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ABSTRACT

This paper considers network protection games against dif-
ferent types of attackers for a heterogeneous network system
withN units. A defender, by applying resources to networked
units, can decrease the units’ vulnerabilities. At the same
time, the defender needs to take into account the cost of using
defense resources. Two non-zero sum Nash games against
two different types of attackers are studied. The first type
tries to maximize damage based on the value of security as-
sets related to networked units, while the second type aims
at infiltrating the network. The analyses show that there ex-
ists a cut-off index determining the set of units that will be
protected in the equilibrium strategies of the first game, while
either all units or none will be covered in the equilibria of the
second game. Numerical examples detail an application for
wireless communication networks.

Index Terms— Network protection, non-zero sum game,
wireless networks security

1. INTRODUCTION

Cyber attacks have become a major threat to networked sys-
tems such as computer networks and wireless communication
networks. Game-theoretic models have been used to investi-
gate optimal defense strategies against intelligent attackers to
enhance network security addressing various aspects [1, 2],
including intrusion detection systems [3, 4] and physical layer
security for wireless communication networks [5, 6, 7, 8].

In intrusion detection problems, the defender needs to
monitor a set of subsystems in preparation for upcoming
intrusion attacks. Alpcan and Basar [4] introduced the fun-
damental game-theoretic framework in which an intrusion
detection system (IDS) strategically decides the probability
of setting an alarm for a subsystem. Agah et al. [3, 9] studied
an intrusion detection game for a sensor network and showed
that the defender should monitor clusters with lower defense
cost. Chen and Leneutre [10] proposed a game-theoretic
model to find the optimal target selection strategy for intru-
sion detection in heterogeneous networks with each network
unit containing security assets of different values. Garnaev
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et al. [11] considered a scenario in which the level of pro-
tection effort and intrusion effort can affect the probability
of successful intrusion detection. Comprehensive surveys of
game-theoretic models applied to intrusion detection systems
can be found in [12] and [13].

Game-theoretic models have also been used to find opti-
mal resource allocation plans to protect parallel communica-
tion networks. Altman et al. [5] presented a game-theoretic
transmission power allocation strategy over parallel channels
against a hostile jammer. Garnaev and Trappe [7] proposed
a type of active eavesdropper who strategically attacks a lim-
ited number of wireless channels and solved for the optimal
transmission power control plan using an anti-eavesdropping
game. A review of other related works can be found in Chap-
ter 10 through 12 of the book [14].

Most of the work mentioned above assume that the at-
tacker differentiates the networked units based on some value.
For instance, a network intruder prefers to attack a unit that
contains more valuable assets, and an eavesdropper tends to
attack wireless channels with higher eavesdropping capac-
ity. However, some attackers may treat all networked units
equally, such as the infiltration type attacker discussed in [13,
15]. Therefore, a key point to successfully applying game-
theoretic models for security is to correctly evaluate the ad-
versary’s intentions. Garnaev et al. [16] discussed protection
strategies when the attacker may be of maximal damage or in-
filtration type, or when the attacker’s type is uncertain. Zhang
et al. [17] defined a security game where the defender has
ambiguous information about the attackers’ types. Recently,
Chen et al. [18] applied the principle of Pareto optimality in
repeated security games in which the defender can handle dif-
ferent types of attackers simultaneously.

This paper presents a game-theoretic approach to protect
a heterogeneous network from intelligent attackers. Partic-
ularly, we focus on the case in which the attacker’s payoff
varies according to its type while also taking into account
the cost of defense. As shown in [5, 9], the defense cost
has significant effect on the equilibrium strategies. To the
best of our knowledge, the research that is most relevant to
this paper is [16], which ignores the cost of defense. We in-
troduce two Nash games corresponding to different attacker
types. The analysis demonstrates the optimality of thresh-
old type equilibrium policies for the first game and the opti-



mality of an All-or-Nothing type equilibrium policies for the
second game. The equilibrium of each game are derived in
closed form. Furthermore, numerical examples of the pro-
posed game-theoretic models applied to cooperative jamming
problems exhibit various insights.

2. FORMULATION OF THE PROBLEM

Consider a heterogeneous networked system with N units,
of which the assets that need to be protected are valued as
C1, C2, . . . , Ci, . . . , CN , respectively. A cyber attacker is tar-
geting some of the units. To minimize the effect of these cyber
attacks, an agent works as the defender.

This paper considers the situation in which both the at-
tacker and the defender have limited resources, so the units
to be attacked and protected must be picked strategically. For
the sake of simplicity, assume that C1 > C2 > · · · > CN .
The attacker’s mixed strategy is a normalized vector y =
(y1, ..., yN ) such that yi ≥ 0, ∀i = 1, ..., N , where yi is
the attack resource applied at unit i. Assume the attacker is
aggressive and she will always use up all resources on hand
such that

∑︁N
i=1 yi = 1. The defender’s mixed strategy is a

normalized vector x = (x1, ..., xN ) such that xi ≥ 0, ∀i =
1, ..., N , where xi is the defense resource applied at unit i.
Unlike the attacker, the defender needs to consider the cost
related to the usage of defense resources and may not allocate
all resources into defense when it is not economic. Thus, the
constraint for x is

∑︁N
i=1 xi ≤ 1. Moreover, letGi(xi) = gixi

be the cost of defending unit i, where gi > 0 denotes the unit
cost of applying defense resources at unit i [11, 19].

Let pi(xi, yi) be the vulnerability of unit i when xi de-
fense resources and yi attack resources are applied. Let
Ri(xi, yi) = pi(xi, yi)Ci denote the expected damage at
unit i which is proportional to the vulnerability and security
assets’ value at unit i. Note that the vulnerability function
pi(xi, yi) should have the following properties: (1) pi(xi, yi)
is decreasing w.r.t xi ≥ 0; (2) pi(xi, yi) is increasing w.r.t.
yi ≥ 0; (3) the vulnerability is 0 when unit i is not attacked,
that is, pi(xi, 0) = 0. In this paper, a linear representation
for the vulnerability function is adopted as suggested in [16],
that is, pi(xi, yi) = (1 − dixi)yi, ∀i = 1, ..., N, where
di ∈ (0, 1) stands for the effectiveness of applying defense
resources at unit i.

Below are two application scenarios of the network pro-
tection problem described above.

1. Intrusion detection against DDoS attack. Let the net-
worked system be a cluster of distributed cache servers.
yi denotes the proportion of attack packets used to at-
tack server i. xi denotes the proportion of monitoring
time assigned by the defender to server i. Ci represents
the volume of network traffic assigned to server i. di
stands for the maximal detection probability at server i,
and gi stands for the cost per unit time when the moni-
toring device is turned on.

2. Cooperative jamming against eavesdropper. Let the
networked system be an OFDM wireless network with
N sub-carriers. yi denotes the proportion of time an
eavesdropper spending on attacking sub-carrier i. xi
denotes the proportion of time to initiate cooperative
jamming on sub-carrier i. Let Ci be the eavesdropping
capacity of sub-carrier i and di be the percentage of
reduction of Ci if cooperative jamming is activated at
channel i. Moreover, let gi stands for the cost per unit
time to send cooperative jamming signal.

This paper considers the situation in which the defender
and the attacker take actions simultaneously and can not ob-
serve their opponent’s decisions ahead of time. The defender
wants to minimize the total expected damage to the whole
network caused by a cyber attack while maintaining a reason-
able level of defense expenditure. Thus, the defender’s utility
function is

uD(x,y) = −
∑︂N

i=1
Ri(xi, yi)−

∑︂N

i=1
Gi(xi)

= −
∑︂N

i=1
yiCi +

∑︂N

i=1
(yidiCi − gi)xi,

(1)

which needs to be maximized. Meanwhile, the attacker wants
to maximize uAh (x,yh), which is the total expected dam-
age to the whole network based on Chi

’s, where h ∈ {I, II}
stands for the type of the attacker, and Chi is type h attacker’s
evaluation for her benefit of attacking unit i. Next two sec-
tions discuss the defense strategies against two types of at-
tackers, namely, the maximal damage type attacker and the
infiltration type attacker. This paper looks for the Nash Equi-
librium (NE) strategy y∗

h for each type of attackers, together
with the corresponding defense strategy x∗, under complete
information. That is, the strategy pair (x∗,y∗

h) satisfies

uD(x∗,y∗
h) ≥ uD(x,y∗

h), ∀x ∈ X,

uAh (x
∗,y∗

h) ≥ uAh (x
∗,yh), ∀yh ∈ Y,

where X and Y denote the sets of strategies of the defender
and the attacker, respectively.

3. THE MAXIMAL DAMAGE TYPE ATTACKER

This section considers the scenario in which the attacker,
called the Type I attacker, tries to inflict the maximal dam-
age to the system.Type I attacker will use the security
assets’ value to represent the damage on unit i, that is,
CIi = Ci, ∀i = 1, ..., N. So the utility function for Type I
attacker under arbitrary strategy pair, (x,yI), is

uA
I (x,yI) =

∑︂N

i=1
(1− dixi)CiyIi . (2)

Notice that this is a bimatrix non-zero sum game with two
players, namely the defender and the Type I attacker. Since
this is a finite game, there is at least one mixed NE pair as
proved by Nash [20]. The following theorem demonstrates
an explicit threshold type structure of the equilibrium strategy
pair, (x∗,y∗

I ), for this non-zero sum game.



Theorem 1. Consider the non-zero sum game against a Type
I attacker, let k be a positive integer such that ϕk < 1 <
ϕk+1 where ϕi is a strictly increasing sequence defined as
ϕi =

∑︁i
j=1

Cj−Ci

djCj
, ∀i = 1, .., N, and ϕN+1 = ∞. Let

m be a non-negative integer such that ψm < 1 < ψm+1

where ψi is a strictly increasing sequence defined as ψi =∑︁i
j=1

gj
djCj

, ∀i = 1, .., N, and ψN+1 = ∞.
(a) If k ≤ m, then the game has a unique NE (x∗,y∗

I ),

x∗
j =

⎧⎨⎩
1

djCj∑︁k
i=1

1
diCi

(1−
∑︁k

i=1

Ci−Cj

diCi
), ∀j ≤ k,

0, ∀k < j ≤ N,

y∗
Ij =

⎧⎨⎩
1

djCj∑︁k
i=1

1
diCi

(1−
∑︁k

i=1

gi−gj
diCi

), ∀j ≤ k,

0, ∀k < j ≤ N.

(b) If m < k, then the game has a unique NE (x∗,y∗
I ),

x∗
j =

{︄
Cj−Cm+1

djCj
, ∀j ≤ m,

0, ∀m < j ≤ N,

y∗
Ij =

⎧⎪⎨⎪⎩
gj

djCj
, ∀j ≤ m,

1−
∑︁m

i=1
gi

diCi
, j = m+ 1,

0, ∀j > m+ 1.

Proof. We provide a proof in the appendix.

Remark. We assume that ϕk ̸= 1 andψm ̸= 1. In case ϕk = 1
and ψm ̸= 1, the defender, in case ϕk ̸= 1 and ψm = 1,
the attacker may have infinitely many solutions, depending
on k ≤ m or m < k, respectively.

Notice that the value of m will be smaller if gj is close
to djCEj

. That means, when the cost of defense is high, the
number of network units that will be protected by the defender
is smaller, and the defender will not utilize all resources as
opposed to the case m < k.

4. THE INFILTRATION TYPE ATTACKER

In this scenario, the attacker tries to infiltrate the network
without being detected, ignoring the marginal benefit of at-
tacking unit i, that is, CIIi = C, ∀i = 1, ..., N, where
C > 0 is constant. We call the infiltration type attacker as
the Type II attacker for convenience. Thus, the utility func-
tion of the Type II attacker is

uA
II(x,yII) = C

∑︂N

i=1
(1− dixi)yIIi . (3)

Apparently, the defense levels are more important to the Type
II attacker. We assume the defender still evaluates the impor-
tance of each unit i based on his own valuation of the security
assets, Ci, so his utility function stays the same.

In the Nash game between the defender and the Type II
attacker, the NE strategies are no longer of threshold type.
The following theorem shows that the defender either covers
all channels or chooses to protect none at all, and the choice

depends on the value of ξN =
∑︁N

j=1
gj

djCj
. If ξN < 1, the

defender protects all channels.

Theorem 2. Consider the game against Type II Eve.
(a) If ξN < 1, then the game has a unique equilibrium

strategy for both players such that for all j = 1, ..., N ,

x∗
j =

1
dj∑︁N

i=1
1
di

, y∗
IIj =

1
djCj∑︁N
i=1

1
diCi

(︂
1−

∑︂N

i=1

gi − gj
diCi

)︂
.

(b) If ξN > 1, then the game has a unique NE strategy
for the defender but a continuum of NE strategies for the Type
II attacker such that for all j = 1, ..., N ,

x∗
j = 0, y∗

IIj ≤ gj
djCj

.

Proof. We provide a proof in Appendix.

Remark. Here we assume ξN ̸= 1 to focus on the cases in
which the defender has unique equilibrium strategies.

Note that when the defender decides to cover the whole
network, he tends to put more defense resources to units with
smaller dj values. That is intuitive since Type II attacker will
infiltrate to units that are more difficult to defend.

5. NUMERICAL ILLUSTRATIONS

This section focuses on the cooperative jamming against
eavesdropping interpretation of our model. An OFDM net-
work with N = 5 sub-carriers is being protected, where both
the defender and the attacker can only pick one sub-carrier as
target probabilistically. Consider the scenario that legitimate
users will also be interfered, so gi = piCLi

where CLi
is

the communication capacity at channel i and pi is the per-
centage of decreasing caused by cooperative jamming. Let
{CLi}={0.9, 1.1, 0.7, 0.6, 0.8}.

For the game against Type I attacker, let eavesdropping
capacity of each sub-carrier be {Ci}={0.5, 0.4, 0.35, 0.3,
0.2}. Also, let di = 60% and pi = p, ∀i = 1, ..., 5, where p
is a constant. When p increases from 5% to 15%, the number
of protected sub-carriers decreases from 3 to 1, as shown in
Fig.1(a). Also, when p increases, the defender uses less and
less time for protection.

For the game against Type II attacker, let Ci = 0.45 and
still pi = p, ∀i = 1, ..., 5. Let {di} = {90%, 50%, 60%,
70%, 40%} such that it is easier to eavesdrop on some sub-
carriers under defense. As shown in Fig.1(c), all sub-carriers
are under protection when p ≤ 5%, but it is not worthy for
the defender to protect any channel when p > 5%.

Fig. 1(b) and 1(d) compares the system’s total utility
when the defender uses the proposed efficient game-theoretic
algorithm (EG Algorithm), uses EG Algorithm but ignores
defense cost (NC Algorithm), uses an Equal Probability algo-
rithm (EP Algorithm), and does nothing (Without CJ), respec-
tively. As p increases, the EG Algorithm always outperform
the others.



(a) x∗ against Type I attacker (b) uD in Type I game

(c) x∗ against Type II attacker (d) uD in Type II game

Fig. 1. Optimal proportion of time spent on each sub-carrier.

6. CONCLUSIONS AND FUTURE RESEARCH

This paper discusses defending against two types of cyber at-
tackers for a heterogeneous networked system consisted of N
units, while taking the cost of defense into consideration. The
attacker could be of two types, I or II; I) either she tries to in-
flict maximal damage based on the value of security assets, or
II) she tries to infiltrate the networked system from any unit.
The non-zero sum games modeling the problem against each
attacker type demonstrate that the cost of defense is critical in
deciding how to allocate defense resources.

Of interest for future research is an extension of this
model to a Bayesian game when the eavesdropper’s type is
not known with certainty. Another possible extension is to
consider a repeated game in which the defender can learn the
attacker’s true intention.

Appendix
Proof of Theorem 1

By Karuhn-Kush-Tucker (KKT) conditions, (x∗,y∗
I ) are NE

strategies if there exists Lagrange multipliers wD ≥ 0 and
wA ≥ 0 such that, for all i = 1, ..., N ,

∂uD(x∗,y∗
I )

∂xi
= y∗IidiCi − gi

{︄
= wD, for x∗

i > 0,

≤ wD, for x∗
i = 0,

(4)

∂uA
I (x∗,y∗

I )

∂yIi
= (1− dix

∗
i )Ci

{︄
= wA, for y∗Ii > 0,

≤ wA, for y∗Ii = 0,
(5)

and wD(
∑︁N

i=1 x
∗
i − 1) = 0. Equations system (4) implies

that, if x∗i > 0, then y∗Ii = wD+gi
diCi

> 0. Equations sys-

tem (5) implies that, if y∗Ii > 0, then Ci ≥ wA. Also, since
Cj > Ci, ∀j < i by assumption, then x∗j =

Cj−wA

djCj
, ∀j ≤ i

if y∗Ii > 0. Also notice that, if y∗Ii > 0, then y∗Ij > 0, ∀j <
i. Thus, threshold k decided by ϕk < 1 < ϕk+1 actu-
ally points out the largest possible k such that

∑︁k
j=1 x

∗
j =∑︁k

j=1
Cj−wA

djCj
≤ 1 and Ck ≥ wA > Ck+1. Similarly, thresh-

oldm decided by ψm < 1 < ψm+1 shows the largest possible
m such that

∑︁m
j=1 y

∗
Ij
=

∑︁m
j=1

wD+gj
djCj

≤ 1 when wD = 0.
Notice that we must have x∗i = 0 and wA > Ci, ∀i > k,

which leads to y∗Ii = 0, ∀i > k. Thus, when k ≤ m, it must
be true that wD > 0. Otherwise, if wD = 0, then

∑︁N
i=1 y

∗
Ii
=∑︁k

i=1 y
∗
Ii

≤
∑︁k

i=1
gi

diCi
≤

∑︁m
i=1

gi
diCi

< 1, which is not

possible. Therefore, wD > 0, which requires
∑︁k

i=1 x
∗
i =

1. So wA is the solution of
∑︁k

j=1
Cj−wA

djCj
= 1, and x∗i =

Cj−wA

djCj
, ∀i = 1, ..., k. Under the assumption that ϕk > 1, we

must have x∗i > 0, ∀i = 1, ..., k, then y∗Ii = wD+gi
diCi

, ∀i =
1, ..., k where wD is the solution of

∑︁k
i=1

wD+gi
diCi

= 1.
When k > m, then wD = 0. Otherwise, if wD > 0, it

follows that x∗k > 0 as shown before, then y∗Ii >
gi

diCi
, ∀i =

1, ..., k and
∑︁k

i=1 y
∗
Ii

≥
∑︁m+1

i=1
gi

diCi
> 1, which is impos-

sible. Therefore, wD = 0. Now to satisfy the constraint∑︁N
i=1 y

∗
Ii

= 1, we must have y∗Ii = gi
diCi

∀i = 1, ...,m

and y∗Im+1
= 1 −

∑︁m
i=1 y

∗
Ii

. Under the assumption that

ψm < 1, it must be true that y∗Im+1
> 0 but ∂uD(x∗,y∗

I )
∂xi

< 0.
Thus, x∗m+1 = 0. It follows that wA = Cm+1 and x∗i =
Cj−wA

djCj
, ∀i = 1, ...,m.

Proof of Theorem 2

In this situation, KKT condition (5) changes to

∂uA
II(x

∗,y∗
II)

∂yIIi
= (1− dix

∗
i )C

{︄
= wA, for y∗IIi > 0,

≤ wA, for y∗IIi = 0,
(6)

for all i = 1, ..., N . Thus, if wA < C, then x∗i > 0, ∀i =
1, ..., N , which implies an All-or-Nothing defending strategy,
and we must have ∂uD(x∗,y∗

II)
∂xi

= wD, ∀i = 1, ..., N .

When ξN < 1, there exists an y∗IIi such that ∂uD(x∗,y∗
II)

∂xi
=

y∗IIidiCi − gi > 0. Thus, wD > 0 and y∗IIi = wD+gi
diCi

>

0, ∀i = 1, ..., N , wherewD is the solution of
∑︁N

i=1
wD+gi
diCi

=

1. Recall that wD > 0 requires
∑︁N

i=1 x
∗
i = 1, therefore,

x∗i = C−wA

diC
, ∀i = 1, ..., N , where wA is the solution of∑︁N

i=1
C−wA

diC
= 1.

When ξN > 1, there must be some y∗IIi such that
∂uD(x∗,y∗

II)
∂xi

= y∗IIidiCi − gi < 0. So wD = 0 is the only
solution and x∗i = 0, ∀i = 1, .., N, since it is not beneficial
to protect any target. The attacker can use any policy as long
as ∂uD(x∗,y∗

II)
∂xi

≤ 0, ∀i = 1, ..., N .
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