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ABSTRACT 

Pipe and labor costs constitute about seventy percent of pipeline project costs. The accurate 
prediction of pipe and labor costs is invaluable for cost estimation of capital pipeline projects by 
helping to eliminate or at least reduce cost under- or over-estimations. The research objective of 
this paper is to develop and compare various time series methods to forecast pipe and labor costs. 
The 20-city average pipe and labor costs from 1995 to 2016 published monthly by Engineering 
News-Record (ENR) were used to develop the time series models. The accuracies of these 
forecasting models were evaluated using ENR pipe and labor cost data from 2017 to 2019. The 
results show that predictions with seasonal autoregressive integrated moving average (ARIMA) 
models are more accurate than those with the other models, such as Holt exponential smoothing. 
The results contribute to pipeline construction community by helping cost estimators to prepare 
more accurate bids for pipeline projects. 

INTRODUCTION  

Many construction projects experience cost overruns. Most infrastructure construction 
projects face cost overruns (Flyvbjerg 2003). Cost overruns are generally caused by cost 
fluctuations (Memon et al. 2011). Large projects or megaprojects are more susceptible to cost 
fluctuations (Merrow 1988).  

Pipeline construction projects, which are mostly long-term and large, are more likely to 
experience considerable fluctuations over time. Pipe material and labor costs constitute about 
71% of pipeline construction costs (Rui 2011). These costs do not include equipment cost. Rui 
(2011) reported that the miscellaneous and right-of-way (ROW) costs constitute the other 29% of 
pipeline construction costs. On average, pipe cost has about 5%, and labor cost has 22% of 
overrun rates, which are large compared to the other cost overrun rates, such as miscellaneous 
cost (Rui 2012). Therefore, it is crucial to forecast fluctuations of pipe material and labor costs 
for pipeline construction projects.  

Quantitative methods, especially time series models, have been used to forecast construction 
cost fluctuations (Ashuri et al. 2012a; Shahandashti 2014). Time series methods are proper 
methods for studying the variations of construction cost variables since they consider 
autocorrelation (Abediniangerabi et al. 2017). For example, Hwang et al. (2012) developed an 
Autoregressive Integrated Moving Average (ARIMA) model to forecast fluctuations of rebar, 
steel beam, and ready-mixed concrete costs. Shahandashti and Ashuri (2013) developed time 
series models to forecast ENR CCI. Also, fluctuations of ENR CCI were explained by economic, 
energy, and construction market variables (Ashuri et al. 2012b; Ashuri and Shahandashti 2012). 
Shahandashti and Ashuri (2016) explained fluctuations of national highway construction cost 

Pipelines 2020 198

© ASCE

 Pipelines 2020 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f T
ex

as
 a

t A
rli

ng
to

n 
on

 0
8/

31
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



  

index using Vector Error Correction models. Ilbeigi et al. (2016) developed univariate time series 
models to forecast asphalt cement cost. They found that ARIMA and Holt Exponential 
Smoothing (Holt ES) models are more accurate than other univariate forecasting models. Time 
series methods have also been used to explain fluctuations in construction macroeconomic 
variables, such as construction spending (Abediniangerabi et al. 2018; Ahmadi and Shahandashti 
2017). Despite the significant importance of fluctuations in pipeline construction costs, time 
series models have not developed to forecast these fluctuations.  

The objectives of this research are to (1) investigate time series characteristics of pipe 
material and labor costs, (2) develop various univariate forecasting time series models for 
predicting pipeline construction costs, and (3) compare the forecasting accuracy between the 
univariate time series models for predicting pipeline construction costs.  

Research methods are discussed in the next section. The research method section includes the 
description of four univariate time series models, including Holt exponential smoothing (Holt 
ES), Holt-Winters exponential smoothing (Holt-Winters ES), Autoregressive Integrated Moving 
Average (ARIMA), and seasonal ARIMA. Then empirical results, including descriptive statistics 
and validation of forecasting models for each time series, are provided. Conclusions are 
presented in the last section.  

RESEARCH METHODS 

Data Collection and Analysis 

Engineering News-Record (ENR) publishes material and labor costs monthly. The material 
and labor cost indexes reported by ENR are the average costs of these items for major 20-cities 
in the United States. These indexes are publicly available. They do not represent all the costs and 
perspectives in the construction industry, but they reflect the contractor’s perspective as an 
average input price index (Ashuri et al. 2012a). The ENR material and labor cost indexes could 
be used for adjusting construction cost for future changes.  

As summarized in Table 1, ENR’s reinforced concrete pipe cost, corrugated steel pipe cost, 
common labor cost, and skilled labor cost from January 1995 to August 2019 were used in this 
research. Four univariate time series models were developed using the data from January 1995 to 
December 2016. The forecasting accuracy of the models was evaluated based on error measures 
with the data from January 2017 to August 2019.  

Table 1. Description of ENR Pipe Material and Labor Costs 

Data Description 
Reinforced Concrete Pipe (RCP) Average of 12″, 24″, 36″, 48″ monthly 20-city average 

cost 
Corrugated Steel Pipe (CSP) Average of 12″, 36″, 60″ monthly 20-city average cost 
Common Labor (CL) Two hundred hours of common labor at the 20-city 

average common-labor wage rates 
Skilled Labor (SL) 68.38 hours of skilled labor at the 20-city average 

skilled labor wage rates 

It is crucial to examine the characteristics of the time series before developing forecasting 
models. Stationarity and seasonality are two important properties of a time series (Shumway and 
Stoffer 2017). Stationarity indicates that statistical properties of time series, such as mean and 
covariance between two consecutive data points, are constant over time. Seasonality denotes 
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repeating periodic cycles in time series (Brockwell and Davis 2002). The properties of a time 
series can be identified through decomposition. Decomposition divides a time series into three 
components, trend, seasonality, and random fluctuations (Kirchgässner and Wolters 2008). 

Unit Root Test for Stationarity 

Augmented Dickey-Fuller (ADF) test (Said and Dickey 1984) was conducted to examine the 
stationarity of each time series. The ADF test for reinforced concrete pipe cost is represented by 
Equation (1). The null hypothesis of the ADF test is non-stationarity of the given time series. The 
lag length used in the ADF test is determined by the Akaike Information Criterion.  

 ΔRCP
t
= α + βt +γ RCP

t−1
+ δ

i
i=1

p−1

 ΔRCP
t−i

      (1) 

where t is the time index, RCPt is the reinforced concrete cost corresponding to time t, ΔRCP
t
 is 

the first differenced RCPt, α  is the drift term, β  is the coefficient on a time trend, and γ  is the 
coefficient to examine if it is required to differentiate the time series to be stationary. 

Univariate Times Series Modeling 

Univariate time series models including Autoregressive Integrated Moving Average 
(ARIMA), seasonal ARIMA, Holt Exponential Smoothing (Holt ES), and Holt-Winters 
Exponential Smoothing (Holt-Winters ES) were developed for each time series. Time series 
models were compared with one another based on the error measures: mean absolute percentage 
error (MAPE) represented by Equation (2), mean squared error (MSE) by Equation (3) and mean 
absolute error (MAE) by Equation (4).  

 MAPE =       (2)  

MSE =       (3) 

MAE =        (4)
 

where N is the total number of forecasted values, ௧ܻ෡  is the forecasted cost by time series model at 
time t, and Yt is the actual cost at time t. 

ARIMA  
ARIMA is recommended for nonstationary time series. ARIMA model consists of three 

parameters, p, d, and q. Parameter d is the minimum number of differencing to transform a 
nonstationary time series to a stationary time series. Parameter p and q are autoregressive (AR) 
order and moving average (MA) order, respectively. ARIMA (p, d, q) for reinforced concrete 
pipe cost is represented by Equation (5).  

(1− B)d RCP
t
= θ (B)

φ(B)
Z

t
+ μ            (5) 

where B is the backshift operator, d is the differencing order, μ  is the mean of time series (1−
B)d RCPt, ߶ሺܤሻ is AR operator, ߠሺܤሻ is MA operator, and Zt is the white noise component from a 
random variable with zero mean and finite variance.  
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Ŷ

t
−Y

t
t=1

N



Pipelines 2020 200

© ASCE

 Pipelines 2020 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f T
ex

as
 a

t A
rli

ng
to

n 
on

 0
8/

31
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



  

Selecting AR and MA orders 

AR and MA orders can be selected by autocorrelation function (ACF) and partial 
autocorrelation function (PACF) of a time series. Watson and Teelucksingh (2002) recommended 
the visual rules for selecting AR and MA orders based on ACF and PACF. If ACF values 
geometrically decay and PACF values cut off at lag p, it indicates AR order p. If ACF values cut 
off at lag q and PACF values geometrically decay, it indicates MA order q. If both the ACF and 
PACF geometrically decay, it indicates the ARMA process of a time series.  

Estimation of AR and MA coefficients 

The coefficients of AR and MA are estimated by maximum likelihood estimation (MLE). 
The coefficients with low p-value indicate that the developed ARIMA with the coefficients is 
appropriate for in-sample forecasting (Shumway and Stoffer 2017).  

Seasonal ARIMA 
Seasonal ARIMA is recommended for nonstationary and seasonal time series. Seasonal 

ARIMA applies the ARIMA method to nonseasonal components and seasonal components. A 
seasonal ARIMA model consists of six parameters, p, d, q for nonseasonal components and P, D, 
Q for seasonal components. Parameter p is the AR order for nonseasonal components, while P is 
the AR order for seasonal components. Parameter d is the minimum differencing order to make 
the nonseasonal components stationary while parameter D is the differencing order to make 
seasonal components stationary. Parameter q is the MA order for the nonseasonal components, 
while Q is the MA order for the seasonal components. Seasonal ARIMA (p, d, q)(P, D, Q)S for 
reinforced concrete pipe cost is represented by the following Equation (6).  

(1− B)d (1− BS )D RCP
t
= θ (B)Θ(B)

φ(B)Φ(B)
Z

t
+ μ      (6)  

where B is the backshift operator, d is the differencing order, D is the seasonal differencing order, 
S is the frequency of seasonality, ߤ is the mean of time series(1−B)d(1−BS)DRCPt, ߶ሺܤሻ is the 
AR operator for nonseasonal components, Φሺܤሻ is the AR operator for seasonal components, ߠሺܤሻ is the MA operator for nonseasonal components, Θሺܤሻ is the MA operator for seasonal 
components, and Zt is the white noise time series from a random variable with a zero mean and 
finite variance.  

Selecting AR, MA orders of nonseasonal and seasonal components 

The AR and MA orders for seasonal components in seasonal ARIMA are selected based on 
the observations of ACF and PACF. For seasonal components, lags at the multiple numbers of 
12, which is the period of the seasonal cycle, should be carefully observed. The rules suggested 
by Watson and Teelucksingh (2002) can also be applied to select AR and MA orders of seasonal 
components. If PACF values of time series cut off at lag 12, the AR order of seasonal component 
is one. If ACF values of time series cut off at lag 12, its MA order of seasonal component is one.  

Estimation of seasonal ARIMA coefficients 

Seasonal ARIMA coefficients are estimated by maximum likelihood estimation. The 
coefficients with low p-value indicate that the developed ARIMA with the coefficients is 
appropriate for in-sample forecasting (Shumway and Stoffer 2017).  
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Holt ES 
Holt ES is recommended for forecasting time series with a trend (Brockwell and Davis 

2002). Holt ES for reinforced concrete pipe cost is represented by Equation (7). Holt ES consists 
of level and trend smoothing parameters. Smoothing parameters are recursively estimated by 
minimizing MSE of the in-sample forecasted values.  

 RCP
t+h t

= l
t
+ hb

t
            (7) 

where t is the time index, h is the forecasting period, lt is the estimated reinforced concrete pipe 
cost level at time t, bt is the estimated reinforced concrete pipe cost trend at time t, and RCPt+h|t is 
the h-step-ahead forecasted reinforced concrete pipe cost given the data until time t. 

Holt-Winters ES 
Holt-Winters ES is recommended for time series with trend and seasonality. Holt-Winters ES 

includes seasonal smoothing in addition to level and trend smoothing (Winters 1960). Holt-
Winters ES is classified into additive ES and multiplicative ES. Holt-Winters additive ES 
assumes constant seasonality while Holt-Winters multiplicative ES assumes proportional 
seasonality. Holt-Winters additive ES and Holt-Winters multiplicative ES for reinforced concrete 
pipe cost are represented by Equation (8) and (9), respectively.  

 RCP
t+h t

= l
t
+ hb

t
+ s

t+h−m(k+1)
           (8) 

 RCP
t+h t

= (l
t
+ hb

t
)s

t+h−m(k+1)
           (9) 

where t is the time index, h is the forecasting period, m is the frequency of seasonality, k is the 
integer part of (h-1)/m, lt is the estimated reinforced concrete pipe cost level at time t, bt is the 
estimated reinforced concrete pipe cost trend at time t, st is the estimated reinforced concrete 
pipe cost seasonality at time t, and RCPt+h|t is the h-step-ahead forecasted reinforced concrete 
pipe cost given the data until time t. 

Diagnostic Tests of Forecasting Model Residuals 

Ljung-Box test (Ljung and Box 1978) was conducted to examine the lack of autocorrelation 
of the model residuals. The lack of autocorrelation among the residuals indicates the goodness of 
a fit of a forecasting model. The null hypothesis of the Ljung-Box test is that there is no 
autocorrelation in the residuals. 

EMPIRICAL RESULTS 

Trend and Seasonality 

Table 2 shows the characteristics of pipe and labor cost time series, including trend and 
seasonality. Pipe and labor costs showed an increasing trend. Reinforced concrete pipe cost, 
corrugated steel pipe cost, and common labor cost revealed monthly seasonality while skilled 
labor cost did not show seasonality. 

Table 2. Characteristics of Time Series 

Data Trend Seasonality 
Reinforced Concrete Pipe  Increasing Monthly seasonal  
Corrugated Steel Pipe Increasing Monthly seasonal 
Common Labor Increasing Monthly seasonal 
Skilled Labor Increasing No seasonality 
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Results of Unit Root Tests 

According to the ADF test, pipe and labor cost time series are not stationary. Pipe and labor 
costs became stationary after applying one differencing order. Table 3 illustrates the ADF test 
results for the original and differenced time series.  

Table 3. Results of ADF Unit Root Tests for Material and Labor Costs 

Data ADF t-statistic Data ADF t-statistic 
RCP -1.76 (6) ΔRCP -4.61a (6) 
CSP -2.83 (6) ΔCSP -4.77a (6) 
CL -3.02 (6) ΔCL -8.04a (6) 
SL -2.79 (6) ΔSL -7.92a (6) 

Note: A delta (Δ) indicates the first difference operator; numbers in parentheses denote the lag 
orders which are selected based on the Akaike Information Criterion (AIC). 
aRejection of the null hypothesis at the 1% significance level. 

Predictability of Time Series Models  

ARIMA, seasonal ARIMA, Holt ES, and Holt-Winters ES models were implemented to 
material and labor cost time series. The forecasting accuracies between the models were 
compared with one another. Based on the time series from January 2017 to August 2019, MAPE, 
MSE, and MAE were calculated.  

Reinforced Concrete Pipe (RCP) 
Table 4 shows the results of the Ljung-Box test on the residuals of the forecasting models for 

reinforced concrete pipe cost. The results of the Ljung-Box test indicate that there is no 
autocorrelation between the residuals of the models except Holt-Winters Multiplicative ES.  

Table 4. Diagnostic Tests of Model Residuals for Reinforced Concrete Pipe Cost 

Ljung-Box 
Test 

ARIMA Seasonal 
ARIMA 

Holt ES Holt-Winters 
Additive ES 

Holt-Winters 
Multiplicative 
ES 

X-squared 
statistics 

0.0486 0.2300 0.0013 0.1930 56.323a 

aRejection of the null hypothesis at the 1% significance level. 

Table 5 shows that seasonal ARIMA has the lowest prediction errors. ARIMA model 
provides the second-best forecasts. Figure 1 compares the out-of-sample forecasting of each time 
series model and the actual ENR reinforced concrete pipe cost.  

Table 5. Validation of Out-of-Sample Forecasting for Reinforced Concrete Pipe Cost 

Measure ARIMA Seasonal 
ARIMA 

Holt ES Holt-Winters 
Additive ES 

Holt-Winters 
Multiplicative 
ES 

MAPE (%) 5.48 0.75 6.66 10.01 13.29 
MSE 13.53 0.27 19.92 44.49 77.43 
MAE 3.20 0.44 3.89 5.85 7.75 
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fluctuations over time. Since these fluctuations can cause cost overruns in long-term pipeline 
projects, it is imperative to accurately forecast the cost fluctuations to avoid bid loss or profit 
loss. Forecasting material and labor cost as accurately as possible is certainly essential, 
considering that they consist of 71% of pipeline construction cost on average in the United 
States.  

The accurate prediction of pipe and labor cost time series requires identifying its 
characteristics. The primary contribution of this research is identifying characteristics of pipe and 
labor cost time series and developing proper univariate time series models based on the 
characteristics of each time series to forecast its fluctuations.  

The results of the ADF test showed that pipe material and labor cost time series are non-
stationary. While material and common labor cost time series showed seasonality, skilled labor 
cost time series did not show seasonality. Based on the characteristics of each time series, 
univariate time series models were developed to forecast the cost fluctuations over two years, 
from January 2017 to August 2019. ARIMA, seasonal ARIMA, Holt ES, and Holt-Winters 
Additive ES passed the diagnostic tests indicating the goodness of a fit. The empirical results 
presented the forecasting accuracy of developed univariate time series models. Among these 
models, seasonal ARIMA generally showed the best predictability for seasonal time series and 
ARIMA showed the best predictability for nonseasonal time series. For pipe costs, seasonal 
ARIMA provided the best forecasting accuracy with the least MAPE, MSE, and MAE. For the 
common labor cost, Holt-Winters ES had better forecasts than seasonal ARIMA. For the skilled 
labor cost, ARIMA predicted better than Holt ES.  

The findings of this paper contribute to the body of knowledge by understanding the time 
series characteristics of pipe and labor costs and forecasting the fluctuations of pipe and labor 
costs using time series models. These time series methods can also be used for adjustments of 
future changes in other construction cost indexes. It is expected that these results help cost 
estimators and capital project planners to adjust future cost changes in long-term and large 
pipeline projects.  
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