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Abstract

Strontium isotope ratios (¥’Sr/*Sr) are a popular tool in provenance applications in
archeology, forensics, paleoecology, and environmental sciences. Using bioavailable Sr/%6Sr
in provenance studies requires comparing the 3’St/%Sr of a sample of interest to that of
87S1/36Sr baselines. Historically, these baselines required building empirical datasets from
plants or local animals to characterize the 3St/%Sr available to local ecosystems (bioavailable
87S1/36Sr). However, researchers are increasingly relying on modeled bioavailable Sr/%6Sr
maps (called isoscapes). We review the advantages and limitations of existing approaches to
mapping bioavailable 'St/%Sr for provenance studies and propose a globally applicable,
scalable, and editable framework for creating bioavailable 3’Sr/*Sr isoscapes. This
framework relies on: 1) Compiling global bioavailable 3St/%Sr data; 2) Mapping 3’Sr/*Sr
variability in rocks; 3) Leveraging global environmental covariates; and 4) Applying a
random forest regression method that integrates these data to predict bioavailable 3"St/%Sr.
When the random-forest model is applied at the global scale it performs well (explaining 60%
of the variance of the global bioavailable 8’Sr/*®Sr dataset), and accounts for geological,
geomorphological and atmospheric controls. In data-rich regions (e.g., Europe), the global
bioavailable 37Sr/2°Sr isoscape can be successfully extrapolated to broad regions without
bioavailable 87Sr/%Sr data. However, we also show that this extrapolation may not be valid in
exceptionally geologically complex and data-poor regions (e.g., Madagascar). We suggest
research directions to improve the accuracy of global bioavailable 8’St/®Sr isoscapes, which
include: 1) Increasing the collection of bioavailable datasets in data-poor regions; 2)
Harmonizing data management practices and metadata collection for bioavailable 8’Sr/*Sr
data; and 3) Relying on advances in remote sensing and geological mapping techniques to
improve geological covariates. While significant potential to refine 8’Sr/%Sr isoscapes
remains, the data products provided in this review form a basis for using 8’Sr/*®Sr data in
large-scale provenance studies, opening new research avenues in a range of fields.
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1. Introduction

Strontium (Sr) isotope ratios (¥’St/%°Sr) display a unique and predictable patterns of
variability on the Earth’s surface that follow the geological age and lithology of bedrocks
(Bataille and Bowen, 2012). As rocks interact with the hydrosphere, atmosphere and
biosphere, bedrock Sr is transferred to other reservoirs on the Earth’s surface, such as soils
and plants. Geologists have long recognized and capitalized on this natural 8’Sr/3°Sr
variability to trace the provenance of geological materials (Reviewed in Banner, 2004; Capo
et al., 1998b; Peucker-Ehrenbrink and Fiske, 2019). In the last few decades, researchers have
also recognized the potential for 8’Sr/*®Sr data to solve new questions in ecology,
paleoecology, and archeology (Reviewed in Aberg, 1995; Bentley, 2006; Crowley et al.,
2017a; Hobson et al., 2010; Makarewicz and Sealy, 2015). This uptick of interest in 8’Sr/%°Sr
geochemistry has coincided with analytical advances and the development of multi-collector
inductively coupled plasma mass spectrometers (MC-ICPMS). This instrumentation and its
greater global availability has made 37Sr/*%Sr analysis more mainstream by accelerating
throughput and enhancing cost-effectiveness while also facilitating the development of new
applications in the life sciences such as laser ablation of incrementally growing tissues (e.g.,
fin rays and otoliths; Brennan et al., 2015b; Willmes et al., 2016). With these advances,
87Sr/%6Sr geochemistry has become a critical tool for tracing the mobility and/or geographic
origin of biological material in ecology (Reviewed in Hobson et al., 2010), paleoecology
(Reviewed in Crowley et al., 2017a), archeology (Reviewed in Bentley, 2006), forensic
sciences (Reviewed in Makarewicz and Sealy, 2015), and food sciences (Reviewed in Coelho
et al., 2017). All of these applications rely on comparing the 8’Sr/%°Sr of a given substrate
with the isotopic signatures of its potential sources. To facilitate the interpretation of 3’Sr/%Sr
data in these applications, it is critical to constrain the spatial variability of 3’Sr/*Sr in the
geosphere, hydrosphere and biosphere.

Isoscapes are spatially explicit predictions of isotopic variations. These predictions can be
produced either through geostatistical interpolation of observed isotopic data, or through
mechanistic model based on first principles of isotope geochemistry (Bowen and West,
2008). Over the last few decades, isoscapes of hydrogen, carbon, oxygen, and nitrogen have
been developed, building upon the growing number of isotopic observations (Bowen and
Wilkinson, 2002; Still and Powell, 2010; West et al., 2010a). These isoscapes have become a
routine tool to understand movement patterns of animals and humans and environmental and
biological processes (West et al., 2010b). Isoscape science has recently contributed to
research on many high-profile science questions, from partitioning the global hydrological
cycle (Good et al., 2015) to assessing the population dynamics of critical species (Brennan et
al., 2019). As such, the field of isotope provenancing is rapidly expanding and entering the
realm of data science, for example through large initiatives to integrate relevant data in
centralized repositories (Pauli et al., 2017), and community efforts to make modeling
products widely accessible (Bowen et al., 2014). Historically, interest in, and development of,
Sr isoscapes has lagged hydrogen, oxygen or carbon isotopic systems. The primary reasons
are that 87Sr/%0Sr analysis is challenging, relatively expensive, and relies on instrumentation
that is not as widely available as that needed for conducting light stable isotope analyses.
However, ¥’Sr/®Sr analyses have progressively emerged as a powerful complementary tool in
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provenance studies due to their unique spatial patterns of isotopic variability, with pioneering
work having been conducted in archeology (Ezzo et al., 1997; Price et al., 1994; Sillen et al.,
1998), paleoecology (Hoppe et al., 1999), ecology (Chamberlain et al., 1997; Kennedy et al.,
2002, 2000; Koch et al., 1995b, 1995a; Thorrold and Shuttleworth, 2000) , and ecosystem
dynamics (Blum et al., 2000; Gosz et al., 1983). In the last decade, the development and
application of 8’Sr/®Sr isoscapes has grown exponentially, driven by high-profile
applications in archeology (e.g., Copeland et al., 2011), paleoecology (e.g., Price et al.,
2017), ecology (e.g., Brennan et al., 2019; Glassburn et al., 2018), and forensic science (e.g.,
Bartelink and Chesson, 2019; Kramer et al., 2020).

This review synthesizes the current state of the rapidly evolving and interdisciplinary
research associated with 87Sr/%6Sr isoscapes. We begin by reviewing spatial ’Sr/*Sr trends
on the Earth surface with a focus on large-scale patterns derived from the interactions of the
geosphere, hydrosphere, atmosphere and biosphere. We then compare different approaches
for making 3’Sr/%°Sr isoscapes in terrestrial and freshwater environments. In an effort to better
integrate interdisciplinary ¥’Sr/%°Sr data, we present the first global compilation of 8’Sr/%Sr
data from different environmental substrates. We use this compilation to produce a global
model for predicting bioavailable 8’Sr/%°Sr and demonstrate the potential of using this
approach to generate 3’Sr/%Sr isoscapes at the regional scale in two regions: Europe and
Madagascar. We conclude by discussing key knowledge gaps and new research avenues
opened by this global data science approach.

2. Strontium isotope cycling
2.1  Strontium isotopes geochemistry

Strontium is a divalent alkaline earth trace element with four naturally occurring isotopes:
8481 (~0.56%), 3Sr (~9.87%), ¥'Sr (~7.04%) and 38Sr (~82.53%). 3*Sr, 3°Sr, 8’Sr and ¥ Sr are
all stable isotopes (i.e., do not radioactively decay). Unlike the other Sr isotopes, 3’Sr is the
radiogenic daughter product of rubidium 87 (¥’Rb; decay constant 1 = 1.42x10-11 year™!;
Steiger and Jiger, 1977). The ratio of ¥’Sr to the other isotopes is therefore a function of the
variable abundance of 3’Sr. In provenance studies, Sr isotope variations are typically
represented using the ratio of 8’Sr relative to %Sr after correction for any mass-dependent
fractionation by normalization to a fixed 3°Sr/2%Sr (0.1194; Nier, 1938). The resulting
87S1/36Sr is thus not a function of isotopic fractionation processes but only reflects the mixing
of isotopically distinct Sr sources.

2.2 Strontium isotopes in the geosphere

The 37Sr/2°Sr in modern rocks and minerals is both mineral-dependent (initial 3’Rb, ¥’Sr,
and %°Sr abundance), and time-dependent (radioactive decay of 8’Rb to 8’Sr). At the time of
our planet’s formation, the bulk Earth reservoir had a relatively homogeneous 37Sr/*Sr
signature of around 0.699 (Wetherill et al., 1973). As geochemical differentiation progressed,
Sr and Rb concentrated in melts that preferentially contributed to oceanic and continental
crusts. This partitioning resulted in increased 3’Rb/*®Sr in the continental crust relative to the
oceanic crust and the residual mantle (Faure and Powell, 1972), and over time, this led to
differences in ¥’Sr/*®Sr among geologic pools with the progressive decay of 3’Rb into ¥’Sr.

These combined effects of geochemical partitioning of Rb and Sr and radioactive
decay explain the large range of 3’Sr/*Sr in igneous, sedimentary, and metamorphic rocks.
With equal initial 3’Rb/36Sr, older igneous rocks have higher 37Sr/%°Sr than younger rocks
because ®’Rb has had more time to decay in the older reservoir. At equal age, more felsic
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rocks (with higher 8’Rb/%®Sr) have higher 8’Sr/%6Sr than mafic rocks (with lower 8’Rb/*°Sr)
because more 8’Rb is available to decay into ¥’Sr. Old felsic igneous rock units (e.g., cratonic
shields) have the highest measured ’Sr/%6Sr (>0.720), while newly formed mafic igneous
rock units (e.g., basalts, volcanic arcs) have the lowest 8’Sr/%Sr (~0.703) (Peucker-
Ehrenbrink and Fiske, 2019).

Siliciclastic sediments inherit 8’Sr/%6Sr from their parent rocks but are usually composed
of a mixture of minerals with distinct parent rock, and thus different isotopic ratios. Because
local bedrock sources dominate the 37Sr/%Sr, recently deposited siliciclastic sediments from
young igneous rocks (e.g., volcanic arcs) tend to have lower 3Sr/%Sr than those forming in
older felsic environments (Bataille et al., 2014). However, it becomes challenging to assess
the original parent rock for older sediments due to tectonic and geomorphological evolution
of the surface. As sediments are exposed and reworked on the surface, the preferential
removal of Sr relative to Rb in weathering and metamorphic processes can subsequently
modify their 3St/%Sr leading to additional ’St/%¢Sr variability in older sedimentary units
(Bataille et al., 2014). Carbonate rocks, on the other hand, primarily inherit their 8’Sr/%6Sr
from seawater (the exceptions being metamorphic, igneous or soil carbonates). They have a
narrow range in 3’Sr/%°Sr because 1) seawater 3’Sr/2°Sr has remained within a tight range
throughout the Phanerozoic (0.707 and 0.709; McArthur et al., 2001), and 2) carbonates have
small amounts of Rb but large amounts of Sr (Sr readily substitutes for calcium), which
means their ¥’Sr/%Sr does not evolve significantly through time.

Metamorphism can alter the 3’Sr/%Sr of igneous and sedimentary rock units, which can
lead to highly variable ®’Sr/*®Sr in metamorphic rocks. For example, metalimestones in the
Himalayas have much higher 8’Sr/2°Sr than non-metamorphosed marine carbonates due to
exchange of ¥’Sr between silicates and carbonates during metamorphism (Bickle et al., 2001).
Similarly, hydrothermal metamorphism can homogenize the 8’Sr/*Sr of lithologically distinct
sedimentary rock units (Bickle et al., 1988). Ultimately, the combination of igneous,
sedimentary and metamorphic processes leads to considerable variability of 3’Sr/%Sr in the
geosphere. Bedrock ¥'St/%0Sr ranges from 0.702 in ophiolites to more than 1 in old felsic
Archean rocks (Faure and Powell, 1972). The ’Sr/3Sr distribution in rocks is positively
skewed with average upper crust 8’Sr/*°Sr around 0.716.

2.3 Strontium isotopes in soils and plants

Soils primarily inherit their 8’Sr/%°Sr composition from parent rock, and consequently
87S1/36Sr patterns in soils follow those of the underlying geology (Fig. 1). However, the
observed relationship between soil and local bedrock 37St/®Sr is rarely 1:1. This is because
soil ¥’Sr/%Sr is buffered by the influence of additional sources of Sr with distinct 3’Sr/%6Sr
compositions (Fig. 1). For example, unconsolidated sediments, such as fluvial terraces and
glacial till or loess, typically have different ’Sr/%6Sr than the underlying bedrock (Borker et
al., 2018). In the Midwestern USA, glacial till coming from the Canadian craton covers much
of the bedrock and is the dominant source of Sr to soils (Hedman et al., 2009; Widga et al.,
2017). Downwind of desert zones, dust often recharges soil primary minerals and can even
serve as the dominant parent material in some cases (Aarons et al., 2017; Frumkin and Stein,
2004; Grousset et al., 1992; Miller et al., 2014; Naiman et al., 2000; Widory et al., 2010).
Tephra deposition near volcanic centers can also provide easily weatherable and Sr-rich
primary minerals to soils and ecosystems that will dominate over bedrock sources (Chadwick
et al., 2009). Last but not least, near the coast, sea salt aerosol deposition can influence the
exchangeable Sr fraction of soil (Hartman and Richards, 2014; Quade et al., 1995; Whipkey
et al., 2000).
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Different soil fractions can also have distinct ¥’Sr/%¢Sr compositions due to differential
weathering and soil mixing processes (Fig. 1). In particular, the 8’Sr/%°Sr ratio of the soil
exchangeable Sr fraction (defined as the fraction that is extractable using ammonium nitrate
leaching from a top soil sample) can differ considerably from the bulk digested soil mineral
fraction or from soil samples collected at different depths (Gryschko et al., 2005; Poszwa et
al., 2004). The soil exchangeable Sr corresponds primarily to Sr dissolved in soil water and
available to plants but also includes some Sr weakly absorbed on clays (Capo et al., 1998).
The 87Sr/3Sr of this soil exchangeable Sr is strongly influenced by soil age. In a young soil,
Sr-rich and rapidly weathering primary minerals (e.g., carbonates, plagioclases) will be the
dominant contributors to the exchangeable Sr pool (Chadwick et al., 2009; Vitousek et al.,
1999). However, as a soil matures, these rapidly weathering minerals can be exhausted and
other primary minerals with distinct ’Sr/%6Sr will dominate the Sr budget. As soils become
more and more weathered, fewer primary minerals are available, and other sources (e.g., dust
and other aerosols) increasingly contribute to the exchangeable Sr budget (Chadwick et al.,
2009; Vitousek et al., 1999). The contribution of these atmospheric sources to the dissolved
soil 37Sr/%Sr budget will depend in the rate of deposition, weatherability, Sr content, and
87Sr/%Sr (Pett-Ridge et al., 2009). In some cases, atmospheric deposition will dominate over
bedrock sources even when soils are young (Miller et al., 2014), whereas in other cases,
bedrock remains the dominant Sr source even when soils are highly weathered (Bern et al.,
2005; Porder et al., 2006).

Plants take up Sr from the exchangeable soil fraction (Fig. 1). However, differences
between ’Sr/%Sr in plants and the exchangeable Sr fraction can occur, particularly in regions
where multiple sources of Sr mix into soils (e.g., atmospheric vs. parent rock Sr; Hartman
and Richards, 2014; Laffoon et al., 2012; Snoeck et al., 2016). As mentioned above,
differential weathering and soil mixing processes can lead to variable ¥’Sr/%®Sr along the soil
profile (Reynolds et al., 2012). This variability is propagated among plants with different
rooting depth (Poszwa et al., 2004).

2.4  Strontium isotopes in surface waters

Water inherits 87Sr/%Sr from rock weathering (Fig. 1). Consequently, spatial patterning of
87S1/36Sr in the hydrosphere reflects that of rocks exposed on the surface and in aquifers, with
high 87Sr/%Sr in rivers draining cratons and low ¥’Sr/%°Sr in rivers draining mafic rock units
(Peucker-Ehrenbrink and Fiske, 2019). However, the contributions of different minerals and
rock units to the dissolved Sr pool vary broadly based on their weathering rate and Sr content,
which in turn leads to distinct 8’Sr/%°Sr between the hydrosphere and geosphere (Blum et al.,
1993). During igneous rock weathering, plagioclases contribute more than radiogenic
minerals to the dissolved Sr flux due to their higher Sr content and weathering rate (Bain and
Bacon, 1994; Clow et al., 1997; Pett-Ridge et al., 2009). Similarly Sr-rich and easily
weatherable carbonates and evaporites contribute disproportionately to the dissolved Sr in the
hydrosphere (Peucker-Ehrenbrink and Fiske, 2019). Even trace amounts of calcite in silicates
can dominate the entire Sr budget in large rivers (Clow et al., 1997). At the scale of a
catchment, the flux of Sr from isotopically distinct rock units is also modulated by
geomorphological, climatic and environmental conditions (Bataille et al., 2014). For
example, sediments from mountainous zones will contribute disproportionately to the total Sr
flux and strongly influence the 8’St/%Sr as they weathered along the entire course of a river
(Galy and France-Lanord, 1999) and its floodplains (Bickle et al., 2018; Lupker et al., 2012).
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Allochthonous surface sediments, such as glacial till, may also impact river 8’Sr/%°Sr (Curtis
and Stueber, 1973). In boreal and arctic regions, seasonal land cover changes (i.e., vegetation,
ice cover) can lead to strong seasonal ¥’Sr/%°Sr fluctuations because of variable contribution
of rock units within a catchment (Douglas et al., 2013; Voss et al., 2014). Ultimately, spatial
87S1/36Sr trends in the hydrosphere follow those of the geosphere but with lower ratios and
variability due to the buffering effect of carbonate weathering (Palmer and Edmond, 1992).

2.5  Strontium isotopes in animal tissues

Primary terrestrial consumers obtain the majority of their Sr from diet (Fig. 1; Glorennec
et al., 2016). As plants are at the base of many terrestrial food chains, ¥’Sr/%Sr for animals
usually reflects that of local plants (Willmes et al., 2014). However, drinking water can
contribute significantly to the Sr inputs when (1) water is Sr-rich (e.g., carbonate landscapes),
or (2) animals drink frequently (Lewis et al., 2017). Different taxa sample Sr differently on
the landscape depending on their feeding habits and feeding ranges (Lengfelder et al., 2019).
For example, at a given location, small herbivores with a local feeding range (e.g., rodents)
often have distinct ¥Sr/%°Sr signatures from larger herbivores (e.g., deer) because the larger
animals integrate Sr sources over a larger area (Feranec et al., 2007; Lengfelder et al., 2019).
Aquatic animals (e.g., tapirs) may also have distinct 8’St/%Sr if they feed on riparian or
freshwater foods (e.g., Hedman et al., 2009; Wallace et al., 2019). There are more challenges
associated with predicting how different environmental sources contribute to consumer Sr
with an increase in the complexity of animal feeding behaviors (e.g., large migratory
herbivores, omnivores and carnivores) (Hoppe et al., 1999). At the extreme, humans can eat
local terrestrial resources, hunt migratory mammals, harvest marine resources, inheriting a
potentially very complex mixture of ’Sr/*Sr sources (Fig. 1; Bentley, 2006). Humans can
also obtain resources from distant localities via trade (reviewed in Bentley, 2006).

Sr is integrated over variable timescales in different animal tissues (Makarewicz and
Sealy, 2015). Incrementally growing tissues, such as tusks, otoliths or hair segments,
sequentially record dietary Sr, allowing high-resolution reconstruction of mobility histories of
the sampled individuals (e.g., Brennan et al., 2015a; Vautour et al., 2015). Other tissues, such
as bulk (whole) tooth samples or bones, preserve a snapshot of a specific period in the
organism’s life, or integrate Sr over longer time periods, respectively, and can therefore
provide information about dietary signatures at different stages of an individual’s life
(reviewed in Makarewicz and Sealy, 2015).
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Figure 1: Simplified schematic of strontium isotope cycling from rocks to ecosystems.
Capitalized black words correspond to Sr reservoirs and italicized white words correspond to
process modifying 8’Sr/®Sr.

3. Strontium isoscapes
3.1  Empirical isoscapes

The most commonly used strategy to create biologically available (bioavailable) 8’Sr/*®Sr
baselines is to analyze 8’Sr/%0Sr in a series of biological samples representing bioavailable Sr
pools in a study area (Lengfelder et al., 2019). However, as outlined above, different
substrates (e.g., soils, plants, animals, or waters) can integrate 87S1/80Sr at different
spatiotemporal scales depending on the local geo-environmental conditions. Thus, identifying
appropriate substrates can be challenging. We review the pros and cons of each substrate type
below.

Modern plants and exchangeable Sr from top soils are the most commonly used substrate
to represent local bioavailable Sr because they are easily collected. However, they may
sample isotopically discrete pools depending on plant rooting depths (Poszwa et al., 2004). It
is also increasingly recognized that application of agricultural fertilizers and limes impacts
the natural bioavailable Sr pool (Frei et al., 2020; Maurer et al., 2012; Thomsen and
Andreasen, 2019). The extent and frequency of agricultural contamination in baseline
samples remains unknown but could seriously complicate the development of bioavailable
87S1/%6Sr baselines in regions with active or historical agriculture.

Animals with relatively small foraging ranges, such as rodents or deer, are also used to
represent the local bioavailable Sr pool (e.g., Burton and Price, 2013). Although animals
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integrate Sr over variable spatiotemporal scales, adding some uncertainty in the
interpretation, they also offer the advantage of integrating local bioavailable Sr from multiple
sources. Isoscapes derived from local animals might therefore be more suitable than those
derived from plants or soils to represent the bioavailable Sr sampled by large mammals,
including humans (Crowley et al., 2017a). Fortunately, in many cases, the 8’Sr/%6Sr of local
animals are similar to those of plants and soils, indicating that, at local scales, bioavailable
87S1/%Sr signatures are relatively invariant (Flockhart et al., 2015).

Water samples taken from small streams, lakes and rivers have also been used to
represent bioavailable Sr pools. As otoliths inherit their 37Sr/2°Sr from the river or lake water
in which fish live (Brennan et al., 2015a; Faure et al., 1967), water samples are particularly
relevant in freshwater ecology applications (e.g., Brennan et al., 2019). In terrestrial
applications, however, water can integrate Sr from larger areas than plants or local animals
(Frei and Frei, 2011). Although this spatial integration might help solve some of the lime and
fertilizer contamination issues found with other substrates (Frei et al., 2020), it can also
complicate the comparison with biological samples. Nevertheless, water samples can provide
a good baseline for the 87Sr/*Sr of terrestrial species exploiting aquatic or riparian habitats
(Hamilton et al., 2019).

Once collected, bioavailable 8’Sr/%Sr data are usually interpolated using geostatistical
algorithms (e.g., kriging; Copeland et al., 2016; Frei and Frei, 2011; Willmes et al., 2018).
Geostatistical algorithms are based on the idea that points closer to each other tend to
resemble each other (i.e., spatial autocorrelation). These geostatistical models can also
integrate covariates (e.g., geological maps) to further constrain ¥’St/%Sr patterns (Willmes et
al., 2018). Maps derived from geostatistical methods, however, can give ambiguous and
inaccurate results due to the challenges of incorporating non-normal and skewed distributions
of 87Sr/%°Sr data (Bataille et al., 2018). Another method widely used to produce ’Sr/%6Sr
maps is to average 3’Sr/%Sr data over regions with similar bedrock geology (e.g., Evans et al.,
2010; Voerkelius et al., 2010). However, this leads to overlap and lack of precision in
constructed isoscapes, which limits their usefulness for provenance studies. These limitations
can be overcome by increasing the sampling density, but this becomes prohibitively
expensive at regional to continental scales.

3.2 Mechanistic isoscapes

A second approach to developing ’Sr/6Sr isoscapes relies on mechanistic models. This
approach leverages geochemical knowledge to predict the evolution of ¥’Sr/%®Sr in rocks
using the radiogenic equation:

YSr YSr “'Rb .
(865 = s g + 8¢ (e * 1)’ (1)
r rock r i r rock

where 87Sr/%Sr variability in rocks (¥’St/%6Sr)sock is a function of: 1) The initial 8’Sr/%6Sr
[(®7Sr/%Sr);], which depends on the geological history of the parent rock; 2) Bedrock age (t),
which controls the fraction of 8’Rb that decayed into 'Sr; and 3) The 8’Rb/36Sr of the rock
[3Rb/30Sr)rock], Which varies with lithology.

To simplify the equation, it was first assumed that 8’Sr/*Sr variability in rocks is only a
function of rock age (Beard and Johnson, 2000). Using geological maps to estimate the age of
bedrock units, these authors predicted 87Sr/%0Sr for bedrock across the USA. Later, Bataille
and Bowen (2012) revisited this approach by accounting for distinct #’"Rb/*Sr among rock
types. They separated rocks into major lithological categories, specifically distinguishing
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between carbonates and silicates, and leveraged geochemical databases to calculate the
average S’Rb/%®Sr for each group. These authors also predicted 37Sr/*Sr variability in rivers
across the USA using a first-principles model of chemical weathering to propagate 'Sr/%6Sr
from rock to water. This modeling approach yielded notable improvement over the approach
used by Beard and Johnson (2000), but the accuracy of both the rock and water isoscapes
were not sufficient for most provenance applications.

Using a case study in Alaska, Bataille et al. (2014) improved this mechanistic model by
incorporating more detailed lithological categories, including a sub-model for siliciclastic
sedimentary rocks. They also integrated an empirically-calibrated chemical weathering
model. The resulting model performed well against bedrock and water data. However, the
averaging approach, uncertainty of geological maps, and difficulty in calibrating certain rock
categories remained major obstacles to the development of 87Sr/2°Sr isoscapes sufficiently
accurate for provenance applications.

As mentioned previously, a multitude of coupled processes contribute to mix isotopically
distinct Sr sources from rocks to ecosystems. Properly calibrating the interactions of those
geological, environmental or biological processes to predict 3’Sr/%6Sr in the terrestrial
biosphere is a substantial challenge. Bataille et al. (2012) attempted to calibrate a mechanistic
bioavailable 3’Sr/*Sr model in the circum-Caribbean region. They demonstrated that bedrock
87S1/36Sr predictions diverged from bioavailable 8’Sr/%°Sr data in this region (Laffoon et al.,
2012) and attempted to calibrate a multi-source model that accounted for the contribution of
atmospheric sources. While the model performed well on the existing bioavailable data for
the Antilles (Laffoon et al., 2012), additional sampling showed that the contribution of
atmospheric deposition was not accurately calibrated in the Bahamas (Schulting et al., 2018).

Developing accurate mechanistic bioavailable 3’Sr/%Sr models requires a coupled
parameterization of a multitude of complex processes. Integrating Sr isotope cycling in global
land surface models might be a productive avenue to advance the mechanistic approach.
However, to date, the lack of accurate, detailed global geological maps remains the major
hurdle to more accurate mechanistic 8’Sr/*Sr isoscapes.

3.3  Process-based statistical isoscapes

A third, intermediate approach has been proposed to overcome the limitations of both
mechanistic and geostatistical modeling. This approach relies on multivariate random forest
regression, a tree based machine-learning algorithm, to integrate empirical data and other
geo-environmental covariates into the modeling framework. Bataille et al. (2018) first used
random forest regression to predict bioavailable ¥’Sr/%Sr across Western Europe. This study
integrated a compilation of empirical bioavailable 3’Sr/36Sr data, bedrock model products,
and geo-environmental covariates to predict bioavailable 8’St/Sr. The resulting model
yielded greatly improved accuracy over mechanistic models while also overcoming the issues
encountered with traditional geostatistical methods. More recently, Hoogewerff et al., (2019)
used random forest regression to predict 3’Sr/%®Sr for agricultural top soils across Europe
using previously collected geochemical soil data and newly generated 3’Sr/36Sr data from
selected soils of the GEMAS project (i.e., Geochemical Mapping of Agricultural and Grazing
Land Soil). This method yielded excellent results, predicting bioavailable 8’Sr/%6Sr with both
high precision and accuracy. However, the model was limited by the availability of high-
resolution geochemical soil surveys.
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In freshwater environments, Brennan et al. (2016) proposed using spatial stream network
models to predict 8’Sr/%Sr in river water. This statistical approach accounts for the unique
spatial correlation structure in rivers (e.g., flow direction, branching) while also providing a
quantitative framework for assessing the contribution of in-stream processes (e.g.,
downstream transport) and landscape processes (e.g., climate, geology) on observed ¥Sr/%Sr
patterns. The application of this method was a break-through in freshwater 8’Sr/3°Sr
isoscaping, improving accuracy by an order of magnitude over both mechanistic (Bataille et
al., 2014) and geostatistical models (Hegg et al., 2013).

4. Building process-based global bioavailable strontium isoscape
4.1  Global compilation
4.1.1 Compilation description

To date, no researchers have attempted global bioavailable 8’Sr/*Sr modeling. Here we
leverage a new global data compilation, mechanistic models, and auxiliary variables
integrated in a multivariate random forest regression framework to predict bioavailable
87S1/%Sr at the global scale. The dataset used in our study is a compilation of 17,240
published and unpublished ®’St/%6Sr analyses from 278 individual studies spanning 8,476
individual locations across the globe (Fig. 2). Unpublished data include 279 bioavailable
87S1r/%Sr from Madagascar (see supplementary material Appendix B) and 70 surface waters
from Cook Inlet Alaska (see supplementary material Appendix C). The compiled database is
available in supplementary material Table S1 (along with the full citations of the original
sources from which the data sets were derived), and is being integrated in the IsoBank
repository (Pauli et al., 2017). The data can be filtered by country, sample type (several
levels), or analytical substrate. Local data come from 3,249 plants, 2,598 soils, 2,335 local
animals (bone, dentine, enamel, snail shell), and 4,813 surface waters. The remaining samples
include migratory or highly mobile animals, humans, and dust that could be useful in other
applications. The database includes latitude and longitude data for each individual sample. In
the majority of cases, geographic coordinates were reported by the authors in the publication.
When these were not included, we used Google Earth to georeference reported geographic
information (e.g., maps or locality names). When necessary, authors of publications were
contacted to clarify locality information. The method of georeferencing and its associated
uncertainty are reported in the database (Table S1).
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Figure 2: Global compilation of 3’St/%6Sr data by substrate. A) Plants, B) Soils, C) Animals
and D) Water.

4.1.2 Geographic biases and sample distribution

The sampling density, and geographic distribution of bioavailable ¥’Sr/*Sr data vary
tremendously across the globe. Most samples are from regions with a high archeological
interest (e.g., Mesoamerica) or strong research funding programs (e.g., Europe, USA). Plant
and local animal samples are concentrated in Europe, the USA and the circum-Caribbean
region. Soil samples are highly concentrated in Europe with close to half coming from the
published GEMAS dataset (Hoogewerff et al., 2019). Water samples are more broadly
distributed and include most large rivers of the world; this reflects the 50 years of
hydrological research using ¥’Sr/*®Sr geochemistry. The sampling strategy also varied among
studies. In some, samples from different substrates were collected opportunistically
depending on research funds and accessibility (e.g., Laffoon et al., 2012), while in others,
samples from one substrate were collected systematically on a regular grid (e.g., Hoogewerff
et al., 2019). Additionally, even though the global compilation is extensive and covers areas
representing different climatic zones, many regions remain strongly under-sampled due to
restricted access, extreme climate conditions, or political reasons. These geographic biases
will propagate in models calibrated using this global compilation (e.g., regions with low
sample density will be poorly calibrated relative to regions with high sample density).

4.1.3 Descriptive statistics

Plants, soils and local animals display similar distributions of ¥Sr/*%Sr, with Quartile 1 =
0.7084 £ 0.0001, median = 0.7095 + 0.0003, and Quartile 3 = 0.711 £ 0.0004 (Fig. 3). More
than 90% of the samples have ¥’Sr/%6Sr that falls within a tight range of 0.706 + 0.001 to
0.720 £ 0.001 (Fig. 3). Variability in water is slightly larger with Quartile 1 = 0.7089, median
=0.7110, Quartile 3 = 0.7155, and a 90% interval range from 0.706 to 0.7396. This
difference in range between water and other substrates is likely due to spatial sampling biases
(Fig. 2). Many of the water samples compiled in the database are from older radiogenic
geological regions including the Himalayas, Canadian craton, Scandinavian cratons and
Russian cratons (Fig. 2). This geographic distribution contrasts with that of plants, soils and
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Figure 3: Distribution of 8’Sr/%Sr variability by substrate (stacked). The x-axis is cut at 0.750
to facilitate visualization but more some water samples fall beyond that range.

4.1.4 Intra-site variability

We explored intra-site variability in bioavailable 8’Sr/*®Sr by calculating the standard
deviation of 8’Sr/%Sr among samples at each location where more than one sample/substrate
was collected. This intra-site variability is an important measure as it represents the
maximum accuracy a model could reach. As noted in previous studies (Bataille et al., 2018;
Hoogewerff et al., 2019), there is a clear trend of increasing variance with increasing ’Sr/%Sr
for plants, soils and animals (Fig. 4). Bioavailable ¥'Sr/%®Sr is most variable for sites
dominated by very old felsic rock units (e.g., cratons) with ratios >0.710. The minimum
variance is found between 0.707 and 0.709, corresponding to 8’Sr/%®Sr of carbonate units
(Fig. 4). Sites with®’Sr/%6Sr <0.707 (typical of younger and/or mafic geologies) have slightly
higher variance than sites dominated by carbonates. Combining plants, soils and local
animals, the Root Mean Squared Error (RMSE) of intra-site variability is 0.001. However,
this RMSE is lower than 0.0005 when using only bioavailable 8’Sr/*°Sr < 0.710.

The positive correlation between predicted bioavailable 8’Sr/36Sr and RMSE is consistent
with the lognormal distribution of 8’Sr/*%Sr in the geosphere. As the age of a rock unit
increases, the different minerals composing this unit have increasingly divergent 8’Sr/%6Sr.
Differential weathering of those minerals can considerably increase variability in 8’Sr/%6Sr for
soils at radiogenic sites even at the very local scale (Clow et al., 1997). In addition, felsic
rocks tend to weather slowly, which means there may be a higher relative contribution of
bioavailable Sr from exogenous sources (e.g., dust) (Hoogewerff et al., 2019).
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Figure 4. Within-site ’Sr/%Sr variability by substrate. A) Plants, B) Soils, C) Local animals
and D) Water.

4.2 Mechanistic bedrock model

We applied the published model formulation of Bataille et al. (2014) at a global scale
using the GLiM geological map as the primary source for geological information. (Fig. 5).
This bedrock model predicts the median, Quartile 1 and Quartile 3 of ¥Sr/*°Sr for bedrock at
present-day. As the GLiM geodatabase does not contain numerical age information
(Hartmann and Moosdorf, 2012), we converted age descriptor to a range of numerical values
using the geological timescale (Walker et al., 2013; see supplementary material Table S2).
For more information on the exact parameterization steps of the bedrock model, refer to the
supplementary material in Bataille et al. (2014), including Tables A1 and A3. Predicted
bedrock ¥’Sr/%6Sr follows the expected trends, with higher 8’Sr/%6Sr in older cratonic settings
and lower 8’Sr/%Sr in arc settings (Fig. 5). However, the bedrock model predictions also
reflect the limitations of the GLiM geodatabase. The GLiM was constructed by compiling
geological maps at different resolutions with an "average" resolution of 1:3 750 000. It
divides lithologies into 16 major classes, separating mafic, intermediate and felsic plutonic
and volcanic rocks, metamorphic rocks, carbonates, evaporites, silicates, and mixed
carbonate/silicate sediments. Of particular relevance for predicting 8’Sr/*Sr in rocks,
secondary lithological descriptors also report the presence of carbonates, evaporites and
loess. However, reporting of secondary lithologies is inconsistent among countries (and
frequently absent). Similarly, the definition of bedrock can differ between countries, with
some surveys mapping surficial sediments (e.g., glacial till) as bedrock whereas other reserve
bedrock mapping to the solid rock unit underlying unconsolidated sediments. Consequently,
irregularities in predicted 37Sr/%Sr, reflecting different mapping methods, resolution and
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accuracy are often observed at political borders (e.g., Canada, USA). These inaccuracies
cannot be resolved until high resolution harmonized geological maps are produced at the
global scale. Another major source of uncertainty in this bedrock model is that the bedrock
ages (Table S2) mean different things for different lithologies (e.g., crystallization age for
intrusive rocks, eruptive ages for volcanic rocks, last higher-grade metamorphic overprint of
metamorphic rocks, and depositional age for sedimentary rocks). Consequently, some
lithologies (i.e., metamorphic, sedimentary), might contain significantly older minerals than
the overall age of the geologic unit (e.g., a recently deposited sediment might have zircon
grains that are billion years old). This can lead to large uncertainties in predicted bedrock
87Sr/%Sr.

87Sr/f5Sr
0.7030.7090.715 0.750 0.800

Figure 5: Global map of predicted 37Sr/%6Sr in bedrock following the formulation of Bataille
et al. (2014)

4.3 Other auxiliary data.

We assembled data on selected covariates that represent the main factors that impact
variability in bioavailable 8’Sr/%®Sr: Bedrock ages (see section 4.2), terrane age, surficial
geology type, soil properties, aerosol deposition, relief, climate, and agricultural activity
(Table 1). This series of covariates expands on Bataille et al. (2018) by including global
nitrogen and phosphorus fertilization (Potter et al., 2010), surficial deposits (Borker et al.,
2018), global mean annual temperature (Hijmans et al., 2005), and an updated raster of global
sea salt aerosol deposition (Vet et al., 2014).

Table 1: List of geological, climatic, environmental and anthropogenic variables used in the
multivariate regression. D = Discrete; C = Continuous; GLiM = Global Lithological Map;
CCSM.3 = Community Climate System Model 3; SRTM = Shuttle Radar Topography
Mission

Variables Description Resolution | Type | Source

r.maxage_geol | GLiM age attribute 1 km D (Hartmann and Moosdorf,

14



(Myrs) 2012)
r.minage_geol | GLiM age attribute 1 km D (Hartmann and Moosdorf,
(Myrs) 2012)
r.meanage_geol | GLiM age attribute 1 km D (Hartmann and Moosdorf,
(Myrs) 2012)
r.age Terrane age attribute 1 km D (Mooney et al., 1998)
(Myrs)
r.GUM Global unconsolidated 1 km C (Borker et al., 2018)
sediment map
r.ssaw Multi-models average sea | 1°x1° C (Vet et al., 2014)
salt wet deposition
(kg.ha'.yr'h)
r.ssa Multi-models average 1°x1° C (Vet et al., 2014)
Sea salt wet+dry
deposition
(kg.ha'.yrh)
r.dust Multi-models average 1°x1° C (Mahowald et al., 2006)
(g.m?yr"
r.elevation SRTM (m) 90 m C (Jarvis et al., 2008)
r.cec Cation Exchange 250 m C (Hengl et al., 2017)
Capacity
r.ph Soil pH in H,O solution 250 m C (Hengl et al., 2017)
(x10)
r.phkel Soil pH in KClI solution 250 m C (Hengl et al., 2017)
(x10)
r.clay Clay (weight %) 250 m C (Hengl et al., 2017)
r.orc Soil organic carbon 250 m C (Hengl et al., 2017)
(weight %)
r.bulk Bulk density (kg m™—) 250 m C (Hengl et al., 2017)
r.bouguer WGM2012_Bouguer 2 min C (Balmino et al., 2012)
r.map Mean annual 30-arc sec C (Hijmans et al., 2005)
precipitation (mm.yr-')
r.mat Mean annual temperature | 30-arc sec | C (Hijmans et al., 2005)
W)
r.nfert Global Nitrogen 30-arc sec C (Potter et al., 2010)
Fertilization
r.pfert Global Phosphorus 30-arc sec C (Potter et al., 2010)
Fertilization
504
505 4.4  Random forest regression and spatial predictions
506 4.4.1 Random forest regression procedure
507 All statistical analyses and figures from this manuscript are conducted in R programming

508 language version Rx64 3.4.2. (https://www.r-project.org/). An example of R-script is available
509 in supplementary material Script S1. We used random forest regression to predict

510  bioavailable ®’Sr/%°Sr variability using the compiled database (Table S1), the bedrock model
511 and the covariates described above following the framework developed by Bataille et al.

512 (2018) and the caret package (Kuhn, 2008). Random forest is a tree-based machine-learning
513  algorithm trained by bootstrap sampling and random feature selection. In a decision tree, a
514  random subset of the dataset is entered, and then each predictor splits the original dataset into
515  smaller and smaller sets at nodes in the tree. Random forest takes this idea to the next level
516 by constructing an ensemble of trees (or forest) using bootstrapping. Specifically, random
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forest creates multiple decision trees on different data samples where sampling is done with
replacement to prevent overfitting. To make fair use of all potential predictors, the number of
features split at each node of a tree is limited to some user-defined threshold. Ultimately,
random forest aggregates the results of these decision trees to predict the mean value of the
response variable, in our case the bioavailable 3’Sr/%Sr. Random forest is a practical
algorithm that requires very little pre-processing. No transformation is required for 3’Sr/%Sr
data as random forest makes no assumptions about the data distribution and residual
heteroscedasticity. Random forest can also directly integrate categorical variables in
multivariate regression so long as they do not have too many classes (Strobl et al., 2007).

In our approach, random forest regression models were optimized using root mean squared
error (RMSE) as the primary metric and a 10-fold repeated cross-validation scheme with 5
repetitions using 80% of the data for training at each iteration. Variable selection was
performed using the VSURF package (Genuer et al., 2015). Once a model is optimized, we
used variable importance purity measure and partial dependence plots to describe the
relationships between the selected predictors and predicted 8’Sr/%6Sr. Ultimately, the 3St/36Sr
isoscapes were generated using the best performing random forest regression model for each
substrate (plant, soil, local animal, water) and the associated predictors.

Spatial uncertainty assessment is critical for using isoscapes in continuous-probability
surface models of geographic assignment (Wunder, 2012). However, while random forest
provides a mean ’Sr/%°Sr prediction using the selected predictors, there are no built-in
features to assess spatially explicit model uncertainty. To circumvent this issue, we calculated
an uncertainty function for each trained model that relates the mean absolute residual values
to predicted ¥’Sr/%°Sr (e.g., Fig. 7D). This function reflects the observation that uncertainty
tends to increase with increasing predicted #’Sr/%¢Sr. While using quartile random forest
regression to calculate the interquartile range would be ideal (as in Bataille et al. 2018), this
method is computationally intensive. Our uncertainty function provides an average standard
deviation at each pixel that that can be directly used in probabilistic provenance assignments
(Wunder, 2012).

4.4.1 Comparison of random forest regressions among substrates

We applied random forest regression independently to the plant, soil, local animal, and
water datasets (Fig. 6). All substrates show very similar predictors after the VSURF variable
selection step (Fig. 7 and Appendix A). Random forest models applied to plant, soil, and
local animals perform similarly, whereas the model using only water data has a lower
performance (Fig. 6). In our approach, we extracted the values of covariates using site
location and the closest underlying 1 km? pixel. This approach is appropriate for plants, soils
and local animals because these substrates integrate Sr sources over local spatial scales.
However, river water frequently integrates Sr sources over much larger spatial scales and
from groundwater sources that are not represented in geological maps. Although extracting
local environmental conditions at 1 km? pixel resolution might be appropriate for small
streams, it becomes inaccurate for large rivers, which comprise a large proportion of the
database. Future predictive work focused on surface waters could use watershed-integrated
covariates to address this issue. Another reason for the lower model performance for water
samples, and to a lesser degree soil samples, is their broader distribution of 8’Sr/%Sr (due to
samples coming from a larger variety of geologies; Fig. 6B and 6D).
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To simplify visualization, we trained the main model using a dataset combining plant, soil
and local animal 3’Sr/%Sr (herein called the “combined local bioavailable 3’Sr/2Sr dataset™).
We excluded the water samples from this subset due to the difference in spatial integration
represented by this substrate. Model predictors, results, and residuals for individual substrates
including plant, soil, local animal, and water are available in supplementary material
Appendix A.
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Figure 6: n-fold cross-validation for random forest model by substrate. A) Plants, B) Soils, C)
Local animals, and D) Water. RMSE = Root Mean Square Error. Red lines are best fit linear
models.

4.4.2 Global bioavailable model performance

After VSURF feature selection, Bataille et al. (2014)’s model products (r.srsrql and
r.srsrq3) and geological variables (r.age, r.minage_geol) from the GLiM database were the
dominant predictors of the combined local bioavailable 3"Sr/*Sr dataset (Fig. 7A). Other
important predictors of 87Sr/*Sr included dust and sea salt aerosol deposition (r.dust and
r.ssaw), elevation (r.elevation), climate variables (r.pet and r.mat) and soil properties (r.ph
and r.clay) (Fig. 7A). After n-fold cross validation, the bioavailable 8’Sr/*¢Sr model explains
60% of the variance, with a RMSE of 0.0034 over the dataset (Fig 7B). The value of 0.0034
represents < 10% of the full range of observed bioavailable 3’Sr/*®Sr over the compiled
dataset. However, this uncertainty is not uniform across the prediction range. For low
bioavailable 37Sr/2Sr (<0.710), the RMSE is low (<0.001), with lowest uncertainty values for
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87S1/86Sr ~0.709 (Fig. 7C and 7D). However, as 3’Sr/*%Sr increases, the absolute values of
residuals increase (Fig. 7C and 7D). This observation conforms with previous studies (e.g.,
Bataille et al. 2018) that ecosystems developing on older, more felsic rock units (e.g., cratons,
Precambrian metasediments) not only have higher intra-site 8’Sr/*®Sr variability (Fig. 4) but
are also much harder to predict accurately. Ecosystems developing on carbonate units have

the lowest intra-site 8”Sr/%6Sr variability (Fig. 7D).
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Figure 7: Random forest regression model for the bioavailable 37Sr/*®Sr dataset combining
plant, soil and local animal samples: A) Variable importance plot after selection of predictors
by VSURF; B) N-fold cross-validation results with best fit linear model (red line); C)
Residuals against 8’St/Srreq; D) Absolute residual values (logscale) against 37 Sr/20Srpreq.
Green line indicates the best fit non-linear model between 0.703 and 0.709; red line indicates
the best fit non-linear model between 0.709 and 0.780. Refer to Table 1 for predictor names.

4.4.3 Predictors of bioavailable 8’Sr/*Sr variability
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We used a partial dependence plot to investigate the relationship between bioavailable
87S1/36Sr and the selected predictors for the combined local bioavailable 8’Sr/%°Sr dataset (Fig.
8). As expected bioavailable ¥'St/%Sr increased with increasing bedrock ¥’Sr/%°Sr (r.srsrql
and r.srsrq3), as well as the age of geological units (r.minage_geol) and terranes (r.age).
These relationships confirm the dominance of age and lithology of rock units in controlling
bioavailable 8’Sr/®Sr at the global scale (Bataille et al., 2014; Bataille and Bowen, 2012).
However, we also observe a lack of association between geological variables and
bioavailable 37Sr/2Sr for older rock units (Fig. 8). This observation confirms that the current
set of geological predictors (i.e., bedrock model products and GLiM products) are inadequate
for explaining the large variability of bioavailable 8’St/*Sr for rock units with higher
87Sr/368r.

A few additional geological predictors influence bioavailable 8’Sr/*Sr in the combined
local bioavailable 8’Sr/%6Sr dataset, including surficial deposit types (. GUM), elevation
(r.elevation), and soil proprieties (r.ph and r.clay). For surficial deposits, higher bioavailable
87Sr/%6Sr is found in regions dominated by siliciclastic surficial sedimentary units, including
unconsolidated alluvial, fluvial, glacial and aeolian sediments (Fig. 8), whereas lower
87S1/36Sr is observed for marine sediments (evaporites and carbonates), and pyroclastic units
(Fig. 8). While the global unconsolidated sediment map (GUM) is a significant predictor of
bioavailable 8’Sr/®Sr, its predictive potential could be improved in future modeling efforts by
characterizing the parent rock of each sedimentary unit using detrital zircon databases.
Bioavailable ¥’Sr/%Sr data also show a positive relationship with elevation, probably due to
the preferential uplift and exposure of older radiogenic units during orogenies. Bioavailable
87S1/86Sr decreases with soil pH and soil clay content, likely underlining the dominance of
carbonate weathering in more basic soils. We did not find any significant relationship
between N and P fertilization inputs and bioavailable ¥’Sr/%®Sr. However, this does not rule
out the potential impact of liming on bioavailable 3’Sr/%Sr in some settings (Thomsen and
Andreasen, 2019).

Multiple climate variables also strongly influence bioavailable 8’Sr/*Sr. Bioavailable
87S1/8Sr shows an exponential increase with both mean annual temperature (r.mat) and
potential evapotranspiration (r.pet). These relationships are likely coincidental and reflect the
strong sampling bias towards hot regions located on Precambrian cratons (e.g., Madagascar,
South Africa, and Tanzania; Fig. 2). The relationship between dust deposition (r.dust) and
bioavailable ¥Sr/%°Sr is complex. Bioavailable 37Sr/%6Sr decreases for moderate dust
deposition but increases at higher deposition rates. This relationship is probably associated
with the different isotopic signatures of dust sources: Dust with elevated 3’Sr/36Sr dominates
in regions with the highest deposition rate (e.g., Sahara Desert) while lower ’Sr/*¢Sr and
deposition rates are observed in other arid regions (e.g., Southwestern USA, South America).
Last, bioavailable 3’Sr/%Sr converges towards 0.71 with increasing sea salt aerosol
deposition, which is consistent with inputs of marine-derived Sr in coastal ecosystems.
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Figure 8: Partial dependence plots between predictors (x-axis) and predicted bioavailable
87S1/%Sr (y-axis) from random forest regressions using the combined local bioavailable
87Sr/%Sr dataset. Refer to Tables 1 for description and sources of each covariate. Hash marks

along the x axis show covariate sample decile values. For r.GUM, the x-axis represents
unconsolidated sediment categories with O = No surficial sediment reported;1 = Colluvial; 2

20



641
642

643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

= Eolian; 3 = Glacial; 4 = Lacustrine; 5 = Marine; 6 = Organic; 7 = Evaporite; 8 =
Pyroclastics; 9 = Coastal.

4.4.4 Patterns in bioavailable 3’Sr/*Sr variability

We used the random forest regression results from the combined local bioavailable
87Sr/%Sr dataset to predict bioavailable 3’Sr/*°Sr at the global scale (Fig. 9). The spatial
uncertainty map associated with these predictions is calculated using the relationship between
absolute residual value and bioavailable 8’Sr/*®Sr predictions (Fig. 7D). The median
bioavailable 3’Sr/*Sr predictions show similar spatial patterns to predictions by the
mechanistic global bedrock model (Fig. 5). High bioavailable 3St/®Sr is predicted for
cratonic and mountainous regions dominated by older, felsic bedrock units, as well as arid
regions across the Sahara Desert and the Middle East, where dust with elevated 8’Sr/%°Sr
substantially contributes to the bioavailable Sr pool. Low 8’Sr/%Sr is found in arc settings and
carbonate-dominated regions. However, the overall variability in predicted bioavailable
87Sr/%6Sr is lower than the bedrock model. This buffering is consistent with our knowledge of
Sr isotope cycling from rocks to ecosystems. The majority of predicted bioavailable ¥’Sr/%6Sr
falls within a tight range from 0.7085 to 0.711, and converges towards 0.710 (Fig. 3).

This convergence towards 0.710 likely reflects the mixing of Sr from two main sources:
1) Siliciclastic Sr and 2) marine Sr. Siliciclastic sediments are volumetrically the dominant
parent material to most ecosystems (Hartmann and Moosdorf, 2012). As described earlier,
silicates have a broad range of 8’Sr/%6Sr ranging from 0.703 in mafic environments to more
than 0.720 in older felsic units with an average upper crust value of 0.716. However, while
silicates constitute the main parent material to most soils, they contain little Sr, weather
slowly, and do not represent the dominant source of Sr to most ecosystems. Conversely,
carbonates and evaporites cover only a small portion of the Earth surface (Hartmann and
Moosdorf, 2012), but they contain more Sr and weather faster than other rock types (Palmer
and Edmond, 1992). Consequently, marine Sr, with its comparatively tight isotopic range
(0.707-0.709) tends to contribute to most ecosystems across the globe through direct
weathering of carbonate units, weathering of trace carbonates in shales, deposition of
carbonate dust, and/or addition of sea salt aerosols.
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Figure 9: Global map of predicted bioavailable 8’Sr/*°Sr from random forest regression.

5. Testing the global bioavailable ¥’Sr/*Sr isoscape
5.1  Regional dataset

We tested the performance of the model in two regions with different geological settings
and sampling density to provide guidance on how to use this global bioavailable 8’Sr/3°Sr
isoscape. First, we used data collected through the GEMAS project (Hoogewerff et al., 2019)
to test the performance of the global model in a data-rich region. To date, GEMAS is the
most systematic and comprehensive continental-scale dataset of bioavailable 8’Sr/2°Sr. The
dataset includes close to 1,200 soil samples from a large collection of grazing (Gr) and
agricultural (Ap) soils in Europe. It also covers a broad geographic range, including Eastern
and Northern Europe with diverse geology, climate and environmental conditions (e.g., Baltic
Shield), making the dataset ideal for testing the performance of the global model in a data-
rich region. Second, we examined bioavailable 8’Sr/%®Sr for the island of Madagascar. The
dataset includes published data (Burney et al., 2020; Crowley et al., 2018, 2017b; Crowley
and Godfrey, 2019) as well as previously unpublished data from plants, modern rodents and
subfossil local animals (n = 279) at 54 individual locations (See supplementary material
Appendix B). Madagascar, and Africa as a whole, is a data-poor region for bioavailable
87S1/%Sr. The closest bioavailable 87Sr/%®Sr dataset in our global database is from South
Africa (Copeland et al., 2016). Additionally, Madagascar is geologically heterogeneous and
complex. Its bedrock geology spans Earth’s history, from the Archean to the Quaternary
(reviewed in Crowley and Sparks, 2019). Most of the island is dominated by Precambrian
units with varied lithologies. Variable climate and rugged topography further complicate Sr
isotope cycling from rocks to ecosystems. Ultimately, Madagascar is one of the regions of the
world where bioavailable 8’Sr/%Sr is likely to be highly heterogeneous, which will likely
affect the predictive accuracy of our global model.

5.2 Model comparison approach
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We compared the performance of four modeling approaches to predict bioavailable
87S1/36Sr for the GEMAS dataset and the newly amassed Madagascar dataset. First, we
compared each bioavailable dataset to bedrock model predictions. Second, we compared the
bioavailable 3’Sr/®Sr datasets to predictions from our non-locally calibrated global random
forest regressions. For these models, we applied random forest regression using the global
bioavailable 3’Sr/*Sr compilation (i.e., combined local bioavailable ¥’Sr/%¢Sr dataset) but
selectively removed bioavailable data from GEMAS or from Madagascar depending on the
location tested. The goal of this step was to assess the possibility of extrapolating global
model predictions for an area with little or no bioavailable Sr/*°Sr data. Third, we compared
the bioavailable Sr/3°Sr datasets to the global bioavailable 3’Sr/*¢Sr model calibrated using
the global compilation including 8’Sr/*Sr data from GEMAS and Madagascar. Lastly, we
compared the bioavailable 8’Sr/%6Sr datasets to locally calibrated models. For these models,
we applied random forest regression using only the GEMAS or newly amassed Madagascar
87Sr/%Sr dataset, respectively (Fig. 9).

5.3 Results of model comparisons
5.3.1 Europe

In Europe, we found that the bedrock model alone explains 30% of the variance in the
GEMAS ¥7Sr/%Sr dataset (Fig. 10A), confirming that bedrock 8’Sr/%6Sr is an important driver
of bioavailable ¥’Sr/%6Sr (Hoogewerff et al., 2019). The good performance of the bedrock
model also reflects the high precision of geological maps used in the GLiM database for
Europe (Hartmann and Moosdorf, 2012). Random forest regression using exclusively local
bioavailable 37Sr/2°Sr data is the model that best predicts bioavailable 8’Sr/*®Sr from the
GEMAS dataset (Fig. 10D). However, the performance of this locally calibrated model is
comparable to the globally calibrated models (Fig. 10B and 10C).

When calibrating a random forest using only GEMAS soil data, nitrogen fertilization rate
becomes a significant predictor in the regression (Fig. 10D). As GEMAS is exclusively
focused on agricultural soils, it is expected that fertilization practices (e.g., liming) impact
87S1/36Sr in the exchangeable soil fraction (Frei et al., 2020; Hoogewerff et al., 2019;
Thomsen and Andreasen, 2019). This predictor was not selected when calibrating the model
using the combined global and local bioavailable 3’Sr/%Sr dataset, which suggests that local
calibration might be more appropriate in certain cases when trying to predict one specific
substrate (e.g., soil). However, use of local calibrations that include more regionally- or
system-specific model relationships caries the potential risk of producing errant predictions if
the model is applied to areas where these relationships are irrelevant or inconsistent with the
calibration data. A firm understanding of the underlying mechanisms and drivers of Sr/3°Sr
variation is crucial in developing and using such models.

We further demonstrate that the global random forest regression excluding GEMAS data
(Fig. 10B) performs nearly as well as the random forest that includes GEMAS data (Fig.
10C). This observation highlights the potential of extrapolating predictions in data-rich
regions. Importantly, we underline that removing the GEMAS dataset from the training set
does not remove all the European data. Many studies have collected bioavailable 8’Sr/%6Sr
data in Western Europe (see compilation in Bataille et al., 2018). While those datasets do not
cover parts of eastern and northern Europe included in the GEMAS dataset, they do provide a
strong basis for calibrating the relationships between bioavailable 8Sr/*°Sr and the covariates
in unsampled regions across the entire European continent. The success of this extrapolation
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likely depends on the similarity of geological and environmental conditions found in the
under-sampled areas with those of the training set. This observation also indicates that the
sampling density in Europe is probably sufficient to train accurate 8’Sr/%°Sr isoscapes with the
current set of predictors. Additional sampling will only improve this performance marginally.
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Figure 10: Cross-validation of different models for the GEMAS dataset: A) Bedrock model;
B) Random forest regression calibrated using the global bioavailable data without data from
GEMAS, C) Random forest regression calibrated using global bioavailable data including
bioavailable data from GEMAS, and D) Random forest regression calibrated using
bioavailable data from GEMAS only. Red lines are best-fit linear models.

5.3.2 Madagascar

In Madagascar, we found that the bedrock model does not perform as well as in Europe
(Fig. 11A). This was not surprising as the map used in the GLiM for Madagascar is outdated
and has a low resolution (Besairie, 1964). As mentioned earlier, Madagascar is a very
geologically complex region, and the lack of detailed geological maps strongly limits the
ability of the bedrock model to predict 37Sr/%°Sr in the geosphere or the biosphere. A much
more detailed geologic map of Madagascar does exist (Roig et al. 2012); integrating updated
products like this into the GLiM will help improve global 8’Sr/%6Sr isoscape models.

In Madagascar, the performance of the locally calibrated model (Fig. 11D) is significantly
improved in comparison with the globally calibrated models (Fig. 11B and 11C).
Additionally, the globally calibrated model excluding Madagascar data performs poorly (Fig.
11B). While most of the bioavailable ¥’Sr/%Sr data fall on a strong correlation line, several
large residuals limit the model accuracy. These large residuals are from bioavailable 3St/6Sr
data collected on old metamorphic and sedimentary rock units that represent geological
and/or environmental conditions that were not encountered in the combined local
bioavailable 8’Sr/*Sr training dataset. Under such conditions, extrapolation of global
87S1/36Sr predictions becomes invalid. Even when including the Madagascar data in the global
compilation, these data are not sufficient to fully overcome the strong predictive bias towards
data-rich regions. This result underlines the need for local bioavailable 8’Sr/*®Sr data in
regions that are geologically complex and under-sampled. With the current set of covariates,
the global isoscape is well-calibrated for Europe and North America where most bioavailable
87S1/3%6Sr data have been sampled but poorly calibrated in other regions. To solve this issue,
more bioavailable 8’Sr/*Sr data are required across Madagascar and Africa, particularly from
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Figure 11: n-fold cross-validation of different models on the Madagascar dataset: A) Bedrock
model; B) Random forest regression calibrated using the global bioavailable data without
data from Madagascar, C) Random forest regression calibrated using global bioavailable data
including bioavailable data from Madagascar, and D) Random forest regression calibrated
using bioavailable data from Madagascar only. Red lines are best-fit linear models.

6.
6.1

Guidelines, knowledge gaps and new research avenues
Guidelines for using the global isoscape

Provenance studies have underlying assumptions specific to the sample type and the
question being addressed. The predicted bioavailable 8’Sr/%Sr isoscape presented here (Fig.
9) is best suited as a broad scale approach for 1) excluding provenance areas and 2) informing
where targeted sampling for a specific research question should occur. When samples in
question exhibit a limited range in bioavailable 'St/%¢Sr, as is the case for plants, soils, and
animals with small feeding ranges (e.g., non-migratory rodents), the bioavailable 8’Sr/*¢Sr
isoscape can also be used to predict areas of natal origin. However, the current bioavailable
87S1/8Sr isoscape can be considered robust only in data-rich areas, and extrapolations to other
regions should be approached cautiously, particularly where geological and environmental
conditions differ from those represented in the training set. In data-poor regions, the accuracy
and resolution of the bioavailable 8’Sr/%®Sr isoscape should be tested by collecting additional
data. We encourage other researchers to test, and if required recalibrate, their own 3’Sr/%Sr
isoscapes using the global framework presented here (see supplementary material script S1),
and also to add new local bioavailable 'Sr/*°Sr data to the global compilation (more details
provided below). The number of additional data required to calibrate the model to a specific
study area is challenging to determine. A cost-effective strategy would be to collect an initial
small dataset to test the accuracy of the global bioavailable ¥’Sr/%°Sr model to help verify its
performance. When performance is poor (e.g., Madagascar), collecting more data should be
considered depending on the scale of the study, the complexity of the geology and the
existing distribution of bioavailable 87S1/36Sr data. However, as additional data are included
in the modeling, model predictions will probably degrade in some data-rich regions as the
global model looks for the best prediction compromise given available data and covariates.
The number of predictors will need to be increased to avoid this biasing. As demonstrated in
this review, another possible solution for local and regional studies is to calibrate a model
using only local to regional bioavailable 8’Sr/*°Sr data.

6.2

Knowledge gaps
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6.2.1 Improving the global database, analytical methods, sampling strategy and
centralized repository

Although the ’Sr/%Sr data used in the combined local bioavailable 3’St/*Sr training
dataset appear to be quite dense (Fig. 1), there are still huge data gaps in many
environmental, geographic and geological settings that limit the accuracy of the global
bioavailable 3’Sr/%°Sr isoscape. The current global compilation is heavily biased towards
agricultural and densely populated regions of Europe and North America (Fig. 2). This
sampling bias is propagated to the global 8’Sr/%6Sr isoscape, leading to degradation of
predictions in under-sampled parts of the world (e.g., Madagascar). High latitudes, desert,
semi-arid regions, tropics, wetlands, and mountainous areas are largely under-represented.
Most cratonic regions and their associated sedimentary basins are also largely under-
represented (e.g., Africa, Australia, Canada, or Brazil). Gaps from many remote regions
could be filled through targeted Sr isotope analysis of samples from museum collections (e.g.,
rodents; https://arctosdb.org/; Fig. 12). These samples could be used to facilitate the
development of ¥’Sr/%Sr isoscapes in high-latitude regions with applications for migratory
birds, megafauna or early human mobility. As demonstrated in this review, regional accuracy
of the global model could be significantly improved by adding only tens to hundreds of
points in under-sampled areas (Fig. 11). Conversely doubling the number of points in already
well-sampled regions will only bring minor improvement (e.g., Europe). As bioavailable
87S1/%Sr data are positively skewed, sampling needs to account for the higher variability in
older and more complex geological settings. Sampling those regions at high density might
help capture some of the high variance observed in these regions. This type of sampling
rationale can be systematized using available statistical algorithms (e.g., Latin Hypercube)
that use the distribution of existing covariates (e.g., geology, climate) to optimize the
sampling strategy at a given location or globally (Minasny and McBratney, 2006).

Filling these data gaps will require 3’Sr/%Sr analysis of thousands of samples. Despite
significant analytical improvements in the last decades, analyzing 3’St/%¢Sr is currently
expensive and slow in comparison with other isotopic systems analyzed using continuous
flow stable isotope ratio mass-spectrometry or cavity ring down spectroscopy. In the last few
years, new methods have emerged that make 3’Sr/%°Sr analysis faster and more affordable,
increasing the possibilities of generating high-density datasets. For example, the use of Laser
Ablation (LA)-MC-ICPMS instead of solution methods for analyzing solid samples with high
Sr content (e.g., animal teeth) allows very high throughput, limited sample preparation and
sufficient analytical precision for most provenance studies (+0.0001). This method could help
develop large datasets from museum specimens (e.g., rodents) and improve the accuracy of
bioavailable 37Sr/2Sr isoscapes in remote regions (Fig. 12). More recently, the use of ICP-
MS/MS with in-line Rb separation has been proposed to increase throughput, decrease cost
and limit sample amount for solution methods (Murphy et al., 2020). This method provides
fast and relatively inexpensive analysis of small biological samples (e.g., insect tissues) with
similar analytical precision to LA-MC-ICPMS (£0.0001). Lastly, the addition of an
autosampler with syringe injection on MC-ICP-MS instruments (e.g., microFAST-MC) has
contributed to increased throughput and reduced mass requirements without compromising
analytical precision. To increase throughput, MC-ICP-MS users could further reduce the
integration time and number of ratios analyzed. This would decrease analytical precision, but,
as mentioned above, precision of £0.0001 is usually sufficient in provenance studies. We
encourage researchers to further develop and adopt these analytical methods to continue
decreasing the price and time required for Sr/%Sr analysis.

One final critical issue when generating a bioavailable 3Sr/%6Sr dataset is the lack of
guidance on the metadata required when collecting bioavailable 8’Sr/%Sr data (Grimstead et
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861 al., 2017). Most bioavailable 8’Sr/2°Sr datasets include some fields representing location and
862  isotopic data. The remaining metadata provided by authors vary as no metadata template
863  exists in the community. This is problematic because different fields or substrates require
864  different types of metadata. Moreover, many metadata fields are often required to better
865  screen and use bioavailable 8Sr/*%Sr data for provenance applications. In compiling the

866  dataset for this study, geographic coordinates, substrate type (e.g., plant, soil, water, animal
867  tissue), sample details (e.g., plant species, soil depth), tissue sampled (e.g., enamel versus
868  dentine, whole plant versus leaves), analytical method,and analytical precision needed to be
869  mined from the main manuscript or directly from the authors in many cases. This is time-
870  consuming, not always successful, and could be entirely avoided if appropriate data and
871 metadata templates were provided to the community. These challenges are being addressed
872 by the development of IsoBank, a centralized repository for isotope data (Pauli et al., 2017).
873  This repository will contain data templates specific for bioavailable 8’Sr/%6Sr data that will
874  facilitate the integration of data from multiple sources and fields (planned launch date is
875  2021).
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Figure 12: An example of filling 3’St/®6Sr data gaps in a remote region (Alaska): A) Results
of a query on the Arctos database (https://arctosdb.org/; Accessed April 1, 2020) for teeth of
selected non-migratory rodents (including Lemmus, Microtus, Myodes and Discrostonyx
species) in the mammal collection at the University of Alaska Museum of the North. B)
Mounting of rodent teeth prepared for cost-effective and rapid LA-ICP-MS ¥7Sr/%°Sr analysis.

6.2.2 Improving modeling

It has already been demonstrated that random forest outperforms most linear and non-
linear models by better representing complex non-linear relationships in bioavailable 8’Sr/*®Sr
data (Bataille et al., 2018). The current script (see supplementary material script S1) is
designed to handle large datasets with dozens of covariates. This script uses parallelization to
boost raster calculation and random forest prediction through the caret (Kuhn, 2008) and
doParallel packages (Calaway et al., 2018). However, as the database of bioavailable
87S1/3%6Sr data grows and/or more covariates are accounted for, the regression matrices will
exceed the capability of desktop computers. This high computational intensity is one of the
drawbacks of using random forest regression as the computational loads grow exponentially
with more data. Random forest is also sensitive to noise and errors in the data and requires a
careful quality check, which is often an issue with large interdisciplinary compilations.

As demonstrated in this review, the extrapolation of models fitted using random forest is
suitable for data-rich regions but risky for data-poor regions with geologies that fall outside
of the calibration dataset, or have outdated geology maps in the GLiM. Sampling biases are
also propagated into the bioavailable 8’Sr/*Sr predictions. Once enough bioavailable data are
available from all parts of the world, one solution to limit biasing and computing time will be
to train a model on a geographically well-distributed subset of the database. Many of the
relationships found by random forest regression are also non-deterministic and not stationary.
A good example of this issue is represented by the relationship between bioavailable ¥’Sr/%6Sr
and dust deposition (Fig. 8). In the global model, dust deposition combines information about
dust flux and dust sources into one single variable (r.dust). If new bioavailable data are
collected in regions with elevated dust flux with low 3’Sr/*Sr (e.g., China), this will likely
degrade the relationship between bioavailable ®’Sr/*¢Sr and dust in the model. This type of
issue underlines the need for additional and better covariates which would open-up more
targeted modeling opportunities. A large part of the model uncertainty is due to the limitation
of global geological maps. Including geological map products is currently essential, as they
are the dominant predictors of bioavailable 87Sr/36Sr variability. However, their inaccuracies,
lack of homogeneity in resolution and classification scheme, and boundary issues, are also
transmitted to the predicted bioavailable 37Sr/%Sr variations. A continuous geospatial dataset
that captures geological variability (e.g., radiometric data) or multispectral satellite data (e.g.,
WorldView-3) would considerably improve the situation. Lastly, while random forest can
train accurate models, expert knowledge on geology, geochemistry and environmental
science remain critical for interpreting model results. Calibrating a bioavailable 8’Sr/*Sr
isoscape requires carefully verifying the relationships between predictors and response
variables. Ultimately random forest regression models should pave the way to improve
mechanistic modeling approaches.

6.3  Conclusions and perspectives

Here we have presented the first validated, high-resolution ¥’Sr/*®Sr isoscape at the global
scale, which should be useful to many researchers interested in provenance applications.
These 87Sr/*°Sr isoscapes provide powerful templates for extrapolating between and beyond
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the bounds of existing databases. They can be used independently or coupled with other
isotopic systems (e.g., hydrogen, oxygen, and carbon) to provide provenance assignments in
a range of fields. To date, 3’St/%6Sr has been largely underused in ecological applications in
comparison with other isotopic systems. However, with the rapid advances in the
development of ¥’Sr/%°Sr isoscapes, we anticipate that 8’Sr/3°Sr will become a tool of choice
for investigating the mobility of migratory species at large spatial scales. 8’Sr/%®Sr exhibits
limited temporal variability but high-resolution spatial patterns, and offers unique advantages
relative to other isotopic systems. New applications of 8’Sr/%6Sr to assess the population
dynamics and migratory pathways of bird and insect species are ongoing and will reveal the
potential of 37Sr/*°Sr in this type of ecological applications. The global bioavailable 8’Sr/%6Sr
isoscape is also relevant to investigations of the ecology of extinct animal species. Global
87S1/%Sr paleo-isoscapes will be key to resolving questions about megafaunal ecology, early
human dispersals, or human societies. Advances in 8’Sr/36Sr isoscapes should also make this
geochemical tracer increasingly relevant in forensic and food sciences. Such applications will
probably require calibrating substrate-specific global 3Sr/*%Sr baselines (e.g., drugs, wine).
The up-front cost might be challenging, but once developed, these calibrated isoscapes will
be valid for the long term and readily applicable to other markers. While considerable gaps
remain in the development of global ’St/%6Sr isoscape, this study paves the way for rapid
advances in the applications of this tracer in large-scale provenance applications.

For researchers interested in biogeochemical cycles, the development of global 87Sr/%°Sr
isoscapes and ¥’Sr/*®Sr compilations offers a novel and exciting research avenue for
improving global Earth systems models. We have already underlined that developing pure
mechanistic isoscapes is beyond our current knowledge of Sr isotope cycling. However, these
knowledge gaps point to a key opportunity for advancing our understanding of
biogeochemical cycles through ’Sr/*®Sr modeling. It has long been known that 37Sr/%Sr is a
unique tracer of elemental cycling in rivers, aerosols, and ecosystems at the local scale.
Global predictive ¥’Sr/%°Sr modeling provides the opportunity to scale up this tracer from the
local to the global scale. For example, bioavailable 8’Sr/*°Sr modeling could provide a novel
method for understanding soil weathering processes, or estimating the elemental contribution
of aerosol inputs to ecosystems, while constraints gained from regression models could help
advance the quantitative theory describing the controls of elemental cycling in the
hydrosphere, atmosphere and ecosphere. Similarly, developing global 8’Sr/*Sr isoscapes in
river water would be relevant to better partitioning solute sources in watersheds. At the global
scale, 87Sr/%0Sr isoscapes could help quantify the global elemental flux from continental
surfaces refining thereby global elemental budget in seawater. With the advances of plate
models and paleogeological reconstructions, it might even be possible in the future to
reconstruct 3’Sr/%Sr on the Earth’ surface in deep time to provide new constraints on global
biogeochemical cycles in specific time periods.
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