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Quantum scattering calculations for all but low-dimensional systems at low energies must rely on approx-
imations. All approximations introduce errors. The impact of these errors is often difficult to assess because
they depend on the Hamiltonian parameters and the particular observable under study. Here, we illustrate
a general, system- and approximation-independent, approach to improve the accuracy of quantum dynamics
approximations. The method is based on a Bayesian machine learning (BML) algorithm that is trained by a
small number of exact results and a large number of approximate calculations, resulting in ML models that can
generalize exact quantum results to different dynamical processes. Thus, a ML model trained by a combination
of approximate and rigorous results for a certain inelastic transition can make accurate predictions for different
transitions without rigorous calculations. This opens the possibility of improving the accuracy of approximate
calculations for quantum transitions that are out of reach of exact scattering theory.
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Introduction. Quantum dynamics problems with time-
independent Hamiltonians are often solved by representing
the Hamiltonian eigenstates by a basis set expansion and
numerically integrating the resulting set of coupled equa-
tions [1–3]. As the complexity of quantum systems increases,
the number of coupled equations required to obtain accurate
solutions becomes prohibitively large. Therefore, quantum
dynamics calculations are often based on decoupling approx-
imations that reduce the problem to smaller, independent
sets of coupled equations. These approximations necessarily
introduce errors into the dynamical results. The impact of
these errors is often difficult to assess because they depend
on the Hamiltonian parameters and the particular observable
under study. In this Rapid Communication, we demonstrate a
general, system- and approximation-independent, method to
enhance the accuracy of the approximations. The approach is
based on Bayesian machine learning (BML) models that learn
correlations between the approximate and rigorous results
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for some dynamical processes and transfer this information
to correct the quantum dynamics approximations for other
processes.

We consider the inelastic scattering problem of two
diatomic molecules prepared in a wide range of internal quan-
tum states and undergoing collisions over a wide range of col-
lision energies. Accurate predictions of probabilities for such
collisions are required for applications in astrophysics [4],
planetary atmosphere models, the development of new
crossed-beam experiments for precision measurements [5],
cold chemistry [6,7], as well as the mechanistic understanding
of microscopic collision dynamics [8,9]. Rigorous quantum
calculations of inelastic molecule-molecule scattering must
be performed in six nuclear dimensions and account for all
couplings between the internal and translational motion states
of the molecules. The complexity of the problem can be
reduced by eliminating some of the angular momentum cou-
plings and/or freezing some degrees of freedom. We consider
an approximation that reduces the active configuration space
to five dimensions (5D) and neglects angular momentum
couplings giving rise to Coriolis interactions. We focus on
state-resolved inelastic transitions and demonstrate that ML
models trained by a combination of approximate and (a small
number of) rigorous results for some transitions can make
accurate predictions for different transitions without rigorous
calculations, with accuracy exceeding that of the approximate
calculations.
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Machine learning has been previously combined with
quantum calculations in order to solve problems in quan-
tum condensed-matter physics [10–12], quantum chem-
istry [13–19], and molecular dynamics [20,21]. These studies
can be classified into approaches based on artificial neu-
tral networks (NNs) and kernel-based methods, including
Bayesian ML using Gaussian processes (GPs) [22]. NNs
generally require a large number of input data to produce
accurate models. In the present Rapid Communication, our
goal is to build models of quantum dynamical observables
improved by a small number of rigorous calculations. Previ-
ous applications show that Bayesian ML based on GPs can
produce powerful, nonparametric prediction models based on
very sparse data [23–28]. This makes GPs ideally well suited
for Bayesian model calibration (BMC) [28,29], which aims
to compensate for the (unknown) deficiencies of a simulation
model in a flexible, nonparametric way. In the context of quan-
tum dynamics, BMC has been used to interpolate quantum
results by a ML model trained with a large number of classical
trajectory calculations [30] and to improve the predictions of
transition state theory for bimolecular chemical reactions [31].
BMC has also been used in quantum chemistry to enhance the
accuracy of potential energy calculations [32].

We consider state-resolved inelastic collisions between two
diatomic molecules in well-defined quantum states specified
by the vibrational (v) and rotational ( j) quantum numbers

A(v1, j1) + B(v2, j2) → A(v′
1, j

′
1) + B(v′

2, j
′
2), (1)

where the subscripts label the different molecules. Our goal is
to build a ML model of cross sections for such collisions. We
impose the following requirements on the model: The model
must be easy to evaluate; the model must be more accurate
than the results of the approximate dynamical calculations;
the model must be nonparametric to adapt to increasing in-
formation about the scattering process, which may reveal new
dynamical features, such as resonances; and the model must
require as few rigorous quantum calculations as possible.

Our ML models are based on GPs so we begin by a brief
description of a GP (see Refs. [22,28] for more details). The
purpose of a GP model is to make a prediction of some
quantity y at an arbitrary point x of a D-dimensional space,
given a finite number n of values y = (y1, . . . , yn)�, where yi
is the value of y at xi. In the absence of noise in yi, the goal
is to infer the function f (x) that interpolates yi ⇐ f (xi ). GPs
infer the conditional distribution over functions p( f |y). The
conditional mean of such distribution as a function of x∗ is
given by [22]

μ(x∗) = K (x∗, x)�
[
K (x, x) + σ 2

n I
]−1

y, (2)

where x∗ is a point in the input space where the prediction is
to be made, and K (x, x) is the n × n square matrix with the
elements Ki, j = k(xi, x j ). The function k(x′, x′′) represents
the covariance between the normal distributions of y at x′
and x′′.

The unknown parameters of this function are found by
maximizing the log marginal likelihood function,

log p(y|θ) = −1

2
y�K−1y − 1

2
log |K| − n

2
log(2π ), (3)

where θ denotes collectively the parameters of k and |K| is the
determinant of the matrix K . Given the k functions thus found,
Eq. (2) is a GP model.

Here, we propose to use two types of ML models based on
GPs. First, we define the ML model of a quantum dynamics
cross section as [29,30]

σML(x) = aF (x) + G(x), (4)

where F and G are independent GPs and a is a variable pa-
rameter. Here, F is designed to describe the x dependence of
approximate dynamical results and G(x) infers the difference
between the approximate and accurate calculations. This is
equivalent to �-learning algorithms that have been used for
quantum chemistry applications [33].

Second, we generalize the GP to a multioutput GP F(x) ⇒
[F1(x),F2(x)], with two outputs corresponding to the approx-
imate and exact results [34]. The covariance matrix K for such
a GP includes correlations between inputs x and x′, as well as
correlations between the outputs. The ML model of accurate
cross sections is given by

σML(x) = F2(x). (5)

Models (4) and (5) learn the correlations between the accurate
and approximate results in different ways. We will illustrate
different consequences of these two approaches.

To select the covariance functions k(x, x′) for the above
models, we use the algorithm from Refs. [23–25], which
builds up the covariance complexity using the Bayesian infor-
mation criterion. We find that models (4) perform accurately
already with a simple Matérn function of Ref. [25], while
models (5) require a more complex covariance represented
by a linear combination of a product of Matérn functions and
a radial basis function, as defined in Ref. [25]. The specific
details about the models are presented in the Supplemental
Material [35].

To build a general ML model σML, we define the input
variable space x as follows,

x = {Ec,�Eint,�Aint,�v1,� j1,�v2,� j2}, (6)

where Ec is the collision energy, �Eint is the change of
the internal energy of the molecules, �Aint is the change
of the angular momentum of the collision complex, �v =
v′ − v, and � j = j′ − j. This allows our models to classify
transitions by the corresponding quantum number gaps and
make predictions about cross sections for specific transitions
based on information about other transitions. For example,
we will illustrate that rigorous results for the v = 1, j = 0 →
v = 0, j = 2 transition could be used to make predictions
of cross sections for the v = 2, j = 0 → v = 1, j = 2 tran-
sition, without rigorous calculations.

We consider collisions of SiO and CO with para-H2.
Details of the potential energy surfaces and scattering cal-
culations have been reported previously [36–40]. For each
system, we perform six-dimensional close-coupling (6DCC)
and five-dimensional coupled-state (5DCS) calculations. We
use 6DCC and 5DCS calculations as “rigorous” and “ap-
proximate” results, respectively. To illustrate the generality
of our approach, we also modulate 5DCS calculations by a
random sinusoidal function and treat the resulting data as
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“approximate” cross sections for training ML models (see
more details below).

Cross sections at a given collision energy Ec are calculated
using the appropriate T matrix for the respective 6DCC and
5DCS formulations. For the 6DCC calculations, the T matrix
is diagonal with respect to the total angular momentum quan-
tum number J , defined by the vector relations �J = �l + �j12 and
�j12 = �j1 + �j2, where �l is the orbital angular momentum. For
the 5DCS calculations, the T matrix is independent of J and
diagonal with respect to m1 and m2, the projection quantum
numbers of �j1 and �j2. For the CS approximation, l ≡ J is
the average value of l between |J − j12| and J + j12. For the
internal energy of the molecules, we use

E (i)
int = w(i)

e (vi + 1/2) − w(i)
e x(i)

e (vi + 1/2)2 + Bvi ji( ji + 1),
(7)

A(i)
int = Bvi (2 ji + 1), (8)

Bvi = B(i)
e − a(i)

e (vi + 1/2), (9)

with coefficients given in Ref. [41].
We quantify the accuracy of our results by root-mean-

squared (rms) relative error

rms relative error =

√√√√√ 1

N

N∑
f

(
σ exact
i→ f − σ

approx
i→ f

σ exact
i→ f

)2

, (10)

where σ exact is the 6DCC result, σ approx corresponds to either
the 5DCS value or the ML prediction, and i/ f denote the
initial/final states.

Results. We begin by illustrating that ML can be used to
improve approximate results for rovibrational transitions, for
which accurate calculations are computationally challenging.
To do this, we consider a set of 21 transitions

(v1, j1, v2, j2) = (1, 0, 0, 0) −→ (v′
1, j

′
1, v

′
2, j

′
2)

= (0,X, 0, 0), (11)

where X = 0–20. For each of these transitions, we calculate
the 6DCC and 5DCS cross sections in the energy interval
between 1 and 1000 cm−1. Our goal is then to predict the cross
sections for different transitions,

(2, 0, 0, 0) → (1,X, 0, 0), (12)

without any further 6DCC calculations. We train our
model (4) by a combination of 6DCC and 5DCS cross
sections for the transitions (11) and 5DCS results for the
transitions (12). The model is then used to predict the cross
sections for the transitions (12). Figure 1 illustrates that the
accuracy of the ML predictions is 10%–30% better than of
the approximate results.

The trend observed in Fig. 1 is general. To illustrate
this, we consider transitions involving state changes of both
molecules and a different system. We use 6DCC to com-
pute the cross sections for the rovibrational transitions from
the initial state (v1, j1, v2, j2) = (1, 4, 0, 0) for SiO(v1, j1) +
H2(v2, j2) collisions. These cross sections are then used to
predict state-resolved cross sections for the (1,5,0,0) initial
state making transitions with nonzero values of �v1, � j1, and

FIG. 1. The rms relative error for rovibrational deexcitation of
CO due to collision with H2: squares, 5DCS; circles, ML results.
The ML model (4) is trained using the 5DCS and 6DCC results for
21 transitions (11) and only 5DCS for 21 transitions (12). No 6DCC
results for transitions (12) are used to train the model (4). The error
depicted is for 21 transitions (12).

� j2. Errors are shown in Fig. 2 for �v1 = −1 and � j2 = 2.
The upper panel shows the errors calculated for all 21 tran-
sitions to the final states (0,X = [0, 20], 0, 2), whereas the
lower panel illustrates the reduction of the error for ten tran-
sitions with the most significant ML improvement. We note
that the accuracy of the 5DCS calculations used for training
ML models in Figs. 1 and 2 is poor and that none of the ML
predictions in these figures used 6DCC computations for the
transitions shown. The accuracy of the ML predictions does
not depend on the accuracy of the approximation. Instead, it
is generally determined by correlations between the rigorous
and approximate results for the different transitions. When
these correlations are strong, the ML predictions can give very
accurate results. We illustrate this next by considering pure
rotational transitions (Fig. 3).

Figure 3 compares the performances of the ML models (4)
and (5) for predictions of the cross sections for pure rotational
relaxation of SiO molecules initially in state (v1 = 1, j1 = 5).
The ML models are built using the 6DCC cross sections for
rotational relaxation of SiO(v1 = 0, j1 = 5). These models
are then used to correct the 5DCS results for the relaxation
from the state (v1 = 1, j1 = 5). As can be seen, the ML cor-
rected results are in perfect agreement with the rigorous 6DCC
calculations, used here for testing purposes only. Note that
the CC calculations for the vibrationally ground state extend
only to the collision energy 103 cm−1. Figure 3 illustrates that
at energies above 103 cm−1, the ML model (4) recovers the
CS results, while the ML model (5) extrapolates the 6DCC
results.

To illustrate that the ML predictions do not rely on the
accuracy of the coupled-state calculations, we modulate the
5DCS results for the j = 5 → j′ = 0 transition in Fig. 3 by
a random sinusoidal function. This leads to the dotted curve
shown in the upper panel of Fig. 3. The symbols for the
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FIG. 2. The rms relative errors for rovibrational deexcitation of
SiO and simultaneous rotational excitation of H2. The curves corre-
spond to transitions from the initial state (v1, j1, v2, j2) = (1, 5, 0, 0)
to the final states (0,X, 0, 2), where X = 0–20. The black curves
connecting the squares are the errors of the 5DCS results, and the red
curves connecting the circles are the errors of the ML results. The
ML models (4) are trained by the cross sections for the transitions
(1, 4, 0, 0) → (0,X, 0, 2), where X = 0–20. The lower panel illus-
trates the error reduction for ten transitions with the most significant
ML improvement.

j = 5 → j′ = 0 transition in Fig. 3 (upper panel) are the
ML predictions using the dotted curve instead of the 5DCS
results as the training data. We emphasize again that solid
curves in Figure 3 have not been used for training the ML
models.

In summary, we have illustrated a general, system- and
approximation-independent, approach to improve the accu-
racy of quantum dynamics approximations. The method is
based on GP models that infer correlations between approx-
imate and rigorous results for some transitions and transfer
the learned information to other transitions. We have shown
that these correlations can be learned either by using an
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FIG. 3. Cross sections for purely rotational relaxation in colli-
sions of vibrationally (v1 = 1) and rotationally ( j1 = 5) excited SiO
with H2(v2 = 0, j2 = 0). The final rotational state of SiO is j′. The
solid curves are the 6DCC results, the dashed curves are the 5DCS
results, and the symbols are the ML results. The dotted line in the
upper panel represents the 5DCS results modulated by an arbitrary
sinusoidal function. Upper panel: Algorithm (4) for the ML models.
Lower panel: Algorithm (5). Note that the solid curves are not used
for training the ML models. The ML models are trained using the
6DCC results only for the rotationally inelastic transitions of SiO in
the ground vibrational state v1 = 0. There are no 6DCC results to
train the models at collision energies >103 cm−1.

approach analogous to � learning [33], with an independent
GP introduced to describe the difference between rigorous
and approximate results, or an approach using multioutput
GPs designed to learn correlations both between inputs and
between multiple outputs, simultaneously. We have shown
that the method based on multioutput GPs has the potential
to extrapolate accurate results to the range of Hamiltonian
parameters, where rigorous calculations are unfeasible. The
demonstrated transfer learning opens the possibility of mak-
ing accurate predictions for quantum transitions that are out
of reach of rigorous dynamics calculations.

Finally, we would like to comment on the stability of
the ML predictions presented here. We have demonstrated

032051-4



MACHINE LEARNING CORRECTED QUANTUM DYNAMICS … PHYSICAL REVIEW RESEARCH 2, 032051(R) (2020)

that the ML predictions do not rely on the accuracy of the
approximate calculations used for training the models. This
is a consequence of the present formulation that aims to
determine correlations between the approximate and rigor-
ous results. The ML predictions depend on the number of
rigorous calculations. However, because we are using the
Bayesian approach, the ML predictions can be converged
by gradually increasing the number of rigorous calculations.
The final error of the ML predictions is limited by the
generalization error but it must be smaller that the error of

the approximate calculations, unless different transitions are
completely uncorrelated. Correlations between different tran-
sitions, especially transitions with the same quantum number
gaps, must be present, as long as the dynamics of differ-
ent transitions are determined by the same potential energy
surface.
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