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Nonlinear Charge- and Flux-Tunable Cavity Derived From an Embedded
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B.L. Brock ,* Juliang Li,‡ S. Kanhirathingal , B. Thyagarajan, William F. Braasch Jr. ,
M.P. Blencowe , and A.J. Rimberg †

Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

 (Received 9 December 2020; revised 17 February 2021; accepted 26 February 2021; published 5 April 2021)

We introduce the cavity-embedded Cooper-pair transistor (cCPT), a device that behaves as a highly
nonlinear microwave cavity whose resonant frequency can be tuned both by charging a gate capacitor
and by threading flux through a superconducting loop. We characterize this device and find excellent
agreement between theory and experiment. A key difficulty in this characterization is the presence of
frequency fluctuations comparable in scale to the cavity linewidth, which deform our measured resonance
circles in accordance with recent theoretical predictions [Brock et al., Phys. Rev. Appl. 14, 054026 (2020)].
By measuring the power spectral density of these frequency fluctuations at carefully chosen points in
parameter space, we find that they are primarily a result of the 1/f charge and flux noise common in
solid-state devices. Notably, we also observe key signatures of frequency fluctuations induced by quantum
fluctuations in the cavity field via the Kerr nonlinearity.
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I. INTRODUCTION

Tunable microwave cavities have found wide-ranging
applications in recent years. Charge-tunable cavities, for
example, have been used as electrometers [1,2] and as
platforms for optomechanics [3,4]. Flux-tunable cavities,
on the other hand, have been used as parametric oscil-
lators to achieve single-shot readout of superconducting
qubits [5,6] and as platforms for studying the dynamical
Casimir effect [7–9]. Since this tunability is often achieved
via embedded Josephson junctions (JJs), which are inher-
ently nonlinear, these cavities typically have significant
nonlinearities that can be either helpful [10–12] or harmful
[13,14] depending on the application.

Here we introduce the cavity-embedded Cooper-pair
transistor (cCPT), a device that consists of a Cooper-pair
transistor whose source and drain electrodes are connected
between the voltage antinode of a quarter-wavelength
microwave cavity and the ground plane, as shown in Fig. 1.
The phase coordinates of the JJs that comprise the CPT
couple to the cavity flux coordinate via their shared super-
conducting quantum interference device (SQUID) loop,
such that the ground-state energy of the CPT contributes
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to the effective potential of the cavity. Since this ground-
state energy can be tuned both by charging the capacitance
that gates the island of the CPT and by threading flux
through the SQUID loop, so too can the resonant frequency
be tuned by these parameters. As in comparable devices,
strong nonlinearities are induced in the effective cavity
Hamiltonian due to the inherent nonlinearity of the JJs.
As a standalone device, the cCPT can be used as an elec-
trometer [15,16], magnetometer, parametric amplifier, and
parametric oscillator. One distinguishing feature of this
device is the ability to combine electrometry with para-
metric pumping, which could be used for charge detection
schemes analogous to those that have been used for the
readout of superconducting qubits [5,6]. Furthermore, the
cCPT is the first building block of a promising scheme
for achieving ultrastrong optomechanical coupling at the
single-photon level [17].
In the present work we focus on characterizing the cCPT

as a function of our gate and flux parameters. Measuring
the tunable resonant frequency of the cCPT is straightfor-
ward, and we find excellent agreement between our mea-
surements and our theoretical model; however, extracting
the damping rates of the cCPT is complicated by the pres-
ence of frequency fluctuations comparable in scale to the
cavity linewidth. These fluctuations arise due to charge
and flux noise coupling into the resonant frequency via
its tunability, and quantum fluctuations of the cavity field
coupling into the resonant frequency via the Kerr nonlin-
earity. As recently predicted [18], such fluctuations deform
the ideal resonance circle [i.e., the trajectory traced out by
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FIG. 1. (a) Sample images of the cCPT. (b) An illustration
of the chip layout of the cCPT; the dashed red line depicts the
SQUID loop, and the black arcs depict the magnetic field lines
generated by the current I!. (c) An equivalent-circuit schematic
of the closed-system cCPT. The λ/4 cavity behaves as a par-
allel LC circuit when operated near its fundamental frequency
ωλ/4 = 1/

√
LC [26].

the reflection coefficient S11($) in the complex plane as
a function of detuning $] and thereby lead to systematic
errors in the extracted damping rates if not properly taken
into account. Furthermore, the qualitative features of this
deformation depend on the underlying source of frequency
fluctuations. Here we report the first observation of this
phenomenon both for the Gaussian-distributed frequency
fluctuations due to gate and flux noise, and for the chi-
square-distributed frequency fluctuations due to quantum
fluctuations in the cavity field.
By using our model for the deformed resonance circles

as a fitting function for experimental data, we are able to
extract both the true damping rates of the cCPT and the
standard deviation of frequency fluctuations σω0 as a func-
tion of gate and flux. We find excellent agreement between
σω0 and our model for its dependence on the gate and flux
parameters, from which we extract the standard deviation
of the underlying charge and flux noise. To corroborate
these results, we directly measure the power spectral den-
sity of frequency fluctuations at two points: one sensitive
to charge but insensitive to flux, the other insensitive to
charge but sensitive to flux. These measurements enable
us to determine the underlying power spectral densities of
charge and flux fluctuations. These power spectra follow
distinct f −α power laws, where α is order unity, a com-
mon observation in solid-state systems [19], likely due to

fluctuating two-level systems in the case of charge noise
[20,21] and unpaired surface spins in the case of flux noise
[22,23]. We find that the scales of these power laws are in
order-of-magnitude agreement with our results from fitting
to the deformed resonance circles, and we discuss several
limitations of comparing the two measurement schemes.
We perform most of our characterization measurements

at the subphoton level, since several of the theoretical mod-
els we use are only valid in this regime. It is therefore
essential for us to determine the number of intracavity
photons in situ, which we do by measuring the power-
dependent shift in the resonant frequency induced by the
Kerr nonlinearity K [10,24,25]. This measurement both
enables us to refer our input and output powers to the
plane of the sample, and corroborates our model for how
K varies with gate and flux.
The paper is organized as follows. In Sec. II we describe

the experimental realization of the cCPT and present a
brief derivation of its Hamiltonian. In Sec. III we describe
how we perform and calibrate our reflection measure-
ments, which are the primary means by which we charac-
terize the cCPT, and discuss how these measurements are
affected by frequency fluctuations. In Sec. IV we measure
the tunable resonant frequency and compare our results
with theory. In Sec. V we study the deformation of our
resonance circles induced by frequency fluctuations and
determine the internal and external damping rates of the
cCPT by accounting for this effect. In Sec. VI we measure
the power spectral densities of charge and flux fluctua-
tions, which corroborate our results from Sec. V. Finally, in
Sec. VII we measure the power-dependent shift in resonant
frequency due to the Kerr nonlinearity, which validates
several methods used in the preceding measurements.

II. THE CAVITY-EMBEDDED COOPER-PAIR
TRANSISTOR

A. Experimental design
The cCPT consists of a quarter-wavelength (λ/4) copla-

nar waveguide cavity with a Cooper-pair transistor con-
nected between its voltage antinode and the ground plane,
as shown in Fig. 1. The CPT is made up of two JJs sepa-
rated by an island, which can be gated with a voltage Vg via
the capacitance Cg . Here we treat the JJs as identical, since
their asymmetry is sufficiently small that it is not necessary
to account for our experimental observations. The cavity
and CPT form a closed loop, which is superconducting
when cooled to base temperature in a dilution refrigerator.
This SQUID loop is L shaped, as shown in Fig. 1(b). The
vertical segment of the loop runs parallel to a transmission
line carrying the current I!, which threads flux through the
loop, while the horizontal segment runs parallel to the cav-
ity. This design minimizes the coupling between the cavity
and the transmission line carrying I!, such that the effect
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on the intrinsic cavity damping rate is negligible. The cav-
ity is driven and measured via an external transmission
line coupled to its voltage antinode via the interdigitated
capacitor Cc. The cavity, input-output line, gate bias line,
and flux bias line are all designed to have characteristic
impedances of Z0 = 50 '. The cavity has a length ( =
5135 µm and bare resonant frequency ωλ/4 = 2π × 5.757
GHz, which includes the slight renormalization due to the
coupling capacitance Cc (see Appendix A).
To fabricate the sample, a 100 nm layer of Nb is first

sputtered onto an intrinsic high-resistivity silicon substrate.
The on-chip transmission lines (cavity, input-output, gate
and flux bias lines, and interdigitated coupling capacitor)
are then patterned using photolithography, and the Nb in
the negative space is removed by reactive-ion etching.
Next, the oxide layer on the Nb is removed via ion milling
and 10 nm of Au is deposited for contact pads. Finally, the
JJs are patterned using electron-beam lithography to have
a cross-sectional area of roughly 50 × 50 nm2, and Al is
deposited using a double layer shadow evaporation with
an oxidation step between the layers to form the insulating
barrier. The lower layer of Al forming the island, deposited
using a cryogenically cooled stage, is 9 nm thick so as
to increase the superconducting gap energy [27,28] and
thereby suppress quasiparticle poisoning [29]. The upper
layer of Al connecting to the Au contact pads is 65 nm
thick. The superconducting phase around the SQUID loop
remains coherent across the Au contact pads due to the
proximity effect. The fabrication techniques are similar to
those described in Ref. [30], which provides further detail.

The sample is housed in a dilution refrigerator with a
base temperature of T ≈ 30 mK, and the sample box itself
is mounted within a magnetic shield made of Cryoperm
10. We measure the sample using the circuitry depicted in
Fig. 2. On the input line, attenuators are distributed such
that the input noise at 30 mK is thermalized, and a cryo-
genic filter is used to suppress high-frequency noise. On
the output line, a circulator is used to separate the out-
going signal, which passes through two isolators before
being amplified by a cryogenic HEMT amplifier and then
a room-temperature FET amplifier. Stainless steel coaxial
cables are used to carry the input signal down to the cir-
culator, giving rise to additional input attenuation, whereas
niobium coaxial cables are used between the sample and
HEMT to minimize attenuation of the output signal. The
gate and flux dc biases are carried by twisted pairs, which
are filtered both at room temperature and at cryogenic tem-
peratures using a combination of RC filters to suppress 60
Hz noise, and a copper powder filter to suppress radio-
frequency (rf) noise [31,32]. The different size and location
of the RC filter on the flux line relative to the gate line is
due to the resistive heating associated with driving a steady
current I! through the flux line, compared to the negligible
heating associated with maintaining a voltage Vg across the
capacitance Cg . The gate and flux dc lines are combined

Cu powder
filter

rf rfdcdc

FIG. 2. Schematic of the circuitry used to measure the cCPT.

with their rf counterparts via bias tees. These rf lines can
be used to apply parametric drives to the cCPT, and they
are designed similarly to the input line.

B. Hamiltonian
We present a simple derivation of the cCPT Hamilto-

nian based on the schematic depiction in Fig. 1(c). For
a rigorous derivation from first principles, see our com-
panion paper [16]. The total Hamiltonian is the sum of
contributions from the cavity and the CPT, such that

H = Hcavity + HCPT. (1)

Near its fundamental frequency, the cavity can be modeled
as a lumped LC circuit with charge coordinate Q and flux
coordinate !, such that

Hcavity =
Q2

2C
+ !2

2L
, (2)

where the effective inductance and capacitance can be
expressed as [26]

L = 4Z0
πωλ/4

, C = π

4Z0ωλ/4
(3)

in terms of the bare resonant frequency ωλ/4 and the
characteristic impedance Z0 of the transmission line. The
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CPT Hamiltonian consists of two parts: the electrostatic
energy associated with the island having N excess Cooper
pairs while being gated by ng = CgVg/e electrons, and the
energy associated with Cooper pairs tunneling on to and
off of the island. The scale of the former is the charging
energy EC = e2/2C* , where C* = Cg + 2CJ is the total
capacitance of the island, while the scale of the latter is the
Josephson energy EJ = Ic!0/2π , where Ic is the critical
current of each JJ and !0 is the magnetic flux quantum.
The CPT Hamiltonian therefore takes the form [33]

HCPT = 4EC
∑

N∈Z

(
N −

ng
2

)2

|N 〉〈N |

− EJ cos(φ/2)
∑

N∈Z
(|N + 1〉〈N | + |N 〉〈N + 1|),

(4)

where φ = ϕ1 + ϕ2 is the total phase across the JJs. Since
the flux through a closed superconducting loop must be an
integer multiple of !0, we also have the constraint

!0

2π
(ϕ1 + ϕ2) − ! − !ext = m!0 (5)

for some constant integer m, assuming a negligible self-
inductance of the SQUID loop (we analyze the validity of
this assumption in Appendix F). Absorbing the constant
multiple of !0 into !ext, the total phase across the JJs can
be expressed as

φ = 2π
!0

(! + !ext). (6)

Thus, the cavity and CPT couple to one another via their
shared SQUID loop.
We designed our system such that the bare resonant fre-

quency of the cavity ωλ/4 = 1/
√
LC is much smaller than

the frequency required to drive the CPT to its first excited
state (comparable to EJ /! and EC/!), provided we oper-
ate sufficiently far from the points at which the ground
and first excited states are degenerate. In this case the CPT
remains in its ground state when the cavity is driven near
its fundamental frequency, and the ground-state energy
ECPT(ng ,!ext,!) contributes to the effective potential of
the cavity. We analyze the cCPT Hamiltonian by Taylor
expanding this ground-state energy in powers of the cavity
flux coordinate ! according to

H = Q2

2C
+ !2

2L
+

∞∑

k=0

1
k!

∂k
φECPT(ng ,!ext)

(
2π!

!0

)k

, (7)

where we have introduced the shorthand notation

∂k
φECPT(ng ,!ext) =

∂kECPT(ng ,φ)
∂φk

∣∣∣∣
φ=2π!ext/!0

(8)

for convenience. The k = 0 and k = 1 terms in this expan-
sion can be dropped, since the former yields a constant
offset to the Hamiltonian and the latter yields a negligibly
small shift in the equilibrium flux coordinate of the cavity.
We next combine the terms proportional to !2 to express
the Hamiltonian as

H = Q2

2C
+ !2

2Ltot
+

∞∑

k=3

1
k!

∂k
φECPT(ng ,!ext)

(
2π!

!0

)k

,

(9)

where the total inductance is given by

1
Ltot

= 1
L
+

(
2π
!0

)2

∂2
φECPT(ng ,!ext). (10)

This is simply the parallel combination of the bare induc-
tance L with the tunable Josephson inductance [34]

LJ (ng ,!ext) =
(

!0

2π

)2

[∂2
φECPT(ng ,!ext)]−1, (11)

where LJ ) L over the full range of ng and !ext.
We can now proceed to quantize this system by impos-

ing the canonical commutation relation [!,Q] = i! and
introducing the cavity mode operator

a = 1√
2!Z

(! + iZQ), (12)

where Z =
√
Ltot/C ≈ 4Z0/π is the mode impedance,

whose deviation from this value due to LJ is negligible.
The Hamiltonian can then be expressed as

H = !ω0a†a+
∞∑

k=3

φk
ZP

k!
∂k
φECPT(ng ,!ext)(a+ a†)k, (13)

where ω0 = 1/
√
LtotC and we have introduced the dimen-

sionless quantity

φZP = 2π
!0

√
!Z
2

≈ 0.176, (14)

which is the scale of zero-point fluctuations in the total
phase across the JJs. To leading order in L/LJ , the resonant
frequency can be expressed as

ω0(ng ,!ext) = ωλ/4 +
φ2
ZP

! ∂2
φECPT(ng ,!ext), (15)

which can be tuned by both ng and !ext.
To analyze the nonlinear terms in the Hamiltonian,

we perform a rotating-wave approximation, keeping only
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those terms with like powers of a and a† that will be sta-
tionary in a frame rotating near the resonant frequency of
the cCPT. Doing so, we find that

H = !ω0a†a+
∞∑

k=2

φ2k
ZP

(k!)2
∂2k
φ ECPT(ng ,!ext)a†kak, (16)

where we have ignored the negligible renormalization of
the lower-order terms in the expansion due to the higher-
order terms. The leading-order nonlinear term is that due
to the Kerr nonlinearity

K(ng ,!ext) =
φ4
ZP

2! ∂4
φECPT(ng ,!ext) (17)

defined relative to the standard form of HKerr =
!Ka†2a2/2.

In the present work we operate at sufficiently small pho-
ton numbers that we can truncate the Hamiltonian at this
term, such that our effective Hamiltonian takes the form

H = !ω0a†a+ 1
2!Ka

†2a2, (18)

where ω0 and K are both tunable and given by Eqs. (15)
and (17), respectively. To compare our experimental
results with theory, we evaluate the ground-state energy
ECPT and its derivatives numerically by including only the
five lowest energy charge states in the expansion of the
CPT Hamiltonian given by Eq. (4). This approximation is
very accurate in our case, since we are operating well into
the Cooper-pair box regime where EC ! EJ [35].

It is worth noting that parametric pumping of the flux
line near 2ω0 yields an additional term in the Hamiltonian
that will be close to stationary in a frame rotating near the
resonant frequency of the cCPT. We have neglected this
term in the above analysis since we do not incorporate
parametric pumping in any of the measurements presented
in this work. For completeness, however, we have derived
this additional term in Appendix E.

III. REFLECTION MEASUREMENTS

We characterize the cCPT using a vector network ana-
lyzer (VNA) to measure the reflection coefficient S11 at the
plane of the sample by means of the transmission coeffi-
cient SVNA21 from the input to the output port. The two are
related according to

SVNA21 (ω) = G(ω)
ηin

eiθ(ω)S11($), (19)

where ηin is the input attenuation, G(ω) is the gain of
the amplifier chain, θ(ω) is an overall phase shift, and
$ = ω − ω0 is the detuning from resonance. We treat the
input attenuation as constant since it should not vary signif-
icantly over the tuning range of the cCPT (approximately

140MHz). As shown in Appendices A and B, the reflection
coefficient of the cCPT takes the form

S11($) = $ − i(κint − κext)/2
$ − i(κint + κext)/2

(20)

when operated in the linear response regime, where κint and
κext are the damping rates associated with internal loss and
coupling to the external transmission line, respectively. We
find the prefactor G(ω)eiθ(ω)/ηin by measuring SVNA21 far off
resonance, since S11($) ≈ 1 for |$| ) κint + κext, which
enables us to determine S11 from measurements of SVNA21 .
Usually, the value of this prefactor at resonance is inferred
from an off-resonant measurement, but in our case we can
perform this calibration at any frequency by detuning ω0
itself. We can then fit our theoretical model for S11($)
to our measurements to extract the physical parameters
characterizing the cCPT. To do so accurately, however,
we must properly account for the effect of frequency
fluctuations on our model for S11($).
For our analysis, it is convenient to rewrite the linear

reflection coefficient from Eq. (20) as

S11($) = κint

κtot
− κext

κtot
e−2i arctan(2$/κtot), (21)

where κtot = κint + κext is the total damping rate of the
cCPT. From this expression, it is clear that S11 traces out
a circle in the complex plane as a function of detuning $,
such that κtot can be determined from the rate of traver-
sal, κext from the radius, and ω0 from the intercept with
the real axis (or, equivalently, from the minimum of |S11|)
[36]. However, this treatment is no longer accurate in the
presence of frequency fluctuations comparable in scale to
the cavity linewidth κtot, as was recently shown [18]. Fol-
lowing the analysis of Ref. [18], we model the effect of
frequency fluctuations by letting ω0 → ω0 + δω0, where
δω0 is treated as a random variable. The average reflec-
tion coefficient measured by the VNA will then be the
convolution

S11($) =
∫ ∞

−∞
S11($ − ')P(')d', (22)

where P(') is the probability density function associated
with drawing the value ' from the random variable δω0.
This convolution causes a deformation of the resonance
circle, yielding an apparent decrease in the radius and
increase in the linewidth that result in systematic errors if
not taken into account. Furthermore, different probability
distributions give rise to qualitatively different deforma-
tions, which provide evidence of the underlying source
of the frequency fluctuations. Here we must consider two
sources of frequency fluctuations: those induced by fluc-
tuations in the tuning parameters ng and !ext, and those
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induced by quantum fluctuations in the cavity field via the
Kerr nonlinearity.
To linear order in the fluctuations δng and δ!ext, the

frequency fluctuations they induce take the form

δω0 =
∂ω0

∂ng
δng +

∂ω0

∂!ext
δ!ext. (23)

Assuming that fluctuations in the gate and flux are inde-
pendent and Gaussian distributed with mean zero and
variances σ 2

ng and σ 2
!ext

, respectively, then these frequency
fluctuations will be Gaussian distributed with mean zero
and variance

σ 2
ω0

=
∣∣∣∣
∂ω0

∂ng

∣∣∣∣
2

σ 2
ng +

∣∣∣∣
∂ω0

∂!ext

∣∣∣∣
2

σ 2
!ext . (24)

In this case the average reflection coefficient takes the
form [18]

S11($) = 1 −
√

π

2
κext

σω0

w
(
iκtot − 2$
2
√
2σω0

)
, (25)

where w(z) = e−z2erfc(−iz) is the Faddeeva function [37].
On the other hand, the frequency fluctuations induced

by quantum fluctuations in the cavity field via the Kerr
nonlinearity take the form

δω0 =
K
4
(X 2

1 + X 2
2 ), (26)

where X1 = a† + a and X2 = i(a† − a) are the quadrature
operators. Assuming a coherent steady state of the cavity
field, fluctuations δX1,2 = X1,2 − 〈X1,2〉 in these operators
will be independent and Gaussian, each with zero mean
and unit variance. In the case of small cavity occupa-
tion n " 1/4, the resulting frequency fluctuations follow a
chi-square distribution with 2 degrees of freedom to good
approximation, such that the average reflection coefficient
takes the form [18]

S11($) = 1 − 2i
κext

K
e(iκtot−2$)/K2

(
0,

iκtot − 2$
K

)
, (27)

where 2(a, z) =
∫ ∞
z ta−1e−tdt is the incomplete gamma

function [37].
In general, we must consider the combined effect of

these two sources of fluctuations, which leads to a compli-
cated probability distribution that requires the convolution
in Eq. (22) to be evaluated numerically. Of particular
importance to us, however, is when the frequency fluctu-
ations are dominated by fluctuations in the gate and flux
such that σω0 ! K/2. In this case δω0 will be Gaussian

distributed to good approximation, its variance will be
renormalized by the Kerr nonlinearity according to [18]

σ 2
ω0

=
∣∣∣∣
∂ω0

∂ng

∣∣∣∣
2

σ 2
ng +

∣∣∣∣
∂ω0

∂!ext

∣∣∣∣
2

σ 2
!ext +

K2

4
, (28)

and the average reflection coefficient will be given by
Eq. (25). By fitting these models for the average reflection
coefficient to our measurements, we can extract the true
damping rates of the cCPT in the presence of frequency
fluctuations.
In addition to the deformation induced by frequency

fluctuations, we have observed that the trajectories traced
out by S11 in our experiments are rotated about the
off-resonant point S11 = 1. This is a sign of impedance
mismatching at the sample input, likely due to the self-
inductance of wire bonds, which also causes a dilation
of the resonance circle [38,39]. In our case, the angle of
rotation remains less than 0.1 rad in magnitude over the
full tuning range of the cCPT, which leads to a system-
atic error in our extracted damping rates of less than 0.5%.
Since this is generally smaller than their confidence inter-
vals, we can safely ignore this effect. It is also worth noting
that this rotation angle can be extracted by finding the tan-
gent to the trajectory at S11 = 1, which is independent of
all other fitting parameters. Thus, although we account for
these rotation angles in our data analysis, for the sake of
clarity, we do not report them.
In Secs. IV and V we characterize the cCPT by measur-

ing the reflection coefficient using an input VNA power
of PVNA = −65 dBm, which yields a maximum cavity
occupation of nmax = 0.28 photons over the full tuning
range of the cCPT. This is both well within the linear-
response regime (nmax|K |/κtot + 1) and sufficiently small
that Eq. (27) is appropriate for modeling the effect of
quantum fluctuations on the average reflection coefficient.
Calibration of the intracavity photon number is performed
in Sec. VII by measuring the power-dependent shift of
the resonant frequency induced by the Kerr nonlinearity
[10,24], which enables us to refer our input power to the
plane of the sample.

IV. TUNABLE RESONANT FREQUENCY

We first measure the resonant frequency ω0(ng ,!ext)
over multiple periods of the gate and flux, the results of
which are presented in Fig. 3(a). From its periodicity we
extract the gate capacitance Cg = 6.3 aF and the mutual
inductanceM! = 42 pH between the transmission line car-
rying the current I! and the SQUID loop of the cCPT.
These enable us to convert Vg and I! into units of ng and
!ext, respectively.
A prominent feature of ω0(ng ,!ext) is the presence of

sudden jumps when
∣∣(ng − 1) mod 2

∣∣ ≈ 0.3 due to quasi-
particle poisoning [40]. Near this point, the decrease in
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FIG. 3. (a) Resonant frequency ω0(ng ,!ext) measured over
multiple periods of ng and !ext. (b) VNA trace of |S11| at the
quasiparticle poisoning threshold (ng ,!ext) = (0.7, 0), showing
both the even and odd parity resonances.

energy obtained from the transition ng → ng + 1 is com-
parable to the energy required for quasiparticles to tunnel
onto the island, so quasiparticles can tunnel back and forth
[29]. The latter energy scale is the difference between the
superconducting gaps of the island and the leads, δ$ =
$i − $l, which arises in our case due to the island’s thick-
ness of 9 nm relative to the leads’ thickness of 65 nm
[27,28]. Closer to ng ≡ 0 mod 2 the even parity ground
state is energetically favorable, whereas closer to ng ≡ 1
mod 2 the odd parity ground state is energetically favor-
able. The two states become equiprobable at the critical
gate charge ncg ≈ 0.7 such that

ECPT(ncg ,!ext) − ECPT(ncg + 1,!ext) = δ$. (29)

We note that, for EC > EJ , the left-hand side of the above
equation does not vary appreciably with!ext, which is why
the threshold ncg does not vary appreciably with !ext either.
Near this threshold, random switching occurs between the
even and odd parity states. As we show in Appendix G, the
power spectral density of these switching events follows
a Lorentzian with corner frequency 830 Hz, consistent
with other reports in the literature [41,42]. When measured
with a VNA, this switching manifests itself as two visi-
ble resonances, as shown in Fig. 3(b). The blockiness of
Fig. 3(a) around the transition point ng ≈ 0.7 is the result
of identifying only one of these two resonant frequencies.
For our remaining measurements, we restrict ourselves

to the region −0.65 ≤ ng ≤ 0.65 to avoid the effects of
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FIG. 4. (a) Measured resonant frequency ω0(ng ,!ext) and the
best fit to Eq. (15). Cross sections of (a) are plotted in (b) and (c).
In (b), circles correspond to !ext = 0 and triangles correspond
to !ext = !0/2. In (c), circles correspond to ng = 0.64 and tri-
angles correspond to ng = 0. Solid lines are the corresponding
cross sections of the best fit.

quasiparticle poisoning. In this region we can fit Eq. (15)
to our measurements of ω0(ng ,!ext) to extract EJ and EC.
As shown in Fig. 4, we find excellent agreement between
theory and experiment, and obtain the best-fit parameters

EJ /h = 14.80± 0.04 GHz,

EC/h = 54.1± 0.2 GHz.
(30)

This extracted value of the Josephson energy is consistent
with the normal resistance of each junction, which is about
10 k'. This resistance cannot be measured directly on the
sample we are studying, since the source and drain of the
CPT are shorted with respect to dc signals. Rather, this esti-
mate of the normal resistance is based on devices we made
to hone the fabrication recipe, which are designed to allow
such a dc measurement. Similarly, this extracted value of
the charging energy is consistent with 50 × 50 nm2 junc-
tions whose oxide layer is about 1 nm thick. It is important
to note that, given these values for EJ and EC, the Kerr
nonlinearity can now be calculated using Eq. (17).
This agreement between our expected and extracted val-

ues of EJ and EC also helps to corroborate the value of
φZP ≈ 0.176 discussed in Sec. II B. If the actual value
of φZP differed considerably from 0.176, we would have
obtained best fits for EJ and EC that differed consider-
ably from their expected values as well, since the tunable
resonant frequency is proportional to φ2

ZP. We can further
corroborate this value for φZP by substituting our best-fit
values for EJ and EC back into Eq. (29), which is indepen-
dent of φZP. Doing so, we estimate the difference between
the superconducting gap energies of the island and the
leads to be δ$ ≈ 80 µeV, in line with our expectations
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[27,28]. As with the normal resistance, a direct measure-
ment of the superconducting gaps of the island and leads
cannot be made via dc transport measurements, since the
source and drain of the CPT are shorted with respect to dc
signals.
Qualitatively, the polynomial dependence of ω0 on ng

in Fig. 4(b) arises from the charging energy term in the
CPT Hamiltonian of Eq. (4), while the sinusoidal depen-
dence of ω0 on !ext in Fig. 4(c) arises from the Josephson
energy term. This behavior underscores our choice of EC
and EJ . The present device is designed to optimize its
charge sensitivity by maximizing ∂ω0/∂ng , which tends to
increase with the ratio EC/EJ [16,43]. We therefore tried
to maximize EC by minimizing the cross-sectional area of
the JJs, and aimed for a Josephson energy that satisfies
!ω0 < EJ < EC to maintain the validity of the ground-
state approximation discussed in Sec. II B. For other uses,
such as magnetometry and parametric oscillation, a differ-
ent regime of EC and EJ may be optimal.

V. DAMPING RATES AND DEFORMED
RESONANCE CIRCLES

As discussed in Sec. III, in order to extract the damping
rates of the cCPT, we must fit our measured reflection coef-
ficients to an appropriate model that accounts for the effects
of frequency fluctuations. To this end, we first study the
trajectories traced out by our measured reflection coeffi-
cients and their deformation due to frequency fluctuations.
This will both corroborate the presence of frequency fluc-
tuations comparable to the cavity linewidth, as well as
provide evidence of the relative magnitudes of fluctuations
due to gate and flux noise and those due to quantum noise.
To study the effect of fluctuations in the tuning parame-

ters ng and !ext on the resonance circle, we bias the cCPT
to (ng ,!ext) = (0.64, 0.27!0). At this point in parame-
ter space the resonant frequency is very sensitive to both
gate and flux, since both |∂ω0/∂ng| and |∂ω0/∂!ext| are
close to their maximum values, leading to strong frequency
fluctuations in accordance with Eqs. (23) and (24). Fur-
thermore, the Kerr nonlinearity K/2π = −0.03 MHz is
much smaller than the cavity linewidth at this point such
that quantum fluctuations will contribute negligibly to the
frequency fluctuations [18]. In Fig. 5 we highlight the
deformation of the resonance circle at this point by fitting
our measured trajectory S11($) to both Eq. (25) (which
accounts for Gaussian fluctuations) and Eq. (20) (which
does not account for any fluctuations). It is plain to see that
our measured resonance circle is deformed into an oblong
shape in excellent agreement with our Gaussian model
for frequency fluctuations, and which cannot be explained
using the nonfluctuating model. This both confirms the
presence of strong frequency fluctuations comparable to
the cavity linewidth, since σω0/κtot ≈ 0.8 at this point, and
justifies our treatment of the underlying fluctuations in the
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Re(S11)

(b)

κint/2π (MHz) κext/2π (MHz) σω0/2π (MHz)
(a) 0.10 ± 0.05 1.178 ± 0.008 1.04 ± 0.02
(b) 1.40 ± 0.02 1.36± 0.01

FIG. 5. Deformation of a resonance circle due to Gaussian
frequency fluctuations. The cCPT is biased to (ng ,!ext) =
(0.64, 0.27!0), where ω0/2π = 5.751 GHz and K/2π = −0.03
MHz. The trajectory traced out by S11($) is measured over a
30 MHz span around resonance, and marked by the black dots.
The solid blue line in (a) is the fit to Eq. (25) that accounts for
Gaussian frequency fluctuations, whereas the dashed red line in
(b) is the fit to Eq. (20) that does not account for any frequency
fluctuations. The best-fit parameters are presented in the table.

gate and flux as Gaussian-distributed random variables.
Most importantly, had we failed to account for these fluc-
tuations we would have extracted an internal damping rate
that differed from its true value by an order of magnitude.
To study the effect of quantum fluctuations on the res-

onance circle, we bias the cCPT to a point where the
resonant frequency is insensitive to both gate and flux, but
the Kerr nonlinearity is comparable to κtot. As it turns out,
there are two such points per period where both |∂ω0/∂ng|
and |∂ω0/∂!ext| tend toward zero: (ng ,!ext) = (0, 0),
where K/2π = −0.46 MHz, and (ng ,!ext) = (0,!0/2),
whereK/2π = 0.49MHz. In Fig. 6 we highlight the defor-
mation of the resonance circle at these points by fitting
our measured trajectories S11($) to both Eq. (27) (which
accounts for frequency fluctuations induced by quantum
fluctuations via the Kerr nonlinearity) and Eq. (20) (which
does not account for any fluctuations). A signature of the
deformation in this case is asymmetry of the trajectory with
respect to reflection of S11($) across the real axis [18].
This arises from the chi-square distribution of the underly-
ing fluctuations in the cavity quadratures, which only has
support on either the positive or negative reals depend-
ing on the sign of K . Although it is subtle, we observe
this deformation of our measured trajectories in agreement
with Eq. (27); furthermore, the parity of this asymmetry
depends on the sign of K as expected. In Fig. 6(b), where
K < 0, we find that our measured trajectory S11($) lies
outside our best fit to the nonfluctuating model at the top
of the trajectory and inside it at the bottom left. In Fig. 6(d),
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κint/2π (MHz) κext/2π (MHz)
(a) 0.333 ± 0.005 1.295 ± 0.004
(b) 0.420 ± 0.006 1.315 ± 0.004
(c) 0.197 ± 0.005 1.081 ± 0.004
(d) 0.308 ± 0.006 1.106 ± 0.004

FIG. 6. Deformation of two resonance circles due to quantum
fluctuations. In (a) and (b) the cCPT is biased to (ng ,!ext) =
(0, 0), where ω0/2π = 5.785 GHz and K/2π = −0.46 kHz
[obtained from Eq. (17)]. In (c) and (d) it is biased to (ng ,!ext) =
(0,!0/2), where ω0/2π = 5.728 GHz and K/2π = 0.49 MHz.
Each trajectory traced out by S11($) is measured over a 20 MHz
span around resonance, and marked by the black dots. The solid
blue lines in (a) and (c) are fits to Eq. (27) that account for quan-
tum fluctuations (using the above values for K), whereas the
dashed red lines in (b) and (d) are fits to Eq. (20) that do not
account for any frequency fluctuations. The best-fit parameters
are presented in the table.

where K > 0 on the other hand, we find that our measured
trajectory lies outside our best fit to the nonfluctuating
model at the bottom of the trajectory and inside it at the
top left. It is important to note that this asymmetry cannot
be attributed to impedance mismatches, since additional
rotation of the fit to Eq. (20) about the off-resonant point
S11 = 1 leads to a poor fit near this point.
Across most of the parameter space spanned by ng and

!ext we find that frequency fluctuations are dominated
by Gaussian fluctuations in the gate and flux, rather than
by quantum fluctuations. We therefore expect Eq. (25) to
be an accurate model for our measured reflection coeffi-
cients S11($) for most bias points, where σω0 is renor-
malized by the Kerr nonlinearity according to Eq. (28).
This model breaks down in small regions near (ng ,!ext) =
(2m, k!0/2) for integers m and k, but numerically we find

0.0 0.5 1.0
Φext/Φ0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

n
g

(a) Experiment

0.0 0.5 1.0
Φext/Φ0

Theory

0.4

0.6

0.8

1.0

σ
ω
0
/2

π
(M

H
z)

ω0/2π (GHz)

0.0

0.2

0.4

0.6

κ
in

t/
2π

(M
H
z)

(b)

5.70 5.75 5.80 5.70 5.75 5.80
ω0/2π (GHz)

1.0

1.1

1.2

1.3

κ
ex

t/
2π

(M
H
z)

(c)

FIG. 7. (a) Measured σω0(ng ,!ext) and the best fit to Eq. (28),
which includes the effects of frequency fluctuations due to charge
noise, flux noise, and quantum noise. In (b) and (c), κint(ng ,!ext)
and κext(ng ,!ext) are plotted parametrically as a function of
ω0(ng ,!ext), respectively, and their confidence intervals are
shown in orange.

that if we try fitting the Gaussian model to data gener-
ated by Eq. (27) using the scale of the Kerr nonlinearity
near these points (|K |/κtot ≈ 0.3), we extract σω0 ≈ K/2
to within 20% accuracy and damping rates that are accu-
rate to within their confidence intervals. We can therefore
use the Gaussian model as a fitting function for exper-
imental data across our entire parameter space without
significantly sacrificing accuracy in our model for σω0 or
in our extracted damping rates. Thus, to fully characterize
the cCPT, we measure S11($) at each point in parameter
space and fit each measured trajectory to Eq. (25). This
yields the best-fit parameters σω0(ng ,!ext), κint(ng ,!ext),
and κext(ng ,!ext), which we present in Fig. 7.
As shown in Fig. 7(a), we find excellent agreement

between the measured σω0(ng ,!ext) and the model given
by Eq. (28). This agreement between theory and exper-
iment further corroborates our model for the effect of
frequency fluctuations on the reflection coefficient, and
further demonstrates the significance of quantum fluctua-
tions to the overall frequency fluctuations since they are
crucial to the gate and flux dependence of σω0 . From the
best fit to this model we find the standard deviations of
gate and flux fluctuations to be

σng = (6.1± 0.2) × 10−3 electrons,

σ!ext = (2.80± 0.02) × 10−3 !0,
(31)

which, in general, depend on the timescale of the individ-
ual reflection measurements used to find each value of σω0 ,
as we discuss in Sec. VI. With these we can calculate the
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strength of the second-order couplings between the tuning
and frequency fluctuations [18]

|Dng | =
σ 2
ng

2

∣∣∣∣
∂2ω0

∂n2g

∣∣∣∣ < 2π × 14 kHz,

|D!ext | =
σ 2

!ext

2

∣∣∣∣
∂2ω0

∂!2
ext

∣∣∣∣ < 2π × 10 kHz,

(32)

where the bounds are over the full tuning range of the
cCPT. Since these are both much smaller than κtot, we are
justified in truncating Eq. (23) at linear order.

The internal damping rate κint(ng ,!ext) of the cCPT,
obtained by fitting our measured trajectories S11($) to
Eq. (25), is plotted parametrically versus ω0(ng ,!ext) in
Fig. 7(b). Although κint varies somewhat at each value of
ω0, most of its variation can be attributed to an implicit
dependence on the operating frequency ω0 rather than an
explicit dependence on ng and !ext. In Appendix A we
show that the internal damping rate takes the form

κint =
4ωλ/4

π
α(, (33)

where α is the attenuation constant of the cavity and ( is
its length. Thus, one possible explanation for the implicit
dependence of κint onω0 is the attenuation constant varying
with frequency. Another possible explanation is that the
metallization between the central conductor and the ground
plane (which forms the CPT) affects κint in such a way that
it depends on the operating frequency. It has previously
been observed that similar metallization at high impedance
points (e.g., the voltage antinode) yields an order unity
change in a cavity’s internal damping rate [44,45]. As the
resonant frequency is tuned, so too is its effective length
and the impedance of the point at which the CPT is embed-
ded. It is therefore plausible that additional loss would arise
as the resonant frequency is tuned further away from its
bare value, which is precisely what we observe.
The external damping rate κext(ng ,!ext) of the cCPT,

obtained by fitting our measured trajectories S11($) to
Eq. (25), is plotted parametrically versus ω0(ng ,!ext)
in Fig. 7(c). Clearly, the variation in κext can be fully
attributed to an implicit dependence on the operating fre-
quency ω0. In Appendix A we show that the external
damping rate takes the form

κext =
4ωλ/4

π
(ω0Z0Cc)

2, (34)

where Z0 = 50 ' is the characteristic impedance of the
transmission lines and Cc is the coupling capacitance
between the cavity and the external transmission line.
Although κext depends explicitly onω2

0, this cannot account
for its measured variation, since κext deviates from its mean

value by about 10% while ω0 only varies from its bare
value by about 1%. Rather, we attribute the variation in κext
to the characteristic impedance Z0 of either the cavity or its
environment changing with the operating frequency. Using
our extracted value of κext/2π ≈ 1.2 MHz at ω0 ≈ ωλ/4 =
2π × 5.757 GHz and the nominal value of Z0 = 50 ', we
can solve for the coupling capacitance Cc = 7.1 fF, which
is consistent with both a first principles calculation based
on the geometry of the interdigitated capacitor [46] and a
simulation using Sonnet.

VI. POWER SPECTRA OF FREQUENCY
FLUCTUATIONS

To corroborate the presence and strength of frequency
fluctuations, as well as shed light on their underlying
sources, we next perform a direct measurement of their
power spectral density (PSD). We do so by driving the
cCPT with a carrier signal on resonance and measuring
the output PSD near ω0 using a spectrum analyzer. This
carrier signal will be modulated by the frequency fluctua-
tions, which we assume to have PSD S''(ω), such that the
power spectral density Sout of the output power at the plane
of the sample is given by

Sout(ω0 ± ω) = 2κ2
ext

κ2
tot(ω

2 + κ2
tot/4)

PinS''(ω), (35)

as shown in Appendix D. This can be related to the power
spectral density SSAout measured by the spectrum analyzer
according to

SSAout(ω0 ± ω) = 2κ2
ext

κ2
tot(ω

2 + κ2
tot/4)

G(ω0 ± ω)

ηin
PcarS''(ω),

(36)

where G is the gain of the amplifier chain, ηin is the input
attenuation, and Pcar is the power of the carrier signal at the
fridge input.
As discussed in Sec. III, we can measure the ratio G/ηin

at any frequency using the off-resonant transmission mag-
nitude |S21| from the input to the output port of the fridge.
Having now determined the damping rates as well, we can
measure SSAout(ω0 ± ω) and invert this relationship to extract
S''(ω). Furthermore, S'' can be expressed in terms of the
PSDs of its underlying sources as

S''(ω) =
∣∣∣∣
∂ω0

∂ng

∣∣∣∣
2

Sqq(ω)+
∣∣∣∣

∂ω0

∂!ext

∣∣∣∣
2

S!!(ω)+K2Snn(ω),

(37)

where Sqq is the PSD of fluctuations in the gate charge ng ,
S!! is the PSD of fluctuations in the external flux !ext,
and Snn is the PSD of quantum fluctuations in the cavity
occupation n = (X 2

1 + X 2
2 − 2)/4. By carefully choosing
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the gate and flux biases at which we measure S'' we
can isolate each of these contributions, which we can then
compare with the results of Sec. V.
For each of these measurements, we drive the cCPT

using a carrier signal at ω0 with power −60 dBm, slightly
below the single-photon level such that the cavity response
is linear to good approximation. We then measure the out-
put power using a spectrum analyzer whose measurement
window is centered at ω0 with a span of 100 kHz and res-
olution bandwidth of 1 Hz. To measure the corresponding
noise floor, we perform an identical measurement with the
carrier signal turned off. As expected, all measured out-
put spectra are symmetric about ω0; we therefore calculate
S''(ω) from the average of Sout(ω0 + ω) and Sout(ω0 − ω)
to better resolve the fluctuations of interest from the noise
floor. For convenience, we express all measured PSDs in
units of frequency rather than angular frequency.
To measure the PSD of quantum noise, Snn, we bias the

cCPT to (ng ,!ext) = (0, 0) where both ∂ω0/∂ng = 0 and
∂ω0/∂!ext = 0. Thus, all power in excess of the noise floor
near ω0 is attributable to quantum fluctuations. Our mea-
surement of Snn( f ) is presented in Fig. 8(a), from which
we see that we cannot resolve quantum fluctuations from
the noise floor at these frequencies. Thus, for all subse-
quent measurements, we assume that quantum fluctuations
contribute negligibly to Eq. (37).
To measure the PSD of charge noise, Sqq, we bias the

cCPT to (ng ,!ext) = (0.5, 0) where ∂ω0/∂!ext = 0. Thus,
all power in excess of the noise floor near ω0 is attributable
to fluctuations in the gate charge. Our measurement of
Sqq( f ) is presented in Fig. 8(b), from which we see that
it has an f −α power-law dependence. This type of charge
noise is common in solid-state systems, and is believed
to arise due to fluctuating two-level systems in the vicin-
ity of the CPT island [19–21]. Over the frequency range
f " 200Hz where the charge noise can be clearly resolved
from the noise floor, we fit a power law to the charge noise
in excess of the noise floor and find the best fit

Sqq( f ) ≈ (4.3 × 10−7)f −1.13 electrons2/Hz. (38)

We note that our measured value of Sqq(1Hz) is compa-
rable to typical values reported in the literature for single
electron transistors [47–49]. The total variance of fluctu-
ations in the gate for a given measurement is obtained
by integrating Sqq over the measurement bandwidth, with
lower cutoff frequency set by the inverse of the measure-
ment time 1/τm and upper cutoff frequency set by the total
damping rate κtot/2π . To compare our PSD with the results
of Sec. V, we use τm = 0.03 s. This corresponds to the total
time spent measuring S11, at each value of the detuning $,
for the measurements used to determine σng and σ!ext in
that section. Assuming that the charge noise follows the
power law given by Eq. (38) over the full measurement

bandwidth, we estimate

σng =

√∫ κtot/2π

1/τm
Sqq(f )df = 1.3 × 10−3 electrons, (39)

which is in order-of-magnitude agreement with Eq. (31).
To measure the PSD of flux noise, S!!, we bias the

cCPT to (ng ,!ext) = (0,!0/4)where ∂ω0/∂ng = 0. Thus,
all power in excess of the noise floor near ω0 is attributable
to fluctuations in the flux threading the SQUID loop. Our
measurement of S!!(f ) is presented in Fig. 8(c), from
which we see that it too has an f −α power-law depen-
dence. This type of flux noise is ubiquitous in SQUIDs
and is believed to arise from unpaired surface spins
[19,22,23,50]. Over the frequency range f " 2 kHz where
the flux noise can be clearly resolved from the noise floor,
we fit a power law to the flux noise in excess of the noise
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FIG. 8. Measured power spectral densities of (a) quantum
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floor and find the best fit

S!!( f ) ≈ (2.8 × 10−9)f −0.47 !2
0/Hz. (40)

We note that our measured value of S!!(1 Hz) is signifi-
cantly larger than typical values on the order of (µ!0)

2/Hz
found in the literature [22,23,50], which we attribute to the
large size of our SQUID loop. In addition, although the
exponent α ≈ 0.5 in the f −α dependence of S!! is on the
low side of what has been reported in the literature, it is
not unprecedented [23]. Following the same line of reason-
ing as for the charge noise, we estimate the total standard
deviation of flux fluctuations (over the bandwidth of the
measurement used in Sec. V) to be

σ!ext =

√∫ κtot/2π

1/τm
S!!(f )df = 3.1 × 10−3 !0, (41)

in good agreement with Eq. (31). The peaks in S!! from
10–100 Hz and near 2.4 kHz are due to a combination of
electrical and vibrational interference, primarily from the
pumps and compressors necessary to run our cryostat. We
estimate that this interference contributes less than 0.5% to
the total standard deviation of !ext over the measurement
bandwidth considered.
It is important to emphasize that, due to limitations

of this measurement and the analysis thereof, the values
of σng and σ!ext obtained here should only be consid-
ered order-of-magnitude estimates for comparison with
Eq. (31). First and foremost, the power spectra of inter-
est disappear into the noise floor at frequencies several
orders of magnitude smaller than κtot. Thus, to integrate
Sqq and S!! over the bandwidth of the measurements
used in Sec. V, we have been forced to infer the high-
frequency behavior of these power spectral densities from
their low-frequency behavior. We could improve on this
limitation by using a near quantum-limited first stage
amplifier [11,51–53], which would reduce our noise floor
by an order of magnitude or more. Second, in deriving
Eq. (35) we have assumed that the carrier signal is on
resonance at ω0 (see Appendix D), where the sideband
power Sout(ω0 + ω) due to frequency fluctuations S''(ω)
is maximal. Over the course of measuring the output power
at ω0 + ω, however, the resonant frequency will fluctuate
around its average value, thereby reducing both the aver-
age output power at ω0 + ω and our estimate of S''(ω).
Since the scale of fluctuations in the resonant frequency
around its average value is comparable to but not greater
than κtot, this will be an order unity effect.

VII. KERR SHIFT

Since many of our measurements rely on our knowl-
edge of the number of photons in the cavity, we next study
the power-dependent shift in resonant frequency due to the

Kerr nonlinearity [10,24,25]. This will enable us to refer
our input and output powers to the plane of the sample,
and thereby determine the number of intracavity photons
in situ. In Appendix C we show that the resonant frequency
ω∗, taken to be the frequency at which |S11| is minimized,
is shifted from ω0 according to

ω∗ = ω0 + Kn = ω0 + 4K
κext

κtot

Pin

!ω0κtot
, (42)

where n is the number of intracavity photons on resonance
and Pin is the input power at the plane of the sample. This
can be expressed in terms of the input VNA power PVNA
using the input attenuation ηin = PVNA/Pin. Thus, if we
measure the slope

∂ω∗

∂PVNA
= 4κext

!ω0κ
2
totηin

K , (43)

we can determine ηin by comparing with this theoretical
model, since the resonant frequency, Kerr nonlinearity,
and damping rates have already been determined. Here
we have implicitly assumed that the damping rates of the
cCPT do not vary with input power, which is not true
in general [54,55] but is accurate for the range of input
powers we use in this measurement.
We perform this measurement by increasing PVNA, find-

ing ω∗ for each input power, and determining the slope
∂ω∗/∂PVNA. This is done for a full period of both ng and
!ext, such that we can fit our results to Eq. (43). The
results of this measurement at two different bias points,
one with positive K and one with negative K , are shown
in Figs. 9(a) and 9(b). Furthermore, we repeat this process
for different ranges of input VNA powers, always start-
ing from −65 dBm and incremented on a linear scale,
but ending between −56 and −51 dBm. At −56 dBm,
the cCPT is below the threshold of bistability (C8) across
its full tuning range, but the scale of the Kerr shift is
comparable to both the cavity linewidth and the jumps in
frequency between measurements at different input powers
(due to slow frequency fluctuations), leading to noisiness
and greater uncertainty in our measured slopes. At −51
dBm, the cCPT is above the threshold of bistability across
most of its tuning range, but the linear trend due to the
Kerr shift is more easily resolved. In all cases we do not
observe any clear signatures of bistability, such as hys-
teresis and sudden jumps in S11 as the drive frequency is
swept across resonance [56], since the total scale of fre-
quency fluctuations over the measurement time is larger
than the range of frequencies over which the response is
bistable for these powers. Empirically, we find that ω∗
follows a linear trend with respect to PVNA even into the
bistable regime at the powers considered, but using larger
maximum powers tends to yield slopes slightly smaller in
magnitude, leading to slightly larger input attenuations.
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FIG. 9. (a) Measurement of the Kerr-shifted resonant fre-
quency ω∗ (marked by black circles) as a function of PVNA at
(ng ,!ext) = (0.56, 0.53!0). The solid blue line is the best fit
to the filled black circles (slope = 400 kHz/nW), whereas the
dashed red line is the best fit to both the filled and open black cir-
cles (slope = 310 kHz/nW). The uncertainty in each measured
ω∗/2π is about ±100 kHz, smaller than the marker size. (b)
Same as (a), but at (ng ,!ext) = (0.56, 0.0). The slope of the solid
blue line is −300 kHz/nW, whereas the slope of the dashed red
line is −240 kHz/nW. (c) Measured slopes ∂ω∗/∂PVNA, scaled
by a factor of !ω0κ

2
totηin/4κext, and theoretical Kerr nonlinear-

ity given by Eq. (17). (d) Number of intracavity photons n at
resonance as a function of Pin. (e) Gain and (f) system noise
temperature of our amplifier chain as a function of frequency.

This effect is illustrated by the measurements shown in
Figs. 9(a) and 9(b); although the magnitudes of the slopes
obtained using greater maximum power are not always
this much less than those obtained using lower maximum
power, the trend persists on average. This may be due to
a slight increase in the internal damping rate at increasing
powers, but this is difficult to determine in our case due to
the complexity of simulating the nonlinear reflection coef-
ficient, given by Eq. (C9), in the presence of frequency
fluctuations. Finally, it is worth noting that all of these
effects, and our extracted input attenuations, are consistent
across multiple cooldowns.
We find the best agreement between theory and exper-

iment using a maximum input VNA power of about −54

dBm, at which the cCPT is below the bistability threshold
for all but a small region around !ext = !0/2. By fitting
our measured slopes ∂ω∗/∂PVNA to Eq. (43) we find the
input attenuation

ηin = (1.55± 0.2) × 108 = 81.9± 0.6 dB, (44)

whose confidence interval is limited by the range of
input attenuations extracted using different maximum input
VNA powers. In Fig. 9(c) we present a representa-
tive measurement of these slopes, scaled by a factor of
!ω0κ

2
totηin/4κext so they can be compared to the Kerr non-

linearity given by Eq. (17), and find excellent agreement
between theory and experiment. The accuracy of this con-
nection between the Kerr nonlinearity and the measured
slopes depends on the accuracy of our extracted damping
rates; if we had not accounted for the presence of frequency
fluctuations, our extracted input attenuation would have
been skewed. Our input attenuation is somewhat larger
than its value of about 79 dB at room temperature, con-
trary to our expectations since the attenuation due to our
stainless steel coaxial cables should decrease slightly at
cryogenic temperatures. We believe the primary reason
for this discrepancy is impedance mismatching arising at
cryogenic temperatures, since all of our cables and attenu-
ators are rated for room temperature. Based on our room-
temperature measurement, we estimate that ηin should vary
from its mean value by less than ±0.2 dB over the tuning
range of ω0, well within its confidence interval.
Although we find excellent agreement between our mea-

sured slopes and Eq. (43), it is worth discussing two
implicit assumptions of this model. First, we have ignored
the shift in ω∗ due to frequency fluctuations [18], which
would tend to increase the magnitude of our measured
slopes and lead us to extract a smaller input attenuation.
Second, we have ignored the fact that frequency fluctua-
tions reduce the average cavity occupation in the steady
state, which would tend to decrease the magnitude of our
measured slopes and lead us to extract a larger input atten-
uation. Both of these are order unity effects that tend to
cancel one another out, and modeling them rigorously
would be prohibitively complex. Thus, we have neglected
them.
With this input attenuation, we can now refer our input

VNA power PVNA to the input power at the plane of the
sample Pin = PVNA/ηin. Thus, we can find the average
number of photons in the cavity at resonance according to

n = 4κextPin

!ω0κ
2
tot

, (45)

which is valid in both the linear and nonlinear response
regimes, as shown in Appendices B and C. This serves
as an upper bound for the actual cavity occupation in the
steady state, which will be reduced by both frequency fluc-
tuations and nonzero detuning. In Fig. 9(d) we plot this
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average cavity occupation at resonance as a function of
input power; the range of values at each input power is
due to the variation in the damping rates as a function of
operating frequency ω0.

With this input attenuation we can also find the gain of
our amplifier chain and the system noise referred to the
plane of the sample. We find the gain G(ω) by measuring
the magnitude of the off-resonant transmission coefficient
between the input and output ports of the fridge, which
takes the form

|SVNA21 (ω)| = G(ω)
ηin

, (46)

as discussed in Sec. III. Our measured gain profile is pre-
sented in Fig. 9(e). We find the system noise power spectral
density Snoise(ω) by measuring the output power spectral
density at room temperature Sout(ω), with no input drive,
using a spectrum analyzer. These two quantities are related
to one another according to

Sout(ω) = G(ω)Snoise(ω). (47)

The power spectral density of the noise (in units of W/Hz)
can be converted into a system noise temperature by divid-
ing by the Boltzmann constant kB. Our measured system
noise, shown in Fig. 9(f), is primarily due to the added
noise of our first-stage cryogenic HEMT amplifier. These
results are consistent with both the specifications of the
HEMT and similar results in the literature [6,25,52,53],
thus providing additional corroboration of our extracted
value for the input attenuation.
A major limitation of this method for determining the

input attenuation is that we are unable to independently
measure the strength of the Kerr nonlinearity, forcing us to
infer its value from Eq. (17) using our extracted EJ and EC
given by Eq. (30) and φZP given by Eq. (14). This same
limitation exists in other work that has used the Kerr shift
(or, equivalently, the Duffing shift) to determine the power
at the plane of the sample in situ [6,24]. We have strong
corroboration for the validity of this theoretical evalua-
tion of K from the fact that the measured ω0(ng ,!ext) is
in excellent agreement with theory [Fig. 4(a)], the slopes
∂ω∗/∂PVNA follow the same trend as our theoretical Kerr
nonlinearity [Fig. 9(c)], and our estimate for the differ-
ence between the superconducting gaps of the island and
leads of the CPT is consistent with other measurements
reported in the literature. However, a direct measurement
of K(ng ,!ext) would be preferable. We might have been
able to perform such a measurement if the strength of
the Kerr nonlinearity exceeded the cavity linewidth [57],
in which case we could observe spectral signatures of K .
Unfortunately, in our case the observable consequences of
K are only sensitive to the product PinK . This is true for
both the Kerr shift given by Eq. (42) and the bistability

threshold given by Eq. (C8). Within the internal logic of
this methodology, our uncertainty in K is determined by
our confidence intervals for the best-fit parameters EJ and
EC, as well as our uncertainties σng and σ!ext in the gate
and flux bias points due to 1/f noise. The total uncertainty
in K varies with gate and flux, but it is typically less than
about ±15 kHz.
In addition, it is worth noting that a completely differ-

ent method for determining the input attenuation would
be possible if we were able to access the first excited
state of the CPT and thereby operate it as a qubit. Robust
methods exist for calibrating the number of photons in a
cavity that is coupled to a qubit via the Jaynes-Cummings
interaction. These methods make use of the Stark shift
[58], a photon-number-dependent shift in the qubit fre-
quency, the coupling strength of which can be determined
independently by measuring either the phase shift of a
scattered signal in the case of weak coupling [59] or
the vacuum Rabi splitting in the case of strong coupling
[60]. Although the coupling between the qubit and cav-
ity would be somewhat different in our case, we believe
these methods could be adapted to the cCPT if not for two
practical limitations. First, due to our restricted gate range
−0.65 < ng < 0.65, the minimum qubit frequency we can
attain with the present device is E0→1/h ≈ 75 GHz, which
is beyond the range of frequencies we can access experi-
mentally. Second, we would expect our qubit (essentially
a split Cooper-pair box [61]) to have a poor coherence
time, making qubit spectroscopy challenging. This could
be improved if a cCPT were fabricated in the transmon
regime with EC/EJ + 1 [35], but this would then be a very
different device than the one studied in the present work.

VIII. DISCUSSION

In this work we introduce the cavity-embedded Cooper-
pair transistor, discuss how the CPT induces nonlinearity
and tunability in the cavity, and detail the techniques used
to characterize this device experimentally. As we show, the
characterization process is made significantly more com-
plex by the presence of frequency fluctuations comparable
in scale to the cavity linewidth. Only by accounting for
the effect of these fluctuations on the trajectories traced
out by S11 in the complex plane are we able to extract the
true damping rates of the cCPT. In addition, we observe
the key predicted signatures of both Gaussian-distributed
frequency fluctuations induced by charge and flux noise,
as well as chi-square-distributed frequency fluctuations
induced by quantum fluctuations of the cavity field via the
Kerr nonlinearity [18]. In the latter case the signature is
subtle, and we are currently investigating more direct ways
of observing the consequences of these quantum frequency
fluctuations. We note that such nonlinearity-induced fre-
quency fluctuations have also been studied in nanome-
chanical resonators [62,63], but it is unclear whether the
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methods employed in this context can be applied to super-
conducting microwave cavities with negligible thermal
occupation.
In addition to our measurements of the reflection coef-

ficient, virtually all of our steady-state measurements are
affected by frequency fluctuations, and often in ways that
are difficult to model rigorously. It may be possible to
mitigate these effects by using a Pound-locking loop to
stabilize the resonant frequency [64,65]. This could be
achieved by measuring the error function, a signal asso-
ciated with deviations of the resonant frequency from its
nominal value, and using it to send a feedback signal to
the gate or flux line correcting those deviations that occur
slower than a cutoff frequency set by the feedback circuitry.
Since a large portion of these frequency fluctuations are
due to 1/f noise coupling into the gate and flux coordi-
nates, even a modest cutoff frequency on the order of 1 kHz
would significantly improve the stability of the resonant
frequency. Such a loop would also enable us to directly
monitor the resonant frequency as a function of time.
Despite these frequency fluctuations, the cCPT is a rich

system with many applications. First and foremost, it can
be used for ultrasensitive electrometry at the single-photon
level, as discussed experimentally [15] and theoretically
[16] in our companion papers. We have presented some
evidence of this by measuring the power spectral density
of frequency fluctuations due to its intrinsic charge noise
using less than one photon in the cavity. In this same vein,
it is one of the key building blocks of a scheme to achieve
ultrastrong optomechanical coupling at the single-photon
level [17]. Second, we can operate it as a parametric
oscillator by pumping the flux near 2ω0, as shown in
Appendix E, and at the same time tune the Kerr nonlinear-
ity to zero unlike comparable systems [24,66]. This would
enable us to explore a Kerr-free regime of parametric res-
onance and the dynamical Casimir effect [7–9], which
is interesting since the Kerr nonlinearity (equivalent to
the Duffing nonlinearity within the rotating-wave approx-
imation) is generally understood to be the primary factor
limiting the steady-state amplitude of parametric oscilla-
tion [13,67]. Lastly, the use of parametric pumping could
enable charge detection schemes analogous to those that
have been used for single-shot readout of superconducting
qubits [5,6].
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APPENDIX A: CLASSICAL CIRCUIT MODEL

Near its fundamental frequency, the input impedance of
our quarter-wavelength cavity is approximately [26]

Zin ≈ Z0
α( + iπ$/2ω(0)

λ/4

, (A1)

where $ = ω − ω
(0)
λ/4 is the detuning from the fundamental

frequency of the bare cavity, α is the cavity’s attenuation
constant, ( is its length, Z0 is its characteristic impedance,
and we have assumed both low loss (α( + 1) and small
detuning ($ + ω

(0)
λ/4). This input impedance is equivalent

to that of a parallel RLC circuit

Zin ≈ 1
(1/R)+ 2i$C

(A2)

near its resonant frequency, with circuit parameters

R = Z0
α(

, (A3)

L = 4Z0
πω

(0)
λ/4

, (A4)

C = π

4Z0ω
(0)
λ/4

. (A5)

As shown in Sec. II, the CPT behaves as a tunable induc-
tance LJ in parallel with this circuit. We couple to this
system with a series capacitance Cc, and we measure it
by connecting it to a network analyzer with the same
characteristic impedance Z0 = 50 '. The loaded cCPT
can therefore be approximated by the circuit shown in
Fig. 10(a).
To simplify our analysis [34], we can replace the series

combination of Z0 and Cc by an equivalent combination of
R′ and C′ in parallel, as shown in Fig. 10(b). We find R′

(a) (b)

FIG. 10. Schematics representing the cCPT and its external
environment. In (a), the external elements Z0 and Cc are in series
with the resonator, as they are in the experiment, and the plane
of the sample is marked by a dashed line. In (b), the external ele-
ments are represented by their parallel equivalents: resistance R′

and capacitance C′.
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and C′ with the constraint

Z0 − i
ωCc

=
(
1
R′ + iωC′

)−1

(A6)

that yields the solutions

R′ = Z0
(
1+ 1

ω2Z2
0C2

c

)
≈ 1

ω2Z0C2
c
,

C′ = Cc

(
1

1+ ω2Z2
0C2

c

)
≈ Cc,

(A7)

where the approximate expressions are obtained using
Cc/C + 1 and $ + ω

(0)
λ/4. We therefore see that the bare

resonant frequency of the cavity is renormalized by the
coupling capacitance Cc according to

ωλ/4 =
ω
(0)
λ/4√

1+ Cc/C
, (A8)

and that the resonant frequency ω0 of the cCPT can be
tuned via the Josephson inductance LJ according to

ω0 = ωλ/4

√

1+ L
LJ

. (A9)

Drawing the circuit in this way also allows us to easily
analyze the damping rates of our system, since the internal
damping rate κint is due to dissipation in R and the external
damping rate κext is due to dissipation in R′. These damping
rates at resonance are defined by [26]

κ ≡ energy loss per second
average energy stored

, (A10)

where the average energy stored in a cycle is a combi-
nation of the electrical energy We = (C+ Cc)|Vin|2/4 and
the magnetic energy Wm (which equals We at resonance),
and the average energy loss per second in a cycle due to
the resistance Rloss is Ploss = |Vin|2/2Rloss. Putting these
expressions together, our internal and external damping
rates take the form

κint =
1

R(C+ Cc)
≈ 4ωλ/4

π
α(,

κext =
ω2
0Z0C

2
c

(C+ Cc)
≈ 4ωλ/4

π
(ω0Z0Cc)

2,
(A11)

where we have applied the same approximations as before.
We now analyze the reflection coefficient of the cCPT

at the plane of the sample, indicated by the dotted line in
Fig. 10(a). In this case we consider everything other than
Z0 to be part of the resonant circuit, including the series

coupling capacitance Cc. The impedance of the cCPT is
then

ZcCPT = 1
iωCc

+
(
1
R
+ 1

iωLtot
+ iωC

)−1

, (A12)

where Ltot is the parallel combination of L and LJ , which
gives rise to the reflection coefficient

S11 =
Vout

Vin
= ZcCPT − Z0

ZcCPT + Z0
. (A13)

Plugging in and using the same approximations as earlier,
we find that

S11 =
{
1 − x2 + ix

[
κint

ω0
− κext

ω0

(
C+ Cc

Cc

)
+ κext

ω0

C
Cc

x2
]}

×
{
1− x2 + ix

[
κint

ω0
+ κext

ω0

(
C+Cc

Cc

)
− κext

ω0

C
Cc

x2
]}−1

,

(A14)

where x = ω/ω0 and ω0 = 1/
√
Ltot(C+ Cc). We next

rewrite x = 1+ δx and expand to lowest order in δx =
$/ω0 + 1 to find that

S11 =
[
−2δx + i

(
κint

ω0
− κext

ω0
+ 2

κext

ω0

C
Cc

δx
)]

×
[
−2δx + i

(
κint

ω0
+ κext

ω0
− 2

κext

ω0

C
Cc

δx
)]−1

,

(A15)

where we have used the fact that ω0 ) κint, κext. Finally,
although Cc/C + 1, we also have κextC/ω0Cc + 1 such
that

S11 =
$ − i(κint − κext)/2
$ − i(κint + κext)/2

, (A16)

where we have multiplied through by −ω0/2.

APPENDIX B: LINEAR CAVITY RESPONSE

To model the response of a cavity to an external drive
and in the presence of damping, we use input-output theory
[68]. In our case, the quantum Langevin equation for the
cavity mode operator a takes the form

ȧ = i
! [H , a] − κtot

2
a+ √

κextain(t)+
√

κintbin(t), (B1)

where H is the cavity Hamiltonian, κtot = κint + κext is the
total damping rate, ain is the input field in the transmission
line coupled to the cavity via the capacitance Cc, and bin
is the noisy, zero-mean input field due to the internal loss
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channel. The output field aout in the transmission line is
related to the input field and intracavity field according to

aout = ain − √
κexta. (B2)

A similar relationship holds between bin and bout, but these
are inaccessible experimentally.
Here we consider driving the cavity at sufficiently low

powers such that its response is linear to good approxima-
tion. We therefore take the Hamiltonian to beH = !ω0a†a,
and Eq. (B1) takes the form

ȧ =
(

−iω0 − κtot

2

)
a+ √

κextain(t)+
√

κintbin(t). (B3)

Assuming a sinusoidal input drive of the form 〈ain(t)〉 =
αine−iωt, the average steady-state cavity response takes
the form 〈a(t)〉 = αe−iωt. Taking the ensemble average of
Eq. (B3) and plugging in these expressions we can solve
for the intracavity amplitude

α =
√

κextαin

−i$ + κtot/2
, (B4)

where $ = ω − ω0 is the detuning of the drive from reso-
nance. The average number of intracavity photons n = |α|2
in the steady state therefore takes the form

n = κextPin/!ω

$2 + κ2
tot/4

, (B5)

where we have introduced the input power Pin = !ω|αin|2.
Substituting these results into Eq. (B2), we can solve for

the average steady-state amplitude of the output field

αout =
$ + i(κint − κext)/2
$ + i(κint + κext)/2

αin. (B6)

The linear reflection coefficient can now be found from the
relationship S11 = (αout/αin)

∗, where the complex conju-
gate is taken so that its phase corresponds to a counter-
clockwise rotation in phase space of the output quadrature
operators relative to the inputs. In this case the reflection
coefficient takes the form

S11 =
$ − i(κint − κext)/2
$ − i(κint + κext)/2

, (B7)

in agreement with Eq. (A16) derived from the classical
circuit model.

APPENDIX C: NONLINEAR CAVITY RESPONSE

We now analyze the response of a cavity with a Kerr
nonlinearity to a sinusoidal input drive. Our Hamiltonian

in this case is

H = !ω0a†a+ 1
2!Ka

†2a2, (C1)

such that the quantum Langevin equation of Eq. (B1) takes
the form

ȧ =
[
−i(ω0 + Ka†a) − κtot

2

]
a+ √

κextain(t)+
√

κintbin(t).

(C2)

As in the previous section, we assume a sinusoidal input
drive of the form 〈ain(t)〉 = αine−iωt such that the aver-
age steady-state cavity response takes the form 〈a(t)〉 =
αe−iωt. Substituting back into Eq. (C2), we find that

[
−i($ − K |α|2)+ κtot

2

]
α = √

κextαin, (C3)

where $ = ω − ω0 is the detuning of the drive from reso-
nance. To solve this nonlinear equation for the intracavity
field amplitude α, we multiply both sides by their complex
conjugates and find that

K2n3 − 2$Kn2 +
[
$2 + κ2

tot

4

]
n − κext

Pin

!ω0
= 0, (C4)

where n = |α|2 is the average number of intracavity pho-
tons, Pin = !ω |αin|2 is the power at the input port of the
cavity, and we have used 1/ω ≈ 1/ω0 since $ + ω0.
In general, this cubic equation for the cavity response

has three solutions; if only one solution is real then it is
stable and the unique physical solution, whereas if all three
solutions are real then one solution will be unstable and
there will be bistability in the cavity response as a func-
tion of detuning [10]. The bifurcation between these two
regimes occurs when the response curve n($) becomes
vertical such that ∂$/∂n = 0. Differentiating Eq. (C4)
with respect to n and evaluating at the critical number of
photons nc where this bifurcation occurs, we find that

nc =
2$
3K

(
1± 1

2

√

1 − 3κ2
tot

4$2

)
. (C5)

Since the number of photons nc must be real and positive,
this equation implies that there is also a critical detuning

$c = sign(K)

√
3κtot
2

(C6)

at which the onset of bistability occurs, such that

nc =
√
3
3

κtot

|K |
. (C7)
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Substituting these back into Eq. (C4), we can solve for the
critical input power

Pc =
√
3
9

!ω0κ
3
tot

|K |κext
, (C8)

above which the response is bistable for a range of detun-
ings near $c.

Below this bistability threshold, we can solve Eq. (C4)
for n uniquely and substitute back into Eq. (C3) to find
the phase of α self-consistently. From here we can use
Eq. (B2) to solve for the average steady-state output field
αout, and thus the reflection coefficient S11 = (αout/αin)

∗ as
in the previous section. Doing so, we find that the nonlinear
reflection coefficient takes the form

S11 =
$ − Kn − i(κint − κext)/2
$ − Kn − i(κint + κext)/2

, (C9)

where n depends on the detuning $ according to Eq. (C4).
This expression is equivalent to the linear case of Eq. (B7)
except the detuning is shifted according to $ → $ − Kn.
In this case the resonant frequency, taken to be the mini-
mum of |S11|, occurs at the detuning$∗ = Kn. Substituting
this result back into Eq. (C4) we can solve for the shifted
resonant frequency

ω∗ = ω0 + 4K
κext

κtot

Pin

!ω0κtot
(C10)

in terms of the input power. Finally, it is worth noting that
the number of photons in the cavity at this shifted resonant
frequency takes the form

n = 4κextPin

!ω0κ
2
tot

, (C11)

which is equivalent to Eq. (B5) evaluated at resonance.

APPENDIX D: FREQUENCY-MODULATED
CAVITY RESPONSE

For this analysis, we go back to the cavity equation of
motion

ȧ = −iω0(t)a − κtot

2
a+ √

κextain, (D1)

where we consider modulating the resonant frequency such
that

ω0(t) = ω0 + ' cos(ωmt). (D2)

We treat the system semiclassically by taking the expec-
tation value of this equation of motion and assuming a

sinusoidal drive 〈ain(t)〉 = αine−iωt, such that

α̇ =
[
−iω0 − i' cos(ωmt) − κtot

2

]
α + √

κextαine−iωt.

(D3)

We now make an ansatz of the form

α(t) = A(t) exp
[
−iω0t − i

'

ωm
sin(ωmt) − κtot

2
t
]
, (D4)

and find the equation of motion for the amplitude A(t),

Ȧ = √
κextαin exp

[
−i$t+ i

'

ωm
sin(ωmt)+

κtot

2
t
]
, (D5)

where we have introduced the detuning $ = ω − ω0.
To solve this differential equation, we use the Jacobi-

Anger expansion

eiz sin(x) =
∞∑

n=−∞
Jn(z)einx, (D6)

where Jn is the nth Bessel function of the first kind. Sub-
stituting this identity into our differential equation, we find
that

Ȧ = √
κextαin

∞∑

n=−∞
Jn

(
'

ωm

)
e−i($−nωm)t+κtott/2. (D7)

This equation can be integrated directly, yielding the solu-
tion

A(t) = √
κextαin

∞∑

n=−∞
Jn

(
'

ωm

)
e−i($−nωm)t+κtott/2

−i($ − nωm)+ κtot/2
,

(D8)

where we have dropped the constant A(0) since we are
interested in the steady state, rather than the transient
response. Substituting back into our ansatz, we arrive at
the solution for the intracavity expectation value

α(t) = √
κextαin

×
∞∑

n=−∞
Jn

(
'

ωm

)
e−i(ω−nωm)t−i('/ωm) sin(ωmt)

−i($ − nωm)+ κtot/2
. (D9)

Applying the Jacobi-Anger expansion again, we find that

α(t) = √
κextαin

∞∑

n=−∞
Jn

(
'

ωm

)
exp[−i(ω − nωm)t]

−i($ − nωm)+ κtot/2

×
∞∑

k=−∞
Jk

(
'

ωm

)
exp[−ik(ωmt)]. (D10)

We next simplify this expression by evaluating at $ = 0
(where the response is maximized) and expanding to linear
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order in '/ωm (which we assume to be much less than one
for a weak frequency modulation amplitude), yielding the
expression

α(t) = √
κextαin

[
2

κtot
e−iω0t − i'e−i(ω0+ωm)t

κtot(−iωm + κtot/2)

− i'e−i(ω0−ωm)t

κtot(iωm + κtot/2)

]
. (D11)

Finally, we solve for the output field

αout = αin

[(
1 − 2

κext

κtot

)
e−iω0t + iκext'e−i(ω0+ωm)t

κtot(−iωm + κtot/2)

+ iκext'e−i(ω0−ωm)t

κtot(iωm + κtot/2)

]
(D12)

using the input-output relation aout = ain − √
κexta.

Since the ingoing and outgoing voltages are proportional
to ain and aout, the amplitude of the outgoing voltage at
each of the sidebands is given by

Vout(ω0 ± ωm) =
κext'

κtot

√
ω2
m + κ2

tot/4
Vin, (D13)

such that we can simply read off the power at the sidebands

Pout(ω0 ± ωm) =
κ2
ext'

2

κ2
tot(ω

2
m + κ2

tot/4)
Pin. (D14)

If the frequency modulation is instead a noisy signal with
power spectral density S''(ω) rather than a pure tone, the
output power spectral density Sout will take the form

Sout(ω0 ± ω) = 2κ2
ext

κ2
tot(ω

2 + κ2
tot/4)

PinS''(ω), (D15)

where we have picked up an extra factor of 2 since the
power spectral density is defined in terms of rms modula-
tion amplitude per unit bandwidth. Thus, if we drive the
cavity at its resonant frequency, we can extract the power
spectral density of frequency noise S''(ω) by measur-
ing the output power spectral density Sout(ω0 ± ω) at the
corresponding sideband frequencies.

APPENDIX E: PARAMETRICALLY PUMPED
cCPT HAMILTONIAN

For completeness, here we derive the additional term
that arises in the cCPT Hamiltonian when the flux line is
parametrically pumped near 2ω0. We start from Eq. (7),

which takes the form

H = Q2

2C
+ !2

2L
+

∞∑

k=0

1
k!

∂k
φECPT(ng ,!ext)

(
2π!

!0

)k

.

(E1)

If the flux is pumped at ωp ∼ 2ω0 such that

!ext → !ext + δ! cos(ωp t) (E2)

for δ! + !0, then ECPT can be expanded to linear order
in δ!, yielding the additional term

Hpump = δ! cos(ωp t)

× ∂

∂!ext

∞∑

k=0

φk
ZP

k!
∂k
φECPT(ng ,!ext)(a+ a†)k

(E3)

in the Hamiltonian, where we have expressed the cavity
flux coordinate ! in terms of mode operators a and a†
using Eq. (12). Since the mode operators a and a† tend
to oscillate as e−iω0t and eiω0t, respectively, all the even-k
terms in this expansion will have components that oscillate
as e±2iω0t, which will be made stationary by the flux pump
near 2ω0. Thus, if we make the rotating-wave approxima-
tion as in Sec. II B by dropping all terms that oscillate
rapidly in the frame rotating at ωp/2 ∼ ω0, this pump term
can be approximated

Hpump ≈ !
4

∂ω0

∂!ext
δ!(eiωp ta2 + e−iωp ta†2) (E4)

to leading order in φZP (neglecting the constant k = 0
term), where we have expressed the cosine as a com-
plex exponential and written ∂2

φECPT in terms of ω0 using
Eq. (15). The total Hamiltonian can therefore be cast in
the standard form of a parametric oscillator with a Kerr
nonlinearity [69]

H = !ω0a†a+ 1
2!Ka

†2a2 + 1
2!ε(eiωp ta2 + e−iωp ta†2),

(E5)

where the pump strength ε is given by

ε = 1
2

∂ω0

∂!ext
δ!, (E6)

which depends on both gate and flux. An analysis of the
dynamics of the parametrically pumped cCPT is left for
future work.

APPENDIX F: SELF-INDUCTANCE OF THE
SQUID LOOP

In Eq. (5) we neglected the contribution of the SQUID
loop’s self-inductance Lloop to the total flux through the
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loop. In general, however, if a current Icirc is circulating
around the loop, this will induce a flux LloopIcirc through
it. This contribution is negligible in our case if it is sig-
nificantly less than the magnetic flux quantum, such that
Lloop|Icirc|/!0 + 1. Although the SQUID loop does have
a relatively large self-inductance due to its size, the current
flowing through the CPT in its ground state is sufficiently
small that this condition holds for all values of the external
flux !ext over the gate range −0.65 < ng < 0.65.

Treating the loop as rectangular (approximately 8 mm ×
5 µm), we conservatively estimate its self-inductance to be
Lloop " 10 nH. To estimate the circulating current, we first
note that it is simply the average current flowing through
the JJs, which can be written as

Icirc = 1
2 Ic〈sin(ϕ1)+ sin(ϕ2)〉, (F1)

where Ic is the critical current of each JJ, ϕ1,2 are the gauge-
invariant phases across the JJs, and the expectation value is
taken with respect to the ground state of the CPT Hamilto-
nian [Eq. (4)]. To evaluate this expectation value, we first
rewrite the above expression in terms of ϕ̄ = (ϕ1 + ϕ2)/2
and δϕ = (ϕ1 − ϕ2)/2 according to

Icirc = Ic sin(ϕ̄)〈cos(δϕ)〉, (F2)

where the average phase ϕ̄ is independent of the state of
the CPT. The phase difference δϕ, on the other hand, is an
operator that is conjugate to the number of excess Cooper
pairs N on the island [33]. Using the canonical com-
mutation relation between these operators, the circulating
current can be written as

Icirc =
1
2
Ic sin(ϕ̄)

〈 ∑

N∈Z
(|N + 1〉〈N | + |N 〉〈N + 1|)

〉
.

(F3)

This expectation value can now be evaluated using the
charge-state truncation method discussed in Sec. II B. We
provide an upper bound on this circulating current by
setting sin(ϕ̄) = 1 and finding the maximum expectation
value over the accessible range of gates −0.65 ≤ ng ≤
0.65, which yields |Icirc| " Ic/5. Since the critical current
of each JJ is given by Ic = 2πEJ /!0 ≈ 30 nA, the mag-
nitude of the circulating current is bounded by |Icirc| " 6
nA. Using our above estimate for the self-inductance of the
loop, we find that Lloop|Icirc|/!0 " 0.03 + 1, such that we
are justified in neglecting the effect of the SQUID loop’s
self-inductance.

APPENDIX G: POWER SPECTRUM OF
QUASIPARTICLE POISONING

As discussed in Sec. IV, quasiparticle poisoning (QP)
occurs when the cCPT is biased near ng = 0.7. This man-
ifests itself as random switching between two different
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FIG. 11. Output power spectral density at f0 + f due to fre-
quency fluctuations induced by quasiparticle poisoning.

resonant frequencies as quasiparticles tunnel onto and off
of the CPT island. When measured with a VNA, this
gives rise to two visible resonances as in Fig. 3(b). Using
the same techniques as in Sec. VI, however, we can also
measure the power spectrum of these switching events.
To do so, we bias the cCPT to (ng ,!ext) = (0.7, 0.0).

The only sources of frequency fluctuations at this point are
charge noise and the random switching due to QP (ignoring
the effect of quantum fluctuations as in Sec. VI since they
cannot be resolved with this measurement). Since the odd-
parity resonance is effectively at ng = −0.3, its resonant
frequency is not very sensitive to gate noise, so the fre-
quency fluctuations are dominated by the switching due to
QP. We therefore put a carrier in at the odd-parity resonant
frequency ( f0 = 5.789GHz) and measure the output power
spectral density near the reflected carrier, which encodes
the power spectral density of frequency fluctuations. This
measurement is performed with all the same parameters as
those discussed in Sec. VI.

The results of this measurement are shown in Fig. 11.
We find that the output power spectral density due to QP is
well modeled by a Lorentzian, as we expect for the random
telegraph signal associated with QP [41,42]. The best fit of
the excess noise to a Lorentzian is

SSAout( f0 ± f ) = 6.7 × 10−15

1+ ( f /830 Hz)2
W/Hz. (G1)

This corner frequency of 830 Hz is consistent with other
measurements of QP reported in the literature [41,42].
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