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nonlinear equation, with a non-convex constraint, has several equivalent forms, and
involves solving an auxiliary problem in the infinite domain. All these features have posed
interesting challenges in developing numerical methods. In this paper, we first present

Keywords: a fully discrete semi-implicit method for solving the Landau-Lifshitz equation based on
Landau-Lifshitz equation the second-order backward differentiation formula and the one-sided extrapolation (using
Backward differentiation formula previous time-step numerical values). A projection step is further used to preserve the
Semi-implicit scheme length of the magnetization. Subsequently, we provide a rigorous convergence analysis
Second-order accuracy for the fully discrete numerical solution by the introduction of two sets of approximated

solutions where one set of solutions solves the Landau-Lifshitz equation and the other is
projected onto the unit sphere. Second-order accuracy in both time and space is obtained
provided that the spatial step-size is the same order as the temporal step-size. And also,
the unique solvability of the numerical solution without any assumption for the step-size
in both time and space is theoretically justified, using a monotonicity analysis. All these
theoretical properties are verified by numerical examples in both 1D and 3D spaces.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Micromagnetics is a continuum theory describing magnetization patterns inside ferromagnetic media. The dynamics
of magnetization is governed by the Landau-Lifshitz (LL) equation [35]. This highly nonlinear equation indicates a non-
convex constraint, which has always been a well-known difficulty in the numerical analysis. And also, this equation has
several equivalent forms, and an auxiliary problem in the infinite domain has to be involved. All these features have posed
interesting challenges in developing numerical methods. In the past several decades, many works have focused on the
mathematical theory and numerical analysis of the LL equation [34,37,43]. The solvability of LL-type equations can be found
in [26,40,44]; two structures of the solution regularity have been investigated. In the framework of weak solution, the
existence of global weak solution in R3 was proved in [6] and in [27] on a bounded domain €2 c R?; the nonuniqueness of
weak solutions was demonstrated in [6] as well. In the framework of strong solution, local existence and uniqueness, and
global existence and uniqueness with small-energy initial data for strong solutions to the LL equation in R® was shown
in [12]. Local existence and uniqueness of strong solutions on a bounded domain € was proved in [11]; global existence
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and uniqueness of strong solutions for small-energy initial data on a 2-D bounded domain was established, provided that
Vgl 1 (g, is small enough for the bounded domain € C R2. A similar uniqueness analysis was provided in [38] as well.
We may refer to [27,52] for the existence of unique local strong solution.

Accordingly, numerous numerical approaches have been proposed to demonstrate the mathematical theory; review ar-
ticles could be found in [16,34]. The first finite element work was introduced by Alouges and his collaborators [2,3,5], in
which rigorous convergence proof was included with first-order accuracy in time and second-order accuracy in space. This
method was further developed to reach almost the second-order temporal accuracy [4,33]. In another finite element work
by Bartels and Prohl [7], they presented an implicit time integration method with second-order accuracy and unconditional
stability. However, a nonlinear solver is needed at each time step, and a step-size condition k = @O (h?) is needed to guar-
antee the existence of the solution for the fixed point iteration (with k the temporal step-size and h the spatial mesh-size),
which is highly restrictive. In fact, a theoretical justification of the unique solvability of the numerical solution is expected
to come from the convergence of the fixed-point iteration by applying Banach fixed-point theorem, under the CFL-like con-
dition k = O(h?). A similar finite element scheme was reported by Cimrak [17]. Again, a nonlinear solver is necessary at
each time step, and the same step-size condition has to be imposed. Also see the related finite element works [1,21], as
well as the corresponding analysis. Meanwhile, the existing works of finite difference method to the LL equation may be
referred to [20,23,28,31,51]. In [20], a time stepping method in the form of a projection method was proposed; this method
is implicit and unconditionally stable, and the rigorous proof was provided with the first-order accuracy in time and second-
order accuracy in space. In [28], an updated source term was used, and an iteration algorithm was repeatedly performed
until the numerical solution converges. In [31], the explicit and implicit mimetic finite difference algorithm was developed.

Regarding to the temporal discretization, the first kind of time-stepping scheme is the Gauss-Seidel projection method
proposed by Wang, Garcia-Cervera, and E [48], in which |[Vm|?> was treated as the Lagrange multiplier for the non-convex
constraint |m| =1 in the pointwise sense with m the magnetization vector field. The resulting method is first-order accurate
in time and is unconditionally stable. The second kind of time-stepping scheme is called geometric integration method.
In [30], Jiang, Kaper, and Leaf developed the semi-analytic integration method by analytically integrating the system of
ODEs, obtained after a spatial discretization of the LL equation. This is an explicit method with first-order accuracy, hence
is subject to a CFL constraint, k = ©@(h?). Such an approach has been applied in [32] (which yields the same numerical
solution as the mid-point method, with second-order accuracy in time), and in a more general setting in [36] using the
Cayley transform to lift the LL equation to the Lie algebra of the 3D rotation group. In addition, the first, second and
fourth-order accurate temporal approximations were examined in [36], which is more amenable for building numerical
schemes with the high-order accuracy. The third kind of time-stepping scheme is called the mid-point method [9,19],
which is second-order accurate, unconditionally stable, and preserves the Lyapunov and Hamiltonian structures of the LL
equation. Moreover, the fourth kind of time-stepping method is the high-order Runge-Kutta algorithms [41]. Also see other
related works [18,22,29,33], etc. In fact, there have been many existing numerical works, in which a time step constraint
k = O(h?) has to be imposed, such as explicit numerical schemes [3,30] (so that the constraint k = @(h?) has played a
role of CFL condition), the fully implicit schemes [7,23,40] (so that a nonlinear solver is needed), and a fixed point iteration
approach [18], etc.

Based on the linearity of the discrete system, we can also classify numerical methods into the explicit scheme [3,30], the
fully implicit scheme [7,23,40] and the semi-implicit scheme [15,20,24,36,48]. In particular, the semi-discrete schemes are
introduced in [40] for 2-D and in [15] for 3D formulation of the LL equation. Error estimates are derived under the existence
assumption for the strong solution.

From the perspective of convergence analysis, it is worthy of mentioning [18], in which the fixed point iteration tech-
nique was used for handling the nonlinearities; the second-order convergence in time was proved, and was confirmed by
numerical examples. It is noticed that, for all above-mentioned works with the established convergence analysis, a nonlin-
ear solver has to be used at each time step, for the sake of numerical stability. However, the unique solvability analysis for
these nonlinear numerical schemes has been a very challenging issue at the theoretical level, due to the highly complicated
form in the nonlinear term. The only relevant analysis was reported in [23], in which the unique solvability was proved
under a very restrictive condition, k < Ch?. And also, a projection step has been used in many existing works, to preserve
the length of the magnetization. Its nonlinear nature makes a theoretical analysis highly non-trivial. In turn, a derivation
of the following numerical scheme is greatly desired: second-order accuracy in time and linearity of the scheme at each
time step, so that the length of magnetization is preserved in the pointwise sense, and an optimal rate error estimate and
unconditionally unique solvability analysis could be established at a theoretical level.

In this work, we propose and analyze a second-order accurate scheme that satisfies these desired properties. The second-
order backward differentiation formula (BDF) approximation is applied to obtain an intermediate magnetization m, and the
right-hand-side nonlinear terms are treated in a semi-implicit style with a second-order extrapolation applied to the explicit
coefficients. Such a numerical algorithm leads to a linear system of equations with variable coefficients to solve at each time
step. Its unconditionally unique solvability (no condition is needed for the temporal stepsize in terms of spatial stepsize)
is guaranteed by a careful application of the monotonicity analysis, the so-called Browder-Minty lemma. A projection step
is further used to preserve the unit length of magnetization at each time step, which poses a non-convex constraint. More
importantly, we provide a rigorous convergence and error estimate, by the usage of the linearized stability analysis for the
numerical error functions. In particular, we notice that, an a priori W;‘Oo bound assumption for the numerical solution at

the previous time steps has to be imposed to pass through the convergence analysis. As a consequence, the standard L2
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error estimate is insufficient to recover such a bound for the numerical solution. Instead, we have to perform the H! error
estimate, and such a W;‘Oo bound could be obtained at the next time step as a consequence of the H! estimate, via the
help of the inverse inequality combined with a mild time stepsize condition k = O(h). Careful error estimates for both the
original magnetization m and the intermediate magnetization m have to be taken into consideration at the projection step
(a highly nonlinear operation). To the best of our knowledge, it is the first such result to report an optimal convergence
analysis with second order accuracy in both time and space.

The rest of this paper is organized as follows. In Section 2, we introduce the fully discrete numerical scheme and state
the main theoretical results: unique solvability analysis and optimal rate convergence analysis. Detailed proofs are also
provided in this section. Numerical results are presented in Section 3, including both the 1D and 3D examples to confirm
the theoretical analysis. Conclusions are drawn in Section 4.

2. Main theoretical results

The LL equation reads as

m;=-mx Am—am x (mx Am) (2.1)
with

om

| =o, (2.2)

ov Ir

where I' = 9 and v is the unit outward normal vector along I'. Here m :  c RY — S2 represents the magnetization
vector field with j/m| =1, Vxe Q, d =1, 2,3 is the spatial dimension, and « > 0 is the damping parameter. The first term
on the right hand side of (2.1) is the gyromagnetic term, and the second term is the damping term. Compared to the original
LL equation [35], (2.1) only includes the exchange term which poses the main difficulty in numerical analysis, as done in the
literature [7,18,20,24]. Application of the scheme (2.5) to the original LL equation under external fields will be presented in
another publication [50]. To ease the presentation, we set Q = [0, 1%, in which d is the dimension.

2.1. Finite difference discretization and the fully discrete scheme

The finite difference method is used to approximate (2.1) and (2.2). Denote the spatial step-size by h in the 1D case
and divide [0, 1] into Ny equal segments; see the schematic mesh in Fig. 1. Define x; =ih, i =0,1,2,---, Ny, with xo =0,
xn, =1, and %; = X1 = (i— %)h, i=1,---,Ny. Denote the magnetization obtained by the numerical scheme at (x;, t") by
m, in which we have introduced t" = nk, with k being the temporal step-size, and n < L%J T being the final time. To
approximate the boundary condition (2.2), we introduce ghost points X 15Xy 41 and apply Taylor expansions for X_1, X1
at xp, and XN+ 1 Xy, 1 at xy,, respectively. We then obtain a third order extrapolation formula:

mi; =mgp, My, 1 =my,.

In the 3D case, we have spatial stepsizes hy = Nix hy = le h, = le and grid points (%, ¥, 2), with &; =x_1=(- Dhy,
Vi =yj_1= (- %)hy and 2 =71 = (k— %)hz (0<i<Nx+1,0<j<Ny+1,0<k<N;+1). The extrapolation formula

along the z direction near z=0 and z=1 is

mij1=mjjo, MjN,+1=MjN,. (2.3)

Extrapolation formulas for the boundary condition along other directions can be derived similarly.
In addition, given m,(-,t = 0) as the exact initial data at t =0 (with m, the exact solution), the numerical initial data
for m is set as

m?!j’k =Ppme(X;, Jj, 2k, t =0), Py is the point-wise interpolation. (2.4)
The standard second-order centered difference applied to Am results in

My, —2my j,+mi_q g

Apm; =
) 2
hi
n myj 1k —2M; j+M;j 1k
h2
y
n m; ki1 —2m; j g +m;jgq
> ,
hz

and the discrete gradient operator Vym with m = (u, v, w)T reads as

57



J. Chen, C. Wang and C. Xie Applied Numerical Mathematics 168 (2021) 55-74

ghost point ghost point

X? X0 X1 X1 e Xic1 X~

" © - © ©
% 1 i % Xj Xi+% Xit1 XNX7 1 XNy XNXJr%

Fig. 1. Illustration of the 1D spatial mesh.

Uit1,jk—Uijk Vit jk—Vijk  Wit1,jk—Wijk

hx hx hx
Ui k—Uijk  Vij+ik—Vijk  Wij+1,k—Wijk

Vim; i =
hh, j.k y y y
Ui jks1—Uijk  Vijk+t1=Vijk  Wijk+1—Wijk

h, h, h;

Denote the temporal stepsize by k, and define t" =nk, n < L%J with T the final time. The second-order BDF approxima-
tion is applied to the temporal derivative:

3,,n+2

3 n+1
2my,

10
— th + imh _ E
k ot
Note that the right hand side of the above equation is evaluated at t"t2, a direct application of the BDF method leads to

a fully nonlinear scheme. To overcome this difficulty, we come up with a semi-implicit scheme, in which the nonlinear
coefficient is approximated by the second-order extrapolation formula:

m 2+ OK?).

3 n+2 n+1 | 1..n
amy " —2my T+ omy,

k

- (ZmZH - mZ) x Apmpt? (2.5)
— (Zmzﬂ - mﬂ) x ((ZmZJrl —mj}}) x Ahm',;”).

A projection step is then added to preserve the length of magnetization. This scheme has been used to study domain wall
dynamics under external magnetic fields [50]. However, this scheme is difficult to conduct the convergence analysis due to
the lack of numerical stability of Lax-Richtmyer type. To overcome this difficulty, we separate the time-marching step and
the projection step in the following way, namely Algorithm 2.1:

~n4+2 n+1 n
my, T =2m," —my, (2.6)
3 ~n+2 ~ n+1 1,50
=m —2m +s5m R 5
2 h 2 a2 Ahm"+2 (2.7)
k h h
—an) ™ x @i x Apmpt?),
~ 42
m
mitt= —h (2.8)
~n+2
[my, 7|

The discrete boundary condition (2.3) is imposed for ﬁlﬁ” in (2.7). In fact, this boundary condition could be rewritten as
(Vatity ™2 - 1) |g0=0.

Remark 2.1. To kick start the iteration of our method, we can use the first-order semi-implicit projection scheme using the
first-order BDF and the first-order one-sided interpolation and the method is still second-order accurate.

Remark 2.2. We use the sparse LU factorization solver and also the Generalized Minimum Residual Method to solve the
linear system in (2.7).

2.2. Some notations and the main theoretical results

For simplicity of presentation, we assume that Ny =N, = N, =N so that hy =h, =h;, =h. An extension to the general
case is straightforward. In the finite difference approximation, all the numerical values are assigned on the numerical grid
points. As a result, the discrete grid functions (with notations f, g,), which are only defined over the corresponding
numerical grid points, are introduced.

First, we introduce the discrete ¢2 inner product and discrete || - || norm.

Definition 2.1 (Inner product and || - || norm). For grid functions f, and g, over the uniform numerical grid, we define

(Fngn)=h"Y_ fr g1, (29)

IEAd

where Aq is the index set and Z is the index which closely depends on d. In turn, the discrete || - ||, norm is given by
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Ifnllz = ((Fr £V (210)
In addition, the discrete H}-norm is given by ”f”'”lz-ﬂ = Ful3+1IVRFrll3
h

Definition 2.2 (Discrete || - ||oo norm). For the grid function f over the uniform numerical grid, we define

= max .
I frlloo max I1f zlloo

Definition 2.3. For the grid function f,, we define the average of summation as

fr=h">" fz.

TelAg

Definition 2.4. For any grid function fj, with f;, =0, a discrete inverse Laplacian operator is defined as: ¥, = (—Ay) ™! f}, is the
unique grid function satisfying
—An¥n=Fr. (Va¥p-m) [he=0, ¥, =0.

It is noticed that the zero-average constraint, ¥, = 0, makes the operator (—Ap)~! uniquely defined. In turn, a discrete H,ﬂ -norm is
introduced for any f with f_h =0:

Il = (=20~ Fus Fr)-

The first theoretical result is the unique solvability analysis of scheme (2.6)-(2.8). We observe that the unique solvability
for (2.7) could be simplified as the analysis for

3 ~
smy — N - A A -
%{ph = —mpy X Aymy —omy X (my X Aymy), (211)

with py, iy, given.
Theorem 2.1. Given py,, i, the numerical scheme (2.11) is uniquely solvable.

The second theoretical result is the optimal rate convergence analysis.

Theorem 2.2. Let m, € C3([0, T]; C1YyNC ([0, T1; C3)NL>®([0, T]; C°) be the exact solution of (2.1) with the initial data m,(x, 0) =
mY(x) and my, be the numerical solution of the equation (2.6)-(2.8) with the initial data m) = m{ and m} =m. ,. Suppose that the
initial error satisfies ||m§!h — mﬁ 2 4+ I Vh (mﬁ b mf;)||2 = Ok + h?), £ =0, 1, and k < Ch. Then the following convergence result

holds as h and k goes to zero:

m?, —ml -+ [ Vam? , —mi)lz < CK> +h%), Vn=2, (2.12)

in which the constant C > 0 is independent of k and h.

2.3. A few preliminary estimates

The proof of the standard inverse inequality and discrete Gronwall inequality could be obtained in existing textbooks;
we just cite the results here. The inverse inequality presented in [14] is in the finite element version; its extension to the
finite difference version is straightforward.

Lemma 2.1. (Inverse inequality) [14]. The inverse inequality implies that

a2 a2

leplloo <yh™

in which constant y depends on the form of the discrete || - || norm. Under the definition (2.9) and (2.10) for the cell-centered grid
function, such a constant could be taken as y = 1.

lepllz,  IVhehlloo < Yh™ %% Vhepll2,

Lemma 2.2. (Discrete Gronwall inequality) [25]. Let {&j} j>0, {Bj} j=0 and {wj} j>0 be sequences of real numbers such that

-1
aj<ajr, Pj=0, and a)jsaj—f-Zﬂ,-a)i, Vj>o0.
i=0
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Then it holds that
j—1
wj < ajexp Zﬂl , Vj=0.
i=0

Lemma 2.3 (Summation by parts). For any grid functions f, and gy, with f satisfying the discrete boundary condition (2.3), the
following identity is valid:

(—AnSfh. 8h)=(Vifn. Vngn)- (2.13)

Proof. For simplicity of presentation, we only focus on the 1D case; an extension to the 2D and 3D formulas will be
straightforward. A careful calculation reveals that
N N
(Fri-1 =2(fn)i + (Fn)i+1 (8n)i — (8n)i-1 (Fp)i— (fpi-1
S i L =y BB Ui

i=1 i=1

if fy satisfies the discrete boundary condition (2.3), i.e., (fp)o= (fr)1, (FrI)N+1 = (Fp)n. This identity is exactly the sum-
mation by parts formula (2.13). The proof of Lemma 2.3 is complete. O

The following estimate will be utilized in the convergence analysis. In the sequel, for simplicity of our notation, we will
use the uniform constant C to denote all the controllable constants in this paper.

Lemma 2.4 (Discrete gradient acting on cross product). For grid functions f, and g} over the uniform numerical grid, we have

190 (Fn x 813 = C(IFnlZ - IVngnl3 + lgnlZ - IVn fnl3). (2:14)
((Fn x Angh) X Fr.8n)=(Fn < (8 % Fn). Angh). (2.15)
(Fn > (Fnx g0), &) =—1LFn x &nll3- (216)

Proof. Without loss of generality, we only look at the 1D case; an extension to the 3D case is straightforward. We begin
with the following expansion

(V3(F1 % gy = (Fr)iv1 x (8n)iv1 — (Fr)i x (8p)i (217)

h
_ (fh)i+1h— (fr)i « (@ist + ()i X (gh)i+1h— (8n)i

= (Vhfh)H_% x (gpit1 + (Fp)i x (thh)H_% .
In turn, an application of the discrete Holder inequality to (2.17) yields (2.14). Also note that

((Fn < Angn) % F.8h)=—(8n x Fn. Fr X Angn)
=(fn x (8h x F). Angh).

and

(Fnx (Fn > gn). 8h)=(Fn x &n- 8 x Fn)
=—|frx g3 ©

The following estimate will be used in the error estimate at the projection step.

Lemma 2.5. Consider my, = Pym, + h*>m, in which Py, stands for the point-wise interpolation of a continuous function over the
numerical grid points, the continuous function m, satisfies a regularity requirement ||{me |1, <C, |me| =1 at a point-wise level,

and the grid function mV satisfies |m ||« + || VimV ||« < C. For any numerical solution 1y, we define my, = % Suppose both
numerical profiles satisfy the following W;‘Oo bounds
|my,| > %, at a pointwise level, (2.18)
Implloo + [IVamplloo <M, [Aplloo + [[Vamitplloo < M, (219)
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and we denote the numerical error functions as e, = m, — my, €, = my — my,. Then the following estimate is valid
lenll2 <2llenllz + OM*), [ Vhenl2 < C([IVhenllz + ll€nll2) + Ot?). (2.20)

Proof. A direct calculation shows that

my ~ my ~
ep=mp—Mm,=———M, =mp —Mm, + —— — My,
|| ||
~ my - my
=ep+ — (lmy| — [my]) + —— (1 — |[my]). (2.21)
|my | |my |

Since jm| — || < m, — sy, we get

- my, - - - -
e+ —(lmy| — |mh|)H <llenll2 + llenll2 = 2|lenll2- (2.22)
|my | 2

For the last term on the right hand side of (2.21), we observe that

|1 — |my|| = |ime| — |my|| < |me —my | = h*m™ | = Oh?), (2.23)

which in turn yields

—(1—my,)| =0m>. (2.24)

h
|y, |
As a result, a substitution of (2.22) and (2.24) into (2.21) leads to the first estimate in (2.20).
For the second inequality, we notice that

‘ 2

Veen — v, T _ m, m, m,
Wep=Vp—— — Vpmy =V | =—— — == |+ Vi | =~ —m, (2.25)
[y | |my|  |my] |my |
ey m, -
=Vh—— +Vp [~—"(1 - |mh|)].
[y | |mp, |

The analysis for the first part is straightforward:

en 1 - . 1 . .
H Vi—m | =< H = - IVhenll2 + llenll2 - th~— < ClIVhenll2 +Cllexl:. (2.26)
|mh| 2 my | |mh| oo

For the second part, we rewrite it as

M 1 i) = 2 (my, + my)(my, —my)  my, (me +my)(me —my,)

[y | |y 14 |my| [y 14 |my|

based on the fact |m.| = 1. For the nonlinear coefficient terms, we observe the following || - || bounds
14123 _ R2m® tmot = 1. lm®
lmy oo < +5 =3, sincem, =Pyme +h"m Jme| =1, Im*V ]l <C,

1 - 1
| =] =2 sincelim|= . by (218)),
ity |l 2

I
|

1
e Y A e S
myp| lloo LARES

Vi, lloo < I VaMe [loo +h2 1m0 < C +1,
1 1 42 - 1 2 N
190 (=) = [ | ivn bl = | | 19t
[my|/ lloo [my | oo [my| oo
<2%.M, (by(219)),
o ()] = (o) L i ||
h\ 7= = h\ 7= LY = . hin
ity |/ Nl g |/ lloo "0 iy | oo hiloe
<6M-+2(C+1),
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- - 3
lmy, +mplloo < My lloo + My lloc <M + 3

e e

| < i | <5
1+ Jing| oo = "0 I I g e =7 T 2

Vi @y, + mp) oo < Vil lloo + MR oo <C+ M +1,

th(%w)]) Hm(\ Vit oo

N Vit lloo < M,

=l
14+ my| lo

[ ()] = [ ) o
M i oo = 1 \T iy ) lloe 50 T TR0

1 i}
+H— H NV (my + 1w
19y

3
SM(M+5)+C+M+1.

As a result of these inequalities, we arrive at

m, m m m m 3
| et | s <.
|fity| 1+ |y, | |y | 1+ |my| 2
MER)

[mp| 14 |[my]

my, +my m—i—mh

S [ IR A Gemr e [N A} I b

|y | 1+ |my| |y | 1+|mh|

§3M(M+3)+3(C+1)+(M+5)(6M+2(C+1))SC,

in which C has a different value in the last step, which stands for another controllable constant. In turn, the following two
estimates could be derived for the two expansion terms:

HV [ my, (m, +my;)(m, —ﬁ'h)]
|y | 1+ [my|

2

S e IR O

my| 14 |my|

m, m, +mh]H

+ lmy, —my || - th[
h ENREN

=ClVhenl2 +Clienl2,

and

Hv [&(me +my,)(m, —mh)}

[my| 1+ || 2
< | Tl o - mol
+||me—mh||2"vh [%%” —om),
Therefore, we obtain
H h—m i ~n| (1 — |fy)) , <C(|Vrenll2 + llexll2) + Oh?). (2.27)

Finally, a substitution of (2.26) and (2.27) into (2.25) yields the second inequality in (2.20). This completes the proof of
Lemma 2.5. O
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2.4. The unique solvability analysis

To facilitate the unique solvability analysis for (2.11), we denote q, = —Apmy,. Note that q, =0, due to the Neumann
boundary condition for mi1,. Meanwhile, we observe that i1, # (—Ap)~'qy in general, since my, # 0. Instead, my;, could be
represented as follows:

. 2/ — = =
iy, = (—An) gy +Cj, with Cj = §<Pn + kmty, x gy + ok, x (my, x Qn)),

and my, given by (2.6). (2.11) is then rewritten as

3(=An7'ay +C;) — Py

G(qn) = X

—ny, X q — iy x (i X q,) = 0. (2.28)

Lemma 2.6 (Browder-Minty lemma [10,39]). Let X be a real, reflexive Banach space and let T : X — X’ (the dual space of X) be
bounded, continuous, coercive (i.e., % — 400, as ||ul]lx — +oo) and monotone. Then for any g € X’ there exists a solution
u € X of the equation T(u) = g

Furthermore, if the operator T is strictly monotone, then the solution u is unique.

Then we proceed into the proof of Theorem 2.1.

Proof. Recall that (2.11) is equivalent to (2.28). For any q , g, , With q7 , =q,, =0, we denote q, =q; , —q, , and derive
the following monotonicity estimate:

(G@10) —G@20), 91,0 —G2.n)

3

= o (=A™ a @) + (G, — G, @)
— (1, X qp, qp) — (i, x (M, X qy), q)

3 s *

= (a0 @ @) + (G5, — 5, 1))

3 -

= (=~ 'qy. qn) = knqhni]zo

Note that the following equality and inequality have been applied in the second step:

(i, X Gy, qy) =0, (i, x (10, x qp), q,) < 0.

The third step is based on the fact that both Cg  and Cg,, are constants, and qq , =g, ; =0, so that (Cg
Moreover, for any q; j,, 2,5 With qq =m =0, we get

Qi ‘Izh’q’">

(C@1,p) —GC@2p):q1,h — A2.0) = ||‘Ih|| 1>0, ifqp #qop.

— 2k
and the equality only holds when q; , =q; p.

Therefore, an application of Lemma 2.6 implies a unique solution of both (2.28) and (2.11), which completes the proof of
Theorem 2.1. O

2.5. The optimal rate convergence analysis: proof of Theorem 2.2

Proof. First, we construct an approximate solution m:

m=m, +h*m?, (2.29)

in which the auxiliary field m(! satisfies the following Poisson equation

. L1

Am®D =C with C=@/ 33m, ds, (2.30)
a,mY |,_o= —iam| 0, 0mW |_= lam| 1

V4 zZ=l 24 e 1Zz=0>» y4 z= 24 e 1Z=1>»

with boundary conditions along x and y directions defined in a similar way.
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The purpose of such a construction will be illustrated later. Then we extend the approximate profile m to the numerical
“ghost” points, according to the extrapolation formula (2.3):

mjo=m;, My =My, (231)

and the extrapolation for other boundaries can be formulated in the same manner. Subsequently, we prove that such an
extrapolation yields a higher order (O(h®) approximation, instead of the standard O(h®) accuracy. Also see the related
works [42,45,46] in the existing literature.

Performing a careful Taylor expansion for the exact solution around the boundary section z = 0, combined with the mesh
point values: Zp = —%h, 1= %h, we get

A A A h3 .o
me (i, 9, 20) = me(Ri, §j,21) — hd;me (X, §,0) — ﬁaimeoc,-, 9i,0)+ 0"

A h3 A
=me(%;,3;,21) — iajme(x,-, $5,0) + Oh®), (2.32)

in which the homogenous boundary condition has been applied in the second step. A similar Taylor expansion for the
constructed profile m(" reveals that

mD &, §5,20) =mD i, §5,21) —ho;m™ ki, 5, 0) + O(h%)
h
=mD &, §j, 1) + S 07me (i, §5,0) + O (2:33)
with the boundary condition in (2.30) applied. In turn, a substitution of (2.32)-(2.33) into (2.29) indicates that

mRi, §j,20) =mRi, §j,21) + O(h°). (2.34)

In other words, the extrapolation formula (2.31) is indeed @ (h®) accurate.
As a result of the boundary extrapolation estimate (2.34), we see that the discrete Laplacian of m yields the second-order
accuracy, even at the mesh points around the boundary sections:

Apm; ;o= Ame (i, §5, 2) + O(h%), V1 <i,j,k<N. (2.35)

Moreover, a detailed calculation of Taylor expansion, in both time and space, leads to the following truncation error esti-
mate:

3...n+2 n+1 1,..n
amy - 2my T +omy,
k

(Zm”“ —mﬁ) X Ahm”Jr2 + " (2.36)
(Zanr] m2> ((2mn+1 —m) x Ahm"“),

with || T%"2|; < C(k? + h?). In addition, a higher order Taylor expansion in space and time reveals the following estimate
for the discrete gradient of the truncation error:

VRt Iz < C(K? + h?). (2.37)
In fact, such a discrete | - || Hl bound for the truncation comes from the regularity assumption for the exact solution,

me € C3([0, T]; CHNCL([0, T); C3) N L®([0, T]; C°), as stated in Theorem 2.2, as well as the fact that m™™ e c1([0, T]; CHN
L>®([0, T]; C?), as indicated by the Poisson equation (2.30).

In turn, we introduce the numerical error functions &, = m/! — iy, €} =m! —m}, at a point-wise level. In other words,
instead of a direct comparison between the numerical solution and the exact solutlon we analyze the error function be-
tween the numerical solution and the constructed solution m,,, due to its higher order consistency estimate (2.34) around
the boundary. A subtraction of (2.7)-(2.8) from the consistency estimate (2.36) leads to the error function evolution system:

26’ —2e" + 2eh (2
k

mh) x Ang - (2e17 —efl) x Apmit? (2.38)

Q

mn+l

(2 m' _ n) ((Zm"'H mh)xAhe"+2>
— (2 n+1 _

(

2en+1 n) ((Zm”“ mh)xAhm"+2)+t”+2.

mh) ((Ze”+1 —e) x Ahm”+2)

-

64



J. Chen, C. Wang and C. Xie Applied Numerical Mathematics 168 (2021) 55-74

Before we proceed into the formal error estimate, we establish the bound for the constructed approximate solution m
and the numerical solution my,. For the approximate profile m € L% ([0, T], C°), which turns out to be the exact solution
and an O(h?) correction term, we still use C to denote its bound:

IVimy oo <C, 1=0,1,2,3, (2.39)
h==h

in which m;, = Pym, the point-wise interpolation of the constructed continuous function m. In addition, we make the
following a priori assumption for the numerical error function:

1 - 1
lleflloo + 1| Vhek oo < 3 12§ loo + I Vheklloo < 3 fork=ee+1. (2.40)

Such an assumption will be recovered by the convergence analysis at time step t‘*2. In turn, an application of triangle
inequality yields the desired W,.ll"oo bound for the numerical solutions my, and my:

1
Imf oo = Mk — ek [loo < 1M [loo + ll€f loo < C + 3 (2.41)
I Valloo = I Vhmmty, — Ve lloo < [IVamtlloo + | Vi€ loo <C + 5.

- 1 . 1 .. ..
||mﬁ||Oo <C+ 3 ||thﬁ loo <C+ 3 (similar derivation). (2.42)

Then we perform a discrete L? error estimate at t‘*2 using the mathematical induction. By taking a discrete inner
product with the numerical error equation (2.38) by e‘ZJr2 gives that

R.H.S. _( (2m‘3+l mh> x Apelt?, eﬁ“) (2.43)
—<(2eﬁ“ _eh) x Apmit2 fl+2>+<t“2,éﬁ+2>
((Zm@-i—l —mﬁ) ((2m£+1 _ ’"h) % Ahee+2) ef,+2>
((Zm“” mﬁ) ((Zezﬂ —el) x Ahm“Z) é£+2>
a((ZeﬁH ) ((2mz+1 mh) % Ahmz+2) eﬁ+2>
=Ti+hL+Iz+1s+15+]16.

e Estimate of I;: A combination of the summation by parts formula (2.13) (notice that the numerical error function &
satisfies the homogeneous Neumann boundary condition (2.3)) and inequality (2.14) results in

( mi+ ) x Apel? 8 ﬁﬂ) (2.44)

(-
7 )
g

e om0

(||v;f”2||2+||vh~‘+2||2 ||2m‘+l m; 1%,
+ 1813 IV @mE! - mi) )
<C(IVhe, 13 + 185 2113).
e Estimate of I:
= — <(2e“1 ) x Apm{t?, eﬁ“) (2.45)
[W” 13 + 12e; " — eflI3 - | Apmy, 212 ]
<C(||”“2||2 +lles ™13 + llef13).

+2

in which the bound for ||Aym; ™|« is given by the preliminary estimate (2.39), with r =2
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e Estimate of the truncation error term Is: An application of Cauchy inequality gives

Iy = <rf+2 eﬁ+2> <Clle |2 + ekt + h?). (2.46)
e Estimate of I4: It follows from (2.15) in Lemma 2.4 that

Iy = <(2m[+1 - mh> ((Zm”l -m)) x AheHz) ef;+2> (2.47)
o ((Zm[“ —m)) x AheHz) (Zm“] mﬁ) eﬁ“)

<
o(@mi*! —mf) x [ x em{+! —mp)], Ané )
<

a(vy ((Zmul . me) % [ elt2 (2m”1 —mﬁ)]) Vhe"“)

elt2 41 ¢ elt? 0+1 22
<c(||vh 13+ IVaemEt —md) |2 - 16213 - 12mitt —ml )12
041 ~€+2 0+1
+ 2m T —mp )3, - (1VRe, N5 12my T —my |12
£+1 ¢ elt2 0+1 €02
ll2mE T — m2, - 1820 - 1V 2mi T~ mi2,))

~€ 2 ~e 2
<C(IVhe, 2113 + e, 2 113).

e Estimates of I5 and Ig:

Ts= —a((2mf " —mf) x (e} — ef) x Apmf*?), &) (2.48)
= 5 (17203 + l2mi ! —mi 12, - 126! — ef 13- 1 Anmi 7 2,)
<c<||~‘+2||2 + llef 13 + llefl13).-
To=—o((2ef"! —ef) x (@mi*" —mf) x Aumi*2) &) (2.49)

~l+2 41 41 042
= 5 (187213 + 12ef " — ef 13 - 2my ! — mp 2, - | Apm 722 )

elt2 (41 )
<cle, 15+ lleg ™15 + lleg 1)

+2

Again, the bound for ||Aym, ™|« is given by the preliminary estimate (2.39), with r = 2.

Meanwhile, the inner product of the left hand side of (2.38) with éf;+2 turns out to be
elt? et el ~£+1 S0+l =02
LHS. = (II 15— e, 13 + 1128, 15— 12e,"" — &3

~e 2 ~z 1, =
+ eyt — 28, e l13).
Its combination with eqs. (2.44) to (2.49) and (2.43) leads to

~(Z 1 ~(3 2 ~{+1 ~Z 1 ~{
15— ey 15 + 128, —e, 15 — 112, —el13 (2.50)

<(:I<(||vh~“2||2 182103 + et 2 + lebl13) + ck(k* + hY).

” ~Z+2

However, the standard L2 error estimate (2.50) does not allow one to apply discrete Gronwall inequality, due to the H ,1
norms of the error function involved on the right hand side. To overcome this difficulty, we take a discrete inner product
with the numerical error equation (2.38) by —Ahé”z and see that

R.H.S. _( (2m‘~’+l —mh> x Apelt?, —Ahe‘“> (2.51)
—<(2eﬁ+1 _eh) x Apmit2 A ez+2>+< 42 A ee+2>
<(2me+1 mh) ((2m‘3+1 —mf) x Ahéﬁ+2> “Ave ~z+2>
<(2me+1 mh) ((2e€+1 _eh) « AhmHz) _A e£+2>

- oz<(2efl+] ) ((Zm”l -m)) x AhmHZ) , —Ahéfl+2>

=h+hLh+I3+14+15+1I6.
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e Estimate of I1:
< emit —m) x Apelt? —Ane 4*2) 0. (2.52)
e Estimate of I5:
I, <(2e‘+l el) x Apmit?, —Ahéﬁ“) (2.53)
_ (Vh (AhmHz % (2e“1 eﬁ)), éﬁ+2>
=C(IVh& 13 + Al 21, - Vi el — ef)3
+ VA (Armi )2, - 2ef ! — ef3)

~€+2 +1 £+1 2
=C(IVh8, 713 + Vel 13 + 1 Viuef I3 + llef ™ 13 + lleh 13 ).

Similarly, the bound for ||V}, Ahm”znOo comes from the preliminary estimate (2.39), by taking r = 3.

e Estimate of the truncation error term I3:
I3 = <—Ahéf, +2 €+2> <C|\Vhel 2 + Ck* + 1%, (2.54)

in which the discrete H}l estimate (2.37) for the local truncation error has been recalled.
o Estimate of I4: It follows from Lemma 2.16 in Lemma 2.4 that

L= — o¢<(2m“rl mf) x (2mi —ml) x ARelt?), —A,,éﬁ“) (2.55)

—a <(2m’f+l ml) x Anelt?, Apelt? x mlt - mﬁ))

= —all2m ™" —m}) x ApeL |2 <o0.
e Estimates of Is and Ig:
Is = ((2m‘+1 mi) x ((2e1 — ef) x Amit?), —Ahé,ﬁ“> (2.56)

= a<Vh ((Zm‘z“ my) x ((2e; ™" —ep) x Apmpt )) Ve %*2)

Sl+2
<C(IVh& 213 + IV @mET —m) % - | Anmi*2 12 - 2ef " — ef 13
+112m " —my 12, Vi (A )2, - (126 — eyl
+ 2mEt = mb 2, A2, |V el - ef)13)

~€+2 (41 (+1 2
=C(IVh& 13 + Vel I3 + IVief 13 + llef 113 + llef 3 ).

le= —«a ((26-“1 —el) x (@mi —m!) x Apm{t?), —Ahéfl+2> (2.57)

- a<Vh[(2e”1 —e) x (2m; ™ —mj) x Ahm”z)] Vyé ~”2>
~K 2
=C(IVh8, 713 + 1V (2ef ! — e I3 - I2mi ! — mp |, - Apmg 2,
+112€," — €13 - I Vi@my T —mp) 3, - | Apmmy 2
+ 2ef* — ef 13- [2mE ! —mb 12, - | Vi (Apmi*) )
~£ 2
=C(IVH& 13 + Vel I3 + IVhef 13 + llef 113 + llef 13 ).

Again, the bound for ||V, Apmy ™

llo comes from the preliminary estimate (2.39), by taking r =
And also, the inner product on the left hand side becomes
LH.S.= —(||W”2||2 Ve, 13 + 12Vhe, ™ — Vi T 13 (2.58)
— 112Vae;, " — Vieql3 + 11Vhe, " — 2Vhey ! + Viey 13).
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Substituting (2.52), egs. (2.53) to (2.57) into (2.38), combined with (2.58), we arrive at
~0+2 ~(+1 ~{+2 ~0+1 ~0+1 ~{
IVhe, 153 — 1Vhe, 113 + 12Vhey, ™ — Ve, 13 — 12Vhe, T — Viep 13 (2.59)
~(+2
= Ck(I1Vh&, 213 + Vel I3 + 1 Vief 13 + llef 113 + llefI13) -+ Ck(k® + ).
As a consequence, a combination of (2.50) and (2.59) yields
~{+2 ~{+1 ~{+2 ~{+1 ~0+1 ~{
e, 213 — et s + N2e, "t —e 5 — 112e, ! — e l13 (2.60)
~{+2 ~{+1 ~{+2 ~{+1 ~{+1 ~{
+ 1Vhe, 15 — Vhe, 115 + 1 Va (28,7 — e, D3 — IVa2e, ™ — ;)13
~{+2 ~{+2
<Ck(IVh@, 213 + 18213 + 1 Ve I3 + 1 Vief 13 + llef 13 + llef 1)
+ Ck(k* + h%).

At this point, recalling the W;’“’ bound for mﬁ and ﬁl’,ﬁ as given by (2.41), (2.42), and applying (2.20) in Lemma 2.5, we
obtain

lekllz < 2018l + Oh?), [Vhefllz < CUIVhellz + I1€f112) + Oth?), k=€, ¢+1.
Its substitution into (2.60) leads to
lex 213 — eyt i3 + 12entt — eyt g - 28, — epli3
+ Ve 213 — Ve, 13 + I1Vh2e, 2 — &t IZ — I vee, T — &)1
= k(11908413 + IVh&, I3 + 1 Vh8h 13 + 18,7713 + 185 13 + 12 13)
+ Ck(k* + h*).

In turn, an application of discrete Gronwall inequality (in Lemma 2.2) yields the desired convergence estimate for e:
lenll% + I Vhenlls < CTeCT (k* +h*), foralln:n< EJ :

ie,
1€ 1l2 + 1| Vhehllz < C(k* +h?).

An application of Lemma 2.1, as well as the time step constraint k < Ch, leads to

I&ll2 _ C(* +h?)

hd/2 = pd2

I Viehlla _ CK> +h?)
hd/2  —  pd/2

lehlloc < < (2.61)

1
6

=1
[Vheylloo =

1
6
so that the second part of the a priori assumption (2.40) has been recovered at time step k =n. In turn, the W;‘OO

bound (2.42) becomes available, which enables us to apply (2.20) in Lemma 2.5, and obtain the desired convergence esti-
mate for el':
h

lelllz < 2)lefll2 + Oh?) < C(k* +h?),
IIVhelll2 < C(IVhepll2 + € ll2) + Oh*) < C(k?* + h?).

Similar to the derivation of (2.61), we also get

1 1
n n
e < -, Vie < -,
|| h”oo_5 || h h||oo_5

so that the first part of the a priori assumption (2.40) has been recovered at time step k = £ + 2. This completes the proof
of Theorem 2.2. O

Remark 2.3. The regularity assumption for the exact solution, namely m, € C3([0, T]; C1) N C1([0, T]; C3) N L*°([0, T]; C?),
as stated in Theorem 2.2, is very strong. In fact, a global-in-time weak solution of the LL equation (2.1) is only of regularity
class L®°([0, T]; H') N L2([0, T); H?). Of course, if the initial data is smooth enough, one could always derive a local-in-
time exact solution with higher enough regularity estimate, so that the convergence estimate established in Theorem 2.2
could pass through. In other words, the optimal rate error estimate (2.12) stands for a local-in-time theoretical result. In
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addition, since the finite difference numerical method is evaluated at the collocation grid points, instead of the ones based
on a weak formulation, it usually requires higher order regularity requirement for the exact solution in the optimal rate
convergence estimate than that of the finite element approach; see the related finite difference analysis for various gradient
flows [8,47,49], etc.

3. Numerical examples

In this section, we perform 1D and 3D numerical experiments for the final time T =1 to verify the theoretical analysis in
Section 2. Rate of convergence is obtained via the least-squares fitting for a sequence of error data recorded with successive
stepsize refinements.

In details, we test four examples: 1D example with a forcing term and the given exact solution, 1D example without the
exact solution, 3D example with a forcing term and the given exact solution, and 3D example with the full Landau-Lifshitz
equation for simulating domain wall dynamics. Solutions in these four cases satisfy the homogenous Neumann boundary
condition (2.2). In the presence of an forcing term, the LL equation reads as

m;=-mx Am—aoamx (mx Am) + f,

with f =9/m, +m, x Am, +aom, x (m, x Am,) and m, the exact solution. In more details, the forcing term f is evaluated
at t"*2 in the numerical scheme (2.7). Only one linear system of equations needs to solve at each time step. In all examples,
we find that the scheme is unconditionally stable.

Example 3.1 (1D example with the given exact solution). The exact solution is given by m, = (cos(x?(1 — x)2) sint, sin(x%(1 —
x)%)sint, cost)T, which satisfies the homogeneous Neumann boundary condition. A point-wise interpolation is applied to
me(-,t = 0) to obtain the initial data at the grid points, following formula (2.4). Results in Table 1 and Fig. 2 suggest the
second-order accuracy in both time and space of the proposed numerical method in the discrete H'-norm; Results in
Table 2 indicate the unconditional stability in the 1D case.

Example 3.2 (1D example without the exact solution). For this example, in the absence of the forcing term, we do not have the
exact solution. For comparison, we first set h and k small enough to obtain a numerical solution which will be used as the
reference solution. The initial condition is chosen as mg(x,0) = (0,0, 1) for x € Q2. To get the temporal accuracy, we set
h=1D —4 and k=1D — 4 to get the reference solution and then record the temporal error with varying k in Table 3 and
Fig. 3a. To get the spatial accuracy, we set h =1/3% and k = 1D — 4 to get the reference solution and record the error in
Table 4 and Fig. 3b. Again, the second-order accuracy in both time and space in the discrete H!'-norm have been confirmed.

Example 3.3 (3D example with the given exact solution). The given exact solution is given by

m, = (cos(XY Z) sint, sin(XY Z) sint, cost)" ,

where X =x2(1 —x)2, Y = y2(1 — y)?, Z =2%*(1 — 2)%. Again, a point-wise interpolation is applied to m(-, t = 0) to obtain
the initial data at the grid points, following formula (2.4).

Table 5, Table 6 and Fig. 4 shows the second-order convergence in both time and space in the 3D case. Results in Table 7
indicate the unconditional stability of the proposed numerical method in the 3D case. We visualize the magnetization in
Fig. 5 by taking a slice along the z =1/2 plane up to the final time T = 1. The arrow denotes the vector from magnetization
component u to v and the colormap represents the third magnetization component w. Fig. 5a and Fig. 5b plot the exact
magnetization with the exact value of the third component being 0.5403 and the numerical magnetization with k = 1/256
and hy =hy =h, =1/32, respectively.

Example 3.4 (3D example for full Landau-Lifshitz equation). The full Landau-Lifshitz equation in a nondimensionalized form is
given by

om=—m x heff— am x (m x heff),

where the effective field heg includes not only the exchange field Am, but also the anisotropy field, the external field h,
and the demagnetization (stray) field hs. The uniaxial material with the x axis as the easy direction is considered, thus

heff = € Am — Q (mpe; +m3e3) + hs + he,

where € and Q are both dimensionless constants, e; = (0,1,0) and e3 = (0,0, 1) are unit vectors, hs takes the nondimen-
sionalized form

hg = LV/V <L> -m(y)dy,
4 |*—yI
Q
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Table 1
Accuracy of the proposed numerical method in the 1D case on the uni-
form mesh when h =k and o =0.01.

k lmy, —me |l lmp — me |l lmy —me|| 1
5.0D-3 3.867D-5 4.115D-5 1.729D-4
2.5D-3 7.976D-6 1.053D-5 4.629D-5
1.25D-3 2.135D-6 2.648D-6 1177D-5
6.25D-4 5.765D-7 6.627D-7 2.949D-6
3.125D-4 1.447D-7 1.657D-7 7.370D-7
order 1.991 1.990 1.972

107 i

104 F E

I, — mell

108 ¢ E
10%F E
=6~ L -norm: 1.991
=B~ 1 2-norm: 1.990
== H'-norm: 1.972
107 :
10 108 102

Fig. 2. Accuracy of the proposed numerical method on the uniform mesh when h =k and o =0.01 in the 1D case.

Table 2
Unconditional stability of the proposed numerical method in the 1D case when o = 0.01.

l'(""h e loo NI 1.0D-1 5.0D-2 2.5D-2 1.25D-2

2.0D-1 2.318D-2 2.106D-2 2.056D-2 2.046D-2
1.0D-1 1.015D-2 7.571D-3 6.928D-3 6.768D-3
5.0D-2 5.503D-3 2.807D-3 2.134D-3 1.966D-3
2.5D-2 4166D-3 1.436D-3 7521D-4 5.811D-4
1.25D-2 3.783D-3 1.062D-3 3.913D-4 2.234D-4
6.25D-3 3.709D-3 9.714D-4 2.831D-4 1.108D-4

Table 3

Temporal accuracy of the proposed numerical method in the 1D
case on the uniform mesh when h =1D — 4 and « = 0.01. The
reference solution is obtained with h=1D —4 and k=1D — 4.

k llmy, —me ||l llmy, —me |2 llmy —me ||
5.0D-3 2.949D-5 3.250D-5 1.633D-4
2.5D-3 8.116D-6 8.429D-6 4.393D-5
1.25D-3 2.125D-6 2.114D-6 1.118D-5
6.25D-4 4.851D-7 5.190D-7 2.791D-6
3.125D-4 1.129D-7 1.196D-7 6.875D-7
order 2.012 2.019 1976

which is calculated by the Fast Fourier Transform (FFT) with € being the rectangular domain.

Consider a ferromagnetic nanostrip of size 0.8 x 0.1 x 0.004 pm® with 128 x 32 x 2 grid points. In our simulations,
the material parameters used for Permalloy, which is an alloy of Nickel (80%) and Iron (20%), are the exchange constant
1.3 x 10~11J/m, the anisotropy constant 1.0 x 10%]/m?, the saturation magnetization constant 8.0 x 10° A/m, the damping
coefficient « = 0.1 and the temporal step-size k =1 ps. A steady state is reached if the relative change in the total energy
is less than 107, A transverse domain wall is formed with the in plane head-to-head Néel wall as the initial state (Fig. 6a),
specified by

my = (tanh(s), sech(s), 0)",
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Table 4
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Spatial accuracy of the proposed numerical method in the 1D case
on the uniform mesh when k=1D — 4 and o = 0.01. The refer-
ence solution is obtained with h =1/3% and k=1D — 4.

h lmy —me o0 [lmp —me |2 lmp —me||
1/32 0.00546 0.00577 0.01336
1/33 6.101D-4 6.430D-4 0.00160
1/34 6.782D-5 7.146D-5 1.820D-4
1/35 7.527D-6 7.930D-6 2.036D-5
1/36 8.271D-7 8.714D-7 2.243D-6
order 2.001 2.002 1.980
107 w 107! ‘ ‘
102 ¢ 3
104 F E
_ o 103 ¢ J
g g
I 105F E I q0%E E
= <
£ £
10° ¢ 3
100 ¢ 1
=©—L"-norm: 2.012 108 F =©~— L™ -norm: 2.001
=B 2-norm: 2.019 =B~ 2-norm: 2.002
H'-norm: 1.976 H'-norm: 1.980
107 ) 107 ) )
107 107 102 107 102 107" 10°
k h

(A) Temporal accuracy

(B) Spatial accuracy

Fig. 3. Accuracy of the proposed numerical method when « = 0.01 in the 1D case. (a) Temporal accuracy of our method on the uniform mesh when
h=1D — 4 and « = 0.01. The reference solution is obtained with h =1D — 4 and k = 1D — 4; (b) Spatial accuracy of the proposed numerical method on
the uniform mesh when k=1D — 4 and o = 0.01. The reference solution is obtained with h =1/3% and k=1D — 4.

Table 5

Temporal accuracy in the 3D case when hy =hy =h; =1/32 and

o =0.01.
k lmy —me|loo lmy —me||> lmy —me ||
1/16 1.685D-3 1.098D-3 1.211D-3
1/32 4.411D-4 2.964D-4 3.082D-4
1/64 1.128D-4 7.730D-5 7.772D-5
1/128 2.966D-5 2.024D-5 2.051D-5
1/256 8.311D-6 5.693D-6 5.812D-6
order 1.922 1.906 1.932

Table 6

Spatial accuracy in the 3D case when k =1/2048 and o« = 0.01.
h lmy —me o0 [lmp —me |2 lmy, —me ||
1/2 3.283D-4 2.252D-4 2.252D-4
1/4 7.442D-5 5.122D-5 6.660D-5
1/8 1.858D-5 1.278D-5 1.628D-5
1/16 4.740D-6 3.252D-6 4,048D-6
order 2.034 2.034 1.943

where tanh(s) = [exp(s) — exp(—s)]/[exp(s) +exp(—s)] and sech(s) = 2/[exp(s) + exp(—s)] with s = [Ly/2 — x]/2hy, Ly being
the maximum length in x-direction. The transverse wall starts to move along the x direction in the presence of a small
external field along the x direction with strength H, = 50 Oe. The wall profile is sustained during the motion. Snapshots at
time t = 0.5 ns, 1.0 ns are shown in Figs. 6b and 6c¢. Details of the implementation can be found in [50].
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Fig. 4. Accuracy of the proposed numerical method when o = 0.01 in the 3D case. (a) Temporal accuracy of our method on the uniform mesh when
hx=hy =h;=1/32 and a = 0.01; (b) Spatial accuracy of the proposed numerical method on the uniform mesh when k =1/2048 and o = 0.01.

Table 7
Unconditional stability of the proposed numerical method in the 3D case when o = 0.01.

mp, —m h
’L' h e oo 1/4 1/8 1/16 1/32
1/4 1.370D-2 1.365D-2 1.370D-2 1.421D-2
1/8 5.470D-3 5.415D-3 5.407D-3 5.686D-3
1/16 1.675D-3 1.619D-3 1.605D-3 1.685D-3
1/32 5.052D-4 4.495D-4 4.355D-4 4411D-4
1/64 1.860D-4 1.303D-4 1.163D-4 1.128D-4
1/128 1.029D-4 4.680D-5 3.311D-5 2.966D-5
0.54029404
09
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(A) Exact magnetization profile (B) Numerical magnetization profile

Fig. 5. Profiles of the exact and the numerical magnetization upon T =1 in the xy-plane with z=1/2, k=1/256, hy =hy =h, =1/32, and o = 0.01. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Conclusions

In this paper, we have proposed and analyzed a second-order time stepping scheme to solve the LL equation. The
second-order BDF is applied for temporal discretization and a linearized multistep approximation is used for the nonlinear
coefficients on the right hand side of the equation. The resulting scheme avoids a well-known difficulty associated with the
nonlinearity of the system, and its unique solvability is established via the monotonicity analysis of the system. In addition,
an optimal rate convergence analysis is provided, by making use of a linearized stability analysis for the numerical error
functions, in which the W,}’O" error estimate at the projection step has played an important role. Numerical experiments in
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Fig. 6. Snapshots of the domain wall motion for the bottom surface in xy-plane of the strip with the magnetic field H, = 50 Oe along the x direction and
the damping constant o = 0.1 at several times t =0.0ns, 0.5 ns, 1.0 ns in (a),(b) and (c).

both 1D and 3D cases are presented to verify the unconditional stability and the second-order accuracy in both space and
time, and applied to the domain wall dynamics driven by an external field. The technique presented here may be applicable
to the model for current-driven domain wall dynamics [13], which shall be explored as a future project.
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