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The numerical approximation for the Landau-Lifshitz equation, which models the dynamics 
of the magnetization in a ferromagnetic material, is taken into consideration. This highly 
nonlinear equation, with a non-convex constraint, has several equivalent forms, and 
involves solving an auxiliary problem in the infinite domain. All these features have posed 
interesting challenges in developing numerical methods. In this paper, we first present 
a fully discrete semi-implicit method for solving the Landau-Lifshitz equation based on 
the second-order backward differentiation formula and the one-sided extrapolation (using 
previous time-step numerical values). A projection step is further used to preserve the 
length of the magnetization. Subsequently, we provide a rigorous convergence analysis 
for the fully discrete numerical solution by the introduction of two sets of approximated 
solutions where one set of solutions solves the Landau-Lifshitz equation and the other is 
projected onto the unit sphere. Second-order accuracy in both time and space is obtained 
provided that the spatial step-size is the same order as the temporal step-size. And also, 
the unique solvability of the numerical solution without any assumption for the step-size 
in both time and space is theoretically justified, using a monotonicity analysis. All these 
theoretical properties are verified by numerical examples in both 1D and 3D spaces.

 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Micromagnetics is a continuum theory describing magnetization patterns inside ferromagnetic media. The dynamics 
of magnetization is governed by the Landau-Lifshitz (LL) equation [35]. This highly nonlinear equation indicates a non-
convex constraint, which has always been a well-known difficulty in the numerical analysis. And also, this equation has 
several equivalent forms, and an auxiliary problem in the infinite domain has to be involved. All these features have posed 
interesting challenges in developing numerical methods. In the past several decades, many works have focused on the 
mathematical theory and numerical analysis of the LL equation [34,37,43]. The solvability of LL-type equations can be found 
in [26,40,44]; two structures of the solution regularity have been investigated. In the framework of weak solution, the 
existence of global weak solution in R3 was proved in [6] and in [27] on a bounded domain � ⊂ R2; the nonuniqueness of 
weak solutions was demonstrated in [6] as well. In the framework of strong solution, local existence and uniqueness, and 
global existence and uniqueness with small-energy initial data for strong solutions to the LL equation in R3 was shown 
in [12]. Local existence and uniqueness of strong solutions on a bounded domain � was proved in [11]; global existence 
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and uniqueness of strong solutions for small-energy initial data on a 2-D bounded domain was established, provided that 
‖∇m0‖H1(�) is small enough for the bounded domain � ⊂ R2 . A similar uniqueness analysis was provided in [38] as well. 
We may refer to [27,52] for the existence of unique local strong solution.

Accordingly, numerous numerical approaches have been proposed to demonstrate the mathematical theory; review ar-
ticles could be found in [16,34]. The first finite element work was introduced by Alouges and his collaborators [2,3,5], in 
which rigorous convergence proof was included with first-order accuracy in time and second-order accuracy in space. This 
method was further developed to reach almost the second-order temporal accuracy [4,33]. In another finite element work 
by Bartels and Prohl [7], they presented an implicit time integration method with second-order accuracy and unconditional 
stability. However, a nonlinear solver is needed at each time step, and a step-size condition k = O(h2) is needed to guar-
antee the existence of the solution for the fixed point iteration (with k the temporal step-size and h the spatial mesh-size), 
which is highly restrictive. In fact, a theoretical justification of the unique solvability of the numerical solution is expected 
to come from the convergence of the fixed-point iteration by applying Banach fixed-point theorem, under the CFL-like con-
dition k = O(h2). A similar finite element scheme was reported by Cimrák [17]. Again, a nonlinear solver is necessary at 
each time step, and the same step-size condition has to be imposed. Also see the related finite element works [1,21], as 
well as the corresponding analysis. Meanwhile, the existing works of finite difference method to the LL equation may be 
referred to [20,23,28,31,51]. In [20], a time stepping method in the form of a projection method was proposed; this method 
is implicit and unconditionally stable, and the rigorous proof was provided with the first-order accuracy in time and second-
order accuracy in space. In [28], an updated source term was used, and an iteration algorithm was repeatedly performed 
until the numerical solution converges. In [31], the explicit and implicit mimetic finite difference algorithm was developed.

Regarding to the temporal discretization, the first kind of time-stepping scheme is the Gauss-Seidel projection method 
proposed by Wang, García-Cervera, and E [48], in which |∇m|2 was treated as the Lagrange multiplier for the non-convex 
constraint |m| = 1 in the pointwise sense with m the magnetization vector field. The resulting method is first-order accurate 
in time and is unconditionally stable. The second kind of time-stepping scheme is called geometric integration method. 
In [30], Jiang, Kaper, and Leaf developed the semi-analytic integration method by analytically integrating the system of 
ODEs, obtained after a spatial discretization of the LL equation. This is an explicit method with first-order accuracy, hence 
is subject to a CFL constraint, k = O(h2). Such an approach has been applied in [32] (which yields the same numerical 
solution as the mid-point method, with second-order accuracy in time), and in a more general setting in [36] using the 
Cayley transform to lift the LL equation to the Lie algebra of the 3D rotation group. In addition, the first, second and 
fourth-order accurate temporal approximations were examined in [36], which is more amenable for building numerical 
schemes with the high-order accuracy. The third kind of time-stepping scheme is called the mid-point method [9,19], 
which is second-order accurate, unconditionally stable, and preserves the Lyapunov and Hamiltonian structures of the LL 
equation. Moreover, the fourth kind of time-stepping method is the high-order Runge-Kutta algorithms [41]. Also see other 
related works [18,22,29,33], etc. In fact, there have been many existing numerical works, in which a time step constraint 
k = O(h2) has to be imposed, such as explicit numerical schemes [3,30] (so that the constraint k = O(h2) has played a 
role of CFL condition), the fully implicit schemes [7,23,40] (so that a nonlinear solver is needed), and a fixed point iteration 
approach [18], etc.

Based on the linearity of the discrete system, we can also classify numerical methods into the explicit scheme [3,30], the 
fully implicit scheme [7,23,40] and the semi-implicit scheme [15,20,24,36,48]. In particular, the semi-discrete schemes are 
introduced in [40] for 2-D and in [15] for 3D formulation of the LL equation. Error estimates are derived under the existence 
assumption for the strong solution.

From the perspective of convergence analysis, it is worthy of mentioning [18], in which the fixed point iteration tech-
nique was used for handling the nonlinearities; the second-order convergence in time was proved, and was confirmed by 
numerical examples. It is noticed that, for all above-mentioned works with the established convergence analysis, a nonlin-
ear solver has to be used at each time step, for the sake of numerical stability. However, the unique solvability analysis for 
these nonlinear numerical schemes has been a very challenging issue at the theoretical level, due to the highly complicated 
form in the nonlinear term. The only relevant analysis was reported in [23], in which the unique solvability was proved 
under a very restrictive condition, k ≤ Ch2 . And also, a projection step has been used in many existing works, to preserve 
the length of the magnetization. Its nonlinear nature makes a theoretical analysis highly non-trivial. In turn, a derivation 
of the following numerical scheme is greatly desired: second-order accuracy in time and linearity of the scheme at each 
time step, so that the length of magnetization is preserved in the pointwise sense, and an optimal rate error estimate and 
unconditionally unique solvability analysis could be established at a theoretical level.

In this work, we propose and analyze a second-order accurate scheme that satisfies these desired properties. The second-
order backward differentiation formula (BDF) approximation is applied to obtain an intermediate magnetization m̃, and the 
right-hand-side nonlinear terms are treated in a semi-implicit style with a second-order extrapolation applied to the explicit 
coefficients. Such a numerical algorithm leads to a linear system of equations with variable coefficients to solve at each time 
step. Its unconditionally unique solvability (no condition is needed for the temporal stepsize in terms of spatial stepsize) 
is guaranteed by a careful application of the monotonicity analysis, the so-called Browder-Minty lemma. A projection step 
is further used to preserve the unit length of magnetization at each time step, which poses a non-convex constraint. More 
importantly, we provide a rigorous convergence and error estimate, by the usage of the linearized stability analysis for the 
numerical error functions. In particular, we notice that, an a priori W

1,∞
h

bound assumption for the numerical solution at 
the previous time steps has to be imposed to pass through the convergence analysis. As a consequence, the standard L2
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error estimate is insufficient to recover such a bound for the numerical solution. Instead, we have to perform the H1 error 
estimate, and such a W 1,∞

h
bound could be obtained at the next time step as a consequence of the H1 estimate, via the 

help of the inverse inequality combined with a mild time stepsize condition k = O(h). Careful error estimates for both the 
original magnetization m and the intermediate magnetization m̃ have to be taken into consideration at the projection step 
(a highly nonlinear operation). To the best of our knowledge, it is the first such result to report an optimal convergence 
analysis with second order accuracy in both time and space.

The rest of this paper is organized as follows. In Section 2, we introduce the fully discrete numerical scheme and state 
the main theoretical results: unique solvability analysis and optimal rate convergence analysis. Detailed proofs are also 
provided in this section. Numerical results are presented in Section 3, including both the 1D and 3D examples to confirm 
the theoretical analysis. Conclusions are drawn in Section 4.

2. Main theoretical results

The LL equation reads as

mt = −m × �m − αm × (m × �m) (2.1)

with

∂m

∂ν

∣

∣

∣

�
= 0, (2.2)

where � = ∂� and ν is the unit outward normal vector along �. Here m : � ⊂ Rd → S2 represents the magnetization 
vector field with |m| = 1, ∀x ∈ �, d = 1, 2, 3 is the spatial dimension, and α > 0 is the damping parameter. The first term 
on the right hand side of (2.1) is the gyromagnetic term, and the second term is the damping term. Compared to the original 
LL equation [35], (2.1) only includes the exchange term which poses the main difficulty in numerical analysis, as done in the 
literature [7,18,20,24]. Application of the scheme (2.5) to the original LL equation under external fields will be presented in 
another publication [50]. To ease the presentation, we set � = [0, 1]d , in which d is the dimension.

2.1. Finite difference discretization and the fully discrete scheme

The finite difference method is used to approximate (2.1) and (2.2). Denote the spatial step-size by h in the 1D case 
and divide [0, 1] into Nx equal segments; see the schematic mesh in Fig. 1. Define xi = ih, i = 0, 1, 2, · · · , Nx , with x0 = 0, 
xNx = 1, and x̂i = xi− 1

2
= (i − 1

2
)h, i = 1, · · · , Nx . Denote the magnetization obtained by the numerical scheme at (x̂i, tn) by 

mn
i
, in which we have introduced tn = nk, with k being the temporal step-size, and n ≤

⌊

T
k

⌋

, T being the final time. To 
approximate the boundary condition (2.2), we introduce ghost points x− 1

2
, xNx+

1
2
and apply Taylor expansions for x− 1

2
, x 1

2

at x0 , and xNx+
1
2
, xNx−

1
2
at xNx , respectively. We then obtain a third order extrapolation formula:

m1 = m0, mNx+1 = mNx .

In the 3D case, we have spatial stepsizes hx = 1
Nx

, hy = 1
N y

, hz = 1
Nz

and grid points (x̂i, ŷ j, ̂zk), with x̂i = xi− 1
2

= (i − 1
2
)hx , 

ŷ j = y j− 1
2

= ( j − 1
2
)hy and ẑk = zk− 1

2
= (k − 1

2
)hz (0 ≤ i ≤ Nx +1, 0 ≤ j ≤ N y +1, 0 ≤ k ≤ Nz +1). The extrapolation formula 

along the z direction near z = 0 and z = 1 is

mi, j,1 = mi, j,0, mi, j,Nz+1 = mi, j,Nz
. (2.3)

Extrapolation formulas for the boundary condition along other directions can be derived similarly.

In addition, given me(·, t = 0) as the exact initial data at t = 0 (with me the exact solution), the numerical initial data 
for m is set as

m0
i, j,k = Phme(x̂i, ŷ j, ẑk, t = 0), Ph is the point-wise interpolation. (2.4)

The standard second-order centered difference applied to �m results in

�hmi, j,k =
mi+1, j,k − 2mi, j,k +mi−1, j,k

h2x

+
mi, j+1,k − 2mi, j,k +mi, j−1,k

h2y

+
mi, j,k+1 − 2mi, j,k +mi, j,k−1

h2z
,

and the discrete gradient operator ∇hm with m = (u, v, w)T reads as
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x0 x1 xi−1 xi xi+1 xNxx− 1
2

x 1
2

· · · xi− 1
2

xi+ 1
2

· · · xNx−
1
2

xNx+
1
2

ghost point ghost point

Fig. 1. Illustration of the 1D spatial mesh.

∇hmi, j,k =

⎡

⎢

⎣

ui+1, j,k−ui, j,k

hx

v i+1, j,k−v i, j,k
hx

w i+1, j,k−w i, j,k

hx
ui, j+1,k−ui, j,k

hy

v i, j+1,k−v i, j,k
hy

w i, j+1,k−w i, j,k

hy
ui, j,k+1−ui, j,k

hz

v i, j,k+1−v i, j,k
hz

w i, j,k+1−w i, j,k

hz

⎤

⎥

⎦
.

Denote the temporal stepsize by k, and define tn = nk, n ≤
⌊

T
k

⌋

with T the final time. The second-order BDF approxima-

tion is applied to the temporal derivative:

3
2
mn+2

h
− 2mn+1

h
+ 1

2
mn

h

k
=

∂

∂t
mn+2

h
+O(k2).

Note that the right hand side of the above equation is evaluated at tn+2 , a direct application of the BDF method leads to 
a fully nonlinear scheme. To overcome this difficulty, we come up with a semi-implicit scheme, in which the nonlinear 
coefficient is approximated by the second-order extrapolation formula:

3
2
mn+2

h
− 2mn+1

h
+ 1

2
mn

h

k
= −

(

2mn+1
h

−mn
h

)

× �hm
n+2
h

(2.5)

− α
(

2mn+1
h

−mn
h

)

×
(

(2mn+1
h

−mn
h) × �hm

n+2
h

)

.

A projection step is then added to preserve the length of magnetization. This scheme has been used to study domain wall 
dynamics under external magnetic fields [50]. However, this scheme is difficult to conduct the convergence analysis due to 
the lack of numerical stability of Lax-Richtmyer type. To overcome this difficulty, we separate the time-marching step and 
the projection step in the following way, namely Algorithm 2.1:

m̂
n+2
h = 2mn+1

h
−mn

h, (2.6)

3
2
m̃

n+2
h − 2m̃

n+1
h + 1

2
m̃

n
h

k
= −m̂

n+2
h × �hm̃

n+2
h (2.7)

− αm̂
n+2
h × (m̂

n+2
h × �hm̃

n+2
h ),

mn+2
h

=
m̃

n+2
h

|m̃
n+2
h |

. (2.8)

The discrete boundary condition (2.3) is imposed for m̃n+2
h in (2.7). In fact, this boundary condition could be rewritten as 

(∇hm̃
n+2
h · n) |∂�= 0.

Remark 2.1. To kick start the iteration of our method, we can use the first-order semi-implicit projection scheme using the 
first-order BDF and the first-order one-sided interpolation and the method is still second-order accurate.

Remark 2.2. We use the sparse LU factorization solver and also the Generalized Minimum Residual Method to solve the 
linear system in (2.7).

2.2. Some notations and the main theoretical results

For simplicity of presentation, we assume that Nx = N y = Nz = N so that hx = hy = hz = h. An extension to the general 
case is straightforward. In the finite difference approximation, all the numerical values are assigned on the numerical grid 
points. As a result, the discrete grid functions (with notations f h , gh), which are only defined over the corresponding 
numerical grid points, are introduced.

First, we introduce the discrete �2 inner product and discrete ‖ · ‖2 norm.

Definition 2.1 (Inner product and ‖ · ‖2 norm). For grid functions f h and gh over the uniform numerical grid, we define

〈 f h, gh〉 = hd
∑

I∈�d

f I · gI , (2.9)

where �d is the index set and I is the index which closely depends on d. In turn, the discrete ‖ · ‖2 norm is given by
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‖ f h‖2 = (〈 f h, f h〉)
1/2. (2.10)

In addition, the discrete H1
h
-norm is given by ‖ f h‖

2
H1
h

:= ‖ f h‖
2
2 + ‖∇h f h‖

2
2 .

Definition 2.2 (Discrete ‖ · ‖∞ norm). For the grid function f h over the uniform numerical grid, we define

‖ f h‖∞ = max
I∈�d

‖ f I‖∞.

Definition 2.3. For the grid function f h , we define the average of summation as

f h = hd
∑

I∈�d

f I .

Definition 2.4. For any grid function f h with f h = 0, a discrete inverse Laplacian operator is defined as: ψh = (−�h)
−1 f h is the 

unique grid function satisfying

−�hψh = f h, (∇hψh · n) |∂�= 0, ψh = 0.

It is noticed that the zero-average constraint, ψh = 0, makes the operator (−�h)
−1 uniquely defined. In turn, a discrete H−1

h
-norm is 

introduced for any f h with f h = 0:

‖ f h‖
2
−1 = 〈(−�h)

−1 f h, f h〉.

The first theoretical result is the unique solvability analysis of scheme (2.6)-(2.8). We observe that the unique solvability 
for (2.7) could be simplified as the analysis for

3
2
m̃h − ph

k
= −m̂h × �hm̃h − αm̂h × (m̂h × �hm̃h), (2.11)

with ph , m̂h given.

Theorem 2.1. Given ph , m̂h , the numerical scheme (2.11) is uniquely solvable.

The second theoretical result is the optimal rate convergence analysis.

Theorem 2.2. Let me ∈ C3([0, T ]; C1) ∩C1([0, T ]; C3) ∩ L∞([0, T ]; C5) be the exact solution of (2.1)with the initial data me(x, 0) =
m0

e (x) and mh be the numerical solution of the equation (2.6)-(2.8) with the initial data m0
h

= m0
e,h

and m1
h

= m1
e,h

. Suppose that the 

initial error satisfies ‖m�
e,h

−m�
h
‖2 + ‖∇h(m

�
e,h

−m�
h
)‖2 = O(k2 + h2), � = 0, 1, and k ≤ Ch. Then the following convergence result 

holds as h and k goes to zero:

‖mn
e,h −mn

h‖2 + ‖∇h(m
n
e,h −mn

h)‖2 ≤ C(k2 + h2), ∀n ≥ 2, (2.12)

in which the constant C > 0 is independent of k and h.

2.3. A few preliminary estimates

The proof of the standard inverse inequality and discrete Gronwall inequality could be obtained in existing textbooks; 
we just cite the results here. The inverse inequality presented in [14] is in the finite element version; its extension to the 
finite difference version is straightforward.

Lemma 2.1. (Inverse inequality) [14]. The inverse inequality implies that

‖enh‖∞ ≤ γ h−d/2‖enh‖2, ‖∇he
n
h‖∞ ≤ γ h−d/2‖∇he

n
h‖2,

in which constant γ depends on the form of the discrete ‖ · ‖2 norm. Under the definition (2.9) and (2.10) for the cell-centered grid 
function, such a constant could be taken as γ = 1.

Lemma 2.2. (Discrete Gronwall inequality) [25]. Let {α j} j≥0 , {β j} j≥0 and {ω j} j≥0 be sequences of real numbers such that

α j ≤ α j+1, β j ≥ 0, and ω j ≤ α j +

j−1
∑

i=0

βiωi, ∀ j ≥ 0.
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Then it holds that

ω j ≤ α j exp

⎧

⎨

⎩

j−1
∑

i=0

βi

⎫

⎬

⎭

, ∀ j ≥ 0.

Lemma 2.3 (Summation by parts). For any grid functions f h and gh , with f h satisfying the discrete boundary condition (2.3), the 
following identity is valid:

〈

−�h f h, gh
〉

=
〈

∇h f h,∇h gh
〉

. (2.13)

Proof. For simplicity of presentation, we only focus on the 1D case; an extension to the 2D and 3D formulas will be 
straightforward. A careful calculation reveals that

N
∑

i=1

(gh)i ·
( f h)i−1 − 2( f h)i + ( f h)i+1

h2
= −

N
∑

i=1

(gh)i − (gh)i−1

h
·
( f h)i − ( f h)i−1

h
,

if fh satisfies the discrete boundary condition (2.3), i.e., ( f h)0 = ( f h)1 , ( f h)N+1 = ( f h)N . This identity is exactly the sum-

mation by parts formula (2.13). The proof of Lemma 2.3 is complete. �

The following estimate will be utilized in the convergence analysis. In the sequel, for simplicity of our notation, we will 
use the uniform constant C to denote all the controllable constants in this paper.

Lemma 2.4 (Discrete gradient acting on cross product). For grid functions f h and gh over the uniform numerical grid, we have

‖∇h( f h × gh)‖
2
2 ≤ C

(

‖ f h‖
2
∞ · ‖∇h gh‖

2
2 + ‖gh‖

2
∞ · ‖∇h f h‖

2
2

)

, (2.14)
〈

( f h × �h gh) × f h, gh
〉

=
〈

f h × (gh × f h),�h gh
〉

, (2.15)
〈

f h × ( f h × gh), gh
〉

= −‖ f h × gh‖
2
2. (2.16)

Proof. Without loss of generality, we only look at the 1D case; an extension to the 3D case is straightforward. We begin 
with the following expansion

[∇h( f h × gh)]i+ 1
2

=
( f h)i+1 × (gh)i+1 − ( f h)i × (gh)i

h
(2.17)

=
( f h)i+1 − ( f h)i

h
× (gh)i+1 + ( f h)i ×

(gh)i+1 − (gh)i

h

=
(

∇h f h
)

i+ 1
2

× (gh)i+1 + ( f h)i ×
(

∇h gh
)

i+ 1
2
.

In turn, an application of the discrete Hölder inequality to (2.17) yields (2.14). Also note that
〈

( f h × �h gh) × f h, gh
〉

= −
〈

gh × f h, f h × �h gh
〉

=
〈

f h × (gh × f h),�h gh
〉

,

and

〈

f h × ( f h × gh), gh
〉

=
〈

f h × gh, gh × f h
〉

= −‖ f h × gh‖
2
2. �

The following estimate will be used in the error estimate at the projection step.

Lemma 2.5. Consider mh = Phme + h2m(1) , in which Ph stands for the point-wise interpolation of a continuous function over the 
numerical grid points, the continuous function me satisfies a regularity requirement ‖me‖W 1,∞ ≤ C , |me| = 1 at a point-wise level, 

and the grid function m(1) satisfies ‖m(1)‖∞ + ‖∇hm
(1)‖∞ ≤ C . For any numerical solution m̃h , we define mh =

m̃h

|m̃h |
. Suppose both 

numerical profiles satisfy the following W 1,∞
h

bounds

|m̃h| ≥
1

2
, at a pointwise level, (2.18)

‖mh‖∞ + ‖∇hmh‖∞ ≤ M, ‖m̃h‖∞ + ‖∇hm̃h‖∞ ≤ M, (2.19)
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and we denote the numerical error functions as eh = mh −mh , ẽh = m̃h −mh . Then the following estimate is valid

‖eh‖2 ≤ 2‖ẽh‖2 +O(h2), ‖∇heh‖2 ≤ C(‖∇h ẽh‖2 + ‖ẽh‖2) +O(h2). (2.20)

Proof. A direct calculation shows that

eh = mh −mh =
m̃h

|m̃h|
−mh = m̃h −mh +

m̃h

|m̃h|
− m̃h

= ẽh +
m̃h

|m̃h|
(|mh| − |m̃h|) +

m̃h

|m̃h|
(1− |mh|). (2.21)

Since 
∣

∣

∣
|mh| − |m̃h|

∣

∣

∣
≤ |mh − m̃h|, we get

∥

∥

∥

∥

ẽh +
m̃h

|m̃h|
(|mh| − |m̃h|)

∥

∥

∥

∥

2

≤ ‖ẽh‖2 + ‖ẽh‖2 = 2‖ẽh‖2. (2.22)

For the last term on the right hand side of (2.21), we observe that

∣

∣1− |mh|
∣

∣ =
∣

∣|me| − |mh|
∣

∣ ≤
∣

∣me −mh

∣

∣ = h2|m(1)| = O(h2), (2.23)

which in turn yields
∥

∥

∥

∥

m̃h

|m̃h|
(1− |mh|)

∥

∥

∥

∥

2

= O(h2). (2.24)

As a result, a substitution of (2.22) and (2.24) into (2.21) leads to the first estimate in (2.20).

For the second inequality, we notice that

∇heh = ∇h

m̃h

|m̃h|
− ∇hmh = ∇h

[

m̃h

|m̃h|
−

mh

|m̃h|

]

+ ∇h

[

mh

|m̃h|
−mh

]

(2.25)

= ∇h

ẽh

|m̃h|
+ ∇h

[

mh

|m̃h|
(1− |m̃h|)

]

.

The analysis for the first part is straightforward:

∥

∥

∥

∥

∇h

ẽh

|m̃
n
h|

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

1

m̃h

∥

∥

∥

∥

∞

· ‖∇h ẽh‖2 + ‖ẽh‖2 ·

∥

∥

∥

∥

∇h

1

|m̃h|

∥

∥

∥

∥

∞

≤ C‖∇h ẽh‖2 + C‖ẽh‖2. (2.26)

For the second part, we rewrite it as

mh

|m̃h|
(1− |m̃h|) =

mh

|m̃h|

(mh + m̃h)(mh − m̃h)

1+ |m̃h|
+

mh

|m̃h|

(me +mh)(me −mh)

1+ |m̃h|
,

based on the fact |me| ≡ 1. For the nonlinear coefficient terms, we observe the following ‖ · ‖∞ bounds

‖mh‖∞ ≤ 1+
1

2
=

3

2
, sincemh = Phme + h2m(1), |me| ≡ 1, ‖m(1)‖∞ ≤ C,

∥

∥

∥

1

|m̃h|

∥

∥

∥

∞
≤ 2, since |m̃h| ≥

1

2
, (by (2.18) ) ,

∥

∥

∥

mh

|m̃h|

∥

∥

∥

∞
≤ ‖mh‖∞ ·

∥

∥

∥

1

|m̃h|

∥

∥

∥

∞
≤ 3,

‖∇hmh‖∞ ≤ ‖∇hme‖∞ + h2‖m(1)‖∞ ≤ C + 1,
∥

∥

∥
∇h

( 1

|m̃h|

)∥

∥

∥

∞
≤

∥

∥

∥

1

|m̃h|

∥

∥

∥

2

∞
· ‖∇h(|m̃h|)‖∞ ≤

∥

∥

∥

1

|m̃h|

∥

∥

∥

2

∞
· ‖∇hm̃h‖∞

≤ 22 · M, (by (2.19) ) ,
∥

∥

∥∇h

( mh

|m̃h|

)∥

∥

∥

∞
≤

∥

∥

∥∇h

( 1

|m̃h|

)∥

∥

∥

∞
· ‖mh‖∞ +

∥

∥

∥

1

|m̃h|

∥

∥

∥

∞
· ‖∇hmh‖∞

≤ 6M + 2(C + 1),
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‖mh + m̃h‖∞ ≤ ‖mh‖∞ + ‖m̃h‖∞ ≤ M +
3

2
,

∥

∥

∥

1

1+ |m̃h|

∥

∥

∥

∞
≤ 1,

∥

∥

∥

mh + m̃h

1+ |m̃h|

∥

∥

∥

∞
≤ ‖mh + m̃h‖∞ ·

∥

∥

∥

1

1+ |m̃h|

∥

∥

∥

∞
≤ M +

3

2
,

‖∇h(mh + m̃h)‖∞ ≤ ‖∇hmh‖∞ + ‖m̃h)‖∞ ≤ C + M + 1,
∥

∥

∥∇h

( 1

1+ |m̃h|

)∥

∥

∥

∞
≤

∥

∥

∥

1

1+ |m̃h|

∥

∥

∥

2

∞
· ‖∇h(|m̃h|)‖∞

≤
∥

∥

∥

1

1+ |m̃h|

∥

∥

∥

2

∞
· ‖∇hm̃h‖∞ ≤ M,

∥

∥

∥∇h

(mh + m̃h

1+ |m̃h|

)∥

∥

∥

∞
≤

∥

∥

∥∇h

( 1

1+ |m̃h|

)∥

∥

∥

∞
· ‖mh + m̃h‖∞

+
∥

∥

∥

1

1+ |m̃h|

∥

∥

∥

∞
· ‖∇h(mh + m̃h)‖∞

≤ M(M +
3

2
) + C + M + 1.

As a result of these inequalities, we arrive at
∥

∥

∥

∥

mh

|m̃h|

mh + m̃h

1+ |m̃h|

∥

∥

∥

∥

∞

≤
∥

∥

∥

mh

|m̃h|

∥

∥

∥

∞
·
∥

∥

∥

mh + m̃h

1+ |m̃h|

∥

∥

∥

∞
≤ 3(M +

3

2
) ≤ C,

∥

∥

∥

∥

∇h

[

mh

|m̃h|

mh + m̃h

1+ |m̃h|

]∥

∥

∥

∥

∞

≤
∥

∥

∥

mh

|m̃h|

∥

∥

∥

∞
·
∥

∥

∥∇h

(mh + m̃h

1 + |m̃h|

)

‖∞ +
∥

∥

∥∇h

( mh

|m̃h|

)∥

∥

∥

∞
·
∥

∥

∥

mh + m̃h

1+ |m̃h|
‖∞

≤ 3M(M + 3) + 3(C + 1) + (M +
3

2
)(6M + 2(C + 1)) ≤ C,

in which C has a different value in the last step, which stands for another controllable constant. In turn, the following two 
estimates could be derived for the two expansion terms:

∥

∥

∥

∥

∇h

[

mh

|m̃h|

(mh + m̃h)(mh − m̃h)

1+ |m̃h|

]∥

∥

∥

∥

2

≤

∥

∥

∥

∥

mh

|m̃h|

mh + m̃h

1+ |m̃h|

∥

∥

∥

∥

∞

·
∥

∥∇h(mh − m̃h)
∥

∥

2

+ ‖mh − m̃h‖2 ·

∥

∥

∥

∥

∇h

[

mh

|m̃h|

mh + m̃h

1+ |m̃h|

]∥

∥

∥

∥

∞

≤C‖∇h ẽh‖2 + C‖ẽh‖2,

and
∥

∥

∥

∥

∇h

[

mh

|m̃h|

(me +mh)(me −mh)

1+ |m̃h|

]∥

∥

∥

∥

2

≤

∥

∥

∥

∥

mh

|m̃h|

me +mh

1+ |m̃h|

∥

∥

∥

∥

∞

·
∥

∥∇h(me −mh)
∥

∥

2

+ ‖me −mh‖2 ·

∥

∥

∥

∥

∇h

[

mh

|m̃h|

me +mh

1+ |m̃h|

]∥

∥

∥

∥

∞

= O(h2).

Therefore, we obtain
∥

∥

∥

∥

∇h

mn
h

|m̃
n
h|

(1− |m̃
n
h|)

∥

∥

∥

∥

2

≤ C(‖∇h ẽh‖2 + ‖ẽh‖2) +O(h2). (2.27)

Finally, a substitution of (2.26) and (2.27) into (2.25) yields the second inequality in (2.20). This completes the proof of 
Lemma 2.5. �
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2.4. The unique solvability analysis

To facilitate the unique solvability analysis for (2.11), we denote qh = −�hm̃h . Note that qh = 0, due to the Neumann 
boundary condition for m̃h . Meanwhile, we observe that m̃h �= (−�h)

−1qh in general, since m̃h �= 0. Instead, m̃h could be 
represented as follows:

m̃h = (−�h)
−1qh + C∗

qh
, with C∗

qh
=

2

3

(

ph + km̂h × qh + αkm̂h × (m̂h × qh)
)

,

and m̂h given by (2.6). (2.11) is then rewritten as

G(qh) :=

3
2
((−�h)

−1qh + C∗
qh

) − ph

k
− m̂h × qh − αm̂h × (m̂h × qh) = 0. (2.28)

Lemma 2.6 (Browder-Minty lemma [10,39]). Let X be a real, reflexive Banach space and let T : X → X ′ (the dual space of X) be 
bounded, continuous, coercive (i.e., (T (u),u)

‖u‖X
→ +∞, as ‖u‖X → +∞) and monotone. Then for any g ∈ X ′ there exists a solution 

u ∈ X of the equation T (u) = g.

Furthermore, if the operator T is strictly monotone, then the solution u is unique.

Then we proceed into the proof of Theorem 2.1.

Proof. Recall that (2.11) is equivalent to (2.28). For any q1,h , q2,h with q1,h = q2,h = 0, we denote q̃h = q1,h −q2,h and derive 
the following monotonicity estimate:

〈G(q1,h) − G(q2,h),q1,h − q2,h〉

=
3

2k

(

〈(−�h)
−1q̃h, q̃h〉 + 〈C∗

q1,h
− C∗

q2,h
, q̃h〉

)

− 〈m̂h × q̃h, q̃h〉 − α〈m̂h × (m̂h × q̃h), q̃h〉

≥
3

2k

(

〈(−�h)
−1q̃h, q̃h〉 + 〈C∗

q1,h
− C∗

q2,h
, q̃h〉

)

=
3

2k
〈(−�h)

−1q̃h, q̃h〉 =
3

2k
‖q̃h‖

2
−1 ≥ 0.

Note that the following equality and inequality have been applied in the second step:

〈m̂h × q̃h, q̃h〉 = 0, 〈m̂h × (m̂h × q̃h), q̃h〉 ≤ 0.

The third step is based on the fact that both C∗
q1,h

and C∗
q2,h

are constants, and q1,h = q2,h = 0, so that 〈C∗
q1,h

− C∗
q2,h

, ̃qh〉 = 0.

Moreover, for any q1,h , q2,h with q1,h = q2,h = 0, we get

〈G(q1,h) − G(q2,h),q1,h − q2,h〉 ≥
3

2k
‖q̃h‖

2
−1 > 0, if q1,h �= q2,h,

and the equality only holds when q1,h = q2,h .

Therefore, an application of Lemma 2.6 implies a unique solution of both (2.28) and (2.11), which completes the proof of 
Theorem 2.1. �

2.5. The optimal rate convergence analysis: proof of Theorem 2.2

Proof. First, we construct an approximate solution m:

m = me + h2m(1), (2.29)

in which the auxiliary field m(1) satisfies the following Poisson equation

�m(1) = Ĉ with Ĉ =
1

|�|

∫

∂�

∂3
νme ds, (2.30)

∂zm
(1) |z=0= −

1

24
∂3
zme |z=0, ∂zm

(1) |z=1=
1

24
∂3
zme |z=1,

with boundary conditions along x and y directions defined in a similar way.
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The purpose of such a construction will be illustrated later. Then we extend the approximate profile m to the numerical 
“ghost” points, according to the extrapolation formula (2.3):

mi, j,0 = mi, j,1, mi, j,Nz+1 = mi, j,Nz
, (2.31)

and the extrapolation for other boundaries can be formulated in the same manner. Subsequently, we prove that such an 
extrapolation yields a higher order O(h5) approximation, instead of the standard O(h3) accuracy. Also see the related 
works [42,45,46] in the existing literature.

Performing a careful Taylor expansion for the exact solution around the boundary section z = 0, combined with the mesh 
point values: ẑ0 = − 1

2
h, ẑ1 = 1

2
h, we get

me(x̂i, ŷ j, ẑ0) = me(x̂i, ŷ j, ẑ1) − h∂zme(x̂i, ŷ j,0) −
h3

24
∂3
zme(x̂i, ŷ j,0) +O(h5)

= me(x̂i, ŷ j, ẑ1) −
h3

24
∂3
zme(x̂i, ŷ j,0) +O(h5), (2.32)

in which the homogenous boundary condition has been applied in the second step. A similar Taylor expansion for the 
constructed profile m(1) reveals that

m(1)(x̂i, ŷ j, ẑ0) = m(1)(x̂i, ŷ j, ẑ1) − h∂zm
(1)(x̂i, ŷ j,0) +O(h3)

= m(1)(x̂i, ŷ j, ẑ1) +
h

24
∂3
zme(x̂i, ŷ j,0) +O(h3) (2.33)

with the boundary condition in (2.30) applied. In turn, a substitution of (2.32)-(2.33) into (2.29) indicates that

m(x̂i, ŷ j, ẑ0) = m(x̂i, ŷ j, ẑ1) +O(h5). (2.34)

In other words, the extrapolation formula (2.31) is indeed O(h5) accurate.

As a result of the boundary extrapolation estimate (2.34), we see that the discrete Laplacian of m yields the second-order 
accuracy, even at the mesh points around the boundary sections:

�hmi, j,k = �me(x̂i, ŷ j, ẑk) +O(h2), ∀1 ≤ i, j,k ≤ N. (2.35)

Moreover, a detailed calculation of Taylor expansion, in both time and space, leads to the following truncation error esti-
mate:

3
2
mn+2

h
− 2mn+1

h
+ 1

2
mn

h

k
= −

(

2mn+1
h

−mn
h

)

× �hm
n+2
h

+ τn+2 (2.36)

− α
(

2mn+1
h

−mn
h

)

×
(

(2mn+1
h

−mn
h) × �hm

n+2
h

)

,

with ‖τn+2‖2 ≤ C(k2 + h2). In addition, a higher order Taylor expansion in space and time reveals the following estimate 
for the discrete gradient of the truncation error:

‖∇hτ
n+1‖2 ≤ C(k2 + h2). (2.37)

In fact, such a discrete ‖ · ‖H1
h

bound for the truncation comes from the regularity assumption for the exact solution, 

me ∈ C3([0, T ]; C1) ∩ C1([0, T ]; C3) ∩ L∞([0, T ]; C5), as stated in Theorem 2.2, as well as the fact that m(1) ∈ C1([0, T ]; C1) ∩
L∞([0, T ]; C2), as indicated by the Poisson equation (2.30).

In turn, we introduce the numerical error functions ẽnh = mn
h

− m̃
n
h , e

n
h

= mn
h

−mn
h
, at a point-wise level. In other words, 

instead of a direct comparison between the numerical solution and the exact solution, we analyze the error function be-
tween the numerical solution and the constructed solution mh , due to its higher order consistency estimate (2.34) around 
the boundary. A subtraction of (2.7)-(2.8) from the consistency estimate (2.36) leads to the error function evolution system:

3
2
ẽ
n+2
h − 2ẽ

n+1
h + 1

2
ẽ
n
h

k
= −

(

2mn+1
h

−mn
h

)

× �h ẽ
n+2
h −

(

2en+1
h

− enh

)

× �hm
n+2
h

(2.38)

− α
(

2mn+1
h

−mn
h

)

×
(

(2mn+1
h

−mn
h) × �h ẽ

n+2
h

)

− α
(

2mn+1
h

−mn
h

)

×
(

(2en+1
h

− enh) × �hm
n+2
h

)

− α
(

2en+1
h

− enh

)

×
(

(2mn+1
h

−mn
h) × �hm

n+2
h

)

+ τn+2.
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Before we proceed into the formal error estimate, we establish the bound for the constructed approximate solution m
and the numerical solution mh . For the approximate profile m ∈ L∞([0, T ], C5), which turns out to be the exact solution 
and an O(h2) correction term, we still use C to denote its bound:

‖∇r
hmh‖∞ ≤ C, r = 0,1,2,3, (2.39)

in which mh = Phm, the point-wise interpolation of the constructed continuous function m. In addition, we make the 
following a priori assumption for the numerical error function:

‖ekh‖∞ + ‖∇he
k
h‖∞ ≤

1

3
, ‖ẽ

k
h‖∞ + ‖∇h ẽ

k
h‖∞ ≤

1

3
, for k = �, � + 1. (2.40)

Such an assumption will be recovered by the convergence analysis at time step t�+2 . In turn, an application of triangle 
inequality yields the desired W 1,∞

h
bound for the numerical solutions mh and m̃h:

‖mk
h‖∞ = ‖mk

h − ekh‖∞ ≤ ‖mk
h‖∞ + ‖ekh‖∞ ≤ C +

1

3
, (2.41)

‖∇hm
k
h‖∞ = ‖∇hm

k
h − ∇he

k
h‖∞ ≤ ‖∇hm

k
h‖∞ + ‖∇he

k
h‖∞ ≤ C +

1

3
,

‖m̃
k
h‖∞ ≤ C +

1

3
, ‖∇hm̃

k
h‖∞ ≤ C +

1

3
(similar derivation). (2.42)

Then we perform a discrete L2 error estimate at t�+2 using the mathematical induction. By taking a discrete inner 
product with the numerical error equation (2.38) by ẽ�+2

h gives that

R.H .S. =
〈

−
(

2m�+1
h

−m�
h

)

× �h ẽ
�+2
h , ẽ

�+2
h

〉

(2.43)

−
〈(

2e�+1
h

− e�
h

)

× �hm
�+2
h

, ẽ
�+2
h

〉

+
〈

τ �+2, ẽ
�+2
h

〉

− α
〈(

2m�+1
h

−m�
h

)

×
(

(2m�+1
h

−m�
h) × �h ẽ

�+2
h

)

, ẽ
�+2
h

〉

− α
〈(

2m�+1
h

−m�
h

)

×
(

(2e�+1
h

− e�
h) × �hm

�+2
h

)

, ẽ
�+2
h

〉

− α
〈(

2e�+1
h

− e�
h

)

×
(

(2m�+1
h

−m�
h) × �hm

�+2
h

)

, ẽ
�+2
h

〉

=: Ĩ1 + Ĩ2 + Ĩ3 + Ĩ4 + Ĩ5 + Ĩ6.

• Estimate of Ĩ1: A combination of the summation by parts formula (2.13) (notice that the numerical error function ẽ
satisfies the homogeneous Neumann boundary condition (2.3)) and inequality (2.14) results in

Ĩ1 =
〈

−
(

2m�+1
h

−m�
h

)

× �h ẽ
�+2
h , ẽ

�+2
h

〉

(2.44)

=
〈

ẽ
�+2
h ×

(

2m�+1
h

−m�
h

)

,−�h ẽ
�+2
h

〉

=
〈

∇h

[

ẽ
�+2
h ×

(

2m�+1
h

−m�
h

)]

,∇h ẽ
�+2
h

〉

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖∇h ẽ

�+2
h ‖22 · ‖2m�+1

h
−m�

h‖
2
∞

+ ‖ẽ
�+2
h ‖22 · ‖∇h(2m

�+1
h

−m�
h)‖

2
∞

)

≤C(‖∇h ẽ
�+2
h ‖22 + ‖ẽ

�+2
h ‖22).

• Estimate of Ĩ2:

Ĩ2 = −
〈(

2e�+1
h

− e�
h

)

× �hm
�+2
h

, ẽ
�+2
h

〉

(2.45)

≤
1

2

[

‖ẽ
�+2
h ‖22 + ‖2e�+1

h
− e�

h‖
2
2 · ‖�hm

�+2
h

‖2∞
]

≤C(‖ẽ
�+2
h ‖22 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2),

in which the bound for ‖�hm
�+2
h

‖∞ is given by the preliminary estimate (2.39), with r = 2.
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• Estimate of the truncation error term Ĩ3: An application of Cauchy inequality gives

Ĩ3 =
〈

τ �+2, ẽ
�+2
h

〉

≤ C‖ẽ
�+2
h ‖22 + C(k4 + h4). (2.46)

• Estimate of Ĩ4: It follows from (2.15) in Lemma 2.4 that

Ĩ4 = − α
〈(

2m�+1
h

−m�
h

)

×
(

(2m�+1
h

−m�
h) × �h ẽ

�+2
h

)

, ẽ
�+2
h

〉

(2.47)

=α
〈(

(2m�+1
h

−m�
h) × �h ẽ

�+2
h

)

×
(

2m�+1
h

−m�
h

)

, ẽ
�+2
h

〉

=α
〈

(2m�+1
h

−m�
h) ×

[

ẽ
�+2
h × (2m�+1

h
−m�

h)
]

,�h ẽ
�+2
h

〉

=α
〈

∇h

(

(2m�+1
h

−m�
h) ×

[

ẽ
�+2
h × (2m�+1

h
−m�

h)
]

)

,∇h ẽ
�+2
h

〉

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖∇h(2m

�+1
h

−m�
h)‖

2
∞ · ‖ẽ

�+2
h ‖22 · ‖2m�+1

h
−m�

h‖
2
∞

+ ‖2m�+1
h

−m�
h‖

2
∞ · ‖∇h ẽ

�+2
h ‖22 · ‖2m�+1

h
−m�

h‖
2
∞

+ ‖2m�+1
h

−m�
h‖

2
∞ · ‖ẽ

�+2
h ‖22 · ‖∇h(2m

�+1
h

−m�
h‖

2
∞)

)

≤C(‖∇h ẽ
�+2
h ‖22 + ‖ẽ

�+2
h ‖22).

• Estimates of Ĩ5 and Ĩ6:

Ĩ5 = − α
〈(

2m�+1
h

−m�
h

)

×
(

(2e�+1
h

− e�
h) × �hm

�+2
h

)

, ẽ
�+2
h

〉

(2.48)

≤
α

2

(

‖ẽ
�+2
h ‖22 + ‖2m�+1

h
−m�

h‖
2
∞ · ‖2e�+1

h
− e�

h‖
2
2 · ‖�hm

�+2
h

‖2∞

)

≤C(‖ẽ
�+2
h ‖22 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2).

Ĩ6 = − α
〈(

2e�+1
h

− e�
h

)

×
(

(2m�+1
h

−m�
h) × �hm

�+2
h

)

, ẽ
�+2
h

〉

(2.49)

≤
α

2

(

‖ẽ
�+2
h ‖22 + ‖2e�+1

h
− e�

h‖
2
2 · ‖2m�+1

h
−m�

h‖
2
∞ · ‖�hm

�+2
h

‖2∞

)

≤C(‖ẽ
�+2
h ‖22 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2).

Again, the bound for ‖�hm
�+2
h

‖∞ is given by the preliminary estimate (2.39), with r = 2.

Meanwhile, the inner product of the left hand side of (2.38) with ẽ�+2
h turns out to be

L.H .S. =
1

4k

(

‖ẽ
�+2
h ‖22 − ‖ẽ

�+1
h ‖22 + ‖2ẽ

�+2
h − ẽ

�+1
h ‖22 − ‖2ẽ

�+1
h − ẽ

�
h‖

2
2

+ ‖ẽ
�+2
h − 2ẽ

�+1
h + ẽ

�
h‖

2
2

)

.

Its combination with eqs. (2.44) to (2.49) and (2.43) leads to

‖ẽ
�+2
h ‖22 − ‖ẽ

�+1
h ‖22 + ‖2ẽ

�+2
h − ẽ

�+1
h ‖22 − ‖2ẽ

�+1
h − ẽ

�
h‖

2
2 (2.50)

≤Ck(‖∇h ẽ
�+2
h ‖22 + ‖ẽ

�+2
h ‖22 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2) + Ck(k4 + h4).

However, the standard L2 error estimate (2.50) does not allow one to apply discrete Gronwall inequality, due to the H1
h

norms of the error function involved on the right hand side. To overcome this difficulty, we take a discrete inner product 
with the numerical error equation (2.38) by −�h ẽ

�+2
h and see that

R.H .S. =
〈

−
(

2m�+1
h

−m�
h

)

× �h ẽ
�+2
h ,−�h ẽ

�+2
h

〉

(2.51)

−
〈(

2e�+1
h

− e�
h

)

× �hm
�+2
h

,−�h ẽ
�+2
h

〉

+
〈

τ �+2
h

,−�h ẽ
�+2
h

〉

− α
〈(

2m�+1
h

−m�
h

)

×
(

(2m�+1
h

−m�
h) × �h ẽ

�+2
h

)

,−�h ẽ
�+2
h

〉

− α
〈(

2m�+1
h

−m�
h

)

×
(

(2e�+1
h

− e�
h) × �hm

�+2
h

)

,−�h ẽ
�+2
h

〉

− α
〈(

2e�+1
h

− e�
h

)

×
(

(2m�+1
h

−m�
h) × �hm

�+2
h

)

,−�h ẽ
�+2
h

〉

=: I1 + I2 + I3 + I4 + I5 + I6.
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• Estimate of I1:

I1 =
〈

−(2m�+1
h

−m�
h) × �h ẽ

�+2
h ,−�h ẽ

�+2
h

〉

= 0. (2.52)

• Estimate of I2:

I2 = −
〈

(2e�+1
h

− e�
h) × �hm

�+2
h

,−�h ẽ
�+2
h

〉

(2.53)

=
〈

∇h

(

�hm
�+2
h

× (2e�+1
h

− e�
h)

)

,∇h ẽ
�+2
h

〉

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖�hm

�+2
h

‖2∞ · ‖∇h(2e
�+1
h

− e�
h)‖

2
2

+ ‖∇h(�hm
�+2
h

)‖2∞ · ‖2e�+1
h

− e�
h‖

2
2

)

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖∇he

�+1
h

‖22 + ‖∇he
�
h‖

2
2 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2

)

.

Similarly, the bound for ‖∇h�hm
�+2
h

‖∞ comes from the preliminary estimate (2.39), by taking r = 3.

• Estimate of the truncation error term I3:

I3 =
〈

−�h ẽ
�+2
h ,τ �+2

〉

≤ C‖∇h ẽ
�+2
h ‖22 + C(k4 + h4), (2.54)

in which the discrete H1
h
estimate (2.37) for the local truncation error has been recalled.

• Estimate of I4: It follows from Lemma 2.16 in Lemma 2.4 that

I4 = − α
〈

(2m�+1
h

−m�
h) ×

(

(2m�+1
h

−m�
h) × �h ẽ

�+2
h

)

,−�h ẽ
�+2
h

〉

(2.55)

=α
〈

(2m�+1
h

−m�
h) × �h ẽ

�+2
h ,�h ẽ

�+2
h × (2mn+1

h
−m�

h)

〉

= − α‖(2m�+1
h

−m�
h) × �h ẽ

�+2
h ‖22 ≤ 0.

• Estimates of I5 and I6:

I5 = − α
〈

(2m�+1
h

−m�
h) ×

(

(2e�+1
h

− e�
h) × �hm

�+2
h

)

,−�h ẽ
�+2
h

〉

(2.56)

= − α
〈

∇h

(

(2m�+1
h

−m�
h) ×

(

(2e�+1
h

− e�
h) × �hm

�+2
h

)

)

,∇h ẽ
�+2
h

〉

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖∇h(2m

�+1
h

−m�
h)‖

2
∞ · ‖�hm

�+2
h

‖2∞ · ‖2e�+1
h

− e�
h‖

2
2

+ ‖2m�+1
h

−m�
h‖

2
∞ · ‖∇h(�hm

�+2
h

)‖2∞ · ‖2e�+1
h

− e�
h‖

2
2

+ ‖2m�+1
h

−m�
h‖

2
∞ · ‖�hm

�+2
h

‖2∞ · ‖∇h(2e
�+1
h

− e�
h)‖

2
2

)

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖∇he

�+1
h

‖22 + ‖∇he
�
h‖

2
2 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2

)

.

I6 = − α
〈

(2e�+1
h

− e�
h) ×

(

(2m�+1
h

−m�
h) × �hm

�+2
h

)

,−�h ẽ
�+2
h

〉

(2.57)

= − α
〈

∇h

[

(2e�+1
h

− e�
h) ×

(

(2m�+1
h

−m�
h) × �hm

�+2
h

)

]

,∇h ẽ
�+2
h

〉

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖∇h(2e

�+1
h

− e�
h)‖

2
2 · ‖2m�+1

h
−m�

h‖
2
∞ · ‖�hm

�+2
h

‖2∞

+ ‖2e�+1
h

− e�
h‖

2
2 · ‖∇h(2m

�+1
h

−m�
h)‖

2
∞ · ‖�hm

�+2
h

‖2∞

+ ‖2e�+1
h

− e�
h‖

2
2 · ‖2m�+1

h
−m�

h‖
2
∞ · ‖∇h(�hm

�+2
h

)‖2∞

)

≤C

(

‖∇h ẽ
�+2
h ‖22 + ‖∇he

�+1
h

‖22 + ‖∇he
�
h‖

2
2 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2

)

.

Again, the bound for ‖∇h�hm
�+2
h

‖∞ comes from the preliminary estimate (2.39), by taking r = 3.

And also, the inner product on the left hand side becomes

L.H .S. =
1

4k

(

‖∇h ẽ
�+2
h ‖22 − ‖∇h ẽ

�+1
h ‖22 + ‖2∇h ẽ

�+2
h − ∇h ẽ

�+1
h ‖22 (2.58)

− ‖2∇h ẽ
�+1
h − ∇h ẽ

�
h‖

2
2 + ‖∇h ẽ

�+2
h − 2∇h ẽ

�+1
h + ∇h ẽ

�
h‖

2
2

)

.
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Substituting (2.52), eqs. (2.53) to (2.57) into (2.38), combined with (2.58), we arrive at

‖∇h ẽ
�+2
h ‖22 − ‖∇h ẽ

�+1
h ‖22 + ‖2∇h ẽ

�+2
h − ∇h ẽ

�+1
h ‖22 − ‖2∇h ẽ

�+1
h − ∇h ẽ

�
h‖

2
2 (2.59)

≤Ck
(

‖∇h ẽ
�+2
h ‖22 + ‖∇he

�+1
h

‖22 + ‖∇he
�
h‖

2
2 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2

)

+ Ck(k4 + h4).

As a consequence, a combination of (2.50) and (2.59) yields

‖ẽ
�+2
h ‖22 − ‖ẽ

�+1
h ‖22 + ‖2ẽ

�+2
h − ẽ

�+1
h ‖22 − ‖2ẽ

�+1
h − ẽ

�
h‖

2
2 (2.60)

+ ‖∇h ẽ
�+2
h ‖22 − ‖∇h ẽ

�+1
h ‖22 + ‖∇h(2ẽ

�+2
h − ẽ

�+1
h )‖22 − ‖∇h(2ẽ

�+1
h − ẽ

�
h )‖22

≤Ck
(

‖∇h ẽ
�+2
h ‖22 + ‖ẽ

�+2
h ‖22 + ‖∇he

�+1
h

‖22 + ‖∇he
�
h‖

2
2 + ‖e�+1

h
‖22 + ‖e�

h‖
2
2

)

+ Ck(k4 + h4).

At this point, recalling the W 1,∞
h

bound for mk
h
and m̃k

h , as given by (2.41), (2.42), and applying (2.20) in Lemma 2.5, we 
obtain

‖ekh‖2 ≤ 2‖ẽ
k
h‖2 +O(h2), ‖∇he

k
h‖2 ≤ C(‖∇h ẽ

k
h‖2 + ‖ẽ

k
h‖2) +O(h2), k = �, � + 1.

Its substitution into (2.60) leads to

‖ẽ
�+2
h ‖22 − ‖ẽ

�+1
h ‖22 + ‖2ẽ

�+2
h − ẽ

�+1
h ‖22 − ‖2ẽ

�+1
h − ẽ

�
h‖

2
2

+ ‖∇h ẽ
�+2
h ‖22 − ‖∇h ẽ

�+1
h ‖22 + ‖∇h(2ẽ

�+2
h − ẽ

�+1
h )‖22 − ‖∇h(2ẽ

�+1
h − ẽ

�
h )‖22

≤Ck
(

‖∇h ẽ
�+2
h ‖22 + ‖∇h ẽ

�+1
h ‖22 + ‖∇h ẽ

�
h‖

2
2 + ‖ẽ

�+2
h ‖22 + ‖ẽ

�+1
h ‖22 + ‖ẽ

�
h‖

2
2

)

+ Ck(k4 + h4).

In turn, an application of discrete Gronwall inequality (in Lemma 2.2) yields the desired convergence estimate for ẽh:

‖ẽ
n
h‖

2
2 + ‖∇h ẽ

n
h‖

2
2 ≤ CT eCT (k4 + h4), for all n : n ≤

⌊

T

k

⌋

,

i.e.,

‖ẽ
n
h‖2 + ‖∇h ẽ

n
h‖2 ≤ C(k2 + h2).

An application of Lemma 2.1, as well as the time step constraint k ≤ Ch, leads to

‖ẽ
n
h‖∞ ≤

‖ẽ
n
h‖2

hd/2
≤

C(k2 + h2)

hd/2
≤

1

6
, (2.61)

‖∇h ẽ
n
h‖∞ ≤

‖∇h ẽ
n
h‖2

hd/2
≤

C(k2 + h2)

hd/2
≤

1

6
,

so that the second part of the a priori assumption (2.40) has been recovered at time step k = n. In turn, the W 1,∞
h

bound (2.42) becomes available, which enables us to apply (2.20) in Lemma 2.5, and obtain the desired convergence esti-
mate for en

h
:

‖enh‖2 ≤ 2‖ẽ
n
h‖2 +O(h2) ≤ C(k2 + h2),

‖∇he
n
h‖2 ≤ C(‖∇h ẽ

n
h‖2 + ‖ẽ

n
h‖2) +O(h2) ≤ C(k2 + h2).

Similar to the derivation of (2.61), we also get

‖enh‖∞ ≤
1

6
, ‖∇he

n
h‖∞ ≤

1

6
,

so that the first part of the a priori assumption (2.40) has been recovered at time step k = � + 2. This completes the proof 
of Theorem 2.2. �

Remark 2.3. The regularity assumption for the exact solution, namely me ∈ C3([0, T ]; C1) ∩ C1([0, T ]; C3) ∩ L∞([0, T ]; C5), 
as stated in Theorem 2.2, is very strong. In fact, a global-in-time weak solution of the LL equation (2.1) is only of regularity 
class L∞([0, T ]; H1) ∩ L2([0, T ]; H3). Of course, if the initial data is smooth enough, one could always derive a local-in-
time exact solution with higher enough regularity estimate, so that the convergence estimate established in Theorem 2.2

could pass through. In other words, the optimal rate error estimate (2.12) stands for a local-in-time theoretical result. In 
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addition, since the finite difference numerical method is evaluated at the collocation grid points, instead of the ones based 
on a weak formulation, it usually requires higher order regularity requirement for the exact solution in the optimal rate 
convergence estimate than that of the finite element approach; see the related finite difference analysis for various gradient 
flows [8,47,49], etc.

3. Numerical examples

In this section, we perform 1D and 3D numerical experiments for the final time T = 1 to verify the theoretical analysis in 
Section 2. Rate of convergence is obtained via the least-squares fitting for a sequence of error data recorded with successive 
stepsize refinements.

In details, we test four examples: 1D example with a forcing term and the given exact solution, 1D example without the 
exact solution, 3D example with a forcing term and the given exact solution, and 3D example with the full Landau-Lifshitz 
equation for simulating domain wall dynamics. Solutions in these four cases satisfy the homogenous Neumann boundary 
condition (2.2). In the presence of an forcing term, the LL equation reads as

mt = −m × �m − αm × (m × �m) + f ,

with f = ∂tme +me ×�me +αme × (me × �me) and me the exact solution. In more details, the forcing term f is evaluated 
at tn+2 in the numerical scheme (2.7). Only one linear system of equations needs to solve at each time step. In all examples, 
we find that the scheme is unconditionally stable.

Example 3.1 (1D example with the given exact solution). The exact solution is given by me = (cos(x2(1 − x)2) sin t, sin(x2(1 −
x)2) sin t, cos t)T , which satisfies the homogeneous Neumann boundary condition. A point-wise interpolation is applied to 
me(·, t = 0) to obtain the initial data at the grid points, following formula (2.4). Results in Table 1 and Fig. 2 suggest the 
second-order accuracy in both time and space of the proposed numerical method in the discrete H1-norm; Results in 
Table 2 indicate the unconditional stability in the 1D case.

Example 3.2 (1D example without the exact solution). For this example, in the absence of the forcing term, we do not have the 
exact solution. For comparison, we first set h and k small enough to obtain a numerical solution which will be used as the 
reference solution. The initial condition is chosen as m0(x, 0) = (0, 0, 1)T for x ∈ �. To get the temporal accuracy, we set 
h = 1D − 4 and k = 1D − 4 to get the reference solution and then record the temporal error with varying k in Table 3 and 
Fig. 3a. To get the spatial accuracy, we set h = 1/38 and k = 1D − 4 to get the reference solution and record the error in 
Table 4 and Fig. 3b. Again, the second-order accuracy in both time and space in the discrete H1-norm have been confirmed.

Example 3.3 (3D example with the given exact solution). The given exact solution is given by

me = (cos(XY Z) sin t, sin(XY Z) sin t, cos t)T ,

where X = x2(1 − x)2 , Y = y2(1 − y)2 , Z = z2(1 − z)2 . Again, a point-wise interpolation is applied to me(·, t = 0) to obtain 
the initial data at the grid points, following formula (2.4).

Table 5, Table 6 and Fig. 4 shows the second-order convergence in both time and space in the 3D case. Results in Table 7

indicate the unconditional stability of the proposed numerical method in the 3D case. We visualize the magnetization in 
Fig. 5 by taking a slice along the z = 1/2 plane up to the final time T = 1. The arrow denotes the vector from magnetization 
component u to v and the colormap represents the third magnetization component w . Fig. 5a and Fig. 5b plot the exact 
magnetization with the exact value of the third component being 0.5403 and the numerical magnetization with k = 1/256

and hx = hy = hz = 1/32, respectively.

Example 3.4 (3D example for full Landau-Lifshitz equation). The full Landau-Lifshitz equation in a nondimensionalized form is 
given by

∂tm = −m × heff − αm × (m × heff),

where the effective field heff includes not only the exchange field �m, but also the anisotropy field, the external field he

and the demagnetization (stray) field hs . The uniaxial material with the x axis as the easy direction is considered, thus

heff = ε�m − Q (m2e2 +m3e3) + hs + he,

where ε and Q are both dimensionless constants, e2 = (0, 1, 0) and e3 = (0, 0, 1) are unit vectors, hs takes the nondimen-

sionalized form

hs =
1

4π
∇

∫

�

∇

(

1

|x− y|

)

·m(y)dy,
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Table 1

Accuracy of the proposed numerical method in the 1D case on the uni-
form mesh when h = k and α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

5.0D-3 3.867D-5 4.115D-5 1.729D-4

2.5D-3 7.976D-6 1.053D-5 4.629D-5

1.25D-3 2.135D-6 2.648D-6 1.177D-5

6.25D-4 5.765D-7 6.627D-7 2.949D-6

3.125D-4 1.447D-7 1.657D-7 7.370D-7

order 1.991 1.990 1.972

Fig. 2. Accuracy of the proposed numerical method on the uniform mesh when h = k and α = 0.01 in the 1D case.

Table 2

Unconditional stability of the proposed numerical method in the 1D case when α = 0.01.

k

‖mh −me‖∞ h
1.0D-1 5.0D-2 2.5D-2 1.25D-2

2.0D-1 2.318D-2 2.106D-2 2.056D-2 2.046D-2

1.0D-1 1.015D-2 7.571D-3 6.928D-3 6.768D-3

5.0D-2 5.503D-3 2.807D-3 2.134D-3 1.966D-3

2.5D-2 4.166D-3 1.436D-3 7.521D-4 5.811D-4

1.25D-2 3.783D-3 1.062D-3 3.913D-4 2.234D-4

6.25D-3 3.709D-3 9.714D-4 2.831D-4 1.108D-4

Table 3

Temporal accuracy of the proposed numerical method in the 1D 
case on the uniform mesh when h = 1D − 4 and α = 0.01. The 
reference solution is obtained with h = 1D − 4 and k = 1D − 4.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

5.0D-3 2.949D-5 3.250D-5 1.633D-4

2.5D-3 8.116D-6 8.429D-6 4.393D-5

1.25D-3 2.125D-6 2.114D-6 1.118D-5

6.25D-4 4.851D-7 5.190D-7 2.791D-6

3.125D-4 1.129D-7 1.196D-7 6.875D-7

order 2.012 2.019 1.976

which is calculated by the Fast Fourier Transform (FFT) with � being the rectangular domain.

Consider a ferromagnetic nanostrip of size 0.8 × 0.1 × 0.004 µm3 with 128 × 32 × 2 grid points. In our simulations, 
the material parameters used for Permalloy, which is an alloy of Nickel (80%) and Iron (20%), are the exchange constant 
1.3 × 10−11 J/m, the anisotropy constant 1.0 × 102 J/m3 , the saturation magnetization constant 8.0 × 105 A/m, the damping 
coefficient α = 0.1 and the temporal step-size k = 1 ps. A steady state is reached if the relative change in the total energy 
is less than 10−7 . A transverse domain wall is formed with the in plane head-to-head Néel wall as the initial state (Fig. 6a), 
specified by

m0
h = (tanh(s), sech(s),0)T ,
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Table 4

Spatial accuracy of the proposed numerical method in the 1D case 
on the uniform mesh when k = 1D − 4 and α = 0.01. The refer-
ence solution is obtained with h = 1/38 and k = 1D − 4.

h ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/32 0.00546 0.00577 0.01336

1/33 6.101D-4 6.430D-4 0.00160

1/34 6.782D-5 7.146D-5 1.820D-4

1/35 7.527D-6 7.930D-6 2.036D-5

1/36 8.271D-7 8.714D-7 2.243D-6

order 2.001 2.002 1.980

Fig. 3. Accuracy of the proposed numerical method when α = 0.01 in the 1D case. (a) Temporal accuracy of our method on the uniform mesh when 
h = 1D − 4 and α = 0.01. The reference solution is obtained with h = 1D − 4 and k = 1D − 4; (b) Spatial accuracy of the proposed numerical method on 
the uniform mesh when k = 1D − 4 and α = 0.01. The reference solution is obtained with h = 1/38 and k = 1D − 4.

Table 5

Temporal accuracy in the 3D case when hx = hy = hz = 1/32 and 
α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/16 1.685D-3 1.098D-3 1.211D-3

1/32 4.411D-4 2.964D-4 3.082D-4

1/64 1.128D-4 7.730D-5 7.772D-5

1/128 2.966D-5 2.024D-5 2.051D-5

1/256 8.311D-6 5.693D-6 5.812D-6

order 1.922 1.906 1.932

Table 6

Spatial accuracy in the 3D case when k = 1/2048 and α = 0.01.

h ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/2 3.283D-4 2.252D-4 2.252D-4

1/4 7.442D-5 5.122D-5 6.660D-5

1/8 1.858D-5 1.278D-5 1.628D-5

1/16 4.740D-6 3.252D-6 4.048D-6

order 2.034 2.034 1.943

where tanh(s) = [exp(s) − exp(−s)]/[exp(s) + exp(−s)] and sech(s) = 2/[exp(s) + exp(−s)] with s = [Lx/2 − x]/2hx , Lx being 
the maximum length in x-direction. The transverse wall starts to move along the x direction in the presence of a small 
external field along the x direction with strength He = 50 Oe. The wall profile is sustained during the motion. Snapshots at 
time t = 0.5 ns, 1.0 ns are shown in Figs. 6b and 6c. Details of the implementation can be found in [50].
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Fig. 4. Accuracy of the proposed numerical method when α = 0.01 in the 3D case. (a) Temporal accuracy of our method on the uniform mesh when 
hx = hy = hz = 1/32 and α = 0.01; (b) Spatial accuracy of the proposed numerical method on the uniform mesh when k = 1/2048 and α = 0.01.

Table 7

Unconditional stability of the proposed numerical method in the 3D case when α = 0.01.

k

‖mh −me‖∞ h
1/4 1/8 1/16 1/32

1/4 1.370D-2 1.365D-2 1.370D-2 1.421D-2

1/8 5.470D-3 5.415D-3 5.407D-3 5.686D-3

1/16 1.675D-3 1.619D-3 1.605D-3 1.685D-3

1/32 5.052D-4 4.495D-4 4.355D-4 4.411D-4

1/64 1.860D-4 1.303D-4 1.163D-4 1.128D-4

1/128 1.029D-4 4.680D-5 3.311D-5 2.966D-5

Fig. 5. Profiles of the exact and the numerical magnetization upon T = 1 in the xy-plane with z = 1/2, k = 1/256, hx = hy = hz = 1/32, and α = 0.01. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Conclusions

In this paper, we have proposed and analyzed a second-order time stepping scheme to solve the LL equation. The 
second-order BDF is applied for temporal discretization and a linearized multistep approximation is used for the nonlinear 
coefficients on the right hand side of the equation. The resulting scheme avoids a well-known difficulty associated with the 
nonlinearity of the system, and its unique solvability is established via the monotonicity analysis of the system. In addition, 
an optimal rate convergence analysis is provided, by making use of a linearized stability analysis for the numerical error 
functions, in which the W 1,∞

h
error estimate at the projection step has played an important role. Numerical experiments in 
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Fig. 6. Snapshots of the domain wall motion for the bottom surface in xy-plane of the strip with the magnetic field He = 50 Oe along the x direction and 
the damping constant α = 0.1 at several times t = 0.0 ns, 0.5 ns, 1.0 ns in (a),(b) and (c).

both 1D and 3D cases are presented to verify the unconditional stability and the second-order accuracy in both space and 
time, and applied to the domain wall dynamics driven by an external field. The technique presented here may be applicable 
to the model for current-driven domain wall dynamics [13], which shall be explored as a future project.
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