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the dispatch variables. All points within the convex restriction
are guaranteed to be robustly feasible with respect to a given
uncertainty set. In other words, all operating points within
the robust convex restriction will remain solvable and feasible
when perturbed by all uncertainty realizations within the
specified uncertainty set.

Fig. 2 provides an illustrative example showing feasible
spaces for an AC OPF problem, a convex restriction, and
a robust convex restriction. A robust OPF dispatch solution
must ensure that the solution remains feasible for all possible
variations in the load, which corresponds to the red circle in
Fig. 2(a) and the y-axis in Fig. 2(b). The system operators need
to choose the active power generation dispatch that minimizes
the generation cost, which corresponds to the red points in
Fig. 2(c) and on the x-axis in Fig. 2(b). The challenge in
constructing the robust convex restriction is that we need
to consider a range of possible load realizations which are
random/uncontrollable, but known to lie within a pre-specified
uncertainty set (red circle). The robust convex restriction
takes the load uncertainty as an input and expresses the
range of dispatch variables within which all load realizations
are guaranteed to remain feasible. An example of a robust
operating point is the red dot, with the red bar showing the
possible load variations.

The main contributions of this paper are summarized below.

1. We develop a robust convex restriction, which provides
a convex inner approximation to the robust AC optimal
power flow problem. The robust condition ensures the
feasibility of all the operating constraints and the AC
power flow equations for any realizations of the power
injections within the specified set and hence provably
guarantees robust feasibility. In addition, the convexity
of the condition brings computational advantages.

2. We use the robust convex restriction to formulate a robust
OPF problem that either (i) maximizes the uncertainty
margin or (ii) minimizes the worst-case generation cost,
while guaranteeing robustness against a given uncer-
tainty set. We then propose a tractable algorithm for
AC OPF problems that solves a sequence of convex
optimization problems to provide solutions with provable
robust feasibility guarantees. To the best of the authors’
knowledge, these are the first solution methods to provide
rigorous robust feasibility guarantees for nonlinear AC
OPF problems with meshed topologies, without requiring
controllable loads or generators at every node.

3. We demonstrate the effectiveness and tractability of this
algorithm using numerical experiments on PGLib test
cases [29]. The results illustrate the ability of our al-
gorithm to control the trade-off between the level of
robustness and the operating cost.

This paper is organized as follows. Section II introduces the
system model. Section III formalizes robust feasibility. Sec-
tion IV derives the sufficient condition for robust feasibility.
Section V leverages this condition to develop our proposed ro-
bust AC OPF algorithm. Section VI empirically demonstrates
this algorithm’s performance. Section VII concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

This section introduces the OPF problem with consideration
of uncertainty in power injections. We use a distributed slack
generator formulation, generalizing the model in [19], [27].
The distributed slack plays an important role in determining
the generators’ response to the uncertain power injections.

A. Notation

The scalars nb, ng, npv, npq, nl, and nd denote the number of
buses, generators, PV, PQ buses, lines, and loads, respectively.
The variables pg ∈ R

ng and qg ∈ R
ng represent the generators’

active and reactive power outputs. Uncontrollable active and
reactive power injections are denoted by pd ∈ R

nd and
qd ∈ R

nd where positive values indicate stochastic loads
and negative values indicate uncertain generation such as
renewables. The voltage magnitudes and phase angles are
v ∈ R

nb and θ ∈ R
nb . The from and to buses for the lines

are denoted by “f” and “t”. The non-reference, PV, and PQ
elements of a vector are denoted with subscripts “ns”, “pv”,
and “pq”. Let E ∈ R

nb×nl be the incidence matrix of the grid.
The connection matrices for generator buses and load buses
are denoted by Cg ∈ R

nb×ng and Cd ∈ R
nb×nd , respectively.

The matrices I and 0 denote identity and zero matrices of
appropriate size. The vertical concatenation of vectors a and
b is denoted by (a, b).

B. AC Optimal Power Flow Problem Formulation

For notational convenience, we denote the angle differences
between the terminals of the transmission lines as ϕ:

ϕl = θf
l − θt

l, l = 1, . . . , nl, (1)

where θf
i and θt

i are the phase angles of the from bus and to

bus of line l. The AC OPF problem is:

minimize
x,u,sf,st

c(pg) =

ng∑

i=1

ci(pg,i) (2)

subject to: for k = 1, . . . , nb,

p
inj
k =

nl∑

l=1

vf
lv

t
l (G

c
kl cosϕl +Bs

kl sinϕl) +Gd
kk
v2k, (3a)

q
inj
k =

nl∑

l=1

vf
lv

t
l (G

s
kl sinϕl −Bc

kl cosϕl)−Bd
kk
v2k, (3b)

p min
g,i ≤pg,i ≤ pmax

g,i , i = 1, . . . , ng, (4a)

qmin
g,i ≤qg,i ≤ qmax

g,i , i = 1, . . . , ng, (4b)

vmin
i ≤vi ≤ vmax

i , i = 1, . . . , nb (4c)

ϕmin
l ≤ϕl ≤ ϕmax

l , l = 1, . . . , nl, (4d)

(sf
p,l)

2+(sf
q,l)

2 ≤ (smax
l )2, l = 1, . . . , nl, (4e)

(st
p,l)

2+(st
q,l)

2 ≤ (smax
l )2, l = 1, . . . , nl. (4f)

where the matrices Gc, Gs, Bc, Bs ∈ R
nb×nl and Gd, Bd ∈

R
nb×nb are transformed admittance matrices for the respective

conductance and susceptance terms. The exact definitions of
the transformed matrices are available in [27]. The objective
c : R

ng → R is a monotonically increasing function of
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the active power generation. The active and reactive power
injections are pinj = Cgpg − Cdpd and qinj = Cgqg − Cdqd.
Superscripts max and min denote the maximum and minimum
limits of the associated quantity. Constraints (4a) and (4b)
impose the generators’ active and reactive power output limits.
Constraints (4c) and (4d) limit the voltage magnitudes and the
angle differences. Constraints (4e) and (4f) impose line flow
limits where sf/t

p,l and sf/t
q,l are the active and reactive power

flowing into the line l at the from and to buses, respectively,
and their definitions are given in in Appendix A.

C. Power Injection Uncertainty Modelling

This paper focuses on obtaining a robustly feasible oper-
ating point with respect to uncertainty in the uncontrollable
power injections, such as load variations and forecast errors
from renewable energy sources. The variable w = (pd, qd) ∈
R
2nd consists of uncertain active and reactive power injections
pd ∈ R

nd and qd ∈ R
nd . The nominal value of the uncertain

variable is w(0). We consider a bounded uncertainty set W
modeled with a confidence ellipsoid containing all power
injections within a ball of radius γ centered on the nominal
power injections:

W(γ) = {w | (w − w(0))TΣ−1(w − w(0)) ≤ γ2}. (5)

The power injection covariance matrix Σ ∈ R
2nd×2nd and the

radius γ ∈ R determine the shape and size, respectively, of the
uncertainty set. The covariance matrix Σ captures the corre-
lations between power injections. By choosing an appropriate
value for γ, the confidence ellipsoid can be designed such
that the probability of containing the uncertainty realization
is greater than the desired threshold. For example, if the
uncertainty is drawn from a univariate normal distribution, we
can ensure that 95% of the uncertainty realizations are within
the confidence ellipsoid by setting γ to be twice the variance.

D. Active Power Generation Recourse for System Balancing

To balance the system during variations in loads, we
consider a “distributed slack” model where each generator
adjusts its active power output to account for the system-wide
power imbalance. These adjustments occur according to the
generators’ participation factors. The distributed slack model
is formulated via an affine control policy:

pg,i(w) = pg,ref,i + αi∆, (6)

where pg,ref,i is the nominal setpoint for the generator’s ac-
tive power output, αi is the constant participation factor for
generator i, and ∆ ∈ R is the system-side power imbalance.
The variable ∆ is implicitly defined by the AC power flow
equations (3a) such that the active power is balanced across
the system. Fluctuations in power injections lead to changes in
∆ and consequent adjustments to the active power generation
according to (6). The distributed slack model generalizes a
single slack bus formulation, which can be retrieved by setting
all participation factors to 0 except for the participation factor

of the slack bus, which is set to 1.2 The generators’ reactive
power outputs are not directly controlled, and they are set by
the demand from the grid, determined by the AC power flow
equations (3b).

E. Variable Definitions

The buses are divided into two types according to the
standard definitions in the distributed slack model:

• PV (generator) buses: pg,ref and vg are specified by the
operators; qpv and θpv are implicitly defined by the AC power
flow equations.

• PQ (load) buses: pd and qd are either fixed or uncertain
parameters; vpq and θpq are implicitly defined by the AC
power flow equations.

The angle at one arbitrarily chosen reference bus is set to zero.
Based on the bus types, we categorize all variables as

dispatch variables or internal states, which are denoted by
u ∈ R

2ng and x ∈ R
nb+npq , respectively, with the follow-

ing definitions:

• Dispatch variables refer to controllable quantities that can
be set by the system operator, specifically, the active power
generation setpoint and the voltage magnitude setpoint. A
dispatch point is defined by a vector composed of dispatch
variables and is denoted by u = (pg,ref, vg).

• Uncertain variables are uncontrollable quantities that are
determined by external fluctuations such as renewables and
demand. Uncertain variables are modeled as variations in
power injections and are denoted by w = (pd, qd).

• Internal states are physical quantities that are implicitly
determined by the physics of the power grid and are
computed through the AC power flow equations. These
include the phase angles at the non-reference buses, the
voltage magnitudes at PQ buses, and the distributed slack
variable ∆. Internal states are denoted by x = (θns, vpq, ∆).

Moreover, we introduce a transformed state variable z =
(ϕ, vpq, ∆) that converts the phase angles θns to phase
angle differences ϕ. The transformed state is defined as
z = Ax where A = blkdiag(ET

ns, Inpq×npq , 1). The operation
blkdiag(·) denotes the block-diagonal matrix with the ar-
guments forming the diagonal submatrices. The transformed
state z enables working directly with the angle differences ϕ
in the power flow equations’ trigonometric functions.

Finally, we use the superscript (0) to indicate a nominal
point of any variable when the uncertainty is equal to its
nominal value. That is, the nominal state variable x(0) is the
solution to the AC power flow equations with w = w(0).

III. ROBUST FEASIBILITY OF THE AC OPTIMAL POWER

FLOW: DEFINITION AND PROBLEM FORMULATION

In this section, we introduce uncertainty into the nominal
OPF problem. We first describe the unknown-but-bounded
uncertainty set and then define the robust AC OPF problem.

2While our formulation allows the participation factors α to be decision
variables, permitting this flexibility in the problem led the solvers to encounter
numerical problems. Therefore, we fix the participation factors to specified
quantities. Improving the numerical stability of our method with variable
participation factors is a subject of our future work.
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A. Robust Feasibility Against Power Injection Uncertainty

Given the uncertainty model, the robust feasibility of a
dispatch point is defined by the following statement:

Definition 1. A dispatch point u is robustly feasible if the OPF
constraints are satisfied for all realizations of w within the
given uncertainty set W(γ). That is, for all w ∈ W(γ), there
exists x = (θns, vpq, ∆) such that (3) and (4) are satisfied.

Robust feasibility is defined for a dispatch point u, which
corresponds to the variables in the OPF problem that are
directly controllable. Power injection fluctuations w change
the internal states x (e.g., the voltage magnitudes and phase
angles) according to the AC power flow equations. Hence, the
internal states adapt to the uncertainty realizations.

With this definition of robustness in mind, we aim to
determine the dispatch point that minimizes the generation
cost while ensuring the existence of internal states that satisfy
the operational constraints for all uncertainty realizations.

B. Objective Function of the Robust AC OPF Problem

In this section, we discuss the objective function and
constraints of the robust AC OPF problem. There are two
candidates for the objective function:
1. Nominal operating cost: minimize the generation cost

evaluated when the uncertainty realization is equal to its
nominal value (i.e., c(0)(pg) = c(pg) |w=w(0) ).

2. Worst-case operating cost: minimize the generation cost
for the worst possible realization in the uncertainty set
(i.e., cu(pg) = maxw∈W(γ) c(pg)).

While both the nominal and worst-case generation costs
are important considerations, we will choose the worst-case
generation cost as the objective function in this paper. The
objective function is a nonlinear function of the dispatch
variables because the power generation, pg , is a function of
power imbalance ∆ as shown in (6). The power imbalance
term ∆ is implicitly defined by the AC power flow equations
and generation recourse and is thus a nonconvex function of
the decision variables. We will formulate the convex restriction
using an upper bound on ∆ as an explicit variable ∆u to
obtain a convex optimization problem. Our numerical studies
in Section VI will evaluate both the nominal and worst-case
generation costs and show that those generation costs are
strongly correlated.

C. Robust AC OPF Problem Formulation

Given our choice of objective function, the robust AC OPF
problem can be cast as the following optimization problem:

minimize
x,z,u,sf,st

cu(pg) (7)

subject to: for all uncertainty realizations w = (pd, qd) in
W(γ), there exists internal states x = (θns, vpq, ∆) such that
the following three conditions hold:
1) active power balance for k = 1, . . . , nb,

ng∑

i=1

Cg,ki(pg,ref,i + αi∆)−

nd∑

i=1

Cd,ki pd,i

=

nl∑

l=1

vf
lv

t
l (G

c
kl cosϕl +Bs

kl sinϕl) +Gd
kk
v2k,

(8)

2) reactive power balance for every PQ bus k,

−

nd∑

i=1

Cd,ki qd,i =

nl∑

l=1

vf
lv

t
l (G

s
kl sinϕl −Bc

kl cosϕl)−B
d
kk
v2k,

(9)
3) the internal states and control variables satisfy the opera-
tional constraints in (4).

Equations (8) and (9) are substitutions of the definitions
for the power injections and generation recourse into the AC
power flow equations. Note that Equations (8) and (9) are
sufficient to determine the internal states by solving a system
of equations and unknowns of size nb + npq. The AC power
flow equations for reactive power generations at PV buses
are directly substituted into the reactive power capacity limits
since they are not necessary for capturing the relationship
between dispatch variables and internal states.

We require that the robust solution satisfies the operational
constraints for all internal states that are realizable by the
uncertainty set.

D. Basis Function Formulation of the Power Flow Equations

In this section, we rewrite the AC power flow equations in
terms of basis functions that serve as building blocks for the
power flow nonlinearities. The vector of nonlinear functions,
ψ : (Rnb+npq ,R2ng) → R

ng+2nl+nb , denotes the basis function,
ψ(x, u) = (ψp, ψcos, ψsin, ψquad), where

ψ
p
i (x, u) = pg,ref,i + αi∆, i = 1, . . . , ng, (10a)

ψcos
l (x, u) = vflv

t
l cos (ϕl), l = 1, . . . , nl, (10b)

ψsin
l (x, u) = vflv

t
l sin (ϕl), l = 1, . . . , nl, (10c)

ψ
quad
k (x, u) = v2k, k = 1, . . . , nb. (10d)

The AC power flow equations in (3) can be written in terms
of the basis functions and the uncertain variables as

Mψ(x, u) +Rw = 0, (11)

where M ∈ R
(nb+npq)×(ng+2nl+nb) and R ∈ R

(nb+npq)×2nd are
constant matrices defined as

M =

[
Cg −Gc −Bs −Gd

0 Bc
pq −Gs

pq Bd
pq

]

, R = −

[
Cd 0

0 Cd,pq

]

. (12)

The matrix Bc
pq ∈ R

npq×nl is a submatrix of Bc ∈ R
nb×nl

containing the rows corresponding to the PQ buses. Matrices
Gs

pq, Bd
pq, Cg,pq, and Cd,pq are defined similarly.

IV. ROBUST CONVEX RESTRICTION

Robust feasibility of a solution requires that any power
injections within the uncertainty set are feasible with respect
to the non-convex feasible set of the OPF problem. In this sec-
tion, we present the robust convex restriction, which provides
a convex sufficient condition for certifying that the dispatch
point is robustly feasible for the AC OPF problem. The
condition generalizes convex restriction presented in in [19],
[27], which is a special case where the problem is deterministic
(i.e. the uncertainty set contains only one point such that
W(0) = {w(0)}).
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Lemma 1 states that the upper and lower bounds of the
function gk(x, u) over the set P(zu, z`) occur at one of the
extreme points of the set P(zu, z`). Fig. 3 provides an illus-
tration where the black dashed rectangle contains the possible
realizations of the function from the uncertainty set. The x-
axis of the dashed rectangle represents the set P(zu, z`),
which is the range of the internal states that can be realized
from the uncertainty set. The y-axis of the dashed rectangle
represents the range of the nonlinear function gk(x, u) that
can be realized from the uncertainty set. The bounds on the
nonlinear function gk(x, u) over the uncertainty set realization
can be obtained from the upper convex and lower concave
envelope evaluated at the vertices of P(zu, z`). This is shown
as the vertices marked by the red dots in Fig. 3. The following
section derives a condition which ensures that P(zu, z`) is an
outer approximation of the internal states.

B. Robustness Condition from Fixed-Point Representation

In this section, we present our approach for certifying ro-
bustness via a fixed-point argument. Robust feasibility requires
that every realization in a pre-specified uncertainty set has a
corresponding solution to the AC power flow equations which
satisfies the operational limits. The problem in its original
form cannot be expressed as a deterministic optimization
problem since the equality and inequality constraints need to
be satisfied for a set of uncertain variables.

There is a convenient way to handle robustness constraints
via a fixed-point representation. We use the following lemma
based on Brouwer’s fixed-point theorem.

Lemma 2. Suppose that P ⊆ R
nb+npq is a non-empty, compact,

convex set, and Gu,w : P → P is a continuous map for all
w ∈ W . Then for any w ∈ W , there exists some x ∈ P such
that Gu,w(x) = x.

Lemma 2 extends Brouwer’s fixed-point theorem [30] to
the nonlinear map Gu,w, parameterized by both the dispatch
variables and the uncertain variables. If the set P is self-
mapping (i.e., ∀x ∈ P , Gu,w(x) ∈ P) with respect to the
fixed-point equation, then P provides an outer-approximation
of the points x that are realizable by the uncertainty set W .
Using the fixed-point equation defined in (13), the condition
for self-mapping can be expressed as

∀x ∈ P, ∀w ∈ W, −J−1
f,(0)Mg(x, u)− J−1

f,(0)Rw ∈ P.
(22)

Substituting the set P(zu, z`) defined in (17) into (22) yields

max
x∈P, w∈W

Ai

(

−J−1
f,(0)Mg(x, u)− J−1

f,(0)Rw
)

≤ zui ,

min
x∈P, w∈W

Ai

(

−J−1
f,(0)Mg(x, u)− J−1

f,(0)Rw
)

≥ z`i .
(23)

for i = 1, . . . , nl+npq+1. The self-mapping condition in (23)
is expressed by 2 · (nl + npq + 1) inequality constraints. The
number of inequality constraints for the self-mapping condi-
tion scales linearly with the system size because we design
the outer approximation P(zu, z`) in (17) as an intersection
of intervals.

The condition in (23) requires that an inequality is satisfied
over the sets P and W . We next convert (23) to a deterministic
constraint by bounding the left-hand side using envelopes and
known analytical solutions for optimization problems.

C. Sufficient Condition for Robust Feasibility

In this section, we use the machinery developed so far to
derive a convex sufficient condition for robust feasibility of a
dispatch point u against the uncertainty set W(γ). The con-
dition allows us to solve a deterministic convex optimization
problem to obtain a robustly feasible solution for the robust
optimization problem in Section III-B. The following lemmas
show analytical solutions to optimization problems that will
be used to convert robustness constraints to deterministic
constraints.

Lemma 3. The maximum of a linear function over a bounded
set of intervals has the following analytical solution:

max
x∈[x`,xu]

cTx = (c+)Txu + (c−)Tx`. (24)

where c ∈ R
n is a constant cost vector, and c+, c− ∈ R

n are
defined as c+i = max{ci, 0} and c−i = min{ci, 0} for all i.

Lemma 4. The maximum of a linear function over a bounded
ellipsoid has the following analytical solution:

max
w∈W(γ)

cTw = cT w(0) + γ‖cT Σ1/2‖2, (25)

where W(γ) is the confidence ellipsoid defined in (5), and
Σ1/2 is the Cholesky decomposition of Σ such that Σ =
(Σ1/2)(Σ1/2)T .

The proofs of Lemma 3 and 4 are provided in Appendices C
and D. These lemmas are used to upper bound the left-hand
side of inequality (23) where Lemma 3 is used to bound the
term −AiJ

−1
f,(0)Mg(x, u), and Lemma 3 is used to bound the

term −AiJ
−1
f,(0)Rw. To simplify our notation, let us define the

constant matrix K by

K = −AJ−1
f,0M, (26)

and let the matrices K+, K− ∈ R
(nl+npq+1)×(ng+2nl+nb) be

K+
ij = max{Kij , 0} and K−

ij = min{Kij , 0} for each element
of K. The following theorem provides a convex sufficient
condition that ensures P is an outer-approximation of the
possible realizations of the internal states.

Theorem 1. (Robust Solvability Condition for AC Optimal
Power Flow) Given a dispatch point u = (pg,ref, vg), suppose
that there exist internal state bounds zu, z` and residual bounds
gu
P

, g`
P

that satisfy the inequality conditions in (20) and

K+guP +K−g`P + ξu(γ) ≤ zu,

K+g`P +K−guP + ξ`(γ) ≥ z`,
(27)

where the margins ξi(γ) and ζi(γ) are linear functions of γ:

ξui (γ) = −AiJ
−1
f,0Rw

(0) + γ
∥
∥
∥AiJ

−1
f,0RΣ1/2

∥
∥
∥
2
,

ξ`i (γ) = −AiJ
−1
f,0Rw

(0) − γ
∥
∥
∥AiJ

−1
f,0RΣ1/2

∥
∥
∥
2
.

(28)

Then for every w ∈ W(γ), there exists an internal state solu-
tion that satisfies the AC power flow equations and the solution
can be outer approximated by P(zu, z`) (i.e., x ∈ P(zu, z`)).

The proof of Theorem 1 is provided in Appendix E.
Equation (27) ensures that the AC power flow equations
have a solution with a corresponding internal state x within
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P(zu, z`) for every uncertainty realization. Next, we derive a
convex condition ensuring that all internal states in the outer
approximation P(zu, z`) satisfy the operational constraints.

Theorem 2. (Robust Feasibility Condition for AC Optimal
Power Flow) The dispatch point u = (pg,ref, vg) is robustly
feasible with respect to the uncertainty set W(γ) if there
exist bounds on the internal states zu = (ϕu, vupq, ∆

u),
z` = (ϕ`, v`pq,∆

`), gu
P

, g`
P

, ψu
P

, and ψ`
P

that satisfy (20),
(27), and the following set of operational constraints:

p min
g,i ≤pg,ref,i + α∆`, i = 1, . . . , ng, (29a)

pg,ref,i + α∆u ≤ pmax
g,i , i = 1, . . . , ng, (29b)

qmin
g,i ≤q`g,i, qug,i ≤ qmax

g,i , i = 1, . . . , ng, (29c)

vmin
pq,i ≤v

`
pq,i, v

u
pq,i ≤ vmax

pq,i, i = 1, . . . , npq (29d)

vmin
g,i ≤vg,i ≤ vmax

g,i , i = 1, . . . , ng (29e)

ϕmin
l ≤ϕ`

l , ϕu
l ≤ ϕmax

l , l = 1, . . . , nl, (29f)

(sf,u
p,l )

2+(sf,u
q,l )

2 ≤ (smax
l )2, l = 1, . . . , nl, (29g)

(st,u
p,l)

2+(st,u
q,l)

2 ≤ (smax
l )2, l = 1, . . . , nl. (29h)

The reactive power generation bounds q`g and qug satisfy

L+
q ψ

u
P + L−

q ψ
`
P + ζu(γ) ≤ Cg,pv q

u
g ,

L−
q ψ

u
P + L+

q ψ
`
P + ζ`(γ) ≥ Cg,pv q

`
g,

(30)

ζui (γ) = Cd,pv,iΣ
1/2
q w(0) + γ

∥
∥
∥Cd,pv,iΣ

1/2
q

∥
∥
∥
2
,

ζ`i (γ) = Cd,pv,iΣ
1/2
q w(0) − γ

∥
∥
∥Cd,pv,iΣ

1/2
q

∥
∥
∥
2
,

(31)

and the line flow bounds st,u
p , sf,u

q , and st,u
q satisfy

L
k,+
j, lineψ

u
P + L

k,−
j,lineψ

`
P ≤ s

k,u
j ,

−Lk,−
j,lineψ

u
P − L

k,+
j,lineψ

`
P ≤ s

k,u
j .

(32)

for k ∈ {f, t} and j ∈ {p, q}. The decision variables ψu
P

and
ψ`
P

are the basis function bounds over P(zu, z`), and they
are constrained by (20) in Lemma 1 by replacing the function
g by ψ.

The proof of Theorem 2 is provided in Appendix F. The
matrices L+ and L− are defined similarly to K+ and K−

where Lq and Lline are defined in Appendix A. The matrices
Cd,pv ∈ R

npv×nd and Cg,pv ∈ R
npv×ng are submatrices of

connection matrices that select the rows corresponding to PV
buses. Theorems 1 and 2 generalize the convex restriction
in [19], [27], which is retrieved by setting γ = 0 (i.e., the
case where the uncertainty set only contains the nominal
power injections). Equation (27) shows that robust feasibility
is guaranteed by introducing extra margins, ξ(γ) and ζ(γ),
into the convex restriction condition.

The robust feasibility condition is convex with respect to
all decision variables (e.g., u, zu, z`) and the uncertainty set
size parameter γ. Our condition is formulated as a system
of convex quadratic constraints for which there exists well-
developed theory and algorithms for solving the resulting
optimization problem. There are commercial solvers such as
Mosek, Gurobi, and CPLEX that can be used to solve convex
quadratically constrained quadratic programming problems.
Moreover, the number of associated constraints scales linearly

with the number of buses and the number of lines in the
system, making the approach tractable for large systems.

V. ALGORITHMS FOR ROBUST OPF PROBLEMS

OPF formulations seek the dispatch point with minimum
generation cost while considering the load demands and re-
newable generation. We consider two important questions:

• What dispatch point is robust with respect to the largest
uncertainty set?

• How can we compute a low-cost dispatch point that is
robust with respect to a given uncertainty set?

We next develop optimization formulations and solution al-
gorithms that use the previously presented robust feasibility
condition in order to rigorously answer both of these questions.

A. Maximizing the Robustness Margin

We first consider a setting where the system operator seeks
a dispatch point u that maximizes the robustness margin. The
robustness margin is defined as the size of the uncertainty set
against which the solution is robust, which in our case can be
parametrized as the radius of the uncertainty set γ. When the
system operator wants to maximize security with respect to
uncertain power injections, the problem can be formulated as

maximize
u, γ, zu, z`, gu

P
, g`

P

γ

subject to (20), (27)–(32).
(33)

Since the constraints in (33) include the sufficient condition
for robustness, the solution u is robust against any uncertainty
realization w ∈ W(γ). The margin γ computed by solving
a convex optimization problem in (33) is a guaranteed lower
bound on the robustness margin. In the case where the dispatch
point is already determined, the problem in (33) can be solved
with an additional constraint u = u(0) where u(0) is the
determined dispatch point.

B. Robust AC OPF Algorithm

We next consider a setting where the system operator
wants to solve the robust AC OPF problem with a robustness
margin of at least γreq. Robust optimization is a “worst-case”
approach where the constraints need to be satisfied for all
uncertainty realizations and the objective function minimizes
the maximum cost among all uncertainty realizations:

minimize
u, zu, z`, gu

P
, g`

P

ng∑

i=1

ci(pg,ref,i + αi∆
u)

subject to (20), (27)–(32) and γ = γreq.

(34)

Conveniently, the over-estimator of the distributed slack im-
balance is given as an explicit optimization variable ∆u.
Replacing the constraints (2)–(4) with the robust feasibility
condition (27)–(32) from Theorem 2 yields a tractable convex
optimization problem whose solution is certifiably robustly
feasible. The conditions in (27)–(32) are constructed around
a nominal dispatch point denoted as u(k). The dependence on
u(k) appears in (15), where the Jacobian Jf,0 is evaluated at
the given nominal point.
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Due to this dependence on the nominal operating point, we
use an iterative solution approach. We start by solving the
nominal AC OPF problem with any existing algorithm [1] to
determine the initial dispatch point u(0), which is not neces-
sarily robustly feasible. We improve this dispatch point via a
sequential convex restriction algorithm that iterates between
(i) constructing (34) by updating the convex restriction based
on the dispatch point u(k) and (ii) solving (34) to obtain a new
dispatch point u(k+1). The following steps describe our robust
AC OPF solution algorithm for some termination constants
εnom and εworst:
Initialization: Solve the nominal AC OPF problem (2)–(4)
(i.e., W(0) =

{
w(0)

}
). Initialize u(0) and x(0) to the resulting

solution. Set γ = γreq and k = 0. The initial nominal cost c(0)

and the worst-case operating cost cu,(0) are set to ∞ since the
initial solution is generally not robustly feasible.

Step 1: Set x(k) as the nominal operating point and evaluate
Jacobians (15) to update the convex restriction.

Step 2: Solve the robust AC OPF problem (34) and update
u(k+1) to the associated dispatch solution.

Step 3: Solve the AC power flow equations (e.g., using
Newton’s method) for the dispatch point u(k+1)

with the nominal uncertain variable w(0) in order
to obtain the corresponding nominal internal states
x(k+1).

Step 4: If c(k) − c(k+1) < εnom or cu,(k) − cu,(k+1) < εworst,
return the dispatch point u(k) and terminate the algo-
rithm. Otherwise, repeat from Step 1 with k = k+1.

The dispatch point resulting from the proposed algorithm
is guaranteed to be robustly feasible. By setting the initial
condition as the solution to the nominal OPF problem, the
output of the algorithm is often close to the nominal solution,
i.e., the nominal solution provides our algorithm with a good
initialization. Step 4 requires the decrements of both the worst-
case generation cost and the nominal generation cost to be
less than the termination criteria. This requirement ensures
that both the nominal and worst-case costs decrease at every
iteration in the algorithm.

C. Potential Infeasibility and Optimality Gap

Any operating point output by the algorithm is guaranteed
to be robustly feasible. However, the algorithm may not yield
any output in some cases, and the solution is not guaranteed
to be optimal. To further explain various scenarios, we note:

1. Problem (34) can be infeasible if the original problem
does not admit a robustly feasible solution due to strict
operational limits. A trivial example is a nominal OPF
problem with no feasible solution.

2. Problem (34) may be infeasible due to the conservative-
ness of the robust convex restriction. Since the robust
convex restriction is an inner approximation, it may only
cover a subset of the robustly feasible points.

3. The algorithm does not guarantee the optimality of the
solution. In other words, there may exist lower cost
dispatch points that are robustly feasible.

The optimality gap refers to the difference between the
worst-case cost of our solution and the worst-case cost associ-
ated with the global optimum of the robust AC OPF problem.

We will use the optimality gap to quantify the conservatism
associated with the robustness constraint and the robust convex
restriction. The following proposition provides a way to bound
the optimality gap of our solution by comparing it to the
nominal (non-robust) solution.

Propostion 1. Suppose that p(k)g is the active power dispatch
obtained by solving problem (34) at iteration k. Then, the
optimality gap is bounded by

cu(p
(k)
g )− cu(probust

g )

cu(probust
g )

≤
cu(p

(k)
g )− c(0)(pnom

g )

c(0)(pnom
g )

, (35)

where probust
g and pnom

g refer to the active power dispatches
for the robust OPF and nominal OPF solutions, respectively.
The functions cu(pg) = maxw∈W(γ) c(pg) and c(0)(pg) =
c(pg) |w=w(0) are the worst-case and nominal cost functions,
respectively.

Proof. Since pnom
g ∈ argmin c(0)(pg) subject to the OPF

constraints (3)–(4) and c(0)(pg) ≤ cu(pg) for all pg,

c(0)(pnom
g ) ≤ c(0)(probust

g ) ≤ cu(probust
g ).

Then, c(0)(pnom
g ) ≤ cu(probust

g ), and (35) holds by rearranging
the equations.

The optimality gap is hard to determine precisely because
we do not know the exact optimal robust solution, probust

g .
Proposition 1 provides a way to numerically compute an upper
bound on the optimality gap since the nominal optimal cost
c(0)(pnom

g ) is obtained from the nominal OPF solution. The
empirical studies in the next section show that the upper bound
on the optimality gap is small (. 1%), indicating that our
robustly feasible dispatch points are at least close to optimal.

VI. NUMERICAL STUDIES

This section provides numerical studies to demtonstrate our
algorithms. These numerical studies were performed on a
computer with a 3.3 GHz Intel Core i7 processor and 16 GB
of RAM. Our implementations used JuMP/Julia [32]. The
convex quadratic problems were solved with MOSEK. The
initial OPF problems were solved using PowerModels.jl [33]
and IPOPT [34], and the AC power flow equations with
distributed slack were solved using a customized implemen-
tation of Newton’s method. The numerical studies obtain
dispatch points using our robust AC OPF solution, which
guarantees robust feasibility. The implementation is available
at https://github.com/dclee131/PowerFlowCVXRS.

We examine our dispatch solution in a stochastic setting
where the uncertainty is drawn from Gaussian distributions.
While the performance evaluation could use any probability
distribution, the Gaussian distribution was chosen to match
our assumption that the source of uncertainty is a short-term
prediction and forecast error.

A. Illustrative Example using a 9-Bus System

We begin by considering the 9-bus system from [31] with
uncertain loads at buses 5 and 7. This 9-bus system is operating
in a normal condition with positive active and reactive power
load demands. The participation factors are set to 1 for the
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TABLE I
VIOLATION PROBABILITY AND COST COMPARISON FOR SELECTED PGLIB TEST CASES

Nominal OPF Solution Robust OPF Solution Optimality Gap
Violation Probability (%) Violation Probability (%) Solver Time Num. of (%)

Test Case Cost ($/h) (Uniform) (Gaussian) Cost ($/h) (Uniform) (Gaussian) per iter (sec) iterations Local QC Relax

Typical Operating Conditions (TYP)
case3_lmbd 5812.64 49.88 49.47 5829.93 0 0.20 0.04 4 0.30 1.54
case5_pjm 17551.89 100.00 100.00 17631.82 0 5.18 0.07 3 0.46 17.54

case14_ieee 2178.08 91.30 91.44 2180.96 0 2.10 0.12 2 0.13 0.54
case24_ieee_rts 63352.20 99.40 99.66 63566.97 0 5.62 0.71 3 0.34 0.40

case30_as 803.13 49.07 50.10 803.13 0 1.94 0.26 2 0.00 0.06
case30_fsr 575.77 69.12 71.99 580.01 0 0.03 0.38 2 0.74 1.13

case30_ieee 8208.52 68.74 80.84 8232.81 0 2.70 0.38 3 0.30 23.17
case39_epri 138415.56 99.96 99.94 138643.93 0 5.60 0.51 4 0.16 0.71
case57_ieee 37589.34 96.91 98.04 37602.58 0 5.34 0.95 3 0.04 0.22

case73_ieee_rts 189764.08 100.00 100.00 190139.37 0 9.86 1.74 3 0.20 0.26
case118_ieee 97213.61 100.00 100.00 97261.57 0 12.89 6.32 3 0.05 0.86

Similarly, the transmission line flows are defined as







sf
p

sf
q

st
p

st
q






=







0 Gft −Bft GffE
T
f

0 −Bft −Gft −BffE
T
f

0 Gtf −Btf GttE
T
t

0 −Btf −Gtf −BttE
T
t







︸ ︷︷ ︸

[Lf
p,line; L

f
q,line; L

t
p,line; L

t
q,line]

ψ(z, u). (37)

The submatrices are defined such that sk
j = Lk

j,lineψ(z, u) for
k ∈ {f, t} and j ∈ {p, q}.

B. Proof of Lemma 1

We present a short proof the case for gv,u(vk). Given
that x ∈ P(zu, z`), the voltage magnitude at bus k can be
represented as vk = αiv

`
k + (1 − αi)v

u
k where α ∈ [0, 1].

Since the function guk (x, u) is convex,

g
v,u
l (vk) ≤ αg

v,u
l (v`k) + (1− α)gv,ul (vuk )

≤ max {gv,ul (v`k), g
v,u
l (vuk )},

(38)

for all vk ∈ [v`k, v
u
k ]. From the condition in Lemma 1,

g
v,u
l (v`k) ≤ g

v,u
P,k and gv,ul (vuk ) ≤ g

v,u
P,k. Therefore, gv,ul (vk) ≤

g
v,u
l (v`k) for all vk ∈ [v`k, v

u
k ]. Proof for general case

where the function gk(x, u) takes multiple arguments (e.g.,
g
cos,`
l (vf

l, v
t
l, ϕl)) is available in [19].

C. Proof of Lemma 3

Since xi ∈ [x`i , x
u
i ] for all i, cTx ≤ (c+)Txu + (c−)Tx`.

Define x∗ such that x∗i = xui if ci ≥ 0, and x∗i = x`i if ci < 0
for i = 1, . . . , n. Then, cTx∗ = (c+)Txu + (c−)Tx` achieves
the upper bound, and hence x∗ is the optimal solution.

D. Proof of Lemma 4

The optimization problem can be written as max{cTw |
(w−w(0))TΣ−1(w−w(0)) ≤ γ)} = max{cT (w(0)+Σ1/2w̃) |
‖w̃‖2 ≤ γ} by a change of variables with w = w(0)+Σ1/2w̃.
Since max{cT ŵ | ‖ŵ‖2 ≤ γ} = γ‖c‖2, the optimal objective
value is cTw(0) + γ‖cTΣ1/2‖2.

E. Proof of Theorem 1

The condition in inequality (27) ensures that, for i =
1, . . . , nl + npq + 1,

max
w∈W

max
x∈P

{

Kig(x, u)−AiJ
−1
f,0Rw

}

≤ max
x∈P

{
K+

i g
u(x, u) +K−

i g
`(x, u)

}
− min

w∈W
AiJ

−1
f,0Rw

≤ K+
i max

x∈P
gu(x, u) +K−

i min
x∈P

g`(x, u) + ξu(γ)

= K+
i g

u
P +K−

i g
`
P + ξ(γ) ≤ zui .

Similarly, minw∈W minx∈P Kig(x, u) − AiJ
−1
f,0Rw ≥ z`i .

These constraints ensure satisfaction of the inequalities in (23).
Then the nonlinear map Gu,w : x → −J−1

f,(0)Mg(x, u) −

J−1
f,(0)Rw in (13) is self-mapping with the set P(zu, z`)

for any realizations of w ∈ W(γ) (i.e., ∀w ∈ W(γ) and
∀x ∈ P(zu, z`), Gu,w(x) ∈ P(zu, z`)). By Brouwer’s fixed-
point theorem, there exists a fixed-point x ∈ P(zu, z`), which
is equivalent to satisfying the AC power flow equations in (12).

F. Proof of Theorem 2

From Theorem 1, the conditions in (20) and (27) ensure that
there is an internal state in the set P(zu, z`) for all realizations
of the uncertainty set W(γ). The inequalities in (29)–(32)
ensure that x satisfies the operational constraints in (4) for
all x ∈ P(zu, z`). The inequalities in (30) ensure that

max
x∈P

Lq,iψ(x, u) ≤ L+
q,i max

x∈P
ψu(x, u) + L−

q,i min
x∈P

ψ`(x, u)

≤ L+
q,iψ

u
P + L−

q,iψ
`
P ≤ Cg,pv,i q

u
g − ζui (γ)

≤ Cg,pv,i q
u
g − max

w∈W
Cd,pv,iΣ

1/2
q w

≤ min
w∈W

(

Cg,pv,i q
u
g − Cd,pv,i Σ

1/2
q w

)

,

and thus, Lq,iψ(x, u) ≤ Cg,pv,i q
u
g − Cd,pv,i qd holds for all

x ∈ P(zu, z`) and w ∈ W(γ). Therefore, qug is an upper
bound on the reactive power generation for all uncertainty
realizations w ∈ W(γ). Similarly, the inequalities in (30) and
(32) ensure that q`g is a valid lower bound on the reactive power

generation, and st,u
p , sf,u

q , and st,u
q are valid line flow bounds.

Therefore, for each uncertainty realization w ∈ W(γ), there
exist associated internal states x that satisfy the power flow
equations and the operational constraints.
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