sensible
impacts on the execution times.

Noting that the amount of inflation must be limited according to
the position in which the robot is stopped, an inflated obstacle over-
lapping with the body of the manipulator would represent a “virtual
collision” that must be avoided. For this reason, a third parameter (d)
isdefined in Fig. 10. By making sure thatits value is greater than zero,
the limit is respected. The experimental campaign consists in repeat-
edly executing the trajectory of segment 5 with different values of ¢
and R, measuring for each execution the time needed by the robot
to move from the beginning (start) to the end (goal) of the
segment. The analysis has been performed by iteratively fixing a
certain value of d while varying the value of virtual inflation R
(and consequently the reaction distance 7). For each fixed d, nine
values of R are considered, and the obtained points have been inter-
polated to obtain the curves represented in Fig. 11. Moreover, for
each point (a set of d and R), 20 executions of the trajectory have
been performed in order to average the intrinsic variability of the
exploited planner. Analyzing each curve of the plot in Fig. 11, the
trend is to have an increasing execution time as the value of inflation
grows. In fact, comparing Cases 2 and 3 in Fig. 10, a bigger inflation
leads to a longer replanned trajectory and therefore longer execution
times. Considering now the five plotted lines and a fixed value of
inflation, it is clear that as d gets smaller, the average execution
time rises. Always with reference to Fig. 10, this behavior can be
explained by the fact that a short reaction distance (¢) yields a
replanned trajectory characterized by “sharp turns” (Case 1), while
a long reaction distance leads to a smoother path (Case 2). Since
the manipulator has limits on the maximum acceleration that can
be produced by its motors, sharp turns sensibly slow down the exe-
cution of the trajectory, while a smooth path can be executed much
faster.

Summarizing these results, it is clear that, in order to have lower
execution times and therefore maximize the productivity of the
system, a large reaction distance (#) and a small virtual inflation
would be best, in general. On the other hand, the inflation radius
(R) is an indicator of safety and its reduction would generate
higher risks and discomfort for the operator. Also, having a large
reaction distance () would cause much more disturbances to the
robot motion, as it would try to adapt its trajectory according to obsta-
cles that are still far from its body. As seen in Fig. 11, anonlinear rela-
tionship is also observed. That is, the average execution time (inverse
indicator of productivity) is not necessarily monotonically increasing
with an increase in R, indicator of safety. Consequently, further

Experimental campaign

168 fl=——d = 0.02m

= =d=0.03m
16.6 1

ssmmid =0.04m an
-

164 l===d=0.05m L e g
© d=0.09m - 3

Average execution time [s]

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Inflation [m]

Fig.11 Execution time curves as a function of reaction distance
and inflation radius

031009-8 / Vol. 143, MARCH 2021

modeling is needed to arrive at an optimal set of these parameters
able to simultaneously maximize operational safety and productiv-
ity. The authors believe that the results obtained with this experimen-
tal campaign could represent useful information for the future
developments of the robotic system. In fact, knowing the impact
that the robot’s reaction distance has on the performance of the
system could be a powerful driver in the definition of an optimal
value for the “time span” to be covered by the predicted data envi-
sioned for the long-term project.

Conclusion

In this paper, robot reactive behavior intelligence was achieved
via cost function-based switching logic activating best suited high-
level controllers. A series of offline planning techniques, high-level
controllers, and robot behaviors have been made available for the
independent characterization of the segments. The Task Segmenta-
tion was shown to provide flexibility, adaptability, and customiz-
ability to the robotic system, in line with the Industry 4.0
requirements. The resulting PACI and switching logic was vali-
dated to be effective in guaranteeing safety of the operator while
reducing negative impacts on the productivity by dynamically
adapting the robot’s motions given predefined execution plans for
its assigned tasks and detection of emulated human actions.
Further analysis was conducted to extrapolate the influence of
two parameters (reaction distance and inflation radius) on opera-
tional safety and productivity of the system. These preliminary find-
ings will serve as a powerful driver for the definition of the time
span to be covered by the predicted human motion data envisioned
for future developments of the research. Future work will involve
investigation of potential stability issues that may arise with the
switching logic due to uncertainties in predicting human motion,
introducing real-life sensing of multiple dynamic obstacles,
testing for “sensor failure” scenarios, and expanding the cost func-
tions to consider a greater set of data (e.g., safety indicators and pre-
dicted human motion parameters).

Acknowledgment

The authors wish to acknowledge Jack Wittmayer, undergraduate
researcher at University of Florida, for his development of the
GUI in support of the research. This research was conducted
under the University of Florida J-1 program and in collaboration
with the Institute of Intelligent Industrial Technologies and
Systems for Advanced Manufacturing — National Research
Council (STIIMA-CNR) of Italy.

Conflict of Interest

There are no conflicts of interest.

Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request. The authors attest that all data for this study are included
in the paper.

Funding Data

e Funding was provided by Politecnico di Milano scholarships
“Thesis Abroad — Borsa di Studio Tesi all’Estero” for both
Matteo Lavit Nicora and Roberto Ambrosetti and by the
National Science Foundation/National Robotics Initiative
(NSF/NRI) 2.0 award entitled NSF/NRI: INT: COLLAB:
Manufacturing USA: Intelligent Human—Robot Collaboration
for Smart Factory (Award L.D. #:1830383). Any opinions,

Transactions of the ASME

findings, and conclusions or recommendations expressed are
those of the researchers and do not necessarily reflect the
views of the National Science Foundation.

Nomenclature

d = distance between the position of the robot and the
inflated obstacle, must be greater than zero to avoid a
“virtual” collision
t = reaction distance, distance threshold within which the
robot will react to the presence of an obstacle inside
the robot workspace
R = virtual inflation radius of an obstacle, minimum
distance acceptable for a robot trajectory to pass close
to an obstacle
Cpase = base cost of robot behavior, constant value specified to
give a preference
Ceiqy = delay cost coefficient, constant
Cus = distance cost coefficient, constant
Cost = cost of activation of robot behavior
Delay = time delay induced by any stop of the robot motion due
to the presence of an obstacle, measured in terms of
number of code cycles spent, while the robot is stopped
Distance = distance between manipulator and the closest obstacle
ROS = robot operating system, robotics middleware
(collection of software frameworks for robot software
development; libraries and tools)
SEGM # = robot application divided into consecutive segments
(robot movement and/or end-effector action), SEGM #
designates segment identified by #

References

[1] International Federation of Robotics, 2019, “IFR Press Release,” IFR Press
Conference, Shanghai, China, Sept. 18, https:/ifr.org/ifr-press-releases/news/
robot-investment-reaches-record-16.5-billion-usd, Accessed October 18, 2019.

[2] Fenech, Celine, and Perkins, Ben, 2015, Made-to-Order: The Rise of Mass
Personalization, 11th ed., The Deloitte Consumer Review, London, UK,
pp. 1-24.

Journal of Manufacturing Science and Engineering

[3] Streitmatter, G. L., and Wiens, G. J., 2019, “Multi-Objective Approach to HRC
Manufacturing Environment,” ASME Manufacturing Science and Engineering
Conference, MSEC2019-2935, Erie, PA, June 10-14 (poster).

[4] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
and Ng, A., 2009, “ROS: An Open-Source Robot Operating System,” ICRA
Workshop on Open Source Software, 3(2-3), p. 5.

[5] Chitta, S., Sucan, I., and Cousins, S., 2012, “Moveit!,” IEEE Robot. Autom.
Mag., 19(1), pp. 18-19.

[6] Comau e.DO Robot Specifications, 2018, https://edo.cloud/edo-robot/, Accessed
October 18, 2019.

[7] Kragic, D., Gustafson, J., Karaoguz, H., Jensfelt, P., and Krug, R., 2018,
“Interactive, Collaborative Robots: Challenges and Opportunities,” International
Joint Conference on Artificial Intelligence, Stockholm, Sweden, July 13-19,
pp. 18-25.

[8] Colledanchise, M., and Ogren, P., 2017, “How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Compositions, the
Subsumption Architecture and Decision Trees,” IEEE Trans. Rob., 33(2),
pp. 372-389.

[9] Roveda, L., Vicentini, F., and Molinari Tosatti, L., 2013, “Deformation-Tracking
Impedance Control in Interaction With Uncertain Environments,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan,
Nov. 3-7, pp. 1992-1997.

[10] Liu, C., and Tomizuka, M., 2016, “Algorithmic Safety Measures for Intelligent
Industrial Co-Robots,” IEEE International Conference on Robotics and
Automation, Stockholm, Sweden, May 16-21, pp. 3095-3102.

[11] Pedrocchi, N., Vicentini, F., Malosio, M., and Molinari Tosatti, L., 2013, “Safe
Human-Robot Cooperation in Industrial Environment,” Int. J. Adv. Rob. Syst.,
10(1), pp. 1-13.

[12] Sadrfaridpour, B., and Wang, Y., 2018, “Collaborative Assembly in Hybrid
Manufacturing Cells: An Integrated Framework for Human—Robot Interaction,”
IEEE Trans. Autom. Sci. Eng., 15(3), pp. 1178-1192.

[13] Pellegrinelli, S., Moro, F. L., Pedrocchi, N., Molinari Tosatti, L., and Tolio, T.,
2016, “A Probabilistic Approach to Workspace Sharing for Human-Robot
Cooperation in Assembly Tasks,” Robotics and Computer-Integrated
Manufacturing, CIRP Annals, 65(1), pp. 57-60.

[14] Ferraguti, F., Talignani Landi, C., Secchi, C., Fantuzzi, C., Nolli, M., and
Pesamosca, M., 2017, “Walk-Through Programming for Industrial
Applications,” Procedia Manufacturing, 11, pp. 31-38.

[15] Billard, A. G., Calinon, S., and Dillmann, R., 2016, “Learning From
Humans,” Springer Handbook of Robotics, Springer Handbooks, B.
Siciliano, and O. Khatib, eds., Springer, Cham, pp. 1995-2014. ISBN: 978-3-
319-32550-7.

[16] Neto, P., and Mendes, N., 2013, “Direct Off-Line Robot Programming via a
Common CAD Package,” Rob. Auton. Syst., 61(8), pp. 896-910.

[17] Michalos, G., Karagiannis, P., Makris, S., Tokgalar, O, and Chryssolouris, G.,
2016, “Augmented Reality (AR) Applications for Supporting Human-Robot
Interactive Cooperation,” Procedia CIRP, 41, pp. 370-375.

MARCH 2021, Vol. 143 / 031009-9

https://ifr.org/ifr-press-releases/news/ robot-investment-reaches-record-16.5-billion-usd
https://ifr.org/ifr-press-releases/news/ robot-investment-reaches-record-16.5-billion-usd
http://dx.doi.org/10.1109/MRA.2011.2181749
http://dx.doi.org/10.1109/MRA.2011.2181749
https://edo.cloud/edo-robot/
http://dx.doi.org/10.1109/TRO.2016.2633567
http://dx.doi.org/10.5772/53939
http://dx.doi.org/10.1109/TASE.2017.2748386
https://dx.doi.org/10.1016/j.promfg.2017.07.126
http://dx.doi.org/10.1016/j.robot.2013.02.005
https://dx.doi.org/10.1016/j.procir.2015.12.005

	 Introduction
	 Materials and Methods
	 State of the Art
	 Offline Module: Task Segmentation and Planning
	 Graphical User Interface
	 Offline Planning
	 Segment Connection and Execution

	 Online Module: Behaviors and High-Level Controllers
	 High-Level Controllers
	 Robot Behaviors

	 Case Study
	 Results and Discussion
	 Conclusion
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 Funding Data
	 Nomenclature
	 References

