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The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches.
As an alternative route, the Materials Genome Initiative has largely popularized new approaches relying on
artificial intelligence and machine learning for accelerating the discovery and optimization of novel, advanced
materials. Here, we review some recent progress in adopting machine learning to accelerate the design of new
glasses with tailored properties.

1. Introduction
1.1. Challenges in the development of new glasses

Developing novel glasses with new, improved properties and func-
tionalities is key to address some of the Grand Challenges facing our
society [1,2]. Although the process of designing a new material is always
a difficult task, the design of novel glasses comes with some unique
challenges. First, virtually all the elements of the periodic table can be
turned into a glass if quenched fast enough [3]. Second, unlike crystals,
glasses are intrinsically out-of-equilibrium and, hence, can exhibit a
continuous range in their stoichiometry (within the glass-forming ability
domain) [4]. For both of these reasons, the compositional envelope that
is accessible to glass is limitless and, clearly, only an infinitesimal
fraction of these compositions have been explored thus far [3]. Although
the vast compositional envelop accessible to glass opens endless possi-
bilities for the discovery of new glasses with unusual properties, effi-
ciently exploring such a high-dimension space is notoriously challenging
and traditional discovery methods based on trial-and-error Edisonian
approaches are highly inefficient [5]. Although “intuition” can partially
overcome these challenges, it is unlikely to yield a leapfrog in glass
properties and functionalities.

As a first option, physics-based modeling can greatly facilitate the
design of new glasses by predicting a range of optimal promising com-
positions to focus on [6]. For instance, topological constraint theory has
led to the development of several analytical models predicting glass
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properties as a function of their compositions (e.g., glass transition
temperature, hardness, stiffness, etc.) [7-12]. However, the complex,
disordered nature of glasses renders challenging the development of
accurate and transferable physics-based models for certain properties (e.
g., liquidus temperature, fracture toughness, dissolution kinetics, etc.)
[6]. Alternatively, “brute-force” atomistic modeling techniques (e.g.,
molecular dynamics) can be used to accurately compute glass properties
and partially replace more costly experiments (see also Section 3.5)
[13,14]. However, such techniques come with their own challenges (e.
g., limited timescale, small number of atoms, fast cooling rate, large
computing cost, etc.), which prevents a systematic exploration of all the
possible glasses [15-17].

1.2. When machine learning meets glass science

As an alternative route to physics-based modeling, artificial intelli-
gence and machine learning offer a promising path to leverage existing
datasets and infer data-driven models that, in turn, can be used to
accelerate the discovery of novel glasses [11,18]. As a notable success,
machine learning modeling techniques have been used to accelerate the
design of Corning® Gorilla® glasses [18]. Over the past decade, thanks
to the rapid increase in available computing power, artificial intelli-
gence and machine learning have revolutionized various aspects of our
lives [19,20], including for image recognition [21], Internet data mining
[22], or self-driving cars [23].

In details, machine learning can “learn from example” by analyzing
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existing datasets and identifying patterns in data that are invisible to
human eyes [24]. Fig. 1 shows a typical application of machine learning
to glass design. First, some data are generated (by experiments, simu-
lations, or mining from existing databases) to build a database of
properties. Such databases can comprise, as an example, the glass
composition, synthesis procedure, as well as select properties. Machine
learning is then used to infer some patterns within the dataset and
establish a predictive model [24].

Machine learning algorithms can accomplish two types of tasks,
namely, supervised and unsupervised. In the case of supervised machine
learning, the dataset comprises a series of inputs (e.g., glass composi-
tion) and outputs (e.g., density, hardness, etc.). Supervised machine
learning can then learn from these existing examples and infer the
relationship between inputs and outputs [25]. Supervised machine
learning comprises (i) regression algorithms [26], which can be to
predict the output as a function of the inputs (e.g., composition-property
predictive models) and (ii) classification algorithms [27], which can be
used to label glasses within different categories. In contrast, in the case
of unsupervised machine learning, the dataset is not labeled (i.e., no
output information is known) [28]. Unsupervised machine learning can,
for instance, be used to identify some clusters within existing data, that
is, to identify some families of data points that share similar character-
istics [29]. More details about these machine learning methods are
presented in Section 2.

1.3. Challenges and limitations of machine learning for glass science

Although machine learning offers a unique, largely untapped op-
portunity to accelerate the discovery of novel glasses with exotic func-
tionalities, it faces several challenges. First, the use of machine learning
requires as a prerequisite the existence of data that are (i) available (i.e.,
public and easily accessible), (ii) complete, (iii) consistent (e.g., ob-
tained from a single operation), (iv) accurate (i.e., with low error bars
[30]), and (v) numerous [31]. For instance, although some glass prop-
erty databases are available [32], inconsistencies between data gener-
ated by different groups render challenging the meaningful application
of machine learning approaches. In addition, since they are usually only
driven by data and do not embed any physics- or chemistry-based
knowledge, machine learning models can sometimes violate the laws
of physics or chemistry [33,34]. For these reasons, conventional ma-
chine learning techniques are usually good at “interpolating” data, but
have thus far a limited potential for “extrapolating” predictions far from
their initial training set [34,35], which usually prevents the efficient
exploration of new unknown compositional domains (see Section 3.2 on
how “physics-informed machine learning” can offer improved
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extrapolations). Finally, machine learning models often offer poor
interpretability, that is, they act as black boxes and do not offer clear
physical insights [36-38]. Here, we review some recent progress aiming
to address and mitigate these challenges.

This review is organized as follows. First, Section 2 presents an
overview of available machine learning techniques. Section 3 then re-
views the state-of-the-art in the application of machine learning to glass
science and engineering. Finally, Section 4 offers some conclusions and
future directions.

2. Overview of machine learning techniques for glass science
2.1. Regression techniques

2.1.1. Parametric and nonparametric regression

Regression consists of fitting known data points to establish a func-
tional relationship between the inputs and output [26]. As illustrated in
Fig. 2(a), regression models are able to interpolate known points by
learning from an existing dataset. Generally, regression methods can be
categorized into (i) parametric regression, which yields an analytical
formula expressing the output in terms of the input variables [26] (e.g.,
linear [39], polynomial [40], or nonlinear functions [41]) and (ii)
nonparametric regression, which defines a kernel function to calculate
the output at a given input position based on the correlation between
this input position and its surrounding known points [42].

Nonparametric regression comprises, for instance, the K-nearest-
neighbor (KNN) [43] and Gaussian process regression (GPR) methods
[44]. The basic idea of the KNN method is to predict the value of the
output for a given input position by using the average value of the K
nearest known points at the vicinity of the input position. On the other
hand, the GPR method predicts a Gaussian-type probability distribution
of the output for each input position based on the multivariate normal
correlation between this input position and all the other known points
[45]—wherein the degree of correlation decreases as a function of the
distance between these points [44]. As a major advantage, the GPR
method is able to provide the uncertainty of the predicted output values,
which is key to assess the reliability of the predictions [46].

In contrast to nonparametric regression, parametric regression relies
on an explicit analytical formula relating the inputs to the out-
put—wherein the parameters of the formula are adjusted to fit the
known points by establishing and minimizing a cost function [26]. It is
worth pointing out that more complex machine learning algorithms
(described in Section 2.3) can be used for classification and regression.
For instance, artificial neuron network (ANN) [19,47], support vector
machine (SVM) [48], random forest [49], or gradient boosting [50]
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Fig. 1. Illustration of a typical application of machine learning to facilitate glass design.
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Fig. 2. Illustration of regression machine learning techniques. (a) Example of regression (black line) applied on an existing dataset (grey points). For illustration
purposes, a polynomial regression model (with a polynomial degree p = 3) is adopted herein. (b) Illustration of underfitting (blue line, p = 1) and overfitting (red line,
p = 15) on the same dataset. The dataset is divided into a (i) training set (cyan points), which is used to train the model, and (ii) validation set (green points), which is
used to estimate how well the model can predict data that are kept invisible during its training. (c) Error in the prediction of the training (black line) and validation
(red line) sets as a function of the model complexity (i.e., p in the polynomial model herein). The optimal model presents the lowest validation set prediction error.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

essentially rely on complex nonlinear parametric formulas and, hence,
can be classified as parametric regression techniques, except in the case
of kernel-based functions [51]. These types of models often show a very
good ability to interpolate data [52], but usually present low inter-
pretability due to the complex format of the parametric formula [47]
and limited extrapolation abilities [35].

2.1.2. Optimization of model complexity

The development of supervised learning models usually comprises
two stages, viz., (i) the learning/fitting (i.e., training and validation)
stage and (ii) the prediction (i.e., test) stage. During the fitting/learning
stage, it is key to properly adjust the complexity of the model (e.g., the
maximum degree in polynomial regression) to offer reliable predictions
[53,54]. This process is described in the following.

Underfitting and overfitting: In the case of underfitting (i.e., low
complexity), the model is too simple to properly capture the functional
relationship between the inputs and output. In contrast, in the case of
overfitting (i.e., high complexity), the model keeps the memory of the
“noise” of the dataset [55]. In general, the model complexity can be
captured by the number of non-zero fitting parameters, number of in-
puts, and number of high-order terms in a model [20,24]. Fig. 2(b) il-
lustrates the manifestations of underfitting and overfitting by fitting a
set of data (i.e., training set, see below) when some polynomial models
with varying maximum polynomial degrees p. Clearly, in this case, a
linear model with p =1 does not properly capture the non-linear rela-
tionship between inputs and output. In contrast, a polynomial model
with p =15 is able to capture the noise of the training set, which, in turn,
yields a poor predicting for unknown data points (i.e. validation set, see
below). In between these two regimes, a polynomial regression model
with p = 3 is able to properly capture the trend of the data while filtering
out the noise of the dataset.

Training, validation, and test sets: To limit the risk of overfitting and
assess the accuracy of the model, the dataset is usually divided into the
training, validation, and test sets [20,24]. The training set is first used to
train the model, that is, to adjust the model parameters in order to fit
some existing data points. At this stage, the training and test sets are kept
fully invisible to the model. Afterward, the validation set is used to
adjust the complexity of the model. Indeed, as illustrated in Fig. 2(c),
higher model complexity (i.e., higher p herein) usually yields an
improved interpolation of the training set, but eventually results in a
lower ability to predict the training set as the model starts to remember
the noise of the training set. Overall, the optimal degree of complexity

manifests itself by a minimum prediction error for the validation set
[55]. Finally, once the optimal degree of complexity is fixed, the test set
is used to assess the accuracy of the model by comparing its predictions
to a fraction of the dataset that is kept unknown to the model.

K-fold cross-validation: In many realistic cases, the limited number of
data present in datasets makes it undesirable to keep a large fraction of
the data fully unknown to the model as a validation—since a large
number of data points is key to ensure the proper training of the model.
This challenge can be overcome by using the K-fold cross-validation
technique [24,56]. This technique divides the initial training set into
K folds, trains the model based on K — 1 of the folds, and uses the
remaining fold for validation. This procedure is then repeated K times
until each of the folds has been used as a validation set. The accuracy of
the model is then determined by averaging the accuracy of the predic-
tion over all the K validation folds.

Regularization methods: An alternative route to decrease the model
complexity consists in filtering out non-important terms from the model,
which can be accomplished by regularization methods [57], e.g., LASSO
[58], Ridge [59], or Elastic Net [57]. The main idea of regularization
methods is to formulate and minimize a cost function that comprises (i)
how well the model can predict known data as well as (ii) an additional
term that attributes a penalty to complex models. As such, the minimi-
zation of the cost function forces non-important terms (i.e., which do not
significantly contribute to increasing the accuracy of the model) to
become zero. The degree of complexity of the model can be tuned by
adjusting the weight attributed to the penalty term until the model offers
an optimal prediction of the validation set [24,57].

2.2. Classification techniques

Classification can be viewed as a special case of regression [27]. In
contrast to the case of regression—wherein the output is a continuous
value—classification considers problems where the output is discrete,
wherein each state corresponds to the labels to distinct categories. For
instance, in the case of a binary classification problem, the data points
belong to two classes (Class A and B), which can be represented by an
output value equal to +1 or — 1 for Class A and B, respectively. The goal
of classification models is to predict the class of unknown data (e.g.,
“glass is transparent or not transparent”) as a function of the inputs (e.g.,
glass composition). This can be accomplished by identifying the optimal
hyperplane within the inputs space that best divides the different classes
(see Fig. 3) [20,24,27].
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Class A region

Fig. 3. Illustration of classification machine learning
techniques. (a) Example of a dataset comprising two
inputs (i.e., two-dimensional input space). The data
points are labeled as belonging to either Class A (red
points) or Class B (blue points). (b) Example of clas-
sification in the two-dimensional space. For illustra-
tion purposes, a support vector machine (SVM) model
is adopted, which yields a hyperplane boundary
(black line) that divides the two-dimensional space
into two different class regions, i.e., Class A (left) and
Class B (right). Note that a hyperplane has a dimen-
sionality that is 1 degree lower than that of the input
space and, as such, takes the form a line in a two-
dimensional input space. (For interpretation of the
references to colour in this figure legend, the reader is
referred to the web version of this article.)

Class B region

B Labeled dataset B Labeled dataset
— Classification
Class A
\ g = z"
" g | " g
g | " " g |
3| m_® H ] 3| m_*®
< [ | - m N < [ |
| | |
|| | ||
E m u \ ]
- [ Class B -
Input 1

(@

2.3. Examples of supervised machine learning algorithms

Artificial neural network (ANN): ANN algorithms, e.g., multilayer
perceptron [60] or convolutional neural network (CNN) [21], rely on a
multilayer structure comprising (i) an input monolayer, (ii) some hidden
multilayer, and (iii) an output monolayer (see Fig. 5(a)). Each layer is
made up of several neurons that are connected to each other to mimic
the human neuron network system. Each neuron consists of a non-linear
transformation operator (e.g., a sigmoid function) that relates the signal
coming from the neurons from the previous layer to a response signal
that is transmitted to the neurons of the subsequent layer. ANN can be
viewed as a complex, non-linear functional mapping the relationship
between the inputs and output(s) [25].

Support vector machine (SVM): SVM algorithms, which include both
linear SVM [48] and kernel SVM [51], rely on a functional formula that
represents the hyperplane that divides data into different classes in
classification problems (see Section 2.2). On the one hand, linear SVM
uses linear functions to express a set of linear hyperplanes to divide the
input space into different class regions. The coefficients of the linear
functions are determined by maximizing the separation/margin of the
nearest known points on both sides of the hyperplane [48]. On the other
hand, kernel SVM uses a kernel function that describes the correlation
between an input position and the known points from the training set (i.
e., for which the class is known). This yields a set of non-linear hyper-
planes that can be used for classification. The parameters in the kernel
function are also determined so as to maximize the margin [51].

Decision tree: Tree-based models, e.g., random forest [49], are based
on an ensemble of several parallel tree paths made of sequentially
splitting nodes. Each node represents a judge condition that guides the
choice of the next node derived from it. The judge condition at each
node, which can be expressed as a split of a target input range, is opti-
mized based on the training set. Each parallel tree path gives its own
predicted output and the final output value is determined from the
overall votes from the outputs of all the tree paths. The tree size (i.e., the
number of nodes) depends on the size of the dataset (in terms of the
number of data points or the dimensionality of the input space). This
parameter can be optimized by minimizing the prediction error of the
validation set (see Fig. 2(c)), that is, to avoid both underfitting and
overfitting [49].

Boosting method: Boosting models, e.g., AdaBoost [61] or gradient
boosting [50], are based on an ensemble of sequentially-added weak
learners/classifiers (e.g., decision tree, SVM, or other classifiers). In this
case, the predicted output is given by a weighted average of the outputs
yielded by all the weak learners/classifiers. Each weak learner is added
in sequence and is mainly trained by the remaining training samples that
are not well predicted from the weighted average of all the outputs of the

Input 1

previous weak learners. The weight coefficient attached to each weak
learner, which represents its contribution to the final prediction, is
determined from the updated prediction error of the assembled model
after adding this weak learner [50].

2.4. Unsupervised machine learning—Clustering

Rather than learning by example (i.e., supervised machine learning),
unsupervised machine learning aims to decipher some intrinsic char-
acteristics of the input dataset itself. A typical example of unsupervised
machine learning is the detection of clusters within data—wherein a
cluster is a group of data that present similar characteristics [29]. In this
case, no examples of previously identified clusters are needed to train
the model—and relevant clusters are identified based on the analysis of
the distances between the data points within the inputs space. Fig. 4
shows an example of clustering analysis in a two-dimensional input
space. In this case, based on the spatial distribution of the data, two
clusters are detected (see Fig. 4(b)) [62].

The K-mean algorithm (and its derivations) is one of the most widely
used clustering algorithm [63,64]. The basic idea of this algorithm is to
first randomly place K clusters centroids within input space. At the first
iteration, all the data points are labeled with a cluster ID (ranging from 1
to K) based on the ID of the cluster centroid they are the closest to. The
position of each cluster centroid is then updated based on the average
position of the labeled data points belonging to that cluster and all the
data points are relabeled accordingly. This procedure is then iteratively
repeated until the positions of each centroid converges and does not
move any longer [65]. Note that, in the K-mean algorithm, the number
of clusters K is fixed and is a prerequisite input of the model. However,
several methods have been developed to determine the optimal number
of parameters K [66], such as the Elbow method [67]—wherein the idea
is to select an optimal value for K for which any further addition of
centroids does not significantly reduce the cost function to be minimized
(e.g., the square sum of the distances between each data point and its
associated cluster centroid [67]). A common issue of the K-mean algo-
rithm is that the algorithm remains stuck in a local minimum of the cost
function during the optimization and does not converge to the global
minimum [68]. This limitation can be partially overcome by repeating
the clustering analysis several times while considering different random
initial positions for the cluster centroids [68].

2.5. Feature engineering and dimensionality reduction
In both supervised and unsupervised learning, feature engineering is

key to identify relevant inputs describing each data point (e.g., glass
composition, synthesis method, annealing temperature, etc.) [24]. Each
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input variable is called a feature. To select the proper independent input evaluation methods (for instance, by calculating the covariance matrix)
variables, one must identify the system features that present the largest [69]. However, in some cases, there are tens to hundreds of possible
influence on the target output. This step is called feature engineering, input variables that can be defined for a given data point—and such a
which can be based on some physical knowledge of the problem or a high dimensionality of the input space would significantly reduce the
statistical analysis of the correlation between inputs and output [69]. In computational efficiency of machine learning models [70]. To overcome
practice, the relevant inputs can be identified based on some feature the “curse of dimensionality” [24], some dimensionality reduction
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Fig. 5. (a) Illustration of an artificial neural network model, which comprises an input layer, hidden layer, and output layer. Here, the input variables refer to the
glass composition. Comparison between predicted (i.e., the output of the model) and measured glass properties for (b) glass solubility [75], (c) Young’s modulus [11],
and (d) glass transition temperature [37]. The correlation coefficient R? is indicated as a measure of the model accuracy.
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methods can be used to reduce the dimensionality of the inputs space,
that is, to reduce the number of inputs considered during the training of
the model. Such techniques include principal component analysis (PCA)
[71], non-negative matrix factorization (NMF) [72], and linear
discriminant analysis (LDA) [73]. Briefly, the main idea behind these
methods is to use some linear/nonlinear combinations of the different
available inputs to construct informative new inputs and replace some of
the original inputs [20,24,74]. As such, by combining several inputs into
some single metrics, such techniques can be used to reduce the dimen-
sionality of the model and, hence, enhance the computational efficiency
of machine learning. It is worth pointing out that the minimum number
of data points that is needed to train a machine learning model increases
with increasing dimensionality—but also depends on the type of ma-
chine learning methods that is used, as well as the nature of the pre-
dicted property. Empirically, at least 3-to-5 data points per input
dimension are required to meaningfully train a machine learning model.

3. Application of machine learning to glass science and
engineering

3.1. Conventional composition-property regression models

Most applications of machine learning for glass science have focused
on the development of composition-property regression models. To this
end, pioneering works have focused on the use of the artificial neural
network method (see Section 2.3 and Fig. 5(a)) [11,36,37,75]. To the
best of our knowledge, the first use of machine learning in the context of
glass science was conducted by Brauer et al. and aimed to predict the
solubility of P,0s5—CaO-MgO-NayO-TiO glass as a function of compo-
sition [75]. Fig. 5(b) shows a comparison between the predicted and
measured solubility. Overall, the predictions match well with experi-
ments and the trained model yields a correlation coefficient R? for the
test set that approaches 0.999 [76]. Following the pioneering work,
various studies have focused on applying the artificial neural network
method to predict the properties of glasses as a function of their
composition [11,18,36,37,77]. As an example, Fig. 5(c) shows a com-
parison between predicted and measured values of the Young’s modulus
of a wide range of silicate glasses from a study conducted by Mauro
et al.—wherein the model yields a correlation coefficient R = 0.991 for
the test set [11]. Finally, Fig. 5(d) shows the outcome of a recent work
from Casser et al. wherein artificial neural network was used to predict
the glass transition temperature (T) as a function of glass composition
(with R? = 0.998 for the test set) [37]. This work exemplifies the ability
of artificial neural network to handle complex datasets—since the glass
transition temperature presents several definitions and is not consis-
tently measured among different research groups [37]. This demon-
strates the ability of artificial neural network to extract the relevant
underlying patterns in datasets while filtering out the noise of the data
when the dataset is large enough (55,000 glass compositions therein).
Overall, as illustrated in Fig. 5, machine learning and artificial neural
network offer a promising route to predict glass properties as a function
of composition while relying only on the analysis of existing datasets,
that is, with no physical knowledge prerequisite (i.e., “blind machine
learning” [34]).

3.2. Physics-informed composition-property regression models

Although “blind machine learning” and artificial neural network can
offer reliable predictions, this approach requires the existent of a large
amount of data—which is not always available. In addition, the complex
nature of artificial neural network models renders their interpretation
challenging, which limits their potential to offer new physical insights.
As an alternative route, the concept of “physics-informed machine
learning” was recently introduced by Liu et al. [34]. This approach relies
on (i) using a simple, analytical model formulation (e.g., a polynomial
function) that offers a good interpretability, (ii) linearizing the
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relationship between inputs and output based on our physical and
chemical understanding of the predicted property to increase the pro-
pensity of the model for reliable extrapolations, and (iii) identifying
relevant reduced-dimensionality descriptors that capture the atomic
structure of the glass [34,78]. This approach was recently used to predict
the stage I dissolution rate of NayO-Al,03-SiO; silicate glasses as a
function of their composition and pH based on a small dataset (~200
data points) [34].

Fig. 6 presents a comparison between the outcomes of blind and
physics-informed machine learning using polynomial regression [34]. In
the case of blind machine learning, we find that the optimal model
consists of a degree 5 polynomial function. However, as shown in Fig. 6
(a), this model yields poor predictions as the relative-root-mean-square-
error (RRMSE) of the training and test sets are very high, namely, 98%
and 731%, respectively [79]. This shows that, in this case, blind machine
learning (i.e., the direct prediction of the dissolution rate as a function of
composition and pH) requires the use of complex machine learning al-
gorithms (e.g., artificial neural network) and cannot be achieved by
simpler, more interpretable models like polynomial regression [36,80].

In contrast, as shown in Fig. 6(b), the physics-informed model offers
a significantly improved accuracy—with a RRMSE values of 2.32% and
3.77% for the training and test sets, respectively [34]. This was pri-
marily accomplished by using some physical and chemical under-
standing of the dissolution process of silicate glasses to linearize the
relationship between the inputs (i.e., glass composition and pH) and
output (i.e., dissolution rate). This greatly decreases the complexity of
the model (i.e., polynomial degree 1 as compared to 5 in the case of blind
machine learning). In addition, the number of topological constraints
per atom (n) was introduced as a reduced-dimensionality descriptor
that captures how the structure of the glass network controls its disso-
lution rate [81-86]. This greatly increases the ability of the model to
offer some reliable extrapolations far from the initial training set [34].

Overall, this work suggests that embedding some physical knowl-
edge within machine learning offers a promising route to overcome the
tradeoff between accuracy, simplicity, and interpretability (i.e., the
degree to which a human can understand the outcome produced by the
model [20,24,38])—which are otherwise often mutually exclusive in
traditional, blind machine learning models [20,36,54]. Indeed, simple
and interpretable models (e.g., polynomial regression) usually offer
limited accuracy (see Fig. 6(a)), whereas more advanced models (e.g.,
random forest or artificial neural network) offer increased levels of ac-
curacy but often come with higher complexity and lower interpretability
(see Fig. 5) [20,36,54]. In general, models that are simpler and more
interpretable are highly desirable as (i) simpler models are less likely to
overfit small datasets, (ii) simpler models are usually more
computationally-efficient, and (iii) more interpretable models are more
likely to offer some new insights into the underlying physics governing
the relationship between inputs and outputs.

3.3. Composition-property regression models informed by high-throughput
simulations

In general, irrespective of the algorithm that is used, the quality of
machine learning models depends on the availability of a large body of
accurate and consistent data to spans a large compositional domain
[31,34]. Since extensive experimental datasets are not always available,
high-throughput molecular dynamics (MD) simulations offer a conve-
nient and reliable route to build large, consistent, and accurate datasets
of glass properties, which, in turn, can serve as a training set for machine
learning algorithms [11,77].

This approach was recently used by Yang et al. to predict the Young’s
modulus of silicate glasses as a function of their composition [77]. Fig. 7
(a) shows the Young’s modulus values E computed by high-throughput
MD simulations as a function of composition in the CaO-Al;03-SiO,
glass ternary system [77]. The use of high-throughput MD simulations
makes it possible to systematically and homogeneously explore entire
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the ANN model and computed by MD simulations. (d) Comparison between the Young’s modulus values computed by MD simulations and predicted by ANN with
select available experimental data [89-100] for the series of compositions (Ca0),(Alz03)40_x(Si0O2)0. Note that no experimental data is available for glasses wherein
[CaO] < [Al;,03] due to the poor glass-forming ability of such compositions [101].

compositional domain in an efficient fashion. Importantly, MD simula- of an artificial neural network model trained based on the data present
tions offer excellent accuracy and low noise-to-signal ratios, which is key in Fig. 7(a) [77]. The artificial neural network is found to successfully
for the use of data-driven modeling. Fig. 7(b) then shows the prediction capture the complex, non-linear evolution of the Young’s modulus as a
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function of composition while filtering out the intrinsic noise of the
simulation data. Overall, the model offers an excellent agreement with
molecular dynamics data (see Fig. 7(c))—with a correlation coefficient
R? of 0.981 and 0.974 for the training and test sets, respectively.
Importantly, the predicted values also show a very good agreement with
available experimental data (see Fig. 7(d)). Note that, although the
cooling rate used in MD simulation is significantly higher than experi-
mental ones, computed stiffness values remain fairly unaffected by the
cooling rate—as they are mostly governed by the curvature of the
interatomic potential [87,88].

These results illustrate the benefits of combining machine learning
with high-through MD simulations (i.e., rather than directly relying on
available experimental data). Indeed, even for a simple and technolog-
ically important system like CaO-Al;03-SiO; glasses, the number of
available experimental stiffness data is fairly limited. Further, most of
the data available for this system are clustered in some small regions of
the whole compositional domain (namely, pure silica, per-alkaline alu-
minosilicates, and calcium aluminate glasses). Such clustering of the
data is a serious issue as, in turn, available experimental data come with
a notable uncertainty—for instance, the Young’s modulus of select
glasses (at fixed composition) can vary by as much as 20 GPa among
different references [32, 89]. As such, the combination of a high level of
noise and clustering of the data would not allow machine learning ap-
proaches to isolate the “true” trend of the data from their noise. Finally,
generating data using MD simulations is faster and cheaper than con-
ducting systematic experiments. Nevertheless, it should be pointed out
that, due to some intrinsic limitation of timescale, MD simulations
cannot describe the long-term behavior of glasses (e.g., long-term aging
or dissolution kinetics). In that regard, various modeling techniques
(ranging from physics-based to purely empirical) often needs to be
combined to bridge the gap between different timescales [6]. Overall,
the combination of physics-based simulations with data-driven machine
learning offers a promising route to accelerate the discovery of novel
glasses.

3.4. Identification of relevant structural fingerprints

Due to the complex, disordered nature of the atomic structure of
glasses, the atoms of the network can exhibit a variety of local envi-
ronments, which mainly depend on the glass composition and the
cooling rate—in contrast with the case of crystals [4]. Such structural
complexity makes it challenging to understand how the atomic structure
of glasses controls their properties [6,7,102]. Although some properties
(e.g., stiffness [88,103] and hardness [10,104]) are largely governed by
“intuitive” structural features (e.g., the average coordination number
[9,88]), more complex properties (e.g., those that strongly depend on
the medium-range order) do not exhibit any correlation with conven-
tional structural metrics [105]. New advanced structural descriptors are
required to describe such complex properties (e.g., which cannot be
simply described in terms of the average connectivity of the atomic
network).

Thanks to its ability to decipher some patterns in complex, multi-
dimensional data, machine learning offers a promising route to iden-
tify some non-intuitive structural fingerprints that govern glass prop-
erties [106]. Recently, Cubuk et al. introduced a classification-based
machine learning method to identify some “high-level” structural fin-
gerprints (called “softness™) that control the dynamics of atom rear-
rangements [102,105-109]. In details, the atomic softness is a highly
non-intuitive structural property that is calculated based on the local
environment of each atom [106]. This property was determined by
classifying each atom as being “soft” (i.e., mobile) or “hard” (i.e.,
immobile). A large number of systematic structural order descriptors
were then computed and used as inputs. A classification model (SVM)
was then used to identify the optimal hyperplane within the inputs space
that best separates soft from hard atoms (see Fig. 3(b)). The atomic
softness was then defined—for a given atom—as the orthogonal distance
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between a given position in the inputs space and the hyperplane [107].
As shown in Fig. 8, the probability of atomic rearrangement (Pg) is found
to be a logarithmic function of their softness (S) at different tempera-
tures, including into the supercooled liquid regime [105]. Although this
approach has thus far been applied to only “toy” model glasses (i.e.,
Lennard Jones glasses) that may not capture the complex chemistry of
more realistic oxide glasses, this work offers some pioneering insights
into the linkages between atomic structure and glass properties (dy-
namics, plasticity, etc.) and paves the way toward the discovery by
machine learning of new structural fingerprints that are governing glass
properties.

3.5. Machine learning forcefields for glass modeling

As discussed in Section 3.3, MD simulations are an important tool to
access the atomic structure of glasses and, thereby, decipher the nature
of the relationship between glass composition and properties. However,
the reliability of MD (or Monte Carlo) simulations is intrinsically limited
by that of the interatomic forcefield that is used, which acts as a
bottleneck in glass modeling [15]. To this end, machine learning offers a
promising route to develop new accurate interatomic forcefields for
glass modeling in an efficient and non-biased fashion [110]. Although
various studies have focused on the use of machine learning to develop
complex, non-analytical interatomic forcefields, such forcefields present
low interpretability and have been largely restricted to simple monoa-
tomic or diatomic systems thus far [111-114].

On the other hand, empirical forcefields based on analytical forms
can offer a realistic description of the atomic structure of silicate glasses
[110,115-120]. However, the parameterization of empirical forcefield
remains a complex task that often relies on some level of intuition. The
parameterization of a forcefield is usually based on the formulation of a
cost function that depends on the forcefield parameters [117,119,120].
Recently, Carré et al. introduced a new type of cost function that cap-
tures the structural difference between a liquid simulated by ab initio
molecular dynamics (i.e., the reference configuration) and that pre-
dicted by the forcefield that is to be optimized [120]. The parameteri-
zation of the forcefield then consists in identifying the optimal forcefield
parameters that minimize the cost function. Traditionally, this step has
been conducted by classical minimization algorithms, e.g., steepest
gradient descent methods [121]—wherein, starting from a random
initial position in the parameter space, one follows the direction of
steepest gradient descent in the parameter space until the gradient be-
comes zero, that is, until a minimum has been found. However, such
techniques usually yield some local rather than global minima of func-
tions and, as such, the outcome of the minimization strongly depends on
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the choice of the initial parameters—which renders the parameteriza-
tion of forcefield largely biased [119,121].

To overcome these limitations, Liu et al. recently introduced a new
forcefield parametrization scheme that combines Gaussian Process
Regression and Bayesian optimization [110,122]. The main idea of this
method is presented in Fig. 9. Taking glassy silica as an archetypal
example, Fig. 9(a) shows the evolution of the cost function R, that is to
be minimized as a function of a forcefield parameter (here, the partial
charge of Si atoms gs;). The other forcefield parameters are here kept
fixed. The cost function R, is first interpolated by the GPR method (see
Section 2.1 [44]) based on a series of known points, that is, a series of
forcefield parameters for which the value of the cost function has been
computed. The Figure also shows the uncertainty (95% confidence in-
terval) of the prediction. Based on the GPR predictions and the uncer-
tainty thereof, Bayesian optimization (BO) is then used to determine an
optimal set of forcefield parameters that presents the highest probability
to yield a minimum value for the cost function R,. This is accomplished
by using a so-called expected improvement (EI) function (see Fig. 9(b))
[122], which offers the best tradeoff between “exploitation and explo-
ration,” that is, the optimal balance between (i) exploiting the minimum
position predicted by GPR and (ii) exploring the parameter space to
minimize the uncertainty of the GPR model. The “true” cost function R,
associated with this optimal set of parameters is then computed by MD
and is subsequently incorporated into the training set—which, in turn,
refines the GPR model. New optimal forcefield parameters are then
iteratively predicted until a satisfactory minimum in the cost function is
obtained, that is, when R, does not decrease any further. This iterative
optimization method is illustrated in Fig. 9(c), which shows the path
explored by the Bayesian optimization method until the global mini-
mum in the cost function R, is identified. This parameterization method
is found to yield a forcefield for glassy silicate that offers an unprece-
dented level of agreement with ab initio simulations [110]. Overall, this
work establishes machine learning as a promising route to accelerate the
development of new forcefield to model complex, multi-component
glasses.

Journal of Non-Crystalline Solids 557 (2021) 119419

4. Conclusions and future directions

Overall, machine learning techniques offer a unique, largely un-
tapped opportunity to leapfrog current glass design approaches—a
process that has thus far remained largely empirical and based on pre-
vious experience. When combined with physics-based modeling, ma-
chine learning can efficiently and robustly interpolate and extrapolate
predictions of glass properties as a function of composition and, hence,
drastically accelerate the discovery of new glass formulations with
tailored properties and functionalities.

It is worth pointing out that, when adopting machine learning,
different properties may come with different challenges and different
degrees of complexity. Various criteria can be used to describe the
complexity of a given property, e.g.: (i) Does it present a linear or non-
linear dependence on composition? (ii) Is it mostly governed by the
short-range order structure of the glass or also sensitive to the medium-
range order? (iii) Is it significantly affected by some variations in the
thermal history of the glass (e.g., varying cooling rate)? (iv) What is our
physical or chemical understanding of the nature of this property? (v)
How many existing experimental or simulation data points are available
for this property? Clearly, different machine learning algorithms to
predict properties with different degrees of complexity—for instance,
polynomial regression might be sufficient to predict “simple properties”
but more advanced algorithms (e.g., artificial neural network) might be
required to model more “complex properties.” In addition, predicting
more complex properties typically requires larger initial training sets.

Despite these challenges, future applications of machine learning to
glass science and engineering are promising and limitless. First, the
compositional evolution of virtually all the glass properties can be pre-
dicted by machine learning—provided that enough data points are
available. To this end, high-throughput atomistic simulations offer a
promising route to generate large bodies of consistent, accurate data
that can used be as training sets for machine learning approaches. In
turn, machine learning optimization techniques offer a unique oppor-
tunity to develop new sets of reliable, transferable, and computationally-
efficient forcefields for atomistic modeling. In parallel, much progress is
still needed to develop new strategies to leverage our existing physical
and chemical knowledge of the glassy state to inform machine learning
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and, hence, overcome some of its intrinsic limitations (e.g., balance
between accuracy, complexity, and interpretability). In addition, by
excelling at detecting non-intuitive patterns in complex, multi-
dimensional datasets, machine learning has the potential to offer some
new physical insights into the nature of the glassy state—which have
remained hidden thus far due to the complex, disordered, out-of-
equilibrium structure of glasses. We postulate that future progress in
such approaches will strongly rely on a closer collaboration between
different research groups focusing on experiments, theory, simulations,
and data analytics. Indeed, successful future applications of machine
learning modeling are likely to require closed-loop integrated ap-
proaches, wherein (i) experimental or simulation data are used to train
machine learning models, (ii) machine learning models are used to
pinpoint promising glass compositions, (iii) experiments are conducted
to validate these predictions or refined the data-driven models. We hope
that the present review will contribute to stimulating the adoption of
machine learning techniques in glass science and engineering!
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