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Siddharth Rajupet®, Aidin Rashidi, and Christopher L. Wirth
Department of Chemical and Biomolecular Engineering, Case School of Engineering,
Case Western Reserve University, Cleveland, Ohio 44106, USA

® (Received 18 December 2020; accepted 8 March 2021; published 29 March 2021)

A colloidal particle is often termed “Janus” when some portion of its surface is coated by a second material
which has distinct properties from the native particle. The anisotropy of Janus particles enables unique behavior
at interfaces. However, rigorous methodologies to predict Janus particle dynamics at interfaces are required to
implement these particles in complex fluid applications. Previous work studying Janus particle dynamics does not
consider van der Waals interactions and realistic, nonuniform coating morphology. Here we develop semianalytic
equations to accurately calculate the potential landscape, including van der Waals interactions, of a Janus particle
with nonuniform coating thickness above a solid boundary. The effects of both nonuniform coating thickness and
van der Waals interactions significantly influence the potential landscape of the particle, particularly in high ionic
strength solutions, where the particle samples positions very close to the solid boundary. The equations developed
herein facilitate more simple, accurate, and less computationally expensive characterization of conservative
interactions experienced by a confined Janus particle than previous methods.
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I. INTRODUCTION

Micrometer scale colloidal particles often interact with
solid boundaries [1-6], neighboring particles [7-9], or fluid
interfaces [10-12]. The morphology and chemistry of parti-
cles significantly influence colloidal interactions, particularly
when those properties are nonuniform over the particle sur-
face. Such natural or synthetic anisotropic particles have
gradually expanded in relevance [13]. A class of nonuniform
colloidal particles, known as Janus particles, has shown in-
creasing promise as building blocks for complex assemblies,
active entities, or more generally in a wide array of complex
fluid applications [14-16]. Janus particles are those particles
that typically have some portion of their surface coated by a
second material. The faces of a Janus particle often have sig-
nificantly different characteristics that mediate unique dynam-
ics while the particle is confined [17-20]. Controlling these
phenomena experienced by Janus particles requires a method-
ology to predict interactions and dynamics at an interface.

Recent progress on simulations have revealed the dynam-
ics of Janus spheres and rods [21,22], active Janus particles
[23,24], Janus particles at fluid/fluid interfaces [25-27], and
Janus particles responding to external flow or magnetic fields
[28,29]. Moreover, studies simulating the Brownian dynam-
ics of a Janus particle revealed how interfacial interactions
experienced by Janus particles above a flat, solid substrate
mediate dynamics [30,31]. These studies simulated the Brow-
nian fluctuations in position and orientation of a polystyrene
sphere with a uniformly thick gold coating on one hemisphere.
Conservative interactions considered in these studies included
the electric double layer (EDL) and gravitational forces on
the Janus particle. Differences in the ¢ potential between the
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two faces of the particle induced mild changes in the positions
and orientations sampled, while gravitational torque caused
by differences in density between the gold and polystyrene
strongly quenched the particle orientation, particularly at
larger particle sizes and coating thicknesses [31]. After Janus
particle dynamics were characterized, procedures were de-
veloped to determine particle properties directly from data
recording fluctuations in particle position and orientation [30].

Some aspects of this previous work can be expanded to
better account for salient features of experimental systems. In
particular, the studies summarized above did not include van
der Waals (vdW) interactions, which are significant when a
particle is in very close proximity to a solid boundary [32].
Furthermore, unlike those modeled in prior studies, synthe-
sized Janus particles have coatings of nonuniform thickness
by virtue of the fabrication process [33]. During fabrica-
tion, particle surface regions perpendicular to the direction
of deposition typically acquire coatings with the expected
thickness, while regions non-normal or parallel to the direc-
tion of deposition acquire thinner or no coating, respectively.
Consequently, a more thorough model of real systems should
include the effect of vdW interactions and nonuniform coating
thickness.

Previous studies used a numerical meshing method to cal-
culate the EDL force which cannot easily account for realistic
cap morphology [30]. Herein, we summarize the development
of a semianalytic model to calculate the Derjaguin-Landau-
Verwey- Overbeek (DLVO) interactions of a Janus particle
with a realistic coating morphology near a boundary. The
expressions derived for the EDL, vdW, and gravitational
potentials, are more accurate and less computationally in-
tensive than methods used in previous Brownian dynamics
studies. Furthermore, since the derived expressions are
semianalytical, they are more readily applicable than previous
numerical meshing methods.

©2021 American Physical Society
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Native sphere ;¢

FIG. 1. Schematic of a Janus particle with cap of nonuniform
thickness. The native particle is spherical, but the cap varies in
thickness continuously from a maximum of #, to zero. The separation
distance between the native sphere and nearby boundary is equal to
d+1,.

II. THEORY

The Janus particle was modeled as a sphere of radius R
with a coated region of thickness ¢ which covers the region
of the particle defined by the limits ¢ : 7(1—c) — 7 and
0 : 0 — 27 where ¢ and 6 are the polar and azimuthal angle,
respectively (see Fig. 1). Thus, c¢ is the fractional surface
coverage of the coated region and here we considered a Janus
particle with ¢ = 0.5. The underlying sphere of the Janus
particle is termed the “native sphere”, while the coated region
is termed the “cap.” Two cap morphologies were considered: a
uniform cap with constant thickness such thatt = 7,, and a cap
with thickness varying as t = ¢,|cos(¢)| where ¢, is the maxi-
mum thickness. This function was chosen as it approximates
experimental measurements of typical cap thickness variation
in Janus particles [33]. The orientation of the Janus particle
is rotated by angle ¢ such that ¢y = 0° is the “cap-down”
orientation and ¢ = 180° is the “cap-up” orientation. The
native sphere is separated from the flat substrate by a distance
d +1, as depicted in Fig. 1.

We used the surface element integration (SEI) method to
calculate the DLVO interaction energy of the Janus particle for
different particle orientations [34]. The SEI method yields an
exact solution for the DLVO interaction between an arbitrarily
shaped object and a flat substrate. This method integrates the
DLVO interaction between the parallel component of differ-
ential surface element dS and the flat substrate, which has
an analytic solution, over the object’s surface. The interaction
energy U calculated from the SEI method is given by

U= /fn-kE(h)dS, (1)
s

where E(h) is the interaction energy per unit area between two
parallel flat surfaces separated by distance 4, n is the outward
unit normal vector from the Janus particle element dS, and k
is the unit vector in the z direction, perpendicular to the flat
surface. Physically, n - kdS is the component of dS parallel to

the flat substrate. This term can be expanded such thatn - k =
—z,/r, where z,, is the z position of dS relative to the center
of the native sphere, and 7 is the radial distance between dS
and center of the native sphere. The value of r depends on the
position of dS; for dS on the native sphere, r = R, and for dS
on the cap surface, r = R 4 t. The function for £ is given as

h=z,+R+1t,+d. )

Particle orientation was accounted for by rotating the co-
ordinate system about the y axis (into the page in Fig. 1),
by angle . The z position of dS after rotation, z},, is ad-

justed such that z}, = z,cos(¥) — xpsin(yr), where x,, is the
x position of dS relative to the center of the native sphere
prior to rotation. The system was converted to spherical co-
ordinates such that dS = r?sin(¢)d¢d®, zp =1 cos(¢) and
xp, = r sin(¢)cos(8), where ¢ is the polar angle, and 6 is
the azimuthal angle. Adapting Eqs. (1) and (2) into spherical
coordinates and accounting for rotation,

U= / / 2 sin ()(cos () cos ()
S

— sin(¢)cos(0) sin (Y))E (h)d¢pdo, 3)
h = rcos(¢)cos(yr) — rsin(¢p)cos(@)sin(yr) + R+ 1, + d.
4)

The interaction energy per unit area between two flat plates
due to the EDL interaction according to the linear superposi-
tion approximation is given by

Egpr = Bexp (—«kh), %)
sul edp
B 64Cook T tanh (2 )tanh (22) ©
K

where C, is the bulk solution ionic strength, ¢y and ¢,
are the ¢ potential of the substrate and particle, respectively, k
is the Boltzmann constant, 7 is the temperature, e is the elec-
tronic charge, and « is the inverse Debye length. The linear
superposition approximation is most accurate when the dou-
ble layers of the two surfaces are not overlapping; however, we
emphasize that in our methodology, the approximation used
for Egpy, can be adapted to best suit the system of interest. For
example, other expressions relating the surface charge to the
Stern potential (equated herein to the potential at the plane of
shear, or the ¢ potential) could be implemented.

Equation (5) was implemented into Eq. (3) by splitting the
surface integral into two parts, namely one part that integrates
over the uncapped, native sphere surface and a second part
that integrates over the surface of the cap. For these two
regions, the value of 4 and of constant B differs due to differ-
ences in r and ¢, respectively. For the native sphere region,
B = By, wherein §, = {gon, and h = hgyn wherein r = R. For
the capped region B = B.,, wherein &, = cap, and h = heqp
wherein » = R +t. As such, the EDL interaction potential,
Ugpr, is given as

2 w(l1—c)
Uy, = /O /0 —R?sin (¢)(cos (¢) cos ()

—sin(¢)cos(8) sin (¥ ))Bgph exp (—k hepn )dpd b,
(7a)
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2
e
EDL _/ /
w(l—c)

—(R + 1)’ sin (¢)(cos (¢) cos ()
—sin(¢)cos(6) sin (¥ ))Beap €Xp (—K heap )dpdO,
(7b)
Uppr = Ugyy + Upiy.- (7¢)

We use the SEI method to also determine the vdW inter-
action with the cap of the Janus particle. The vdW interaction
energy per unit area between two flat plates is given by

A
12 h?’

where A is the Hamaker constant. To find the vdW interaction
energy due to the cap, we insert Eq. (8) in Eq. (3) with
A = A¢yp. To account for the fact that the cap is a thin shell,
we integrate Eq. (3) over the exterior of the cap, and then
subtract Eq. (3) integrated over the interior of the cap. Note
that the same Hamaker constant must be used for the exterior
and interior of the cap. Thus the vdW interaction energy due
to the cap is given as

(®)

Eypw = —

2
Uypw = 1;‘5 / / ., Sin(@)eos (@) cos (¥)
2
—mwmwmmw{%;’—ngw
cap sph
(%a)

The vdW interaction energy between the native sphere and
a flat substrate has an analytic solution,
Asph [ R R

yseh IR — &
VOW =6 s d+1,42R d+1,+2R)
©

and the total vdW interaction energy of the Janus particle is

Uypw = U, + USE (9¢c)

Finally, the gravitational potential of the native sphere is
given by

U = g(psph —p)TR¥d +1,+R),  (10a)

where pgn and py are the densities of the native sphere and
fluid, respectively, and g is the gravitational constant. The
gravitational potential of the cap, which has density pc,p, is
given by

] 2 b4 R+t
US® = g(peap — Pf) / / / hr? sin (¢)drdpd6
0 n(l—c) JR
(10b)

and

Us =UP" +US™. (10c)

In the case of a uniform cap such that r =¢,, the triple
integral in Eq. (10b) has an analytic solution,

cap __ 1
Us" = g(peap — pf) 7”0( 8(d+1t,+R)
X (3R2 + 3Rt, + to)(—l —cos (T — cm))

—3(2R +1,)(2R* + 2Rty + 1) cos (w)sinz(crr)):|.
(10d)

In our calculations, we used physical properties charac-
teristic of silica for the substrate, polystyrene for the native
sphere, gold for the cap, and an aqueous monovalent salt
solution for the medium. As such, the density, p, Hamaker
constant, A, and the ¢ potential, ¢, of the native sphere
are poph = 1055kg/m?, Agpn =9.28 x 102'J, and {oph =
—50mV respectively, that of the cap are pc., = 19320kg/ m3,
Acap =2.55 % 1020 J and Ccap = —5mV respectively, and the
¢ potential of the substrate is g, = —50mV .

The method described herein used an approximation to
calculate the potential of the cap in each the uniform and
nonuniform cap cases, which introduces some error with re-
spect to the exact solution. First, in the uniform cap case, the
integral is not conducted over the surface edge of the cap, at
the boundary between the capped region and uncapped region
of the Janus particle. Neglecting this portion of the cap will
only affect the vdW interaction which is a volume interaction.
The integral must be conducted over the full, closed surface
of the cap to properly account for the volume. Next, in the
nonuniform cap case, the normal vector to the cap, n, is
assumed to be in the same direction as the radial vector from
the native sphere center to dS, r. This assumption affects both
vdW and EDL calculations, but will only introduce error in
the case of the nonuniform cap in which the cap deviates from
spherical curvature more significantly toward the edges of the
cap.

We characterize the error due to these approximations and
validate our model by comparison to the exact numerical
solution of the vdW potential for the Janus particle. To calcu-
late the exact solution of U;g’w, we integrate the interaction
between a point and flat substrate, which has an analytic
solution [35] over the volume of the cap. The error due to both
approximations in our model becomes more significant as d
and ¢, become large relative to R. The error associated with
these approximations is ~1% error for a Janus particle with
R =1 pm and 7, = 20nm, when d = 100 nm, characteristic
of a typical experimental system.

III. RESULTS
A. Influence of van der Waals interactions

Given that no previous work has incorporated vdW inter-
actions between a Janus particle and nearby boundary, we first
characterized the influence of vdW interactions on the po-
tential energy profile experienced by a uniform-capped Janus
particle. We calculated the potential energy profile of the parti-
cle in the cap-down orientation with and without the inclusion
of vdW interactions [see Fig. 2(a)]. Here, vdW interactions
shift the secondary minimum of the potential landscape,
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FIG. 2. (a) Potential distribution of a uniform-capped particle in the cap-down orientation (¢ = 0) with R =1 um and #, = 20nm in a
1-mM ionic strength solution including vdW interactions (red solid) and excluding vdW interactions (black dashed), (b) particle-substrate
separation, d, at the secondary minima of the potential landscape including vdW interactions (solid) and excluding vdW interactions (dashed)
for a uniform-capped particle in the cap-down orientation (¥ = 0) withz, = 20nm and R = 1 um (black), 5 um (red), and 15 pum (blue).

characteristic of the most probable particle position, closer
to the substrate and narrows and deepens the potential well.
Physically, the narrower potential well causes positions sam-
pled by the particle to be more localized to the secondary
minimum. For instance, excluding vdW interactions, the par-
ticle could feasibly sample positions greater than 200 nm from
the substrate due to Brownian fluctuations, whereas when
vdW interactions are included, the particle can only feasibly
sample positions between ~40 and 75 nm from the substrate.

Next, we characterized conditions wherein vdW interac-
tions are significant by calculating the particle separation at
the secondary minimum of the potential landscape with and
without the inclusion of vdW interactions [see Fig. 2(b)].
At the secondary minima, repulsive forces, consisting of
EDL interactions, balance attractive forces, consisting of
gravitational and vdW interactions. Thus, vdW interac-
tions will only be significant at the secondary minima
when they are comparable to, or greater than gravitational
forces.

At very low ionic strength, and correspondingly large De-
bye length, the particle will sample positions far from the
nearby boundary causing inclusion of vdW interactions to
have little effect on the position of the secondary minimum.
At higher ionic strengths the particle will sample positions
closer to the substrate where vdW forces rival gravitational
forces; thus, in this regime, vdW interactions significantly
shift the secondary minimum closer to the substrate. Under
these conditions, vdW interactions also significantly deepen
and narrow the potential well as discussed above. Continuing
to increase the ionic strength beyond ~5 mM will induce de-
position because the EDL energy barrier has been sufficiently
diminished. Since gravitational forces on the particle scale
with R? while vdW forces scale with ~R, the influence of vdW
interactions is more significant at smaller particle sizes where
vdW forces are larger relative to gravitational forces.

B. Influence of cap nonuniformity

Next, the model was extended to Janus particles with a
nonuniform cap. We found nonuniformity of cap thickness to
profoundly impact variation of interaction energy with parti-
cle orientation (see Fig. 3). The cap nonuniformity has three
main effects on the variation of interaction energy with orien-
tation. First, a nonuniform cap changes the particle-substrate
separation for a given d + ¢, while orientation is varied. Sec-
ond, a nonuniform cap has a smaller volume (and thus smaller
total mass) as compared to a uniform cap of the same nom-
inal thickness. Finally, a nonuniform cap concentrates more
volume (and thus more mass) to the center of the cap at the
expense of the edges.

The EDL interaction is only influenced by the first ef-
fect, that of the separation distance, since the interaction is
a surface, as opposed to a volume, phenomenon. As shown
in Fig. 3(a), both the uniform and nonuniform cap have a
higher potential in the cap-down orientation than the cap-up
orientation, despite the cap having a ¢ potential magnitude
less than that of the native sphere. The reason for this effect
is that the particle-substrate separation distance for a given
d +1, is smaller in the cap-down orientation than the cap-
up orientation, making the EDL interaction stronger in the
cap-down position. However, in contrast to the uniform cap
case, there is a minimum EDL energy in the nonuniform
cap case around an orientation of ~80°. At this orientation,
the cap is facing the substrate in both uniform and nonuni-
form cases, but in the nonuniform case, the region of the
cap facing the substrate is very thin, so the separation be-
tween the particle and substrate is larger, thereby reducing
the interaction potential. In this regime of orientations, the
nonuniform cap potential closely resembles that of a particle
with an infinitely thin cap positioned such that the native
sphere is equally separated from the substrate [dotted-line in
Fig. 3(a)]. In this case of an infinitely thin cap, the two sides
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FIG. 3. Potential energy of a Janus particle with R = 1 um and ¢, = 20 nm near a boundary as a function of polar orientation in a 5-mM
ionic strength solution at fixed d = 30nm for (a) electric double layer, (b) van der Waals, and (c) gravitational interactions. The dashed
curve is for a uniform cap and the solid curve a nonuniform cap. The dotted curve in (a) is for a particle with z, — 0 and d = 50 nm. The
dotted curve in (c) is for a Janus particle with a nonuniform cap and 7, = 40 nm such that its mass matches that of the uniform cap case with
t, = 20 nm. Gravitational potentials in (c) have been shifted such that U = 0 at ¥y = 0. Note for each interaction there is a profound impact of

cap uniformity on the conservative interaction.

of the particle have different surface composition causing the
potential to vary with orientation, but the particle-substrate
separation does not vary with orientation due to the thinness of
the cap.

The impact of cap nonuniformity on separation distance
is most influential for the vdW interaction because of its
rapid decay with distance. Similar to the EDL interaction,
for the vdW interaction, the potential of the nonuniform cap
approaches that of the uniform cap in the limits of the cap-
down and cap-up orientations. This effect occurs since in both
the EDL and vdW interaction, the potential depends strongly
on the separation distance. In the cap-down orientation, the
DLVO interaction is dominated by the center region of the
cap, which has the same separation from the substrate in the
uniform and nonuniform cases. However, in the cap-up orien-
tation, the DLVO interaction is dominated by the native sphere
contribution, which is not affected by the cap morphology.
As the particle rotates from ¥ = 0° at a fixed d +1,, the
separation between the particle and substrate increases in the
nonuniform case, but remains the same until the edge of the
cap in the uniform case. As a result, the vdW potential in-
creases continuously as the particle rotates from the cap-down
orientation in the nonuniform case, but only increases once
the edge of the cap is facing the substrate, at v = 90 °, in the
uniform case. Physically, this causes the particle to be more
quenched in the cap-down orientation due to vdW interactions
in the nonuniform case.

The latter two effects, those of the total and distribution of
cap mass, are most influential for the gravitational potential,
yet influence the potential energy in opposing ways. Since
a nonuniform cap with equal #, to a uniform cap has less
mass, the gravitational potential due to the nonuniform cap
will vary less with orientation, as seen in Fig. 3(c). However,
since the nonuniformity distributes more mass to the center of
the cap, which is the furthest from the substrate in the cap-up
orientation, the gravitational potential increases more rapidly
with orientation for a nonuniform cap than uniform cap when

both caps have the same total mass [Fig. 3(c), dotted line vs
dashed line].

For caps of equal nominal thickness, nonuniformity has
opposing effects on the vdW and the gravitational potentials.
Cap nonuniformity more strongly quenches particle orienta-
tions in the cap-down position due to vdW interactions and
less strongly quenches orientations due to gravitational inter-
actions. As such, in regimes when gravitational interactions
are dominant over vdW interactions, nonuniformity decreases
quenching, allowing the particle to sample more orientations,
and when vdW interactions are dominant, nonuniformity
increases quenching. Since vdW interactions decay with in-
creasing separation distance and gravitational interactions are
independent of separation distance, vdW interactions dom-
inate at small separations, while gravitational interactions
dominate at large separations.

This effect can be observed in Fig. 4, which depicts the
potential landscape of a Janus particle above a boundary
with a uniform cap [Fig. 4(a)] and the landscape with a
nonuniform cap [Fig. 4(b)]. For instance, at the secondary
minimum, where the separation distance is small and vdW
interactions are dominant, the particle can sample a wider
range of orientations in the uniform case as compared to the
nonuniform case. This effect is even more pronounced at the
primary minimum, where the range of possible orientations at
deposition is far more limited in the nonuniform case than the
uniform case. On the other hand, at large separation distances,
where gravitational interactions are dominant, the particle can
sample a wider range of orientations in the nonuniform case
than in the uniform case. In addition, since the cap has less
mass in the nonuniform case, the particle can sample a larger
array of particle positions from the substrate.

We emphasize the effects of vdW interactions and cap
nonuniformity are most pronounced at small separation dis-
tances. At large separation distances, vdW interactions will be
small relative to gravitational interactions, and possibly EDL
interactions depending on the ionic strength of the solution.
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FIG. 4. Total potential energy landscape for a Janus particle with R = 1 um and 7, = 20 nm near a substrate in a 5-mM solution in which

the particle has a (a) uniform or (b) nonuniform cap.

When d is large relative to ¢, the effect of cap nonuniformity
will be less pronounced since changes in separation distance
with orientation will be less significant.

C. Extended applications of the model

We have shown cap nonuniformity and vdW interactions
impact the potential landscape of a Janus particle most sig-
nificantly at small separation distances. However, substrate
roughness, even on the nanoscale, has been shown to greatly
affect the DLVO interactions on particles, particularly at small
separation distances [36—38], and is often credited for discrep-
ancies between theoretical and experimental energy profiles
[39—41]. While characterizing effects of substrate roughness
on Janus particle dynamics is beyond the scope of the present
article, the model developed herein can be extended to account
for the substrate morphology. Following the work of Hoek
et al. [36], the present model can be adapted to calculate
DLVO interactions between the Janus particle and a rough
substrate, described by function f{x,y), by modifying % in
Eq. (4) such that £ is the vertical distance between dS on the
particle and the rough substrate below it,

h = rcos(¢)cos(yr) — rsin(¢)cos(6)sin(yr)
+R+to+d_f(x;;7yp)s (11)

where x,, is the x position of dS after rotation about the y
axis, given by x;, = xp,cos(Y) + zpsin(yr), and y, is the y
position of dS, which does not change with orientation. Note
that to implement Eq. (11) into Eq. (3), x,, ¥,, and z,, must be
converted into spherical coordinates.

Our model can also be extended for use in Brownian dy-
namics simulations which input the conservative forces acting

on the particle. Thus far we have derived the DLVO energy
of a particle near substrate, but our model can be adapted
to calculate the forces acting on the particle by substituting
E(h) in Eq. (3) for the vdW or EDL pressure between two flat
plates, I1(%). Due to the low computational requirements of
the model, it is well suited for application in Brownian dy-
namics simulations which require calculation of conservative
interactions for up to millions of time steps [30,31].

IV. CONCLUSION

In conclusion, we developed a semianalytic expression to
calculate the DLVO and gravitational potentials of a Janus
particle with nonuniform cap thickness above a boundary
for different particle orientations. We find that at small sep-
aration distances, which are particularly relevant in high
ionic strength solutions, van der Waals interactions, and cap
nonuniformity significantly influence the particle’s potential
landscape. The methods developed herein are significant since
they provide equations of utility suitable for modeling conser-
vative interactions experienced by a confined Janus particle.
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