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ABSTRACT 
 

Earthquakes disrupt the operation of critical lifelines in a community, such as underground 
water and gas infrastructure systems. The importance of the seismic vulnerability assessment of 
water pipe networks cannot be exaggerated as it has a critical role in preventive seismic 
rehabilitation decision-making performed to avoid costly repairs. Existing seismic vulnerability 
assessment methods do not consider water pipe network uncertainties (e.g., uncertainties in nodal 
demand, reservoir head, and pipe roughness coefficient) despite the considerable susceptibility of 
these assessment methods to these uncertainties. Examining the effect of network uncertainties on 
post-earthquake serviceability of water pipe networks is the first step towards assessing the 
vulnerability of water pipe networks under uncertainties. The objective of this research is to 
investigate the effect of network uncertainties on the post-earthquake serviceability of water 
networks. Demand and pipe roughness coefficient were the network parameters selected for this 
study. Design of the experiment, Monte Carlo simulation, and one-way analysis of variance 
(ANOVA) tests were used to examine the individual and combined effects of two water pipe 
network uncertainties (nodal demand and pipe roughness coefficient). The approach was tested on 
the Modena network, which is a city-scale benchmark network that is commonly used in the 
literature for seismic vulnerability assessment of water pipe networks. The results show that the 
uncertainty of these two selected network parameters has a statistically significant impact on the 
post-earthquake serviceability of water pipe networks. Hence, it is recommended to integrate the 
network uncertainties with the seismic vulnerability assessment of water pipe networks. 
 
INTRODUCTION 
 

Water networks are one of the critical infrastructure systems supporting residential, industrial, 
and commercial activities of any modern city. Past earthquakes such as the San Francisco 
earthquake of 1906, the San Fernando earthquake of  1971, the Northridge earthquake of 1994, the 
Kobe earthquake of 1995, the Christchurch earthquake of 2011, and the Central Mexico earthquake 
of 2017 revealed the vulnerability of the water networks (O’Rourke 1996; O’Rourke et al. 2014). 
Any kind of disruption in water pipe networks can result in enormous direct losses such as 
disruption in water distribution and indirect losses such as the cost of repair (Piratla et al. 2015, 
Yerri et al. 2016). Therefore, it is important to evaluate the seismic vulnerability of water networks 
so that acceptable post-earthquake serviceability can be guaranteed. 

Several studies have been conducted on seismic vulnerability assessment of water pipe 
networks. In most of these studies, either topological analysis (Adachi and Ellingwood 2008; 
Christodoulou and Fragiadakis 2014) or hydraulic simulation-based analysis (Shi 2006; Wang et 
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al. 2010) was used. Few of these studies have also considered the uncertainties related to leaks and 
breaks induced by a seismic event on the water network. (Shi 2006; Wang et al. 2010; Pudasaini 
and Shahandashti 2018; Shahandashti and Pudasaini 2019). 

Current seismic vulnerability assessment of water pipe networks assumed that established 
hydraulic network analysis models could accurately estimate serviceability measures of water pipe 
networks. However, several studies have identified significant shortcomings of the hydraulic 
models to follow real-world field conditions (Sabzkouhi and Haghighi 2016; Seifollahi-Aghmiuni 
et al. 2013; Bargiela and Hainsworth 1989). These shortcomings are mostly due to the high 
sensitivity of hydraulic models to their input variables, like demand, pipe roughness coefficient or 
reservoir head (Kang and Lansey 2009, Shibu and Janga Reddy 2011). Sabzkouhi and Haghighi 
(2016) showed that a slight 15% uncertainty in pipe’s roughness and nodal demands could result 
in as much as a 50% deviation in flow velocities and an 11.2% deviation in predicted nodal 
pressures. This result represents the high sensitivity of network hydraulic analysis models to 
uncertainties. Therefore, a crucial need exists for incorporating uncertainties into the current 
seismic vulnerability assessment models.  
 
METHODOLOGY 
 

The methodology is focused on identifying the effects of network uncertainties on the post-
earthquake serviceability of the water pipe networks. Several uncertain network parameters can be 
found in the literature, such as pipe roughness coefficient, nodal demand, reservoir/tank level, pipe 
materials, age, and pipe diameter (Seifollahi-Aghmiuni et al. 2013; Lansey et al. 1989; Xu and 
Goulter 1998; Kang and Lansey 2009). Pipe roughness coefficient and nodal demand are two 
parameters selected for this study. The methodology can be broken down into four steps: seismic 
repair rate calculation, hydraulic and seismic modeling, Monte Carlo simulation, and analysis of 
the result. The methodology is summarized in Figure 1. 

 

 
 

Figure 1. Flowchart of the methodology adopted for this study 
 

Monte Carlo Simulation to Create SSI Database. Monte Carlo simulation begins with a 
seismic repair rate calculation for the selected scenario earthquake. Seismic repair rate is the 
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number of repairs per 1000 feet of pipe (ALA 2001). The seismic repair rate was calculated for each 
pipe using the method proposed by Shahandashti and Pudasaini (2019). A seismic deaggregation 
analysis was conducted to identify the scenario earthquake for this study (Adachi and Ellingwood 
2008). To calculate seismic repair rate for the pipes, a spatially correlated peak ground velocity 
(PGV) field was generated using ground motion prediction equations (GMPE) proposed by 
Abrahamson and Silva (2007). The general expression for the GMPE is given by Eq. 1. 

 
log10 (PGVij) = f (Mi, Rij, θi) + ϬB vi + Ϭwεij                                             (1) 

 
where PGVij is the peak ground velocity for site j from source i at a distance Rij during an earthquake 
event; Mi is the magnitude of the earthquake event; θi is the geological parameters which define the 
seismogenic source i; ϬBvi is the interevent residual and Ϭwεij is the intra-event residual.  

The seismic fragility function proposed by ALA (2001) was used to calculate the probability of 
damages and seismic repair rate due to seismic events. The general expression of the fragility 
function used to calculate the repair rate is given by Eq. 2. 

 
RRk,m = K1 x 0.00187 x PGVk,m                                                          (2) 

 
where RRk is seismic repair rate per 1000 ft of pipe 𝑘 for 𝑚th seismic PGV field; 𝐾1 is the 
modification factor which adjusts the value of repair rate based on the pipe material, pipe diameter, 
pipe joint characteristics, and soil corrosivity (ALA 2001); PGVk,m is the average peak ground 
velocity for 𝑚th seismic PGV field at the location of the k (in./s). 

After locating the leaks and breaks using the methodology proposed by Shahandashti and 
Pudasaini (2019), the hydraulic model of the network was created using the methodology developed 
by Shi (2006). The nodal pressure of each node was calculated and recorded using steady-state quasi 
pressure-driven hydraulic analysis. The calculated nodal pressures were then used to calculate 
System Serviceability Index (SSI), a post-earthquake serviceability indicator. The general 
expression for calculating SSI is given by Eq. 3. Monte-Carlo simulation was used to calculate the 
expected network serviceability. 

 
𝑆𝑆𝐼𝑝 = 

1

𝑀
∗  ∑ 𝑆𝑆𝐼𝑚

𝑀
𝑚=1                                                                (3) 

 
where 𝑆𝑆𝐼𝑝 is the system serviceability index, which is a post-earthquake serviceability indicator 
for 𝑝𝑡ℎ number of Monte Carlo Runs; 𝑆𝑆𝐼𝑚 is the system serviceability index calculated using Eq. 
4 for the mth peak ground velocity field; M is the number of random peak ground velocity field 
generated for a single earthquake scenario. 

 

SSIm = 
∑ 𝑥𝑖∗𝐷𝑖𝑁

𝑖=1

∑ 𝐷𝑖𝑁
𝑖=1

                                                                         (4) 

 
subject to 

xi = 1 if Pi ≥ Pthreshold 

 
xi = 0 if Pi < Pthreshold 
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where Di is the water demand at node i; N is the number of nodes in the network; Pthreshold is the 
minimum hydraulic pressure required at the node, which is imposed by the firefighting demand and 
Pi is the hydraulic pressure at node i.  

The SSI value for each Monte Carlo run was then recorded to create the SSI database for further 
statistical analysis. Monte Carlo simulation was conducted for a predefined maximum number of 
Monte Carlo runs for each of the selected experiments discussed in the following section of the 
paper. From the result of the convergence study conducted by Shahandashti and Pudasaini (2019), 
it can be concluded that 3000 Monte Carlo runs are adequate for this study. The process of creating 
the SSI database using Monte Carlo simulation is shown in Figure 2. 

 

 
 

Figure 2. Flowchart showing the process of creating SSI database for statistical analysis 
 

Design of Experiments. Previous studies conducted on network uncertainties used either 
probability models or possibility models. Normal distribution and uniform distribution are two 
widely used probability models (Seifollahi-Aghmiuni et al.2013, Kang and Lansey 2009). On the 
other hand, fuzzy logic is used as a possibility model (Sabzkouhi and Haghighi 2016, Dongre and 
Gupta 2017). In this study, a normal distribution is used to quantify the network uncertainties. Nodal 
demands and pipe roughness coefficient were assumed to be normally distributed, and the 
coefficient of variation (CV) is used to evaluate the effect of uncertainties. The coefficient of 
variation (CV) is the ratio between the mean and standard deviation. We have assumed the value of 
CV to be 0.2 (Seifollahi-Aghmiuni et al. 2013).  

The experiment was designed as a full factorial design. Each of the two network uncertainities 
considered in this study were studied at two levels (including uncertainty and excluding 
uncertainty).  Table 1 shows the network uncertainties with their levels for the experiment. 

The coded design for the experiment is shown in Table 2. 
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Table 1. Network parameters with their levels for the experiment 
 

Water Pipe Network 
Uncertainty Name 

Notation Including 
Uncertainty  

Excluding 
Uncertainty  

Demand  A 1  -1  
Pipe Roughness Coefficient  B 1  -1  

 
Table 2. Design matrix of the experiment 

 
Experiment 

Name 
Experiment 

Notation  A B AB 

Experiment 1 Comp_Exp 1 -1 -1 -1 
Experiment 2 Comp_Exp 2 +1 -1 -1 
Experiment 3 Comp_Exp 3 -1 +1 -1 
Experiment 4 Comp_Exp 4 +1 +1 +1 

 
Statistical Analysis of SSI Database. The one-way analysis of variance (ANOVA) was used 

to determine whether there were any statistically significant differences between the means of the 
selected experiments.  Specifically, the following null hypothesis was tested: 

 
H0: µ1 = µ2 = µ3 =………… = µk                                                         (5) 

 
where µ is the group mean and k is the number of groups. If the one-way ANOVA returns a 
statistically significant result, the alternative hypothesis was accepted, which means there are at 
least two group means that are significantly different from each other. The one-way ANOVA cannot 
specifically determine which specific groups are significantly different from each other. To 
determine which specific groups differed from each other, a Tukey test, which is a pairwise 
comparison, was performed.  
 
APPLICATION AND RESULTS 
 

The proposed methodology was applied to the Modena network, a widely used benchmark 
network (Center of Water Systems 2018). Modena network has 317 pipes, 268 junctions, and four 
reservoirs with a total pipe length of 71,806.11 m. The layout of the Modena network is shown in 
Figure 3. For the deaggregation, the location of the network centroid was assumed to be Pasadena, 
California (34.146267⁰ N, 118.144040⁰ W). A deaggregation analysis was performed using the 
methodology proposed by Shahandashti and Pudasaini (2019). From the deaggregation result, an 
earthquake with a magnitude of 7.12 was selected as the scenario earthquake. 

Statistical Analysis Result. A one-way ANOVA test was conducted to find out the significance 
of uncertainty of the parameters. We considered the level of significance to be 0.05. Table 3 
summarizes the mean and variance of SSI for each factor-level combination for the Modena 
network.  

The hypotheses for ANOVA test are as follows- 
Null Hypothesis, H0: µ1 = µ2 = µ3 = µ4  
Alternative Hypothesis, H1: Not all µ are equal 
Level of Significance: 0.05 
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Figure 3. Layout of Modena network 
 

Table 3. Mean and variance of SSI for Modena network 
 

Experiment Name Experiment Notation Observations Average  Variance  
Experiment 1 Comp_Exp 1 3000  0.762205  0.026013  
Experiment 2 Comp_Exp 2 3000  0.763732  0.024513  
Experiment 3 Comp_Exp 3 3000  0.73048  0.036809  
Experiment 4 Comp_Exp 5 3000  0.731184  0.036133  

 
Table 4 summarizes the results from the ANOVA test for the Modena network. 

 
Table 4. ANOVA test result for Modena network 

 
Source of 
Variation  

SS  df  MS  F  p-value  F crit  

Between Groups  26.6748  7  3.810685  92.17002  3E-133  2.00997126  
Within Groups  991.9273  23992  0.041344        

Total  1018.602  23999             
 

From the Anova test result of the Modena network, the p-value was much less than 0.05, and, 
therefore, there was a significant difference in the mean SSI between different groups or between 
experiments. ANOVA test could not determine which group of experiment differed from each 
other. Tukey test was conducted to come up with a decision on which experiment was significant.  
Table 5 summarizes the results of the Tukey test for the Modena network. 

From the Tukey test for the Modena network, the difference of mean between Comp_Exp 1 and 
Comp_Exp 2 was not significant enough; therefore, the null hypothesis could not be rejected. For 
all other pairwise comparisons, the null hypothesis was rejected, and it was concluded that the 
change of SSI values was significant, considering a 5% level of significance. 

Summarizing the results from ANOVA and Tukey test, it can be concluded that, for the selected 
value of CV, the uncertainty of demand is not significant individually. In contrast, the uncertainty 
of the pipe roughness coefficient is significant. The combined effect of demand and pipe roughness 
coefficient is also significant according to the Tukey test result. Detailed cost-benefit analysis is 
essential to make proper rehabilitation decisions (Zahed et al. 2018). Therefore, the recommended 
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future work includes the detailed benefit-cost analysis of seismic rehabilitation decisions for water 
pipe networks. It is recommended to consider lifecycle costs while assessing the rehabilitation 
decisions (Zahed et al. 2019; Janbaz et al. 2017). 

 
Table 5. Results of Tukey HSD test for Modena network  

 
Group 1  Group 2  meandiff  p -adj  Lower  Upper  Reject  

Comp_Exp 1 Comp_Exp 2 0.0015  0.9  -0.0144  0.0174  FALSE  
Comp_Exp 1 Comp_Exp 3 -0.0317  0.001  -0.0476  -0.0158  TRUE  
Comp_Exp 1 Comp_Exp 4 -0.031  0.001  -0.0469  -0.0151  TRUE  

 
CONCLUSION 
 

From the statistical analysis of the SSI database created using Monte Carlo simulation, it can be 
concluded that uncertainty of demand individually does not have any effect on the SSI of the 
network for our selected value of the coefficient of variance. Though uncertainty of demand does 
not have statistical significance, it cannot be ignored as the combined effect of uncertainty demand 
and pipe roughness coefficient has an impact on the value of SSI.  

From the analysis result, it can be concluded that current seismic vulnerability assessment 
methods are vulnerable to network uncertainties as the value post-earthquake serviceability 
indicator is sensitive to network uncertainties. It is recommended to consider network uncertainties 
in current seismic vulnerability assessment methods. Further analysis is required to identify the 
effects of other network uncertainties. It is also recommended to consider methods for the 
investment valuation under uncertainty, e.g., real options analysis (Zahed et al. 2020; Kashani et al. 
2015) when evaluating various investment decisions to enhance the seismic resiliency of water pipe 
networks. 
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