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ABSTRACT 
 

Pipe material and labor costs comprise about 70% of the total pipeline construction cost. Pipe 
and labor costs experience volatile fluctuations over time, which mostly cause cost overruns in 
lengthy and large-scale pipeline projects. The accurate forecasting of pipe and labor costs is critical 
for cost estimators to prepare accurate bids and manage the cost contingencies. The objective of 
this research is to develop recurrent neural networks (RNNs) to forecast pipeline construction 
costs. Pipe material (reinforced concrete pipe, corrugated steel pipe) and labor (common labor, 
skilled labor) costs from January 1995 to December 2018 were collected from Engineering News-
Record (ENR) to develop the RNNs. The out-of-sample forecasting accuracies of the RNNs were 
validated using the ENR pipe and labor cost observations of 12 months in 2019. The results show 
that the RNNs consistently outperform the seasonal autoregressive integrated moving average 
(SARIMA) models, which are the most accurate univariate time series model in forecasting pipe 
and labor cost fluctuations. This research contributes to the pipeline construction community by 
assisting cost engineers and project managers in enhancing bidding, budgeting, and cost estimating 
for pipeline projects. 
 
INTRODUCTION  
 

Construction costs experience significant fluctuations over time and result in cost overruns in 
many construction projects (Shahandashti 2014). Cost fluctuations in construction materials are 
ranked as the first significant cause of cost overruns in large construction projects (Abdul Rahman 
et al. 2013). The longer and larger construction projects are more susceptible to cost fluctuations 
leading to cost overruns (Touran and Lopez 2006).  

Pipeline construction projects, which mostly require large-scale and long-term processes, are 
more prone to experience volatile cost fluctuations (Khodahemmati and Shahandashti 2020). Pipe 
and labor costs account for 71 percent of a total pipeline construction project cost (Rui et al. 2011). 
Pipe costs incur an average cost overrun of 5 percent, and labor costs incur an average cost overrun 
of 22 percent, which are greater than the other cost overrun rates, such as equipment costs (Rui et 
al. 2012). Therefore, it is critical to accurately forecast future costs of pipe material and labor for 
successful bidding and budgeting in pipeline construction projects.  

Quantitative methods have been implemented to forecast pipeline construction cost 
fluctuations. Rui et al. (2011) estimated pipeline construction costs, using regression models. Since 
regression models can misinterpret a spurious correlation between two independent variables, Kim 
et al. (2020) forecasted pipeline construction costs using univariate time series models. They found 
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that the seasonal autoregressive integrated moving average (SARIMA) models can most accurately 
predict the pipe and labor costs among the univariate time series models.  

Time series models are one of the most prevalent quantitative methods for forecasting 
construction costs. Hwang et al. (2012) forecasted construction material costs with ARIMA models. 
Ashuri and Lu (2010a) concluded that a SARIMA model provides the most accurate forecasts for 
the ENR construction cost index (CCI).  Multivariate time series models, such as vector error 
correction (VEC) models, have been used to forecast the fluctuations in the national highway 
construction cost index (NHCCI) and ENR CCI (Shahandashti and Ashuri 2016; Shahandashti and 
Ashuri 2013). Choi et al. (2020) predicted city-level construction cost index using ARIMA and 
VEC models. Time series methods have also approximated the fluctuations in construction 
spending and construction investments (Abediniangerabi et al. 2017, Ahmadi and Shahandashti 
2017). 

Despite the accurate forecasting abilities of time series models for construction costs, linear 
time series models, including ARIMA and SARIMA, often fail to forecast volatile fluctuations 
(Ashuri and Lu 2010b). Supervised machine learning algorithms can provide more accurate 
forecasts by capturing volatile fluctuations in the historical data, utilizing nonlinear activation 
functions (Bontempi and Flauder 2015). Shiha et al. (2020) forecasted construction material prices 
in Egypt with artificial neural networks. Cao et al. (2015) utilized neural networks to forecast 
Taiwan construction cost index.   

The forecasting accuracies of time series models and neural networks have been compared in 
the literature.  Lam and Oshodi (2016) found that neural networks outperform ARIMA in 
forecasting construction outputs of Hong Kong. Oshodi et al. (2017) reported that neural networks 
could more accurately forecast the tender price index than ARIMA. Cao and Ashuri (2020) 
concluded that RNN is more accurate in forecasting highway construction cost index than ARIMA. 
Even though forecasting volatile fluctuations in pipeline construction costs is necessary for 
accurate bidding, budgeting, and cost adjusting in pipeline projects, RNNs have not been used to 
forecast the pipeline construction cost fluctuations.  

The objective of this research is to develop recurrent neural networks (RNNs) to forecast 
pipeline construction costs. This research contributes to improving forecasting accuracies of 
pipeline construction cost by developing RNNs for forecasting pipe material and labor costs with 
higher accuracies.  
 
RESEARCH METHODS 
 

Figure 1 presents the research methodology to develop and validate RNNs. The first step 
is data collection. The monthly data of construction pipe material and labor costs published by 
ENR are collected from January 1995 to December 2019. The second step is forecasting 
model development. Statistical procedures are conducted to develop RNNs. The final step is the 
model validation. The forecasting accuracies of RNNs are evaluated based on three typical error 
measures: mean absolute percentage errors (MAPE), root mean squared errors (RMSE) and mean 
absolute errors (MAE). 

 
Data Collection 
 

Pipe and labor cost time series are published monthly by ENR. The ENR material and labor 
costs are the average costs of the line items in twenty U.S. cities. The ENR costs are widely used 
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as an average input price for contractors and cost engineers to prepare cost estimates, bids, and 
budgets in capital projects (Ashuri et al. 2012).  

 

 
 

Figure 1. Flowchart of the statistical procedures to develop and validate RNNs 
 

The ENR reinforced concrete pipe costs, corrugated steel pipe costs, common labor costs, and 
skilled labor costs are collected from January 1995 to December 2019. The collected datasets are 
split into training and testing datasets. The monthly time series from 1995 to 2018 are utilized as 
a training set to develop RNNs. Twelve monthly time series in 2019 are utilized as a testing set for 
one-year out-of-sample forecasting to evaluate the one-year short-term forecasting accuracies of 
the developed RNNs. 
 
RNN Model Development 
 

A recurrent neural network (RNN) is a feed-back neural network handling a variable-length 
sequence input with recurrent hidden layers (Chung et al. 2014). An RNN contains special hidden 
layers composed of recurrently connected neurons (Bandara et al. 2020). These recurrently 
connected neurons help the network to process the sequential information from inputs and learn 
long-term dependencies by allowing a memory of previous outputs to persist in the network’s 
internal state (Goodfellow et al. 2016). Since the recurrent connections between neurons in hidden 
layers reflect a temporal sequence, the RNN can explain the temporal dynamic behavior of time 
series (Ndikumana et al. 2018). The RNN for reinforced concrete pipe (RCP) costs is expressed 
by Equation (1). 
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at =g1(Waaat-1 + WaxRCPt + ba)                  
RCPt+1 = g2(Wayat +by)     (1) 

 
where t is the time step; at is the activation function at time t; RCPt is the reinforced concrete pipe 
cost at time t; Waa, Wax, Way, ba, and by are coefficients; g1 and g2 are activation functions.  
 

The RNN for corrugated steel pipe (CSP) costs is represented by Equation (2). 
 

at =g1(Waaat-1 + WaxCSPt + ba)                  
CSPt+1 = g2(Wayat +by)     (2) 

 
where t is the time step; at is the activation function at time t; CSPt is the corrugated steel pipe cost 
at time t; Waa, Wax, Way, ba, and by are coefficients; g1 and g2 are activation functions.  
 
Preprocessing the data 
 

An RNN is a supervised machine learning model that requires input and target values for model 
development. The collected ENR cost time series are lagged one-step to generate the input value 
at the time t-1 and a target value at time t. Then, the one-step lagged datasets are split into training 
and testing sets with preserving the order of observations. Two hundred twenty-eight observations 
(96 percent of the observations) are used for training the RNN, and twelve observations in 2019 
(4 percent of the observations) are separated for testing. 
 
Standardizing the data with min-max scaler 
 

Since an RNN is sensitive to the scale of input values, standardizing the data to the range of 0 
to 1 with a min-max scaler is needed before training an RNN. Standardizing the data with a min-
max scaler can improve the speed of model training (Jayalakshmi and Santhakumaran 2011).  
 
Training a simple RNN  
 

A simple RNN is developed and trained by using the training dataset from January 1995 to 
December 2018 to forecast the cost time series from January 2019 to December 2019. Sequential 
models with three dense layers are developed for each pipe and labor cost time series. Neurons in 
a dense layer receive inputs from the neurons in the previous dense layer. The number of neurons 
in dense layers can be arbitrary and experimentally selected (Brezak et al., 2012). The epoch 
parameter for the number of iterations is set to 100 to fit the model. The rectified linear unit (ReLu) 
is used as the activation function. Adam is used as the optimization algorithm to adapt the learning 
rate for each weight of the recurrent neural network. 
 
Model Validation 
 

The forecasting accuracies of RNNs are compared with the forecasting accuracies of SARIMA 
models based on the error measures: MAPE, RMSE, and MAE. These error measures are 
calculated by Equations (3), (4), and (5).  
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𝑀𝐴𝑃𝐸 (%) = ( 
1

𝑁
∑

|𝑌𝑡̂−𝑌𝑡|

𝑌𝑡

𝑁
𝑡=1 ) × 100    (3) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑡̂ − 𝑌𝑡)2𝑁

𝑡=1      (4) 

 
𝑀𝐴𝐸 =

1

𝑁
∑ |𝑌𝑡̂ − 𝑌𝑡|𝑁

𝑡=1      (5) 
 

where 𝑌𝑡̂ is the forecasted cost by forecasting model at time t, Yt is the actual cost observation at 
time t, and N is the total number of forecasted values. 

MAPE, RMSE, and MAE measure the forecast errors by comparing the forecasted values with 
the actual observations. MAPE, RMSE, and MAE have been widely used to evaluate the 
forecasting accuracies of the models for construction costs (Zhang et al. 2018; Shahandashti and 
Ashuri 2013).  

SARIMA models most accurately forecasted pipe material and labor costs among the 
univariate time series models (Kim et al. 2020). The SARIMA (p, d, q)(P, D, Q)S model for 
forecasting reinforced concrete pipe costs is represented by Equation (6).  
 

(1 − 𝐵)𝑑(1 − 𝐵𝑆)𝐷𝑅𝐶𝑃𝑡 =
𝜃(𝐵)𝛩(𝐵𝑆)

∅(𝐵)𝛷(𝐵𝑆)
𝑍𝑡 + 𝜇                                  (6) 

 
where B is the backshift operator; d is the differencing order; D is the seasonal differencing order; 
S is the period of seasonality;  𝜇  is the mean of time series; 𝜙(𝐵)  is the autoregressive (AR) 
operator for non-seasonal components (i.e., 𝜙(𝐵) = 1 − 𝜙1(𝐵1) − ⋯ − 𝜙𝑝(𝐵𝑝)); Φ(𝐵) is the AR 
operator for seasonal components (i.e., Φ(𝐵) = 1 − Φ1(𝐵1) − ⋯ − ΦP(𝐵𝑃)); 𝜃(𝐵) is the moving 
average (MA) operator for non-seasonal components (i.e., 𝜃(𝐵) = 1 +  𝜃1(𝐵1) + ⋯ +  𝜃𝑞(𝐵𝑞)); 
Θ(𝐵) is the MA operator for seasonal components (i.e., 𝛩(𝐵) = 1 + 𝛩1(𝐵1) + ⋯ + 𝛩𝑞(𝐵𝑞)); Zt is 
the white noise.  
 
EMPIRICAL RESULTS 
 
Forecasting Reinforced Concrete Pipe Costs 
 

A sequential RNN with three dense layers was developed for forecasting reinforced concrete 
pipe costs. The number of neurons of the RNN was set to ten in the first dense layer, seven in the 
second dense layer, and one in the last dense layer. Table 1 shows that the RNN has lower 
forecasting errors for the reinforced concrete pipe costs than the SARIMA model. Figure 2 
illustrates the out-of-sample forecasts of the RNN and the SARIMA model and the observed 
reinforced concrete pipe costs for twelve months in 2019. Figure 2 clearly shows that the RNN 
more accurately forecasts the volatile fluctuations of the reinforced concrete pipe cost time series 
than the SARIMA model. 

 
Table 1. Out-of-sample forecasting errors for the reinforced concrete pipe costs 

 
Model MAPE (%) RMSE MAE 
RNN 0.05 0.03 0.03 
SARIMA 0.4 0.36 0.24 
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Figure 2. Forecasts by the RNN and the SARIMA model and the observed reinforced 
concrete pipe costs 

 
Forecasting Corrugated Steel Pipe Costs 
 

An RNN with three dense layers was developed for forecasting corrugated steel pipe costs. 
The number of neurons of the RNN was set to twenty-four in the first dense layer, twelve in the 
second dense layer, and one in the last dense layer. Table 2 shows that the RNN has lower 
forecasting errors for the corrugated steel pipe costs than the SARIMA model. Figure 3 compares 
the out-of-sample forecasts of the RNN and the SARIMA model and the observed corrugated steel 
pipe costs for twelve months in 2019. Figure 3 demonstrates that the RNN can more accurately 
forecast the discrete jumps of the corrugated steel pipe costs than the SARIMA model. 
 

Table 2. Out-of-sample forecasting errors for corrugated steel pipe costs 
 

Model MAPE (%) RMSE MAE 
RNN 0.05 0.02 0.02 
SARIMA 0.26 0.11 0.11 

 
Forecasting Common Labor Costs 
 

An RNN with three dense layers was developed for forecasting common labor costs. The 
number of neurons of the RNN was set to twelve in the first dense layer, seven in the second dense 
layer, and one in the last dense layer. Table 3 shows that the RNN has lower forecasting errors for 
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the common labor costs than the SARIMA model. Figure 4 plots the out-of-sample forecasts of 
the RNN and the SARIMA model and the observed common labor costs for twelve months in 2019. 
Figure 4 demonstrates that the RNN more accurately forecasts the fluctuations as well as the trend 
of common labor costs than the SARIMA model.  
 

 
 

Figure 3. Forecasts by the RNN and the SARIMA model and the observed corrugated steel 
pipe costs 

 
Table 3. Out-of-sample forecasting errors for common labor costs 

 
Model  MAPE (%) RMSE MAE 
RNN  0.03 7.94 7.16 
SARIMA  0.48 129.83 114.32 

 
Forecasting Skilled Labor Costs 
 

An RNN with three dense layers was developed for forecasting skilled labor costs. The number 
of neurons of the RNN was set to twenty-four in the first dense layer, twelve in the second dense 
layer, and one in the last dense layer. Table 4 shows that the RNN outperforms the SARIMA model 
in forecasting skilled labor costs for twelve months in 2019. Figure 5 illustrates the out-of-sample 
forecasts of the RNN and the SARIMA model and the observed skilled labor costs for twelve 
months in 2019. Figure 5 shows that RNN more accurately forecasts the volatile fluctuations as 
well as the trend of skilled labor costs than the SARIMA model. 
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Figure 4. Forecasts by the RNN and the SARIMA model and the observed common labor 
costs 

 
Table 4. Out-of-sample forecasting errors for skilled labor costs 

 
Model MAPE (%) RMSE MAE 
RNN 0.09 9.02 9.02 
SARIMA 0.28 34.9 29.1 

 
Based on the out-of-sample forecasting accuracies, RNNs consistently outperform SARIMA 

models in forecasting pipe material and labor costs for twelve months in 2019. RNNs could more 
accurately predict the volatile fluctuations and discrete jumps in the pipe material and labor costs 
than SARIMA models. 
 
CONCLUSION 
 

ENR reports monthly costs of pipe and construction labor in the United States. These cost time 
series are subject to volatilities over time. These volatilities are problematic for cost estimation 
and can result in cost overruns in lengthy and large-scale pipeline projects. These volatilities can 
enlarge the differences between the budgeted cost and the actual cost of a project, especially if the 
pipeline project requires large amounts of construction resources over time. For example, the 
forecasting errors of ten cents per foot of the corrugated steel pipe costs can incur over 106 
thousand dollars of cost overruns in the twenty-mile pipeline project. Therefore, it is crucial to 
accurately forecast the cost fluctuations to prevent bid failure, cost overruns, or profit loss in 
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pipeline projects. It is certainly significant to improve accuracies of forecasting pipe material and 
labor costs, which account for 71 percent of the total cost in the U.S. pipeline projects on average. 
This research developed recurrent neural networks to forecast pipe material and labor costs and 
evaluated the forecasting accuracies of the recurrent neural networks based on mean absolute 
percentage errors (MAPEs), root-mean-squared errors (RMSEs), and mean absolute errors 
(MAEs).  

 

 

Figure 5. Forecasts by the RNN and the SARIMA model and the observed skilled labor 
costs 

 
The empirical results of the research showed that recurrent neural networks more accurately 

forecast the future values of pipe material and labor cost time series than seasonal autoregressive 
integrated moving average (SARIMA) models. Recurrent neural networks can approximate the 
volatile fluctuations and discrete jumps in pipe and labor cost time series with higher accuracy, 
utilizing nonlinear activation functions. Nonlinear activation functions provide recurrent neural 
networks with higher flexibility to forecast nonlinear patterns in the time series than the seasonal 
autoregressive integrated moving average (SARIMA) models, which are linear time series models.  

The findings of this research contribute to the state of knowledge by developing recurrent 
neural networks, which can more accurately forecast volatile fluctuations in pipe material and 
labor costs than seasonal autoregressive integrated moving average (SARIMA) models. Recurrent 
neural networks can be used for cost estimation and adjustments to prepare more accurate bids and 
budgets in pipeline projects as well as other construction projects. It is expected that the findings 
of this research assist cost engineers and project managers to enhance the accuracy of cost 
estimation in bidding, budgeting, and cost adjusting for future changes in lengthy and large-scale 
pipeline projects. 
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