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Abstract 17 

Strontium isotope ratios (87Sr/86Sr) are a popular tool in provenance applications in 18 

archeology, forensics, paleoecology, and environmental sciences. Using bioavailable 87Sr/86Sr 19 

in provenance studies requires comparing the 87Sr/86Sr of a sample of interest to that of 20 

87Sr/86Sr baselines. Historically, these baselines required building empirical datasets from 21 

plants or local animals to characterize the 87Sr/86Sr available to local ecosystems (bioavailable 22 

87Sr/86Sr). However, researchers are increasingly relying on modeled bioavailable 87Sr/86Sr 23 

maps (called isoscapes). We review the advantages and limitations of existing approaches to 24 

mapping bioavailable 87Sr/86Sr for provenance studies and propose a globally applicable, 25 

scalable, and editable framework for creating bioavailable 87Sr/86Sr isoscapes. This 26 

framework relies on: 1) Compiling global bioavailable 87Sr/86Sr data; 2) Mapping 87Sr/86Sr 27 

variability in rocks; 3) Leveraging global environmental covariates; and 4) Applying a 28 

random forest regression method that integrates these data to predict bioavailable 87Sr/86Sr. 29 

When the random-forest model is applied at the global scale it performs well (explaining 60% 30 

of the variance of the global bioavailable 87Sr/86Sr dataset), and accounts for geological, 31 

geomorphological and atmospheric controls. In data-rich regions (e.g., Europe), the global 32 

bioavailable 87Sr/86Sr isoscape can be successfully extrapolated to broad regions without 33 

bioavailable 87Sr/86Sr data. However, we also show that this extrapolation may not be valid in 34 

exceptionally geologically complex and data-poor regions (e.g., Madagascar). We suggest 35 

research directions to improve the accuracy of global bioavailable 87Sr/86Sr isoscapes, which 36 

include: 1) Increasing the collection of bioavailable datasets in data-poor regions; 2) 37 

Harmonizing data management practices and metadata collection for bioavailable 87Sr/86Sr 38 

data; and 3) Relying on advances in remote sensing and geological mapping techniques to 39 

improve geological covariates. While significant potential to refine 87Sr/86Sr isoscapes 40 

remains, the data products provided in this review form a basis for using 87Sr/86Sr data in 41 

large-scale provenance studies, opening new research avenues in a range of fields.  42 
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1. Introduction 45 

Strontium (Sr) isotope ratios (87Sr/86Sr) display a unique and predictable patterns of 46 

variability on the Earth’s surface that follow the geological age and lithology of bedrocks 47 

(Bataille and Bowen, 2012). As rocks interact with the hydrosphere, atmosphere and 48 

biosphere, bedrock Sr is transferred to other reservoirs on the Earth’s surface, such as soils 49 

and plants. Geologists have long recognized and capitalized on this natural 87Sr/86Sr 50 

variability to trace the provenance of geological materials (Reviewed in Banner, 2004; Capo 51 

et al., 1998b; Peucker-Ehrenbrink and Fiske, 2019). In the last few decades, researchers have 52 

also recognized the potential for 87Sr/86Sr data to solve new questions in ecology, 53 

paleoecology, and archeology (Reviewed in Åberg, 1995; Bentley, 2006; Crowley et al., 54 

2017a; Hobson et al., 2010; Makarewicz and Sealy, 2015). This uptick of interest in 87Sr/86Sr 55 

geochemistry has coincided with analytical advances and the development of multi-collector 56 

inductively coupled plasma mass spectrometers (MC-ICPMS). This instrumentation and its 57 

greater global availability has made 87Sr/86Sr analysis more mainstream by accelerating 58 

throughput and enhancing cost-effectiveness while also facilitating the development of new 59 

applications in the life sciences such as laser ablation of incrementally growing tissues (e.g., 60 

fin rays and otoliths; Brennan et al., 2015b; Willmes et al., 2016). With these advances, 61 

87Sr/86Sr geochemistry has become a critical tool for tracing the mobility and/or geographic 62 

origin of biological material in ecology (Reviewed in Hobson et al., 2010), paleoecology 63 

(Reviewed in Crowley et al., 2017a), archeology (Reviewed in Bentley, 2006), forensic 64 

sciences (Reviewed in Makarewicz and Sealy, 2015), and food sciences (Reviewed in Coelho 65 

et al., 2017). All of these applications rely on comparing the 87Sr/86Sr of a given substrate 66 

with the isotopic signatures of its potential sources. To facilitate the interpretation of 87Sr/86Sr 67 

data in these applications, it is critical to constrain the spatial variability of 87Sr/86Sr in the 68 

geosphere, hydrosphere and biosphere.  69 

Isoscapes are spatially explicit predictions of isotopic variations. These predictions can be 70 

produced either through geostatistical interpolation of observed isotopic data, or through 71 

mechanistic model based on first principles of isotope geochemistry (Bowen and West, 72 

2008). Over the last few decades, isoscapes of hydrogen, carbon, oxygen, and nitrogen have 73 

been developed, building upon the growing number of isotopic observations (Bowen and 74 

Wilkinson, 2002; Still and Powell, 2010; West et al., 2010a). These isoscapes have become a 75 

routine tool to understand movement patterns of animals and humans and environmental and 76 

biological processes (West et al., 2010b). Isoscape science has recently contributed to 77 

research on many high-profile science questions, from partitioning the global hydrological 78 

cycle (Good et al., 2015) to assessing the population dynamics of critical species (Brennan et 79 

al., 2019). As such, the field of isotope provenancing is rapidly expanding and entering the 80 

realm of data science, for example through large initiatives to integrate relevant data in 81 

centralized repositories (Pauli et al., 2017), and community efforts to make modeling 82 

products widely accessible (Bowen et al., 2014). Historically, interest in, and development of, 83 

Sr isoscapes has lagged hydrogen, oxygen or carbon isotopic systems. The primary reasons 84 

are that 87Sr/86Sr analysis is challenging, relatively expensive, and relies on instrumentation 85 

that is not as widely available as that needed for conducting light stable isotope analyses. 86 

However, 87Sr/86Sr analyses have progressively emerged as a powerful complementary tool in 87 
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provenance studies due to their unique spatial patterns of isotopic variability, with pioneering 88 

work having been conducted in archeology (Ezzo et al., 1997; Price et al., 1994; Sillen et al., 89 

1998), paleoecology (Hoppe et al., 1999), ecology (Chamberlain et al., 1997; Kennedy et al., 90 

2002, 2000; Koch et al., 1995b, 1995a; Thorrold and Shuttleworth, 2000) , and ecosystem 91 

dynamics (Blum et al., 2000; Gosz et al., 1983). In the last decade, the development and 92 

application of 87Sr/86Sr isoscapes has grown exponentially, driven by high-profile 93 

applications in archeology (e.g., Copeland et al., 2011), paleoecology (e.g., Price et al., 94 

2017), ecology (e.g., Brennan et al., 2019; Glassburn et al., 2018), and forensic science (e.g., 95 

Bartelink and Chesson, 2019; Kramer et al., 2020).  96 

This review synthesizes the current state of the rapidly evolving and interdisciplinary 97 

research associated with 87Sr/86Sr isoscapes. We begin by reviewing spatial 87Sr/86Sr trends 98 

on the Earth surface with a focus on large-scale patterns derived from the interactions of the 99 

geosphere, hydrosphere, atmosphere and biosphere. We then compare different approaches 100 

for making 87Sr/86Sr isoscapes in terrestrial and freshwater environments. In an effort to better 101 

integrate interdisciplinary 87Sr/86Sr data, we present the first global compilation of 87Sr/86Sr 102 

data from different environmental substrates. We use this compilation to produce a global 103 

model for predicting bioavailable 87Sr/86Sr and demonstrate the potential of using this 104 

approach to generate 87Sr/86Sr isoscapes at the regional scale in two regions: Europe and 105 

Madagascar. We conclude by discussing key knowledge gaps and new research avenues 106 

opened by this global data science approach. 107 

2. Strontium isotope cycling 108 

2.1 Strontium isotopes geochemistry 109 

Strontium is a divalent alkaline earth trace element with four naturally occurring isotopes: 110 

84Sr (~0.56%), 86Sr (~9.87%), 87Sr (~7.04%) and 88Sr (~82.53%). 84Sr, 86Sr, 87Sr and 88Sr are 111 

all stable isotopes (i.e., do not radioactively decay). Unlike the other Sr isotopes, 87Sr is the 112 

radiogenic daughter product of rubidium 87 (87Rb; decay constant λ = 1.42×10−11 year−1; 113 

Steiger and Jäger, 1977). The ratio of 87Sr to the other isotopes is therefore a function of the 114 

variable abundance of 87Sr. In provenance studies, Sr isotope variations are typically 115 

represented using the ratio of 87Sr relative to 86Sr after correction for any mass-dependent 116 

fractionation by normalization to a fixed 86Sr/88Sr (0.1194; Nier, 1938). The resulting 117 

87Sr/86Sr is thus not a function of isotopic fractionation processes but only reflects the mixing 118 

of isotopically distinct Sr sources.  119 

2.2 Strontium isotopes in the geosphere 120 

The 87Sr/86Sr in modern rocks and minerals is both mineral-dependent (initial 87Rb, 87Sr, 121 

and 86Sr abundance), and time-dependent (radioactive decay of 87Rb to 87Sr). At the time of 122 

our planet’s formation, the bulk Earth reservoir had a relatively homogeneous 87Sr/86Sr 123 

signature of around 0.699 (Wetherill et al., 1973). As geochemical differentiation progressed, 124 

Sr and Rb concentrated in melts that preferentially contributed to oceanic and continental 125 

crusts. This partitioning resulted in increased 87Rb/86Sr in the continental crust relative to the 126 

oceanic crust and the residual mantle (Faure and Powell, 1972), and over time, this led to 127 

differences in 87Sr/86Sr among geologic pools with the progressive decay of 87Rb into 87Sr.  128 

 These combined effects of geochemical partitioning of Rb and Sr and radioactive 129 

decay explain the large range of 87Sr/86Sr in igneous, sedimentary, and metamorphic rocks. 130 

With equal initial 87Rb/86Sr, older igneous rocks have higher 87Sr/86Sr than younger rocks 131 

because 87Rb has had more time to decay in the older reservoir. At equal age, more felsic 132 
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rocks (with higher 87Rb/86Sr) have higher 87Sr/86Sr than mafic rocks (with lower 87Rb/86Sr) 133 

because more 87Rb is available to decay into 87Sr. Old felsic igneous rock units (e.g., cratonic 134 

shields) have the highest measured 87Sr/86Sr (>0.720), while newly formed mafic igneous 135 

rock units (e.g., basalts, volcanic arcs) have the lowest 87Sr/86Sr (~0.703) (Peucker-136 

Ehrenbrink and Fiske, 2019).  137 

Siliciclastic sediments inherit 87Sr/86Sr from their parent rocks but are usually composed 138 

of a mixture of minerals with distinct parent rock, and thus different isotopic ratios. Because 139 

local bedrock sources dominate the 87Sr/86Sr, recently deposited siliciclastic sediments from 140 

young igneous rocks (e.g., volcanic arcs) tend to have lower 87Sr/86Sr than those forming in 141 

older felsic environments (Bataille et al., 2014). However, it becomes challenging to assess 142 

the original parent rock for older sediments due to tectonic and geomorphological evolution 143 

of the surface. As sediments are exposed and reworked on the surface, the preferential 144 

removal of Sr relative to Rb in weathering and metamorphic processes can subsequently 145 

modify their 
87Sr/86Sr leading to additional 87Sr/86Sr variability in older sedimentary units 146 

(Bataille et al., 2014). Carbonate rocks, on the other hand, primarily inherit their 87Sr/86Sr 147 

from seawater (the exceptions being metamorphic, igneous or soil carbonates). They have a 148 

narrow range in 87Sr/86Sr because 1) seawater 87Sr/86Sr has remained within a tight range 149 

throughout the Phanerozoic (0.707 and 0.709; McArthur et al., 2001), and 2) carbonates have 150 

small amounts of Rb but large amounts of Sr (Sr readily substitutes for calcium), which 151 

means their 87Sr/86Sr does not evolve significantly through time.  152 

Metamorphism can alter the 87Sr/86Sr of igneous and sedimentary rock units, which can 153 

lead to highly variable 87Sr/86Sr in metamorphic rocks. For example, metalimestones in the 154 

Himalayas have much higher 87Sr/86Sr than non-metamorphosed marine carbonates due to 155 

exchange of 87Sr between silicates and carbonates during metamorphism (Bickle et al., 2001). 156 

Similarly, hydrothermal metamorphism can homogenize the 87Sr/86Sr of lithologically distinct 157 

sedimentary rock units (Bickle et al., 1988). Ultimately, the combination of igneous, 158 

sedimentary and metamorphic processes leads to considerable variability of 87Sr/86Sr in the 159 

geosphere. Bedrock 87Sr/86Sr ranges from 0.702 in ophiolites to more than 1 in old felsic 160 

Archean rocks (Faure and Powell, 1972). The 87Sr/86Sr distribution in rocks is positively 161 

skewed with average upper crust 87Sr/86Sr around 0.716. 162 

2.3 Strontium isotopes in soils and plants 163 

Soils primarily inherit their 87Sr/86Sr composition from parent rock, and consequently 164 

87Sr/86Sr patterns in soils follow those of the underlying geology (Fig. 1). However, the 165 

observed relationship between soil and local bedrock 87Sr/86Sr is rarely 1:1. This is because 166 

soil 87Sr/86Sr is buffered by the influence of additional sources of Sr with distinct 87Sr/86Sr 167 

compositions (Fig. 1). For example, unconsolidated sediments, such as fluvial terraces and 168 

glacial till or loess, typically have different 87Sr/86Sr than the underlying bedrock (Börker et 169 

al., 2018). In the Midwestern USA, glacial till coming from the Canadian craton covers much 170 

of the bedrock and is the dominant source of Sr to soils (Hedman et al., 2009; Widga et al., 171 

2017). Downwind of desert zones, dust often recharges soil primary minerals and can even 172 

serve as the dominant parent material in some cases (Aarons et al., 2017; Frumkin and Stein, 173 

2004; Grousset et al., 1992; Miller et al., 2014; Naiman et al., 2000; Widory et al., 2010). 174 

Tephra deposition near volcanic centers can also provide easily weatherable and Sr-rich 175 

primary minerals to soils and ecosystems that will dominate over bedrock sources (Chadwick 176 

et al., 2009). Last but not least, near the coast, sea salt aerosol deposition can influence the 177 

exchangeable Sr fraction of soil (Hartman and Richards, 2014; Quade et al., 1995; Whipkey 178 

et al., 2000). 179 
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Different soil fractions can also have distinct 87Sr/86Sr compositions due to differential 180 

weathering and soil mixing processes (Fig. 1). In particular, the 87Sr/86Sr ratio of the soil 181 

exchangeable Sr fraction (defined as the fraction that is extractable using ammonium nitrate 182 

leaching from a top soil sample) can differ considerably from the bulk digested soil mineral 183 

fraction or from soil samples collected at different depths (Gryschko et al., 2005; Poszwa et 184 

al., 2004). The soil exchangeable Sr corresponds primarily to Sr dissolved in soil water and 185 

available to plants but also includes some Sr weakly absorbed on clays (Capo et al., 1998). 186 

The 87Sr/86Sr of this soil exchangeable Sr is strongly influenced by soil age. In a young soil, 187 

Sr-rich and rapidly weathering primary minerals (e.g., carbonates, plagioclases) will be the 188 

dominant contributors to the exchangeable Sr pool (Chadwick et al., 2009; Vitousek et al., 189 

1999). However, as a soil matures, these rapidly weathering minerals can be exhausted and 190 

other primary minerals with distinct 87Sr/86Sr will dominate the Sr budget. As soils become 191 

more and more weathered, fewer primary minerals are available, and other sources (e.g., dust 192 

and other aerosols) increasingly contribute to the exchangeable Sr budget (Chadwick et al., 193 

2009; Vitousek et al., 1999). The contribution of these atmospheric sources to the dissolved 194 

soil 87Sr/86Sr budget will depend in the rate of deposition, weatherability, Sr content, and 195 

87Sr/86Sr (Pett-Ridge et al., 2009). In some cases, atmospheric deposition will dominate over 196 

bedrock sources even when soils are young (Miller et al., 2014), whereas in other cases, 197 

bedrock remains the dominant Sr source even when soils are highly weathered (Bern et al., 198 

2005; Porder et al., 2006). 199 

Plants take up Sr from the exchangeable soil fraction (Fig. 1). However, differences 200 

between 87Sr/86Sr in plants and the exchangeable Sr fraction can occur, particularly in regions 201 

where multiple sources of Sr mix into soils (e.g., atmospheric vs. parent rock Sr; Hartman 202 

and Richards, 2014; Laffoon et al., 2012; Snoeck et al., 2016). As mentioned above, 203 

differential weathering and soil mixing processes can lead to variable 87Sr/86Sr along the soil 204 

profile (Reynolds et al., 2012). This variability is propagated among plants with different 205 

rooting depth (Poszwa et al., 2004).  206 

2.4 Strontium isotopes in surface waters 207 

Water inherits 87Sr/86Sr from rock weathering (Fig. 1). Consequently, spatial patterning of 208 

87Sr/86Sr in the hydrosphere reflects that of rocks exposed on the surface and in aquifers, with 209 

high 87Sr/86Sr in rivers draining cratons and low 87Sr/86Sr in rivers draining mafic rock units 210 

(Peucker-Ehrenbrink and Fiske, 2019). However, the contributions of different minerals and 211 

rock units to the dissolved Sr pool vary broadly based on their weathering rate and Sr content, 212 

which in turn leads to distinct 87Sr/86Sr between the hydrosphere and geosphere (Blum et al., 213 

1993). During igneous rock weathering, plagioclases contribute more than radiogenic 214 

minerals to the dissolved Sr flux due to their higher Sr content and weathering rate (Bain and 215 

Bacon, 1994; Clow et al., 1997; Pett-Ridge et al., 2009). Similarly Sr-rich and easily 216 

weatherable carbonates and evaporites contribute disproportionately to the dissolved Sr in the 217 

hydrosphere (Peucker-Ehrenbrink and Fiske, 2019). Even trace amounts of calcite in silicates 218 

can dominate the entire Sr budget in large rivers (Clow et al., 1997). At the scale of a 219 

catchment, the flux of Sr from isotopically distinct rock units is also modulated by 220 

geomorphological, climatic and environmental conditions (Bataille et al., 2014). For 221 

example, sediments from mountainous zones will contribute disproportionately to the total Sr 222 

flux and strongly influence the 87Sr/86Sr as they weathered along the entire course of a river 223 

(Galy and France-Lanord, 1999) and its floodplains (Bickle et al., 2018; Lupker et al., 2012). 224 
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Allochthonous surface sediments, such as glacial till, may also impact river 87Sr/86Sr (Curtis 225 

and Stueber, 1973). In boreal and arctic regions, seasonal land cover changes (i.e., vegetation, 226 

ice cover) can lead to strong seasonal 87Sr/86Sr fluctuations because of variable contribution 227 

of rock units within a catchment (Douglas et al., 2013; Voss et al., 2014). Ultimately, spatial 228 

87Sr/86Sr trends in the hydrosphere follow those of the geosphere but with lower ratios and 229 

variability due to the buffering effect of carbonate weathering (Palmer and Edmond, 1992). 230 

2.5 Strontium isotopes in animal tissues 231 

Primary terrestrial consumers obtain the majority of their Sr from diet (Fig. 1; Glorennec 232 

et al., 2016). As plants are at the base of many terrestrial food chains, 87Sr/86Sr for animals 233 

usually reflects that of local plants (Willmes et al., 2014). However, drinking water can 234 

contribute significantly to the Sr inputs when (1) water is Sr-rich (e.g., carbonate landscapes), 235 

or (2) animals drink frequently (Lewis et al., 2017). Different taxa sample Sr differently on 236 

the landscape depending on their feeding habits and feeding ranges (Lengfelder et al., 2019). 237 

For example, at a given location, small herbivores with a local feeding range (e.g., rodents) 238 

often have distinct 87Sr/86Sr signatures from larger herbivores (e.g., deer) because the larger 239 

animals integrate Sr sources over a larger area (Feranec et al., 2007; Lengfelder et al., 2019). 240 

Aquatic animals (e.g., tapirs) may also have distinct 87Sr/86Sr if they feed on riparian or 241 

freshwater foods (e.g., Hedman et al., 2009; Wallace et al., 2019). There are more challenges 242 

associated with predicting how different environmental sources contribute to consumer Sr 243 

with an increase in the complexity of animal feeding behaviors (e.g., large migratory 244 

herbivores, omnivores and carnivores) (Hoppe et al., 1999). At the extreme, humans can eat 245 

local terrestrial resources, hunt migratory mammals, harvest marine resources, inheriting a 246 

potentially very complex mixture of 87Sr/86Sr sources (Fig. 1; Bentley, 2006). Humans can 247 

also obtain resources from distant localities via trade (reviewed in Bentley, 2006).  248 

Sr is integrated over variable timescales in different animal tissues (Makarewicz and 249 

Sealy, 2015). Incrementally growing tissues, such as tusks, otoliths or hair segments, 250 

sequentially record dietary Sr, allowing high-resolution reconstruction of mobility histories of 251 

the sampled individuals (e.g., Brennan et al., 2015a; Vautour et al., 2015). Other tissues, such 252 

as bulk (whole) tooth samples or bones, preserve a snapshot of a specific period in the 253 

organism’s life, or integrate Sr over longer time periods, respectively, and can therefore 254 

provide information about dietary signatures at different stages of an individual’s life 255 

(reviewed in Makarewicz and Sealy, 2015).  256 
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 257 

Figure 1: Simplified schematic of strontium isotope cycling from rocks to ecosystems. 258 

Capitalized black words correspond to Sr reservoirs and italicized white words correspond to 259 

process modifying 87Sr/86Sr. 260 

3. Strontium isoscapes  261 

3.1 Empirical isoscapes 262 

The most commonly used strategy to create biologically available (bioavailable) 87Sr/86Sr 263 

baselines is to analyze 87Sr/86Sr in a series of biological samples representing bioavailable Sr 264 

pools in a study area (Lengfelder et al., 2019).  However, as outlined above, different 265 

substrates (e.g., soils, plants, animals, or waters) can integrate 87Sr/86Sr at different 266 

spatiotemporal scales depending on the local geo-environmental conditions. Thus, identifying 267 

appropriate substrates can be challenging. We review the pros and cons of each substrate type 268 

below.  269 

Modern plants and exchangeable Sr from top soils are the most commonly used substrate 270 

to represent local bioavailable Sr because they are easily collected. However, they may 271 

sample isotopically discrete pools depending on plant rooting depths (Poszwa et al., 2004). It 272 

is also increasingly recognized that application of agricultural fertilizers and limes impacts 273 

the natural bioavailable Sr pool (Frei et al., 2020; Maurer et al., 2012; Thomsen and 274 

Andreasen, 2019). The extent and frequency of agricultural contamination in baseline 275 

samples remains unknown but could seriously complicate the development of bioavailable 276 

87Sr/86Sr baselines in regions with active or historical agriculture.  277 

Animals with relatively small foraging ranges, such as rodents or deer, are also used to 278 

represent the local bioavailable Sr pool (e.g., Burton and Price, 2013). Although animals 279 
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integrate Sr over variable spatiotemporal scales, adding some uncertainty in the 280 
interpretation, they also offer the advantage of integrating local bioavailable Sr from multiple 281 
sources. Isoscapes derived from local animals might therefore be more suitable than those 282 
derived from plants or soils to represent the bioavailable Sr sampled by large mammals, 283 
including humans (Crowley et al., 2017a). Fortunately, in many cases, the 87Sr/86Sr of local 284 
animals are similar to those of plants and soils, indicating that, at local scales, bioavailable 285 
87Sr/86Sr signatures are relatively invariant (Flockhart et al., 2015).  286 

Water samples taken from small streams, lakes and rivers have also been used to 287 
represent bioavailable Sr pools. As otoliths inherit their 87Sr/86Sr from the river or lake water 288 
in which fish live (Brennan et al., 2015a; Faure et al., 1967), water samples are particularly 289 
relevant in freshwater ecology applications (e.g., Brennan et al., 2019). In terrestrial 290 
applications, however, water can integrate Sr from larger areas than plants or local animals 291 
(Frei and Frei, 2011). Although this spatial integration might help solve some of the lime and 292 
fertilizer contamination issues found with other substrates (Frei et al., 2020), it can also 293 
complicate the comparison with biological samples. Nevertheless, water samples can provide 294 
a good baseline for the 87Sr/86Sr of terrestrial species exploiting aquatic or riparian habitats 295 
(Hamilton et al., 2019). 296 

Once collected, bioavailable 87Sr/86Sr data are usually interpolated using geostatistical 297 
algorithms (e.g., kriging; Copeland et al., 2016; Frei and Frei, 2011; Willmes et al., 2018). 298 
Geostatistical algorithms are based on the idea that points closer to each other tend to 299 
resemble each other (i.e., spatial autocorrelation). These geostatistical models can also 300 
integrate covariates (e.g., geological maps) to further constrain 87Sr/86Sr patterns (Willmes et 301 
al., 2018). Maps derived from geostatistical methods, however, can give ambiguous and 302 
inaccurate results due to the challenges of incorporating non-normal and skewed distributions 303 
of 87Sr/86Sr data (Bataille et al., 2018). Another method widely used to produce 87Sr/86Sr 304 
maps is to average 87Sr/86Sr data over regions with similar bedrock geology (e.g., Evans et al., 305 
2010; Voerkelius et al., 2010). However, this leads to overlap and lack of precision in 306 
constructed isoscapes, which limits their usefulness for provenance studies. These limitations 307 
can be overcome by increasing the sampling density, but this becomes prohibitively 308 
expensive at regional to continental scales.  309 

3.2 Mechanistic isoscapes 310 

A second approach to developing 87Sr/86Sr isoscapes relies on mechanistic models. This 311 
approach leverages geochemical knowledge to predict the evolution of 87Sr/86Sr in rocks 312 
using the radiogenic equation: 313 

,      (1) 314 

where 87Sr/86Sr variability in rocks (87Sr/86Sr)rock is a function of: 1) The initial 87Sr/86Sr 315 
[(87Sr/86Sr)i], which depends on the geological history of the parent rock; 2) Bedrock age (t), 316 
which controls the fraction of 87Rb that decayed into 87Sr; and 3) The 87Rb/86Sr of the rock 317 
[87Rb/86Sr)rock], which varies with lithology. 318 

To simplify the equation, it was first assumed that 87Sr/86Sr variability in rocks is only a 319 
function of rock age (Beard and Johnson, 2000). Using geological maps to estimate the age of 320 
bedrock units, these authors predicted 87Sr/86Sr for bedrock across the USA. Later, Bataille 321 
and Bowen (2012) revisited this approach by accounting for distinct 87Rb/86Sr among rock 322 
types. They separated rocks into major lithological categories, specifically distinguishing 323 
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between carbonates and silicates, and leveraged geochemical databases to calculate the 324 

average 87Rb/86Sr for each group. These authors also predicted 87Sr/86Sr variability in rivers 325 

across the USA using a first-principles model of chemical weathering to propagate 87Sr/86Sr 326 

from rock to water. This modeling approach yielded notable improvement over the approach 327 

used by Beard and Johnson (2000), but the accuracy of both the rock and water isoscapes 328 

were not sufficient for most provenance applications.  329 

Using a case study in Alaska, Bataille et al. (2014) improved this mechanistic model by 330 

incorporating more detailed lithological categories, including a sub-model for siliciclastic 331 

sedimentary rocks. They also integrated an empirically-calibrated chemical weathering 332 

model. The resulting model performed well against bedrock and water data. However, the 333 

averaging approach, uncertainty of geological maps, and difficulty in calibrating certain rock 334 

categories remained major obstacles to the development of 87Sr/86Sr isoscapes sufficiently 335 

accurate for provenance applications.  336 

As mentioned previously, a multitude of coupled processes contribute to mix isotopically 337 

distinct Sr sources from rocks to ecosystems. Properly calibrating the interactions of those 338 

geological, environmental or biological processes to predict 87Sr/86Sr in the terrestrial 339 

biosphere is a substantial challenge. Bataille et al. (2012) attempted to calibrate a mechanistic 340 

bioavailable 87Sr/86Sr model in the circum-Caribbean region. They demonstrated that bedrock 341 

87Sr/86Sr predictions diverged from bioavailable 87Sr/86Sr data in this region (Laffoon et al., 342 

2012) and attempted to calibrate a multi-source model that accounted for the contribution of 343 

atmospheric sources. While the model performed well on the existing bioavailable data for 344 

the Antilles (Laffoon et al., 2012), additional sampling showed that the contribution of 345 

atmospheric deposition was not accurately calibrated in the Bahamas (Schulting et al., 2018).  346 

Developing accurate mechanistic bioavailable 87Sr/86Sr models requires a coupled 347 

parameterization of a multitude of complex processes. Integrating Sr isotope cycling in global 348 

land surface models might be a productive avenue to advance the mechanistic approach. 349 

However, to date, the lack of accurate, detailed global geological maps remains the major 350 

hurdle to more accurate mechanistic 87Sr/86Sr isoscapes. 351 

3.3 Process-based statistical isoscapes 352 

A third, intermediate approach has been proposed to overcome the limitations of both 353 

mechanistic and geostatistical modeling. This approach relies on multivariate random forest 354 

regression, a tree based machine-learning algorithm, to integrate empirical data and other 355 

geo-environmental covariates into the modeling framework. Bataille et al. (2018) first used 356 

random forest regression to predict bioavailable 87Sr/86Sr across Western Europe. This study 357 

integrated a compilation of empirical bioavailable 87Sr/86Sr data, bedrock model products, 358 

and geo-environmental covariates to predict bioavailable 87Sr/86Sr. The resulting model 359 

yielded greatly improved accuracy over mechanistic models while also overcoming the issues 360 

encountered with traditional geostatistical methods. More recently, Hoogewerff et al., (2019) 361 

used random forest regression to predict 87Sr/86Sr for agricultural top soils across Europe 362 

using previously collected geochemical soil data and newly generated 87Sr/86Sr data from 363 

selected soils of the GEMAS project (i.e., Geochemical Mapping of Agricultural and Grazing 364 

Land Soil). This method yielded excellent results, predicting bioavailable 87Sr/86Sr with both 365 

high precision and accuracy. However, the model was limited by the availability of high-366 

resolution geochemical soil surveys.  367 
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In freshwater environments, Brennan et al. (2016) proposed using spatial stream network 368 

models to predict 87Sr/86Sr in river water. This statistical approach accounts for the unique 369 

spatial correlation structure in rivers (e.g., flow direction, branching) while also providing a 370 

quantitative framework for assessing the contribution of in-stream processes (e.g., 371 

downstream transport) and landscape processes (e.g., climate, geology) on observed 87Sr/86Sr 372 

patterns. The application of this method was a break-through in freshwater 87Sr/86Sr 373 

isoscaping, improving accuracy by an order of magnitude over both mechanistic (Bataille et 374 

al., 2014) and geostatistical models (Hegg et al., 2013).  375 

4. Building process-based global bioavailable strontium isoscape 376 

4.1 Global compilation 377 

4.1.1 Compilation description 378 

To date, no researchers have attempted global bioavailable 87Sr/86Sr modeling. Here we 379 

leverage a new global data compilation, mechanistic models, and auxiliary variables 380 

integrated in a multivariate random forest regression framework to predict bioavailable 381 

87Sr/86Sr at the global scale. The dataset used in our study is a compilation of 17,240 382 

published and unpublished 87Sr/86Sr analyses from 278 individual studies spanning 8,476 383 

individual locations across the globe (Fig. 2). Unpublished data include 279 bioavailable 384 

87Sr/86Sr from Madagascar (see supplementary material Appendix B) and 70 surface waters 385 

from Cook Inlet Alaska (see supplementary material Appendix C). The compiled database is 386 

available in supplementary material Table S1 (along with the full citations of the original 387 

sources from which the data sets were derived), and is being integrated in the IsoBank 388 

repository (Pauli et al., 2017). The data can be filtered by country, sample type (several 389 

levels), or analytical substrate. Local data come from 3,249 plants, 2,598 soils, 2,335 local 390 

animals (bone, dentine, enamel, snail shell), and 4,813 surface waters. The remaining samples 391 

include migratory or highly mobile animals, humans, and dust that could be useful in other 392 

applications. The database includes latitude and longitude data for each individual sample. In 393 

the majority of cases, geographic coordinates were reported by the authors in the publication. 394 

When these were not included, we used Google Earth to georeference reported geographic 395 

information (e.g., maps or locality names). When necessary, authors of publications were 396 

contacted to clarify locality information. The method of georeferencing and its associated 397 

uncertainty are reported in the database (Table S1).  398 
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 399 

Figure 2: Global compilation of 87Sr/86Sr data by substrate. A) Plants, B) Soils, C) Animals 400 

and D) Water. 401 

4.1.2 Geographic biases and sample distribution 402 

The sampling density, and geographic distribution of bioavailable 87Sr/86Sr data vary 403 

tremendously across the globe. Most samples are from regions with a high archeological 404 

interest (e.g., Mesoamerica) or strong research funding programs (e.g., Europe, USA). Plant 405 

and local animal samples are concentrated in Europe, the USA and the circum-Caribbean 406 

region. Soil samples are highly concentrated in Europe with close to half coming from the 407 

published GEMAS dataset (Hoogewerff et al., 2019). Water samples are more broadly 408 

distributed and include most large rivers of the world; this reflects the 50 years of 409 

hydrological research using 87Sr/86Sr geochemistry. The sampling strategy also varied among 410 

studies. In some, samples from different substrates were collected opportunistically 411 

depending on research funds and accessibility (e.g., Laffoon et al., 2012), while in others, 412 

samples from one substrate were collected systematically on a regular grid (e.g., Hoogewerff 413 

et al., 2019). Additionally, even though the global compilation is extensive and covers areas 414 

representing different climatic zones, many regions remain strongly under-sampled due to 415 

restricted access, extreme climate conditions, or political reasons. These geographic biases 416 

will propagate in models calibrated using this global compilation (e.g., regions with low 417 

sample density will be poorly calibrated relative to regions with high sample density). 418 

4.1.3 Descriptive statistics 419 

Plants, soils and local animals display similar distributions of 87Sr/86Sr, with Quartile 1 = 420 

0.7084 ± 0.0001, median = 0.7095 ± 0.0003, and Quartile 3 = 0.711 ± 0.0004 (Fig. 3). More 421 

than 90% of the samples have 87Sr/86Sr that falls within a tight range of 0.706 ± 0.001 to 422 

0.720 ± 0.001 (Fig. 3). Variability in water is slightly larger with Quartile 1 = 0.7089, median 423 

= 0.7110, Quartile 3 = 0.7155, and a 90% interval range from 0.706 to 0.7396. This 424 

difference in range between water and other substrates is likely due to spatial sampling biases 425 

(Fig. 2). Many of the water samples compiled in the database are from older radiogenic 426 

geological regions including the Himalayas, Canadian craton, Scandinavian cratons and 427 

Russian cratons (Fig. 2). This geographic distribution contrasts with that of plants, soils and 428 
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local animals that were mostly sampled from flatter areas, agricultural regions and younger 429 

geological regions. 430 

 431 

Figure 3: Distribution of 87Sr/86Sr variability by substrate (stacked). The x-axis is cut at 0.750 432 

to facilitate visualization but more some water samples fall beyond that range. 433 

4.1.4 Intra-site variability 434 

We explored intra-site variability in bioavailable 87Sr/86Sr by calculating the standard 435 

deviation of 87Sr/86Sr among samples at each location where more than one sample/substrate 436 

was collected. This intra-site variability is an important measure as it represents the 437 

maximum accuracy a model could reach. As noted in previous studies (Bataille et al., 2018; 438 

Hoogewerff et al., 2019), there is a clear trend of increasing variance with increasing 87Sr/86Sr 439 

for plants, soils and animals (Fig. 4). Bioavailable 87Sr/86Sr is most variable for sites 440 

dominated by very old felsic rock units (e.g., cratons) with ratios >0.710. The minimum 441 

variance is found between 0.707 and 0.709, corresponding to 87Sr/86Sr of carbonate units 442 

(Fig. 4). Sites with87Sr/86Sr <0.707 (typical of younger and/or mafic geologies) have slightly 443 

higher variance than sites dominated by carbonates. Combining plants, soils and local 444 

animals, the Root Mean Squared Error (RMSE) of intra-site variability is 0.001. However, 445 

this RMSE is lower than 0.0005 when using only bioavailable 87Sr/86Sr < 0.710.  446 

The positive correlation between predicted bioavailable 87Sr/86Sr and RMSE is consistent 447 

with the lognormal distribution of 87Sr/86Sr in the geosphere. As the age of a rock unit 448 

increases, the different minerals composing this unit have increasingly divergent 87Sr/86Sr. 449 

Differential weathering of those minerals can considerably increase variability in 87Sr/86Sr for 450 

soils at radiogenic sites even at the very local scale (Clow et al., 1997). In addition, felsic 451 

rocks tend to weather slowly, which means there may be a higher relative contribution of 452 

bioavailable Sr from exogenous sources (e.g., dust) (Hoogewerff et al., 2019).  453 
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 454 

Figure 4. Within-site 87Sr/86Sr variability by substrate. A) Plants, B) Soils, C) Local animals 455 

and D) Water.  456 

4.2 Mechanistic bedrock model 457 

We applied the published model formulation of Bataille et al. (2014) at a global scale 458 

using the GLiM geological map as the primary source for geological information. (Fig. 5). 459 

This bedrock model predicts the median, Quartile 1 and Quartile 3 of 87Sr/86Sr for bedrock at 460 

present-day. As the GLiM geodatabase does not contain numerical age information 461 

(Hartmann and Moosdorf, 2012), we converted age descriptor to a range of numerical values 462 

using the geological timescale (Walker et al., 2013; see supplementary material Table S2). 463 

For more information on the exact parameterization steps of the bedrock model, refer to the 464 

supplementary material in Bataille et al. (2014), including Tables A1 and A3. Predicted 465 

bedrock 87Sr/86Sr follows the expected trends, with higher 87Sr/86Sr in older cratonic settings 466 

and lower 87Sr/86Sr in arc settings (Fig. 5). However, the bedrock model predictions also 467 

reflect the limitations of the GLiM geodatabase. The GLiM was constructed by compiling 468 

geological maps at different resolutions with an "average" resolution of 1:3 750 000. It 469 

divides lithologies into 16 major classes, separating mafic, intermediate and felsic plutonic 470 

and volcanic rocks, metamorphic rocks, carbonates, evaporites, silicates, and mixed 471 

carbonate/silicate sediments. Of particular relevance for predicting 87Sr/86Sr in rocks, 472 

secondary lithological descriptors also report the presence of carbonates, evaporites and 473 

loess. However, reporting of secondary lithologies is inconsistent among countries (and 474 

frequently absent). Similarly, the definition of bedrock can differ between countries, with 475 

some surveys mapping surficial sediments (e.g., glacial till) as bedrock whereas other reserve 476 

bedrock mapping to the solid rock unit underlying unconsolidated sediments. Consequently, 477 

irregularities in predicted 87Sr/86Sr, reflecting different mapping methods, resolution and 478 
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accuracy are often observed at political borders (e.g., Canada, USA). These inaccuracies 479 

cannot be resolved until high resolution harmonized geological maps are produced at the 480 

global scale. Another major source of uncertainty in this bedrock model is that the bedrock 481 

ages (Table S2) mean different things for different lithologies (e.g., crystallization age for 482 

intrusive rocks, eruptive ages for volcanic rocks, last higher-grade metamorphic overprint of 483 

metamorphic rocks, and depositional age for sedimentary rocks). Consequently, some 484 

lithologies (i.e., metamorphic, sedimentary), might contain significantly older minerals than 485 

the overall age of the geologic unit (e.g., a recently deposited sediment might have zircon 486 

grains that are billion years old). This can lead to large uncertainties in predicted bedrock 487 

87Sr/86Sr.   488 

 489 

Figure 5: Global map of predicted 87Sr/86Sr in bedrock following the formulation of Bataille 490 

et al. (2014) 491 

4.3 Other auxiliary data. 492 

We assembled data on selected covariates that represent the main factors that impact 493 

variability in bioavailable 87Sr/86Sr: Bedrock ages (see section 4.2), terrane age, surficial 494 

geology type, soil properties, aerosol deposition, relief, climate, and agricultural activity 495 

(Table 1). This series of covariates expands on Bataille et al. (2018) by including global 496 

nitrogen and phosphorus fertilization (Potter et al., 2010), surficial deposits (Börker et al., 497 

2018), global mean annual temperature (Hijmans et al., 2005), and an updated raster of global 498 

sea salt aerosol deposition (Vet et al., 2014).  499 

Table 1: List of geological, climatic, environmental and anthropogenic variables used in the 500 

multivariate regression. D = Discrete; C = Continuous; GLiM = Global Lithological Map; 501 

CCSM.3 = Community Climate System Model 3; SRTM = Shuttle Radar Topography 502 

Mission 503 

Variables Description Resolution Type Source 

r.maxage_geol GLiM age attribute 1 km D (Hartmann and Moosdorf, 
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(Myrs) 2012) 
r.minage_geol GLiM age attribute 

(Myrs) 
1 km D (Hartmann and Moosdorf, 

2012) 
r.meanage_geol GLiM age attribute 

(Myrs) 
1 km D (Hartmann and Moosdorf, 

2012) 
r.age Terrane age attribute 

(Myrs) 
1 km D (Mooney et al., 1998) 

r.GUM Global unconsolidated 
sediment map 

1 km C (Börker et al., 2018) 

r.ssaw Multi-models average sea 
salt wet deposition 
(kg.ha-1.yr-1) 

1°×1° C (Vet et al., 2014) 

r.ssa Multi-models average 
Sea salt wet+dry 
deposition 
(kg.ha-1.yr-1) 

1°×1° C (Vet et al., 2014) 

r.dust Multi-models average 
(g.m-2.yr-1) 

1°×1° C (Mahowald et al., 2006) 

r.elevation SRTM (m) 90 m C (Jarvis et al., 2008) 
r.cec Cation Exchange 

Capacity 
250 m C (Hengl et al., 2017) 

r.ph Soil pH in H2O solution 
(x10) 

250 m C (Hengl et al., 2017) 

r.phkcl Soil pH in KCl solution 
(x10) 

250 m C (Hengl et al., 2017) 

r.clay Clay (weight %) 250 m C (Hengl et al., 2017) 
r.orc Soil organic carbon 

(weight %) 
250 m C (Hengl et al., 2017) 

r.bulk Bulk density (kg m−3)  250 m C (Hengl et al., 2017) 
r.bouguer WGM2012_Bouguer 2 min C (Balmino et al., 2012) 
r.map Mean annual 

precipitation (mm.yr-1) 
30-arc sec C (Hijmans et al., 2005) 

r.mat Mean annual temperature 
(°C) 

30-arc sec C (Hijmans et al., 2005) 

r.nfert Global Nitrogen 
Fertilization 

30-arc sec C (Potter et al., 2010) 

r.pfert Global Phosphorus 
Fertilization  

30-arc sec C (Potter et al., 2010) 

 504 

4.4 Random forest regression and spatial predictions 505 

4.4.1 Random forest regression procedure 506 

All statistical analyses and figures from this manuscript are conducted in R programming 507 

language version Rx64 3.4.2. (https://www.r-project.org/). An example of R-script is available 508 

in supplementary material Script S1. We used random forest regression to predict 509 

bioavailable 87Sr/86Sr variability using the compiled database (Table S1), the bedrock model 510 

and the covariates described above following the framework developed by Bataille et al. 511 

(2018) and the caret package (Kuhn, 2008). Random forest is a tree-based machine-learning 512 

algorithm trained by bootstrap sampling and random feature selection. In a decision tree, a 513 

random subset of the dataset is entered, and then each predictor splits the original dataset into 514 

smaller and smaller sets at nodes in the tree. Random forest takes this idea to the next level 515 

by constructing an ensemble of trees (or forest) using bootstrapping. Specifically, random 516 



 16

forest creates multiple decision trees on different data samples where sampling is done with 517 

replacement to prevent overfitting. To make fair use of all potential predictors, the number of 518 

features split at each node of a tree is limited to some user-defined threshold. Ultimately, 519 

random forest aggregates the results of these decision trees to predict the mean value of the 520 

response variable, in our case the bioavailable 87Sr/86Sr. Random forest is a practical 521 

algorithm that requires very little pre-processing. No transformation is required for 87Sr/86Sr 522 

data as random forest makes no assumptions about the data distribution and residual 523 

heteroscedasticity. Random forest can also directly integrate categorical variables in 524 

multivariate regression so long as they do not have too many classes (Strobl et al., 2007).  525 

In our approach, random forest regression models were optimized using root mean squared 526 

error (RMSE) as the primary metric and a 10-fold repeated cross-validation scheme with 5 527 

repetitions using 80% of the data for training at each iteration. Variable selection was 528 

performed using the VSURF package (Genuer et al., 2015). Once a model is optimized, we 529 

used variable importance purity measure and partial dependence plots to describe the 530 

relationships between the selected predictors and predicted 87Sr/86Sr. Ultimately, the 87Sr/86Sr 531 

isoscapes were generated using the best performing random forest regression model for each 532 

substrate (plant, soil, local animal, water) and the associated predictors.  533 

Spatial uncertainty assessment is critical for using isoscapes in continuous-probability 534 

surface models of geographic assignment (Wunder, 2012). However, while random forest 535 

provides a mean 87Sr/86Sr prediction using the selected predictors, there are no built-in 536 

features to assess spatially explicit model uncertainty. To circumvent this issue, we calculated 537 

an uncertainty function for each trained model that relates the mean absolute residual values 538 

to predicted 87Sr/86Sr (e.g., Fig. 7D). This function reflects the observation that uncertainty 539 

tends to increase with increasing predicted 87Sr/86Sr. While using quartile random forest 540 

regression to calculate the interquartile range would be ideal (as in Bataille et al. 2018), this 541 

method is computationally intensive. Our uncertainty function provides an average  standard 542 

deviation at each pixel that that can be directly used in probabilistic provenance assignments 543 

(Wunder, 2012). 544 

4.4.1 Comparison of random forest regressions among substrates 545 

We applied random forest regression independently to the plant, soil, local animal, and 546 

water datasets (Fig. 6). All substrates show very similar predictors after the VSURF variable 547 

selection step (Fig. 7 and Appendix A). Random forest models applied to plant, soil, and 548 

local animals perform similarly, whereas the model using only water data has a lower 549 

performance (Fig. 6). In our approach, we extracted the values of covariates using site 550 

location and the closest underlying 1 km2 pixel. This approach is appropriate for plants, soils 551 

and local animals because these substrates integrate Sr sources over local spatial scales. 552 

However, river water frequently integrates Sr sources over much larger spatial scales and 553 

from groundwater sources that are not represented in geological maps. Although extracting 554 

local environmental conditions at 1 km2 pixel resolution might be appropriate for small 555 

streams, it becomes inaccurate for large rivers, which comprise a large proportion of the 556 

database. Future predictive work focused on surface waters could use watershed-integrated 557 

covariates to address this issue. Another reason for the lower model performance for water 558 

samples, and to a lesser degree soil samples, is their broader distribution of 87Sr/86Sr (due to 559 

samples coming from a larger variety of geologies; Fig. 6B and 6D).  560 
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To simplify visualization, we trained the main model using a dataset combining plant, soil 561 

and local animal 87Sr/86Sr (herein called the “combined local bioavailable 87Sr/86Sr dataset”). 562 

We excluded the water samples from this subset due to the difference in spatial integration 563 

represented by this substrate. Model predictors, results, and residuals for individual substrates 564 

including plant, soil, local animal, and water are available in supplementary material 565 

Appendix A.  566 

 567 

Figure 6: n-fold cross-validation for random forest model by substrate. A) Plants, B) Soils, C) 568 

Local animals, and D) Water. RMSE = Root Mean Square Error. Red lines are best fit linear 569 

models. 570 

4.4.2 Global bioavailable model performance 571 

After VSURF feature selection, Bataille et al. (2014)’s model products (r.srsrq1 and 572 

r.srsrq3) and geological variables (r.age, r.minage_geol) from the GLiM database were the 573 

dominant predictors of the combined local bioavailable 87Sr/86Sr dataset (Fig. 7A). Other 574 

important predictors of 87Sr/86Sr included dust and sea salt aerosol deposition (r.dust and 575 

r.ssaw), elevation (r.elevation), climate variables (r.pet and r.mat) and soil properties (r.ph 576 

and r.clay) (Fig. 7A). After n-fold cross validation, the bioavailable 87Sr/86Sr model explains 577 

60% of the variance, with a RMSE of 0.0034 over the dataset (Fig 7B). The value of 0.0034 578 

represents < 10% of the full range of observed bioavailable 87Sr/86Sr over the compiled 579 

dataset. However, this uncertainty is not uniform across the prediction range. For low 580 

bioavailable 87Sr/86Sr (<0.710), the RMSE is low (<0.001), with lowest uncertainty values for 581 
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87Sr/86Sr ~0.709 (Fig. 7C and 7D). However, as 87Sr/86Sr increases, the absolute values of 582 

residuals increase (Fig. 7C and 7D). This observation conforms with previous studies (e.g., 583 

Bataille et al. 2018) that ecosystems developing on older, more felsic rock units (e.g., cratons, 584 

Precambrian metasediments) not only have higher intra-site 87Sr/86Sr variability (Fig. 4) but 585 

are also much harder to predict accurately. Ecosystems developing on carbonate units have 586 

the lowest intra-site 87Sr/86Sr variability (Fig. 7D).  587 

 588 

Figure 7: Random forest regression model for the bioavailable 87Sr/86Sr dataset combining 589 

plant, soil and local animal samples: A) Variable importance plot after selection of predictors 590 

by VSURF; B) N-fold cross-validation results with best fit linear model (red line); C) 591 

Residuals against 87Sr/86Srpred; D) Absolute residual values (logscale) against 87Sr/86Srpred. 592 

Green line indicates the best fit non-linear model between 0.703 and 0.709; red line indicates 593 

the best fit non-linear model between 0.709 and 0.780. Refer to Table 1 for predictor names. 594 

4.4.3 Predictors of bioavailable 87Sr/86Sr variability 595 
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We used a partial dependence plot to investigate the relationship between bioavailable 596 

87Sr/86Sr and the selected predictors for the combined local bioavailable 87Sr/86Sr dataset (Fig. 597 

8). As expected bioavailable 87Sr/86Sr increased with increasing bedrock 87Sr/86Sr (r.srsrq1 598 

and r.srsrq3), as well as the age of geological units (r.minage_geol) and terranes (r.age). 599 

These relationships confirm the dominance of age and lithology of rock units in controlling 600 

bioavailable 87Sr/86Sr at the global scale (Bataille et al., 2014; Bataille and Bowen, 2012). 601 

However, we also observe a lack of association between geological variables and 602 

bioavailable 87Sr/86Sr for older rock units (Fig. 8). This observation confirms that the current 603 

set of geological predictors (i.e., bedrock model products and GLiM products) are inadequate 604 

for explaining the large variability of bioavailable 87Sr/86Sr for rock units with higher 605 

87Sr/86Sr.  606 

A few additional geological predictors influence bioavailable 87Sr/86Sr in the combined 607 

local bioavailable 87Sr/86Sr dataset, including surficial deposit types (r.GUM), elevation 608 

(r.elevation), and soil proprieties (r.ph and r.clay). For surficial deposits, higher bioavailable 609 

87Sr/86Sr is found in regions dominated by siliciclastic surficial sedimentary units, including 610 

unconsolidated alluvial, fluvial, glacial and aeolian sediments (Fig. 8), whereas lower 611 

87Sr/86Sr is observed for marine sediments (evaporites and carbonates), and pyroclastic units 612 

(Fig. 8). While the global unconsolidated sediment map (GUM) is a significant predictor of 613 

bioavailable 87Sr/86Sr, its predictive potential could be improved in future modeling efforts by 614 

characterizing the parent rock of each sedimentary unit using detrital zircon databases. 615 

Bioavailable 87Sr/86Sr data also show a positive relationship with elevation, probably due to 616 

the preferential uplift and exposure of older radiogenic units during orogenies. Bioavailable 617 

87Sr/86Sr decreases with soil pH and soil clay content, likely underlining the dominance of 618 

carbonate weathering in more basic soils. We did not find any significant relationship 619 

between N and P fertilization inputs and bioavailable 87Sr/86Sr. However, this does not rule 620 

out the potential impact of liming on bioavailable 87Sr/86Sr in some settings (Thomsen and 621 

Andreasen, 2019). 622 

Multiple climate variables also strongly influence bioavailable 87Sr/86Sr. Bioavailable 623 

87Sr/86Sr shows an exponential increase with both mean annual temperature (r.mat) and 624 

potential evapotranspiration (r.pet). These relationships are likely coincidental and reflect the 625 

strong sampling bias towards hot regions located on Precambrian cratons (e.g., Madagascar, 626 

South Africa, and Tanzania; Fig. 2). The relationship between dust deposition (r.dust) and 627 

bioavailable 87Sr/86Sr is complex. Bioavailable 87Sr/86Sr decreases for moderate dust 628 

deposition but increases at higher deposition rates. This relationship is probably associated 629 

with the different isotopic signatures of dust sources: Dust with elevated 87Sr/86Sr dominates 630 

in regions with the highest deposition rate (e.g., Sahara Desert) while lower 87Sr/86Sr and 631 

deposition rates are observed in other arid regions (e.g., Southwestern USA, South America). 632 

Last, bioavailable 87Sr/86Sr converges towards 0.71 with increasing sea salt aerosol 633 

deposition, which is consistent with inputs of marine-derived Sr in coastal ecosystems. 634 
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 635 

Figure 8: Partial dependence plots between predictors (x-axis) and predicted bioavailable 636 

87Sr/86Sr (y-axis) from random forest regressions using the combined local bioavailable 637 

87Sr/86Sr dataset. Refer to Tables 1 for description and sources of each covariate. Hash marks 638 

along the x axis show covariate sample decile values. For r.GUM, the x-axis represents 639 

unconsolidated sediment categories with 0 = No surficial sediment reported;1 = Colluvial; 2 640 
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= Eolian; 3 = Glacial; 4 = Lacustrine; 5 = Marine; 6 = Organic; 7 = Evaporite; 8 = 641 

Pyroclastics; 9 = Coastal. 642 

4.4.4 Patterns in bioavailable 87Sr/86Sr variability 643 

We used the random forest regression results from the combined local bioavailable 644 

87Sr/86Sr dataset to predict bioavailable 87Sr/86Sr at the global scale (Fig. 9). The spatial 645 

uncertainty map associated with these predictions is calculated using the relationship between 646 

absolute residual value and bioavailable 87Sr/86Sr predictions (Fig. 7D). The median 647 

bioavailable 87Sr/86Sr predictions show similar spatial patterns to predictions by the 648 

mechanistic global bedrock model (Fig. 5). High bioavailable 87Sr/86Sr is predicted for 649 

cratonic and mountainous regions dominated by older, felsic bedrock units, as well as arid 650 

regions across the Sahara Desert and the Middle East, where dust with elevated 87Sr/86Sr 651 

substantially contributes to the bioavailable Sr pool. Low 87Sr/86Sr is found in arc settings and 652 

carbonate-dominated regions. However, the overall variability in predicted bioavailable 653 

87Sr/86Sr is lower than the bedrock model. This buffering is consistent with our knowledge of 654 

Sr isotope cycling from rocks to ecosystems. The majority of predicted bioavailable 87Sr/86Sr 655 

falls within a tight range from 0.7085 to 0.711, and converges towards 0.710 (Fig. 3).  656 

This convergence towards 0.710 likely reflects the mixing of Sr from two main sources: 657 

1) Siliciclastic Sr and 2) marine Sr. Siliciclastic sediments are volumetrically the dominant 658 

parent material to most ecosystems (Hartmann and Moosdorf, 2012). As described earlier, 659 

silicates have a broad range of 87Sr/86Sr ranging from 0.703 in mafic environments to more 660 

than 0.720 in older felsic units with an average upper crust value of 0.716. However, while 661 

silicates constitute the main parent material to most soils, they contain little Sr, weather 662 

slowly, and do not represent the dominant source of Sr to most ecosystems. Conversely, 663 

carbonates and evaporites cover only a small portion of the Earth surface (Hartmann and 664 

Moosdorf, 2012), but they contain more Sr and weather faster than other rock types (Palmer 665 

and Edmond, 1992). Consequently, marine Sr, with its comparatively tight isotopic range 666 

(0.707-0.709) tends to contribute to most ecosystems across the globe through direct 667 

weathering of carbonate units, weathering of trace carbonates in shales, deposition of 668 

carbonate dust, and/or addition of sea salt aerosols.  669 
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 670 

Figure 9: Global map of predicted bioavailable 87Sr/86Sr from random forest regression. 671 

5. Testing the global bioavailable 87Sr/86Sr isoscape  672 

5.1 Regional dataset 673 

We tested the performance of the model in two regions with different geological settings 674 

and sampling density to provide guidance on how to use this global bioavailable 87Sr/86Sr 675 

isoscape. First, we used data collected through the GEMAS project (Hoogewerff et al., 2019) 676 

to test the performance of the global model in a data-rich region. To date, GEMAS is the 677 

most systematic and comprehensive continental-scale dataset of bioavailable 87Sr/86Sr. The 678 

dataset includes close to 1,200 soil samples from a large collection of grazing (Gr) and 679 

agricultural (Ap) soils in Europe. It also covers a broad geographic range, including Eastern 680 

and Northern Europe with diverse geology, climate and environmental conditions (e.g., Baltic 681 

Shield), making the dataset ideal for testing the performance of the global model in a data-682 

rich region. Second, we examined bioavailable 87Sr/86Sr for the island of Madagascar. The 683 

dataset includes published data (Burney et al., 2020; Crowley et al., 2018, 2017b; Crowley 684 

and Godfrey, 2019) as well as previously unpublished data from plants, modern rodents and 685 

subfossil local animals (n = 279) at 54 individual locations (See supplementary material 686 

Appendix B). Madagascar, and Africa as a whole, is a data-poor region for bioavailable 687 

87Sr/86Sr. The closest bioavailable 87Sr/86Sr dataset in our global database is from South 688 

Africa (Copeland et al., 2016). Additionally, Madagascar is geologically heterogeneous and 689 

complex. Its bedrock geology spans Earth’s history, from the Archean to the Quaternary 690 

(reviewed in Crowley and Sparks, 2019). Most of the island is dominated by Precambrian 691 

units with varied lithologies. Variable climate and rugged topography further complicate Sr 692 

isotope cycling from rocks to ecosystems. Ultimately, Madagascar is one of the regions of the 693 

world where bioavailable 87Sr/86Sr is likely to be highly heterogeneous, which will likely 694 

affect the predictive accuracy of our global model.  695 

 696 

5.2 Model comparison approach 697 
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We compared the performance of four modeling approaches to predict bioavailable 698 

87Sr/86Sr for the GEMAS dataset and the newly amassed Madagascar dataset. First, we 699 

compared each bioavailable dataset to bedrock model predictions. Second, we compared the 700 

bioavailable 87Sr/86Sr datasets to predictions from our non-locally calibrated global random 701 

forest regressions. For these models, we applied random forest regression using the global 702 

bioavailable 87Sr/86Sr compilation (i.e., combined local bioavailable 87Sr/86Sr dataset) but 703 

selectively removed bioavailable data from GEMAS or from Madagascar depending on the 704 

location tested. The goal of this step was to assess the possibility of extrapolating global 705 

model predictions for an area with little or no bioavailable 87Sr/86Sr data. Third, we compared 706 

the bioavailable 87Sr/86Sr datasets to the global bioavailable 87Sr/86Sr model calibrated using 707 

the global compilation including 87Sr/86Sr data from GEMAS and Madagascar. Lastly, we 708 

compared the bioavailable 87Sr/86Sr datasets to locally calibrated models. For these models, 709 

we applied random forest regression using only the GEMAS or newly amassed Madagascar 710 

87Sr/86Sr dataset, respectively (Fig. 9). 711 

5.3 Results of model comparisons 712 

5.3.1 Europe 713 

In Europe, we found that the bedrock model alone explains 30% of the variance in the 714 

GEMAS 87Sr/86Sr dataset (Fig. 10A), confirming that bedrock 87Sr/86Sr is an important driver 715 

of bioavailable 87Sr/86Sr (Hoogewerff et al., 2019). The good performance of the bedrock 716 

model also reflects the high precision of geological maps used in the GLiM database for 717 

Europe (Hartmann and Moosdorf, 2012). Random forest regression using exclusively local 718 

bioavailable 87Sr/86Sr data is the model that best predicts bioavailable 87Sr/86Sr from the 719 

GEMAS dataset (Fig. 10D). However, the performance of this locally calibrated model is 720 

comparable to the globally calibrated models (Fig. 10B and 10C).  721 

When calibrating a random forest using only GEMAS soil data, nitrogen fertilization rate 722 

becomes a significant predictor in the regression (Fig. 10D). As GEMAS is exclusively 723 

focused on agricultural soils, it is expected that fertilization practices (e.g., liming) impact 724 

87Sr/86Sr in the exchangeable soil fraction (Frei et al., 2020; Hoogewerff et al., 2019; 725 

Thomsen and Andreasen, 2019). This predictor was not selected when calibrating the model 726 

using the combined global and local bioavailable 87Sr/86Sr dataset, which suggests that local 727 

calibration might be more appropriate in certain cases when trying to predict one specific 728 

substrate (e.g., soil). However, use of local calibrations that include more regionally- or 729 

system-specific model relationships caries the potential risk of producing errant predictions if 730 

the model is applied to areas where these relationships are irrelevant or inconsistent with the 731 

calibration data. A firm understanding of the underlying mechanisms and drivers of 87Sr/86Sr 732 

variation is crucial in developing and using such models. 733 

We further demonstrate that the global random forest regression excluding GEMAS data 734 

(Fig. 10B) performs nearly as well as the random forest that includes GEMAS data (Fig. 735 

10C). This observation highlights the potential of extrapolating predictions in data-rich 736 

regions. Importantly, we underline that removing the GEMAS dataset from the training set 737 

does not remove all the European data. Many studies have collected bioavailable 87Sr/86Sr 738 

data in Western Europe (see compilation in Bataille et al., 2018). While those datasets do not 739 

cover parts of eastern and northern Europe included in the GEMAS dataset, they do provide a 740 

strong basis for calibrating the relationships between bioavailable 87Sr/86Sr and the covariates 741 

in unsampled regions across the entire European continent. The success of this extrapolation 742 
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likely depends on the similarity of geological and environmental conditions found in the 743 

under-sampled areas with those of the training set. This observation also indicates that the 744 

sampling density in Europe is probably sufficient to train accurate 87Sr/86Sr isoscapes with the 745 

current set of predictors. Additional sampling will only improve this performance marginally.  746 

 747 

Figure 10: Cross-validation of different models for the GEMAS dataset: A) Bedrock model; 748 

B) Random forest regression calibrated using the global bioavailable data without data from 749 

GEMAS, C) Random forest regression calibrated using global bioavailable data including 750 

bioavailable data from GEMAS, and D) Random forest regression calibrated using 751 

bioavailable data from GEMAS only. Red lines are best-fit linear models. 752 

5.3.2 Madagascar 753 

In Madagascar, we found that the bedrock model does not perform as well as in Europe 754 

(Fig. 11A). This was not surprising as the map used in the GLiM for Madagascar is outdated 755 

and has a low resolution (Besairie, 1964). As mentioned earlier, Madagascar is a very 756 

geologically complex region, and the lack of detailed geological maps strongly limits the 757 

ability of the bedrock model to predict 87Sr/86Sr in the geosphere or the biosphere. A much 758 

more detailed geologic map of Madagascar does exist (Roig et al. 2012); integrating updated 759 

products like this into the GLiM will help improve global 87Sr/86Sr isoscape models.  760 

In Madagascar, the performance of the locally calibrated model (Fig. 11D) is significantly 761 

improved in comparison with the globally calibrated models (Fig. 11B and 11C). 762 

Additionally, the globally calibrated model excluding Madagascar data performs poorly (Fig. 763 

11B). While most of the bioavailable 87Sr/86Sr data fall on a strong correlation line, several 764 

large residuals limit the model accuracy. These large residuals are from bioavailable 87Sr/86Sr 765 

data collected on old metamorphic and sedimentary rock units that represent geological 766 

and/or environmental conditions that were not encountered in the combined local 767 

bioavailable 87Sr/86Sr training dataset. Under such conditions, extrapolation of global 768 

87Sr/86Sr predictions becomes invalid. Even when including the Madagascar data in the global 769 

compilation, these data are not sufficient to fully overcome the strong predictive bias towards 770 

data-rich regions. This result underlines the need for local bioavailable 87Sr/86Sr data in 771 

regions that are geologically complex and under-sampled. With the current set of covariates, 772 

the global isoscape is well-calibrated for Europe and North America where most bioavailable 773 

87Sr/86Sr data have been sampled but poorly calibrated in other regions. To solve this issue, 774 

more bioavailable 87Sr/86Sr data are required across Madagascar and Africa, particularly from 775 
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older radiogenic units, in order to calibrate the bioavailable 87Sr/86Sr model with geological 776 

and environmental predictors in this region.  777 

778 

Figure 11: n-fold cross-validation of different models on the Madagascar dataset: A) Bedrock 779 

model; B) Random forest regression calibrated using the global bioavailable data without 780 

data from Madagascar, C) Random forest regression calibrated using global bioavailable data 781 

including bioavailable data from Madagascar, and D) Random forest regression calibrated 782 

using bioavailable data from Madagascar only. Red lines are best-fit linear models. 783 

6. Guidelines, knowledge gaps and new research avenues 784 

6.1 Guidelines for using the global isoscape 785 

Provenance studies have underlying assumptions specific to the sample type and the 786 

question being addressed. The predicted bioavailable 87Sr/86Sr isoscape presented here (Fig. 787 

9) is best suited as a broad scale approach for 1) excluding provenance areas and 2) informing 788 

where targeted sampling for a specific research question should occur. When samples in 789 

question exhibit a limited range in bioavailable 87Sr/86Sr, as is the case for plants, soils, and 790 

animals with small feeding ranges (e.g., non-migratory rodents), the bioavailable 87Sr/86Sr 791 

isoscape can also be used to predict areas of natal origin. However, the current bioavailable 792 

87Sr/86Sr isoscape can be considered robust only in data-rich areas, and extrapolations to other 793 

regions should be approached cautiously, particularly where geological and environmental 794 

conditions differ from those represented in the training set. In data-poor regions, the accuracy 795 

and resolution of the bioavailable 87Sr/86Sr isoscape should be tested by collecting additional 796 

data. We encourage other researchers to test, and if required recalibrate, their own 87Sr/86Sr 797 

isoscapes using the global framework presented here (see supplementary material script S1), 798 

and also to add new local bioavailable 87Sr/86Sr data to the global compilation (more details 799 

provided below). The number of additional data required to calibrate the model to a specific 800 

study area is challenging to determine. A cost-effective strategy would be to collect an initial 801 

small dataset to test the accuracy of the global bioavailable 87Sr/86Sr model to help verify its 802 

performance. When performance is poor (e.g., Madagascar), collecting more data should be 803 

considered depending on the scale of the study, the complexity of the geology and the 804 

existing distribution of bioavailable 87Sr/86Sr data. However, as additional data are included 805 

in the modeling, model predictions will probably degrade in some data-rich regions as the 806 

global model looks for the best prediction compromise given available data and covariates. 807 

The number of predictors will need to be increased to avoid this biasing. As demonstrated in 808 

this review, another possible solution for local and regional studies is to calibrate a model 809 

using only local to regional bioavailable 87Sr/86Sr data.  810 

6.2 Knowledge gaps 811 
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6.2.1 Improving the global database, analytical methods, sampling strategy and 812 

centralized repository 813 

Although the 87Sr/86Sr data used in the combined local bioavailable 87Sr/86Sr training 814 

dataset appear to be quite dense (Fig. 1), there are still huge data gaps in many 815 

environmental, geographic and geological settings that limit the accuracy of the global 816 

bioavailable 87Sr/86Sr isoscape. The current global compilation is heavily biased towards 817 

agricultural and densely populated regions of Europe and North America (Fig. 2). This 818 

sampling bias is propagated to the global 87Sr/86Sr isoscape, leading to degradation of 819 

predictions in under-sampled parts of the world (e.g., Madagascar). High latitudes, desert, 820 

semi-arid regions, tropics, wetlands, and mountainous areas are largely under-represented. 821 

Most cratonic regions and their associated sedimentary basins are also largely under-822 

represented (e.g., Africa, Australia, Canada, or Brazil). Gaps from many remote regions 823 

could be filled through targeted Sr isotope analysis of samples from museum collections (e.g., 824 

rodents; https://arctosdb.org/; Fig. 12). These samples could be used to facilitate the 825 

development of 87Sr/86Sr isoscapes in high-latitude regions with applications for migratory 826 

birds, megafauna or early human mobility. As demonstrated in this review, regional accuracy 827 

of the global model could be significantly improved by adding only tens to hundreds of 828 

points in under-sampled areas (Fig. 11). Conversely doubling the number of points in already 829 

well-sampled regions will only bring minor improvement (e.g., Europe). As bioavailable 830 

87Sr/86Sr data are positively skewed, sampling needs to account for the higher variability in 831 

older and more complex geological settings. Sampling those regions at high density might 832 

help capture some of the high variance observed in these regions. This type of sampling 833 

rationale can be systematized using available statistical algorithms (e.g., Latin Hypercube) 834 

that use the distribution of existing covariates (e.g., geology, climate) to optimize the 835 

sampling strategy at a given location or globally (Minasny and McBratney, 2006).  836 

Filling these data gaps will require 87Sr/86Sr analysis of thousands of samples. Despite 837 

significant analytical improvements in the last decades, analyzing 87Sr/86Sr is currently 838 

expensive and slow in comparison with other isotopic systems analyzed using continuous 839 

flow stable isotope ratio mass-spectrometry or cavity ring down spectroscopy. In the last few 840 

years, new methods have emerged that make 87Sr/86Sr analysis faster and more affordable, 841 

increasing the possibilities of generating high-density datasets. For example, the use of Laser 842 

Ablation (LA)-MC-ICPMS instead of solution methods for analyzing solid samples with high 843 

Sr content (e.g., animal teeth) allows very high throughput, limited sample preparation and 844 

sufficient analytical precision for most provenance studies (±0.0001). This method could help 845 

develop large datasets from museum specimens (e.g., rodents) and improve the accuracy of 846 

bioavailable 87Sr/86Sr isoscapes in remote regions (Fig. 12). More recently, the use of ICP-847 

MS/MS with in-line Rb separation has been proposed to increase throughput, decrease cost 848 

and limit sample amount for solution methods (Murphy et al., 2020). This method provides 849 

fast and relatively inexpensive analysis of small biological samples (e.g., insect tissues) with 850 

similar analytical precision to LA-MC-ICPMS (±0.0001). Lastly, the addition of an 851 

autosampler with syringe injection on MC-ICP-MS instruments (e.g., microFAST-MC) has 852 

contributed to increased throughput and reduced mass requirements without compromising 853 

analytical precision. To increase throughput, MC-ICP-MS users could further reduce the 854 

integration time and number of ratios analyzed. This would decrease analytical precision, but, 855 

as mentioned above, precision of ±0.0001 is usually sufficient in provenance studies. We 856 

encourage researchers to further develop and adopt these analytical methods to continue 857 

decreasing the price and time required for 87Sr/86Sr analysis.  858 

One final critical issue when generating a bioavailable 87Sr/86Sr dataset is the lack of 859 

guidance on the metadata required when collecting bioavailable 87Sr/86Sr data (Grimstead et 860 
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al., 2017). Most bioavailable 87Sr/86Sr datasets include some fields representing location and 861 

isotopic data. The remaining metadata provided by authors vary as no metadata template 862 

exists in the community. This is problematic because different fields or substrates require 863 

different types of metadata. Moreover, many metadata fields are often required to better 864 

screen and use bioavailable 87Sr/86Sr data for provenance applications. In compiling the 865 

dataset for this study, geographic coordinates, substrate type (e.g., plant, soil, water, animal 866 

tissue), sample details (e.g., plant species, soil depth), tissue sampled (e.g., enamel versus 867 

dentine, whole plant versus leaves), analytical method,and analytical precision needed to be 868 

mined from the main manuscript or directly from the authors in many cases. This is time-869 

consuming, not always successful, and could be entirely avoided if appropriate data and 870 

metadata templates were provided to the community. These challenges are being addressed 871 

by the development of IsoBank, a centralized repository for isotope data (Pauli et al., 2017). 872 

This repository will contain data templates specific for bioavailable 87Sr/86Sr data that will 873 

facilitate the integration of data from multiple sources and fields (planned launch date is 874 

2021).  875 

 876 
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Figure 12: An example of filling 87Sr/86Sr data gaps in a remote region (Alaska): A) Results 877 

of a query on the Arctos database (https://arctosdb.org/; Accessed April 1, 2020) for teeth of 878 

selected non-migratory rodents (including Lemmus, Microtus, Myodes and Discrostonyx 879 

species) in the mammal collection at the University of Alaska Museum of the North. B) 880 

Mounting of rodent teeth prepared for cost-effective and rapid LA-ICP-MS 87Sr/86Sr analysis. 881 

6.2.2 Improving modeling  882 

It has already been demonstrated that random forest outperforms most linear and non-883 

linear models by better representing complex non-linear relationships in bioavailable 87Sr/86Sr 884 

data (Bataille et al., 2018). The current script (see supplementary material script S1) is 885 

designed to handle large datasets with dozens of covariates. This script uses parallelization to 886 

boost raster calculation and random forest prediction through the caret (Kuhn, 2008) and 887 

doParallel packages (Calaway et al., 2018). However, as the database of bioavailable 888 

87Sr/86Sr data grows and/or more covariates are accounted for, the regression matrices will 889 

exceed the capability of desktop computers. This high computational intensity is one of the 890 

drawbacks of using random forest regression as the computational loads grow exponentially 891 

with more data. Random forest is also sensitive to noise and errors in the data and requires a 892 

careful quality check, which is often an issue with large interdisciplinary compilations.  893 

As demonstrated in this review, the extrapolation of models fitted using random forest is 894 

suitable for data-rich regions but risky for data-poor regions with geologies that fall outside 895 

of the calibration dataset, or have outdated geology maps in the GLiM. Sampling biases are 896 

also propagated into the bioavailable 87Sr/86Sr predictions. Once enough bioavailable data are 897 

available from all parts of the world, one solution to limit biasing and computing time will be 898 

to train a model on a geographically well-distributed subset of the database. Many of the 899 

relationships found by random forest regression are also non-deterministic and not stationary. 900 

A good example of this issue is represented by the relationship between bioavailable 87Sr/86Sr 901 

and dust deposition (Fig. 8). In the global model, dust deposition combines information about 902 

dust flux and dust sources into one single variable (r.dust). If new bioavailable data are 903 

collected in regions with elevated dust flux with low 87Sr/86Sr (e.g., China), this will likely 904 

degrade the relationship between bioavailable 87Sr/86Sr and dust in the model. This type of 905 

issue underlines the need for additional and better covariates which would open-up more 906 

targeted modeling opportunities. A large part of the model uncertainty is due to the limitation 907 

of global geological maps. Including geological map products is currently essential, as they 908 

are the dominant predictors of bioavailable 87Sr/86Sr variability. However, their inaccuracies, 909 

lack of homogeneity in resolution and classification scheme, and boundary issues, are also 910 

transmitted to the predicted bioavailable 87Sr/86Sr variations. A continuous geospatial dataset 911 

that captures geological variability (e.g., radiometric data) or multispectral satellite data (e.g., 912 

WorldView-3) would considerably improve the situation. Lastly, while random forest can 913 

train accurate models, expert knowledge on geology, geochemistry and environmental 914 

science remain critical for interpreting model results. Calibrating a bioavailable 87Sr/86Sr 915 

isoscape requires carefully verifying the relationships between predictors and response 916 

variables. Ultimately random forest regression models should pave the way to improve 917 

mechanistic modeling approaches. 918 

6.3 Conclusions and perspectives 919 

Here we have presented the first validated, high-resolution 87Sr/86Sr isoscape at the global 920 

scale, which should be useful to many researchers interested in provenance applications. 921 

These 87Sr/86Sr isoscapes provide powerful templates for extrapolating between and beyond 922 
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the bounds of existing databases. They can be used independently or coupled with other 923 

isotopic systems (e.g., hydrogen, oxygen, and carbon) to provide provenance assignments in 924 

a range of fields. To date, 87Sr/86Sr has been largely underused in ecological applications in 925 

comparison with other isotopic systems. However, with the rapid advances in the 926 

development of 87Sr/86Sr isoscapes, we anticipate that 87Sr/86Sr will become a tool of choice 927 

for investigating the mobility of migratory species at large spatial scales. 87Sr/86Sr exhibits 928 

limited temporal variability but high-resolution spatial patterns, and offers unique advantages 929 

relative to other isotopic systems. New applications of 87Sr/86Sr to assess the population 930 

dynamics and migratory pathways of bird and insect species are ongoing and will reveal the 931 

potential of 87Sr/86Sr in this type of ecological applications. The global bioavailable 87Sr/86Sr 932 

isoscape is also relevant to investigations of the ecology of extinct animal species. Global 933 

87Sr/86Sr paleo-isoscapes will be key to resolving questions about megafaunal ecology, early 934 

human dispersals, or human societies. Advances in 87Sr/86Sr isoscapes should also make this 935 

geochemical tracer increasingly relevant in forensic and food sciences. Such applications will 936 

probably require calibrating substrate-specific global 87Sr/86Sr baselines (e.g., drugs, wine). 937 

The up-front cost might be challenging, but once developed, these calibrated isoscapes will 938 

be valid for the long term and readily applicable to other markers. While considerable gaps 939 

remain in the development of global 87Sr/86Sr isoscape, this study paves the way for rapid 940 

advances in the applications of this tracer in large-scale provenance applications. 941 

For researchers interested in biogeochemical cycles, the development of global 87Sr/86Sr 942 

isoscapes and 87Sr/86Sr compilations offers a novel and exciting research avenue for 943 

improving global Earth systems models. We have already underlined that developing pure 944 

mechanistic isoscapes is beyond our current knowledge of Sr isotope cycling. However, these 945 

knowledge gaps point to a key opportunity for advancing our understanding of 946 

biogeochemical cycles through 87Sr/86Sr modeling. It has long been known that 87Sr/86Sr is a 947 

unique tracer of elemental cycling in rivers, aerosols, and ecosystems at the local scale. 948 

Global predictive 87Sr/86Sr modeling provides the opportunity to scale up this tracer from the 949 

local to the global scale. For example, bioavailable 87Sr/86Sr modeling could provide a novel 950 

method for understanding soil weathering processes, or estimating the elemental contribution 951 

of aerosol inputs to ecosystems, while constraints gained from regression models could help 952 

advance the quantitative theory describing the controls of elemental cycling in the 953 

hydrosphere, atmosphere and ecosphere. Similarly, developing global 87Sr/86Sr isoscapes in 954 

river water would be relevant to better partitioning solute sources in watersheds. At the global 955 

scale, 87Sr/86Sr isoscapes could help quantify the global elemental flux from continental 956 

surfaces refining thereby global elemental budget in seawater. With the advances of plate 957 

models and paleogeological reconstructions, it might even be possible in the future to 958 

reconstruct 87Sr/86Sr on the Earth’ surface in deep time to provide new constraints on global 959 

biogeochemical cycles in specific time periods.  960 
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