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Abstract: In the past few decades, we have witnessed tremendous advancements in biology,
life sciences and healthcare. These advancements are due in no small part to the big data made
available by various high-throughput technologies, the ever-advancing computing power, and the
algorithmic advancements in machine learning. Specifically, big data analytics such as statistical
and machine learning has become an essential tool in these rapidly developing fields. As a result,
the subject has drawn increased attention and many review papers have been published in just the
past few years on the subject. Different from all existing reviews, this work focuses on the application
of systems, engineering principles and techniques in addressing some of the common challenges
in big data analytics for biological, biomedical and healthcare applications. Specifically, this review
focuses on the following three key areas in biological big data analytics where systems engineering
principles and techniques have been playing important roles: the principle of parsimony in addressing
overfitting, the dynamic analysis of biological data, and the role of domain knowledge in biological
data analytics.

Keywords: biological big data; systems engineering; machine learning; feature engineering; overfitting;
dynamic analysis

1. Introduction

Massive quantities of data are being generated in biology, the life sciences and healthcare industries
and institutions, which hold the promise of advancing our understandings of various biological systems
and diseases, developing new biocatalysts and drugs, as well as delivering more affordable and effective
patient care. These massive data collected from high throughput instruments are often referred to
as “big data”, which are generally characterized by their 4V characteristics: Volume (size or scale),
Variety (multitype), Velocity (batch or streaming), and Veracity (uncertainty) [1,2]. Big data have
inspired revolutionary breakthroughs in a variety of fields and many journal special issues have been
published in the past a few years, such as “Scalable Computing for Big Data” in Big Data Research [3],
“Big Data Analytics for Business Intelligence” in Expert Systems with Applications [4], and “Big Data and
Natural Disasters” in Computers and Geosciences [5]. Driven by the needs, we have also witnessed rapid
development in programming languages and integrated development environments (IDEs) especially
suited for analyzing big data such as R and Python [6–8]. With the explosion in big data-related research,
there are also concerns about quality and integrity of the publications such as reproducibility [9–11] and
ethics [12]. To get a big picture of the research in the biological big data analytics field, we conducted a
search on the Web of Science using the exact phrase: “big data” and any of the following words or
phrases: biology, “life science”, healthcare, “health care”, biomedical, disease, and cancer. We also
added the additional language constraint of “English only”, document type constraint of “Article only”,
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and year constraint of “2010–2019”. The search returned 2913 records, which are shown as the vertical
bars in Figure 1. As can be seen from Figure 1, the big data analytics in biology, life science and
healthcare is really a new area, which, unsurprisingly, coincides with the emergence and rapid
advancements of high-throughput technologies such as next-generation sequencing (RNA-Seq). In the
past five years, the increase in publications is almost linear with the rate of 135 papers per year,
indicating fast growing of the field. The number of citing articles increases even faster as indicated
by the line chart in Figure 1, suggesting strong and growing influence of the topic. It is worth noting
that these numbers are conservative as not all articles on the subject have used the phrase “big data”.
Nevertheless, the numbers do provide a glimpse of the field and capture its general upward trend.
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Given the fast-growing nature of the field, many review papers have been published in just the
past few years. For example, there are many broad overview of big data analytics in the fields of
biology, biomedical, and healthcare, such as what are the big data, where are the big data sources in
the relevant field, what are the characteristics of these big data (e.g., volume, velocity, variety and
veracity or 4V’s of big data), and broad discussions on where or what are the opportunities and
potential challenges, and future trends or perspectives [13–18]. There are also reviews in more specific
areas, such as data sources and databases [19,20], data fusion and integration [21–23], data mining
and machine algorithms [24–27], deep learning [28–30], imaging informatics [31], high-performance
computing platforms [32,33], cloud and parallel bioinformatics tools [34,35], security, privacy and
ethics [12,36]. Most technical reviews compare different methods and discuss their pros and cons.
They also point to available commercial or open source techniques or tools such as R packages and/or
Python libraries.

Different from all existing reviews, this work focuses on the application of systems engineering
principles and techniques in addressing some of the important challenges in big data analytics for
biological, biomedical and healthcare applications. A particular focus is given to research from the
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systems engineering community in the chemical engineering field and others. Specifically, the following
subjects are reviewed: the principle of parsimony in addressing overfitting, the advancement of dynamic
modeling and analysis, and the domain knowledge-guided data analytics. In this work, we use (data)
points, measurements and samples interchangeably, while variables and features are interchangeable
unless explicitly stated otherwise. In addition, strictly speaking, there are distinctions between statistical
learning and machine learning. In general, for statistical learning, a certain sample distribution is
assumed, while for machine learning, data distribution is usually not assumed to be known or to
follow certain form. However, for ease of reading, these distinctions are largely ignored in this work.

2. Principle of Parsimony in Addressing Overfitting

The principle of parsimony or principle of simplicity, a.k.a. Occam’s razor, is one of the fundamental
systems engineering principles. It suggests that one should choose the simplest explanation of
a phenomenon (i.e., a model), which requires the fewest assumptions and/or fewest parameters.
This principle directly leads to the concept of avoiding overfitting in data-based modeling. In other
words, overfitting is the use of models or procedures that violate parsimony. Specifically, overfitting is
the use of models that include more terms than are necessary or the use of more complicated models
or approaches than are necessary [37]. There are two types of overfitting. One is the use of a model
that is more flexible than it needs to be. For example, a neural net instead of a linear regression is used
when the data set conforms to a linear model. The other is the use of a model that includes irrelevant
components. For example, a polynomial of excessive degree or a multiple linear regression containing
irrelevant predictors. Overfitting is undesirable for a number of reasons, including worse predictions
on new data, identifying the wrong target in drug discovery, wasting resources on measuring irrelevant
variables, and reducing model portability [37].

Overfitting can occur in all data analytics or modeling applications, either statistical learning
where certain sample distribution is assumed or general machine learning where data distribution
are not assumed to be known or to follow certain form. In this work, we focus on the following
applications: classification (e.g., given measurements, to assign classes such as normal/control group
and disease/patient group), modeling (e.g., linear or nonlinear regression/prediction, metabolic network
modeling, etc.), and biomarker identification (e.g., given classes/regressands, to identify important
biomarkers/regressors, etc.). In the following, we first review methods that enable us to check for
overfitting, then we review methods to reduce the risk of overfitting.

2.1. Checking for Overfitting

There are direct and indirect ways that can be employed to check for overfitting. In the direct way,
overfitting is not viewed as an absolute measure but involves a comparison. For example, one model
is an overfit if its predictions are no better than those of another simpler model [37]. Besides directly
comparing predictions from models of different complexity to detect overfitting, there are indirect
indications of overfitting even with a single model. In this case, the most commonly deployed strategies
are different forms of cross-validation, including leave-one-out (LOO), multi-fold cross-validation, and
Monte Carlo cross-validation [37–40]. No matter which form of cross-validation is used, the procedure
reuses the training samples as validation samples. Because of that, cross-validation is also known
as internal validation [39]. This is not a serious issue if model hyperparameters (e.g., number of
principal components (PCs) in a partial least squares (PLS) model, regularization parameter in a
Lasso regression, number of neurons in each layer of a neural network model) are not optimized
or determined through cross-validation. In other words, the validation samples have no influence
on model building in any way. This is the case for some traditional machine learning algorithms
where there is no model hyperparameter, such as multiple linear regression and linear discriminant
analysis. However, in most modern machine learning algorithms, there are model hyperparameters
that need to be determined or optimized. This is often carried out during the cross-validation step
in most studies. In these cases, cross-validation is actually part of the model calibration or tuning,
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making it a poor method for verifying the fit of a model. Or perhaps cross-validation is a misnomer
that is incorrectly used in this situation and a better term is hyperparameter tuning or optimization
as part of the model training. In these cases, having independent test samples that are held out
throughout the validation process is essential to get a fair evaluation of a model predictive capability.
In addition, this independent test set needs to be large to be trustworthy. A small test set is not
reliable because it leaves room for chance (e.g., a particular test set containing an extreme sample
or outlier). However, having a large independent test set is a luxury that may not be available in
some applications. In these cases, we recommend Monte Carlo validation and testing (MCVT) that
we proposed recently [41]. MCVT randomly select training samples, validation samples (or more
properly, tuning samples for optimizing model hyperparameters), and set-aside test samples from
all samples. In MCVT, model parameters (e.g., coefficients of a PLS model or weights of a neural
net) are determined based on the training samples with model hyperparameters (e.g., number of PCs,
regularization parameters, number of neurons, etc.) tuned using the tuning (cross-validation) samples,
while the model performance is assessed using the test samples. We recommend using the mean and
standard deviations of normalized root-mean-square error (NRMSE) of the predictions on the test
samples from all MCs to evaluate the accuracy and precision of the model, respectively. Due to the
multiple MC runs, the assessment bias due to a particular division of training, validation and testing
samples can be eliminated. If the mean and/or standard deviation of the normalized RMSE from
training or validation set is much smaller than those of the test set, it suggests high model flexibility
and is a warning sign of overfitting.

2.2. Reducing or Avoiding Overfitting

As shown in Figure 2, there are three ways to reduce the risk of overfitting: (1) reducing feature space
through feature selection or reduction, and feature combination or extraction; (2) reducing parameter
space by selecting a model with a small number of parameters, imposing regularization on model
parameters, or removing/fixing non-identifiable or insensitive model parameters; and (3) increasing
sample space through data augmentation, oversampling, or upsampling. These strategies are not
mutually exclusive and can be used in any combination when possible to obtain the maximum benefit.
In the following we review some representative studies that have employed these strategies.
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2.2.1. Reducing Feature Space

Feature Selection or Reduction

When dealing with high dimensional data, especially when the features are highly correlated,
the most common strategy to reduce overfitting is through explicit feature selection or reduction.
Eliminating irrelevant features also improves model interpretability. In certain settings, such as
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bioinformatics, biomarker discovery, or disease detection, determining the most descriptive features
for the system under study in order to gain insights and a greater understanding is at least as important
as obtaining a high performance model [42]. In this strategy, the most informative features are selected
or retained to be included in the model, while the redundant or less informative features are eliminated.
There are many feature selection methods proposed in the literature. For more comprehensive
discussions on various feature selection techniques, the interested readers are referred to some review
papers on the subject [43–51]. Here we only review a few examples used in the biological data analysis.
Yang et al. [52] proposed a consensus feature elimination (CFE) approach where 100 MC runs were
performed to generate 5-fold random splits of samples. A total of 500 classifiers were constructed based
on the random splits with their AUCs (Area Under Receiver Operating Characteristic Curves) and
weights of the features. Each feature is then ranked by its average square weight. The lowest ranking
feature was removed backward until the maximum average AUC was achieved. The procedure is
repeated 100 times, and the most frequently occurring feature set was regarded to be the ultimate
feature set. The authors used CFE to identify genes directly correspond to breast cancer metastasis
(i.e., the “driver” genes) using three breast cancer datasets. The biomarkers identified by the proposed
method exhibited 10-fold higher reproducibility than other methods, with up to 30-fold greater
enrichment for known cancer-related genes, and 4-fold enrichment for known breast cancer susceptible
genes. Guzman et al. [53] proposed a mixed-integer linear programming (MILP) based approach where
feature selection was formulated as an optimization problem. The proposed method is applied to
an untargeted, high-throughput proteomics data of gingival crevicular fluid samples collected from
patients after treatment of chronic periodontitis. Dean et al. [54] used p-value, q-value and fold-change
to select potential biomarkers based on multiple classification methods. The approach was used to
reduce over one million initial features (from multi-omics data including genomics, transcriptomics,
proteomics, methylomics, lipidomics and metabolomics) down to 343 candidate biomarkers and later
down to a final 28 biomarker panel. Lee et al. [55] used least absolute shrinkage and selection operator
(Lasso) to select 20 features out of a total of 324 features in an electroencephalography (EEG) dataset.
The selected features were then used to build a logistic regression (LR) model for detecting drivers’
anxiety invoked by driving situations. In addition to pure data-driven feature selection approaches,
domain knowledge can also be utilized to help with feature selection to avoid overfitting. For example,
in developing a multiple linear regression model to identify significant parameters to be included for
the estimation of lipid induction in Chlorella sorokiniana HS1, Oh et al. [56] used domain knowledge to
identify highly correlated variables such as chlorophyll and carotenoid, then selected representative
variables before developing the model.

Feature Combination or Extraction

Besides feature selection, feature combination or feature extraction has also been used to reduce
the dimension of a feature space. Under this category, principal component analysis (PCA) has been
the most popular method due to its theoretical simplicity and computational efficiency. For example,
in [57], PCA was used to extract 80 principal components (PCs) from a protein dataset of 260 features.
The PCs were then used as the input to a neural network model, which achieved superior protein
secondary structure prediction performance compared to when the raw data were used as the input.
In another study, a sparse PCA (SPCA) was proposed to select combinations of miRNAs in the blood
that discriminate between healthy controls and diseases [58]. Compared to regular PCA, which employs
all original features to construct a new, lower dimensional feature space, SPCA aims to construct
lower dimensional features by a smaller number of the original features. In other words, SPCA is
a feature extraction method that integrates feature selection and feature combination. PCA and its
variants have also been applied for feature combination/extraction in autism spectrum disorder (ASD)
biomarker discovery using folate-dependent one-carbon metabolism (FOCM) and transsulfuration
(TS) metabolites [59] and urinary toxic metals [60], in silico drug discovery for posttraumatic stress
disorder-mediated heart disease [61], diagnosis of valvular heart diseases using the Doppler heart
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sounds [62], single-cell gene expression analysis [63], antimicrobial resistance analysis of clinical
pathogens [64], and diagnosis of bioprocess cell growth [65]. Besides feature combination/extraction,
PCA has also been used to handle missing features [66]. For more applications of PCA and other
feature combination/extraction techniques, the interested readers are referred to some review papers
on the subject [67–70].

2.2.2. Reducing Parameter Space

Because of the direct relationship between features and their corresponding parameters,
reduction in one leads to reduction in the other. In the previous section, we discussed developing
parsimonious models through reducing feature space. In this section, we review studies where
parsimonious models are developed by reducing parameter space. This can be achieved by selecting a
model (structure) with a small number of parameters, imposing a regularization on model parameters,
or parameter identifiability analysis and sensitivity analysis to identify and eliminate non-identifiable,
poorly identifiable, and insensitive model parameters.

Selecting a Model with a Small Number of Parameters

To avoid overfitting by reducing parameter space, an intuitive approach is to select a model
with a small number of parameters. The reduced-order model can be a simplified mechanistic
model based on domain knowledge, or a data-driven model capturing major relationships that have
been revealed in previous studies. For example, in [71], a linear model was selected to capture the
insulin–glucose and carbohydrate–glucose relationships. The linear model ignores the high order
non-linear relationships such as the effect of physiological exercise, stress, and hormonal variations
on the subcutaneous glucose level. However, the advantage of using this parsimonious model is that
it is more robust and also easily identifiable in clinical practice [71]. In another example, a simpler
but more robust version of the metabolic network models was chosen to address the limited number
of points or measurements [72]. Grivas et al. [73] also noted the importance of reducing model
complexity by selecting models with fewer parameters, especially in clinical studies where participant
recruitment is an obstacle or when data collection has already concluded. An extension to this idea is
to determine or estimate some model parameters using literature data. For example, in [74], to avoid
overfitting of an integrated posttraumatic stress disorder (PTSD) model, a key model parameter
was estimated based on data reported in the literature to reduce the number of parameters to be
estimated using their own data. There are methods proposed for systematic simplification of general
dynamic models to obtain reduced-order mechanistic models. For instance, Bastin and Dochain [75]
studied online estimation and adaptive control of bioreactors extensively. They have shown that
although a bioreactor dynamic model can be fairly complex involving a large number of differential
equations, a simplified reduced-order model is often sufficient for many practical applications from
an engineering viewpoint. They demonstrated the application of singular perturbation technique to
transform differential equations into algebraic equations when the dynamics of certain reactions or
processes can be neglected. The readers interested in more thorough discussion on model reduction
for biological systems are referred to a recent review paper [76].

Regularization

Regularization is another strategy for developing parsimonious models. Instead of selecting a
known model with a small number of parameters, this strategy starts with a full parameter space
(and hence full feature space) with one or multiple regularization term(s) imposed on the parameter
space. To illustrate the concept, we adopt the approach taken in [77] where learning is viewed as a
multivariate function approximation. The goal is to minimize the following function based on a set of

N observations
{(

xi, yi

)}N

i=1
obtained by random sampling of a function f :
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H[ f ] =
N∑

i=1

(
f (xi) − yi

)2
+ λφ[ f ] (1)

where λ is a positive number known as the regularization parameter. The first term in Equation (1)
enforces closeness to the data, and the second smoothness. The regularization parameter λ controls
the tradeoff between these two terms [77]. For example, in multiple linear regression, the
regularization imposed on the regression model parameters βi(i = 1 · · · p) is defined as λ

∑p
i=1

∣∣∣βi
∣∣∣

for L1 regularization (a.k.a. Lasso regression), λ
∑p

i=1 β
2
i for L2 regularization (a.k.a. ridge regression),

and λ1
∑p

i=1

∣∣∣βi
∣∣∣+ λ2

∑p
i=1 β

2
i for elastic net regularization, respectively. The regularization parameter(s)

λi are hyperparameters determined through cross-validation as discussed in Section 2.1. There are
many examples where regularization is utilized to avoid overfitting. For example, an expectation
maximization sparse discriminant analysis (EM-SDA) was proposed in [66] to produce a sparse LDA
model for classification of high-dimensional biological datasets, where a regularization penalty term was
included in SDA to ensure sparsity and therefore to avoid overfitting. It has long been recognized that
in the cases where statistical methods have failed to give a robust solution, neural networks can suffer
from the same issues such as collinearity and overfitting [78]. As a result, regularization has also been
commonly used in deep learning to address overfitting where the objective function to be minimized
often includes a loss function that penalizes the prediction error, and a regularization function that
penalizes model complexity. These applications can be found in many references [42,65,73,79–81].
A more detailed discussion on various regularization techniques employed in the literature can be
found in [82].

Model Parameter Identifiability Analysis and Sensitivity Analysis

Mathematical modeling of biological systems often starts with a large model whose parameters
are tuned to fit experimental data. As a result, a model can be over-parameterized with
non-identifiable or poorly identifiable model parameters. The values of these non-identifiable
or poorly identifiable parameters cannot be uniquely and/or reliably determined based on
the available data. The possible reasons include redundancy and/or interdependence among
parameters (i.e., structural non-identifiability), as well as limited data and/or poor data quality
(i.e., practical non-identifiability) [83–85]. Therefore, it is desirable to detect these non-identifiable
parameters so that a parsimonious model can be derived.

Generally speaking, model parameter identifiability analysis quantifies how accurate the value
of a model parameter can be determined by the experimental data. There are several approaches
for performing model parameter identifiability analysis, such as power series approach [86,87],
similarity transformation [88], and differential algebraic methods [89]. A more comprehensive review
of these methods can be found in [83]. In this work, we focus on a data-driven approach introduced by
Raue et al. [83], in which prior knowledge is not required, although it can be incorporated if available.

Let x(t) denote the internal states and y(t) the observed outputs of a biological system whose
behaviors are described by the following ordinary differential equations (ODEs)

.
x(t) = g(x(t), u(t), p) (2)

.
y(t) = h(x(t), s) + ε(t) (3)

where g and h are functions describing the interactions among the states, and between the states and
outputs, respectively. u(t) denotes system inputs/stimuli, ε(t) measurement noise, p and s parameters
of functions g and h, respectively. The model is fully specified with the parameter set

θ =
{
p, S, x(0)

}
(4)

where x(0) denotes the initial states.
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The confidence interval of a parameter estimate θ̂i can be estimated asymptotically or based
on maximum likelihood estimation [83,90]. In the case of finite number of samples, it has been
suggested that likelihood-based confidence intervals are more appropriate than asymptotic confidence
intervals [83,91]. A parameter θi is identifiable if the confidence interval of its estimate θ̂i is finite.
Based on this idea, Raue and co-workers have developed an approach based on profile likelihood [83],
and a model reduction procedure that iteratively eliminates non-identifiable parameters [84].

It is also possible that a model parameter has limited influence on measured outputs. In this case,
the model parameter is poorly identifiable because the system outputs are insensitive to the uncertainty
of its estimated value. Sensitivity analysis can be applied to detect insensitive parameters and their
values can then be fixed to nominal values based on literature and related processes or steps may be
simplified or eliminated to obtain a parsimonious model [92]. Sensitivity analysis can be applied on
either inputs u(t) or parameters θ for different purposes. For model reduction, sensitivity analysis is
performed with respect to parameters, which is also known as parametric sensitivity. There are two
types of parametric sensitivity: local and global sensitivity. Local sensitivity calculates the following
partial derivative around the nominal values of θ:

Si(t) =
∂y(t)
∂θi

= lim
∆θi→0

y(t,θi + ∆θi) − y(t,θi)

∆θi
(5)

while keeping θ j( j , i) at their nominal values. Local sensitivities can be viewed as the gradients
around the nominal θ. Global sensitivity takes into account the range and/or statistical properties
of the parameter uncertainty, and calculate an average,

〈
∂y(t)/(∂θi)

〉
, over the region of parameter

uncertainty. As noted in [93], local sensitivities provide more details with less computation, while global
sensitivities are better at handling large variations in θ. The choice depends on the system characteristics
and parameters under consideration. Thorough treatments of parameter sensitivity analysis and its
application to systems biology and chemical kinetics models can be found in [92–94].

2.2.3. Increasing Sample Space

To reduce overfitting, previously we discussed strategies of reducing parameter space directly by
selecting a simpler model with fewer parameters or imposing regularization on model parameters,
or indirectly by reducing feature space (i.e., feature selection or combination). An alternative or
complementary approach is to artificially increase the sample space (i.e., the number of samples)
through so-called data augmentation. This sample space solution to overfitting is the process of
supplementing a dataset with similar data that is created from the information in that dataset [95].
When implemented properly, this technique is very effective in coping with small datasets and/or
limited labeled samples. The use of augmentation in deep learning is ubiquitous because of its
heavy reliance on big data to avoid overfitting. This is especially true when dealing with images,
where rotation, translation, blurring and other modifications to existing images are often used to
generate augmented images for reducing overfitting [96]. For example, to facilitate feedforward
control in artificial pancreas systems, Chakrabarty et al. [79] proposed a deep-learning-assisted
macronutrient estimation technique to automatically estimate the macronutrient content via real-time
image recognition. Image augmentation was performed in order to reduce overfitting of a deep
convolutional neural network (CNN) model. Specifically, the augmentation was implemented by
translating image pixels by up to 20% of their respective heights and widths, flipping images
horizontally, shifting color channels by up to 30%, and zooming out by up to 20%. Frid-Adar et al. [97]
proposed a data augmentation method using generative adversarial networks (GANs) to generate
synthetic computed tomography (CT) images of liver lesions. The classification performance with
the data augmentation showed significantly improved sensitivity and specificity. It is worth noting
that image augmentation through rotation, translation and other modifications is a straightforward
and very effective way to enlarge sample space. However, data augmentation beyond the field of
image classification/recognition has drawn limited attention. This is partially due to the fact that the
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implantation of data augmentation to other datasets, such as omics data, is not that straightforward
and further investigation is needed to study any unexpected side effects that data augmentation may
introduce to the modeling and analysis of these datasets. There is a hope, though, in the case of dynamic
data (a.k.a. time-series or time-course data) where limited measurements over time are smoothed and
fitted by a linear, spline or polynomial function, and more frequent data points can be obtained from
the fitted line or curve to increase temporal resolution [98,99].

2.3. Summary and Discussion

When applying the principle of parsimony to address overfitting, special attentions have been
paid to high flexibility models such as nonlinear, kernel, or neural nets based modeling approaches.
For example, in [100] when performing classification to differentiate individuals with autism spectrum
disorder (ASD) from typically developing peers, both a linear/Fisher discriminant analysis (LDA or FDA)
and nonlinear kernel-based FDA (KFDA) classifiers were tested on plasma amino acid measurements.
Considering that KFDA is significantly more prone to model overfitting, the authors used only
combinations of up to five plasma amino acids for KFDA. In other words, variable sets containing
more than five plasma amino acids were not considered. Similar approaches have been used in [59,60].
In addition, most studies reviewed in this work used independent test samples to check for overfitting.
By reserving a subset of data for model prediction, the procedure provides a statistically independent
assessment of model performance. However, the size of the test set used in some studies are small,
which could subject their results to chance of extreme samples, outliers or other data artifacts.

3. Dynamic Analysis of Biological Data

The field of control and systems has been connected to biological systems and biotechnology
for many decades, such as Norbert Wiener on cybernetics in 1965, Walter Cannon on homeostasis
in 1929, and Claude Bernard on the milieu interieur in 1865 [101]. This connection has led to the
recent birth and blossom of systems biology, where systems engineering principles have been
instrumental and PSE community have been an integral component of this interdisciplinary field.
However, the focus of this review is on how modeling or analyzing dynamic biological data can extract
more meaningful information compared to studying steady state alone. For the broad systems biology
field, interested reads are referred to some excellent papers discussing how the principles of dynamics
and control have been contributing to the field [102–107].

In recent years, high-throughput technologies enabled the large-scale analysis of many of the
cellular components. These various ‘-omes’ are inventories or descriptive lists of (isolated) parts
or components, and the enormous quantity of data generated by the -omics disciplines represents
a ‘snapshot’ or static description of the investigated system [108]. For example, RNA-seq-based
transcriptome profiling has been used to enhance the understanding of the genome-scale response of
the organism to different stimuli. While these studies have provided insightful findings, they are most
often limited to studying one or few steady-state conditions. For example, by comparing the whole
gene expression profiles at two steady states, one can identify the key genes that show large changes in
gene expression levels and postulate possible gene regulatory mechanisms. However, such steady state
comparison completely misses the genes that only show differential expression during the transition
between the two steady states, therefore missing important insights on the regulatory mechanism of
cellular metabolism [109,110]. Similarly, physiological measurements for biomarkers are usually just
collected at one point in time or at most a few selected time points during a medical intervention [111].
In these cases, biomarker measurements taken at specific time points, such as “before” and “after,”
are commonly used to evaluate the effects of treatment. As a result, models used as biomarkers are
generally time-invariant and depict a steady-state system [73].

Recently, we started to see some change in the field, especially with more participation from
the systems engineering community. For example, it has been recognized that cellular systems are
networks of interacting components that change with time in response to external and internal
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events. Several early publications have demonstrated that the pairing of the systematic application of
experimental perturbations with high-throughput data collection methods and the observation of the
temporal changes as the consequence of the perturbations can provide systematic insights [112–115].
Therefore, to reveal the dynamic behavior of these networks, and hence their functionalities, it is
important to record many snapshots at different time points. It is now recognized that quantitative
time-series data can lead to more meaningful models to improve our knowledge of human physiology
in health and disease, and aid the search for earlier diagnoses, better therapies and a healthier life [108].
From a control perspective, it makes perfect sense because cellular metabolism is a highly complex
dynamic system. As illustrated in Figure 3, the transient response trajectory could offer significantly
more information on the system dynamics, especially the internal control mechanism, such as the
accumulation or depletion of a compound, oscillations, switches (on/off)and delays [108]. On the
other hand, it is impossible to reveal the transient behavior if only the two (e.g., “before” and “after”)
steady state data points were recorded and analyzed. Therefore, studying the dynamic behavior of
these networks ought to be the basis for understanding cellular functions and disease mechanisms.
Since gene regulatory networks, metabolic networks, and signal transduction networks are some of
the most important cellular networks in biological systems, in this work we review the progress made
towards dynamic analysis of these networks.
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3.1. Dynamic Analysis of Genomics Data

In the following, we first use a specific example to illustrate the point discussed at the beginning
of this section. Then we review similar work that has been carried out recently in advancing dynamic
analysis of gene regulatory networks. We recently investigated key gene regulatory mechanisms that
Scheffersomyces stipitis (an important yeast in biorenewables) utilizes to cope with oxygen limitation
during a transition from aerobic growth to oxygen-limited fermentation. Guided by the principles
discussed above, we designed experiments to obtain its transcriptomic profiles during the transition
from aerobic growth to oxygen-limited fermentation, and analyzed the dynamic transcriptomic data to
gain better understanding on its cellular metabolism. Two samples were collected during a controlled
chemostat of aerobic growth. Eighteen samples were collected at 10-minute intervals for three hours
during the transition period. Two samples were collected at the new, oxygen-limited steady state.
Biomass was maintained at a relatively constant level by adjusting dilution rate in order to keep the
cellular properties comparable across different conditions [116]. The experiment was repeated four
times. Therefore, 22 cell samples were collected for each experiment, resulting in 88 samples.

Here, we present several key findings from the study. More details on the experiments, data collection,
data pre-processing, and data analyses can be found in [110]. First, we performed principal component
analysis (PCA) to analyze the transcripts per million (TPM) value for all 88 samples (22 samples per
trial). The first two principal components (PCs) captured about 80% of variation amongst all 88 samples,
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indicating highly correlated responses among all genes. The scatter plots of these first 2 PC scores are
plotted in Figure 4. The circles and stars indicate the initial aerobic and final oxygen-limited steady
states (SS), respectively, while the triangles indicate the transition states. Figure 4 clearly shows that,
despite the fact that the four trials follow a somewhat different trajectory from each other, their aerobic
and oxygen-limited steady states are clustered closely together, indicating similar initial and final states
of the dynamic transition process. The different transient trajectories of the four trials is likely due to the
following reason: (1) the four trials are not truly biological replicates starting with the same inoculum;
(2) similar but not exactly the same conditions across trials (e.g., cell density, dilution rate), and (3)
stochastic nature of gene regulatory events. One important observation of Figure 4 is that, compared
to the overall gene expression difference between the two steady states, the transient states of the gene
expressions show significantly higher variations. The observation suggests that if only the two steady
states were considered, key information on regulatory mechanism that govern the transition between
the two steady states could be missed. This is illustrated by the time-series plots of the TPM of two
genes PICST 66442 (Figure 5a) and PICST 76518 (Figure 5b). Figure 5a shows the gene PICST 66442
was significantly down-regulated during the transition, then returns to a final expression level not far
from its initial level. Despite the variations among trials, the overall trends are consistent across trials.
Similarly, Figure 5b shows the gene PICST 76518 was significantly upregulated during the initial stage
of the transition right after the disturbance was introduced, then gradually returns to a final expression
level very close to its initial level. Again, despite the variations among trials, the overall trends are
consistent across trials. If only the steady state expression levels were measured and fold change were
used to detect differentially expressed genes, both genes would have been missed. Further analysis
shows that more than half of the differentially expressed genes show changes during the transition
period only [110]. If experiments and analysis were performed on the two steady states only, these
genes would be completely missed, and any gene regulatory mechanisms derived from this incomplete
gene list would surely be an incorrect or incomplete picture of the true regulation. Even for the genes
that show differential expression at the new steady state, many of them experienced much larger
or reverse changes during the transient states compared to the new steady state. Again, if only the
transcriptome profiles at the two steady states were compared, important information would have
been missed. Finally, by integrating the analysis results obtained from dynamic transcriptomic data
and the cultivation data with genome-scale modelling [117], we were able to identify potential short-
and long-term strategies that the cells utilize to cope with oxygen limitation. More details can be
found in [109,110,117].

This study highlights the importance of studying the dynamic transient response of RNA-Seq data
in order to understand the global response triggered by the perturbation and potential gene-regulatory
mechanism. While the new steady state represents the new phenotype expressed by the cells, it is likely
a direct result of the path taken during the transition period. In other words, the genes differentially
expressed during the transition period, can have significant influence on the final steady state. Therefore,
it is of significant interest to identify the key genes affected during the transition period and discover
their roles in regulating the final steady state phenotype. Our study also showed that for the genes that
dominate the transition period, most of them returned to the proximity of the initial steady state (i.e.,
aerobic growth), and such recovery is not growth associated. The closely related initial and final steady
states suggest that the steady state gene expression profile might be a highly conserved optimal state
which could enable cell’s fast response to different disturbances, analogous to the ready position of
many sports such as tennis and baseball [110].

There are other examples that highlight the importance of dynamic analysis of gene expression
data. For example, McDowell et al. [118] proposed an infinite Gaussian process mixture model
for clustering gene expression time-series data. Using time-series microarray gene expression data,
Cheng et al. [119] evaluated various machine learning techniques, including logistic regression (LR),
random forest (RF) and support vector machine (SVM), to predict cell cycle-regulated genes in
budding yeast. Bar-Joseph et al. [120] reviewed some early work concerning the basic experimental
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considerations and computational methods for representing, clustering and classifying time-series gene
expression data. Other applications of dynamic gene expression data analysis have enabled insights
into cell response to environmental stress [121], peripheral circadian gene regulation in mouse liver
and heart [122], and genes periodically expressed in tumors [123]. As experimental and computational
challenges being adequately addressed, generating and analyzing time-series expression data has
become one of the most fundamental methods for understanding a variety of biological processes.
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Figure 4. Score plot of TPM values of all four trials. Circles and stars denote initial (i.e., aerobic) and final
(i.e., oxygen-limited) steady states (SS), respectively; triangles denote transition states. Samples in total.
These samples were analyzed using Illumina Next-Generation Sequencing (Illumina Inc., San Diego,
CA, USA).
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3.2. Dynamic Metabolic Flux Analysis

Metabolic networks enable the conversion between small biochemical molecules (i.e., metabolites)
to provide essential building blocks and energy that are critical for cell function and growth.
Mathematical analysis of flux distribution in a metabolic network can guide the metabolic engineering
process. Metabolic flux analysis (MFA) and flux balance analysis (FBA) were initially proposed
based on balancing fluxes around intracellular metabolites within an assumed network stoichiometry,
where external rate measurements such as carbon uptake rate, biomass growth rate were used as
the constraints [124,125]. The major difference between MFA and FBA is that MFA is to minimize
error in predicted and measured external metabolic rates (e.g., minimizing variance weighted sum
of squared residuals (SSR) through least square regression) using stoichiometry of a small-scale or
simplified model as constraints, while FBA maximizes an objective function (e.g., cell growth) using
stoichiometry of a large-scale (e.g., genome-scale) model as constraints [126]. Since FBA aims to
quantify fluxes in often underdetermined systems, additional constraints such as upper and lower
bounds of fluxes are needed. 13C-based MFA (13C-MFA) is a more advanced MFA that makes use
of 13C-labeled tracers, combined with isotopomer balancing, metabolite balancing, and isotopic
labeling measurements, to estimate fluxes [99,127–130]. In addition, flux variability analysis (FVA)
has been proposed to find the range of flux variability for reactions in the metabolic network while
achieving optimal or suboptimal objective states [131]. In early studies, due to the lack of in vivo
intracellular measurements, the system under study is often required to be maintained at steady
state. In other words, MFA and FBA were typically used to determine the metabolic flux of a system at
a particular steady state. However, in ‘non-laboratory’ biotechnological conditions, such as large-scale
batch or semi-batch cultivations or fermentations, the systems, and hence the cellular metabolic
networks, are rarely at steady state. Therefore, the dynamics of these metabolic networks have to
be studied, which lead to the development of dynamic metabolic flux analysis (DMFA) [98,132–134],
13C-DMFA [135], and dynamic flux balance analysis (DFBA) [136–138] in recent years. It is worth
noting that many of these approaches, especially the dynamic extensions, were proposed and further
improved by researchers from the systems engineering community. For more thorough discussions on
recent advances and remaining challenges of this rapidly developing field, the interested readers are
referred to several review papers [99,116,126,139].

3.3. Dynamic Analysis of Signal Transduction Networks

Signal transduction pathways regulate many cellular processes (e.g., gene expression for the target
proteins) and are also involved in extracellular communications. Understanding signal transduction
mechanisms has many potential applications such as improved disease treatment. Modelling of
signal transduction networks can be based on biological understanding of the molecular mechanisms
involved [140]. Alternatively, data-driven models can be constructed [141]. As dynamic behavior of
some proteins, such as transcription factors, have a direct effect on the response of a cell to a stimulus,
analyzing the steady state behavior alone is insufficient for characterizing the response [142]. Here we
focus on dynamic analysis in helping understanding of signal transduction networks. As cellular
signals are not static but dynamic [143,144], systems engineering has had a pervasive influence on the
understanding of their behavior such as chemotaxis [145,146], robustness [147,148], and control
mechanisms [102,149–152]. Compared to experimental data for metabolic and gene regulatory
networks, there have been lower amounts of quantitative data available on signal transduction
networks. Furthermore, information about transient dynamics is required for signal transduction
pathways whereas steady state analysis is extensively implemented for metabolic and gene regulatory
networks [142]. The increasing availability of high-throughput and multiplex techniques for quantifying
signaling and cellular responses have enabled large-scale quantitative studies of signal transduction
networks. However, these data have been found difficult to be understood completely by inspection
and intuition. Data-driven statistical modelling approaches such as principal components analysis
(PCA), partial least squares (PLS), and systems identification techniques have been found useful
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in deriving biological insights from large-scale experiments [141]. These models are emerging as
standard tools for systems-level research in signaling networks. For example, Gadkar et al. [153,154]
proposed an iterative approach with a state regulator algorithm for model identification of signal
transduction networks from data. Another issue that has drawn attention from the systems engineering
community is the parameter estimation in the modeling of signal transduction networks. As these
models commonly contain a large number of parameters, while there is usually limited amount of data
available for their estimation, regularization techniques are require to avoid overfitting. Howsmon and
Hahn [82] provided a tutorial of commonly used regularization techniques and demonstrated their
effectiveness on an interleukin-6 (IL-6) signaling network.

3.4. Integrated Dynamic Analysis of Multi-Omics Data

There are emerging studies that investigate the integrated dynamic analysis of multi-omics data.
For example, personalized medicine is expected to benefit from combining genomic information
with regular monitoring of physiological states by multiple high-throughput methods. To this end,
Chen et al. [155] presented an integrative personal omics profile (iPOP) analysis that combines genomic,
transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over
a 14 month period. The iPOP analysis revealed various medical risks, including type 2 diabetes.
It also uncovered extensive, dynamic changes in diverse molecular components and biological
pathways across healthy and diseased conditions. Mias et al. [156] proposed a mathematical tool
to integrate multiple omics information arising from dynamic profiling in a personalized medicine
approach. Nakanishi et al. [157] used dynamic omics approaches, including time-lapse 2D-nuclear
magnetic resonance (NMR) metabolic profiling, transcriptomic, and proteomic analyses, to identify
nutrition-mediated microbial interactions in a minimum microbial ecosystem. Przytycka et al. [158]
reviewed some recent computational attempts to obtain a dynamic view of the interactome. It is
anticipated that incorporating multiple data sources, resulting from advances in mass spectrometry,
next-generation sequencing and other high-throughput experimental methods, will help to further
elucidate protein interactions and network dynamics.

3.5. Other Applications of Dynamic Data Analysis

While this review focuses more on high-throughput omics data analysis, there are other applications
of dynamic data analysis. For example, Zeger et al. [159] reviewed time-series analysis methods, in both
time and frequency domains, applied in public health and biomedical applications. Dynamic shape
constrained splines (SCS) were proposed as transparent black-box models for bioprocess modeling.
It was demonstrated that the dynamic SCS rate laws exhibit the flexibility of typical data-driven
black-box models, while offering a transparent interpretation akin to conventionally applied rate laws
such as Monod and Haldane. In another study [53], to identify temporal proteomic profiles of chronic
periodontitis, a number of filters including temporal pattern matching, logistic function fitting and
mixed-integer linear optimization were applied to temporal proteomic profiles to identify a small subset
of proteins from a large set containing substantial number of proteins. Finally, dynamics are taken
into account in classification and diagnosis of bioprocess cell growth productions using early-stage
data [65]. Transient response of heat-shock (HS) response in E. coli has also been studied using systems
engineering control theories [160,161].

3.6. Summary and Discussion

It is now well recognized that biological systems and their cellular networks should be
viewed dynamically. In other words, they are networks of interacting components that change
with time in response to external and internal events. Therefore, studying the dynamic behavior
of these networks is the basis for an understanding of cellular functions and disease mechanisms.
However, obtaining genome-scale measurements (e.g., abundance of RNAs, proteins, and metabolites)
can be costly and laborious. Time-series data required by dynamic analysis are even more costly and
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laborious to obtain than steady state data used in steady state studies. There is no obvious consensus
regarding design of experiment to generate time-series data. Nevertheless, there are few discussions on
the relevant technical considerations to generate reproducible, statistically sound, and broadly useful
genome-scale data [162]. For example, for oscillatory or periodic processes such as the mammalian
circadian system, process dynamics have to be considered. In this case, sampling rate or frequency
is crucial. For genome-scale analysis of biological rhythms, it is recommended to sample at least
12 time points per cycle across two full cycles to optimize statistical power [162]. To overcome the
cost and/or technical challenges of obtaining sufficient time-course data, data augmentation has been
implemented in some studies to artificially increase dynamic or time-series measurements. In this case,
the limited time-series data are smoothed and fitted by an appropriate linear, spline or polynomial
function, and more frequent data points can be obtained from the fitted line or curve to increase
temporal resolution [98,99].

4. The Role of Domain Knowledge in Biological Data Analytics

Rapid advancements in computing power, assisted by recent algorithmic breakthroughs in
machine learning (ML), especially deep learning (DL), have led to the explosion of artificial intelligence
(AI) applications. High-profile examples include AlphaGo and AlphaGo Zero from Google and the
associated high-profile publications in Nature with titles such as “mastering the game of go without
human knowledge” [163,164]. These well-publicized breakthroughs have led to publications and
internet posts where authors claim that anything can be inferred by detecting patterns within huge
databases, and there is no point of modelling anymore. This extreme stance is summarized in Anderson’s
provocative statement published in Wired magazine: “The new availability of huge amounts of data,
along with the statistical tools to crunch these numbers, offers a whole new way of understanding
the world. Correlation supersedes causation, and science can advance even without coherent models,
unified theories, or really any mechanistic explanation at all” [165]. Alarmed by these provocative
statements, there have been several important papers to caution the funding and promotion of “blind”
big data projects and provided evidence that the successful use of big data in many applications depends
on more than the quantity of data alone and are skeptical that a purely data-driven approach—‘blind
big data’—can deliver the high expectations of some of its most passionate proponents [166,167].
They also include ample examples to demonstrate that, instead of rendering theory, modeling and
simulation obsolete, big data should and will ultimately be used to complement and enhance them [167].
These viewpoints are consistent with systems engineering principles.

Systems engineers usually work within a specific domain such as chemical, mechanical and
electrical engineering, who utilize processes and methods that are tailored to their domain’s unique
problems, constraints, risks and opportunities. Therefore, domain knowledge has always been an
integral part of systems engineering principles and techniques. This is in drastic contrast to other
purely data-driven or data-centric approaches where the analysis without domain knowledge is touted
as a significant advantage of these approaches. Here, we express our strong disagreement with these
purely data-driven approaches when applied to analyze high dimensional biological data such as
genome-scale omics data. The single most important reason is that the extreme complexity of the system
or process in conjunction with severely incomplete knowledge of the system/process lead to models
with very high degree of freedom. A good agreement between model predictions and experimental
measurements is not sufficient to guarantee the predictive capability of a model because it is not
difficult to change a few parameters and/or constraints among hundreds or even thousands to match
the usually small number of experimental measurements for post hoc explanations. As illustrated in the
next section, point-matching alone is not a reliable approach for validating a model with high degree
of freedom. If a model offers no structural explanations of the correlations it reveals, i.e., matching the
known understanding of the system, many of these correlations are likely to be false positive [166,168].
In this section, we review studies where knowledge has played critical role in model validation,
unsupervised and supervised learning, and feature engineering and selection.
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4.1. Knowledge Matching vs. Point Matching for Model Validation

The use of computational models for hypothesis testing has long been recognized. For example,
Kitano, an expert in artificial intelligence and robotics and one of the earliest pioneers of systems
biology, divides computational biology into two distinct branches: knowledge discovery, or data mining,
which extracts the hidden patterns from huge quantities of experimental data, forming hypotheses
as a result; and simulation-based analysis, which tests hypotheses with in silico experiments,
providing predictions to be tested by in vitro and in vivo studies [105,106]. While data mining or
machine learning-based knowledge discovery has been widely utilized, simulation-based hypothesis
testing or model validation has not been fully explored.

The conventional approach for biological model validation is to compare model predictions
with experimental data under different conditions [117,169,170]. For example, for genome-scale
metabolic network model (GEM) validation, most often the experimental data consist of measured
cross-membrane fluxes, i.e., various substrate uptake rates, product excretion rates, and cell growth
rate. Such a validation approach is deemed as the gold standard for evaluating the quality of a GEM.
We term these approaches “point-matching” approaches because each experimental condition represents
a single point (although potentially high dimensional) in the phenotypic space. For well-characterized
organisms, point-matching approaches work well, because their metabolic network structures have been
well studied and defined. However, given the fact that a GEM, especially a less studied one, is usually
severely underdetermined (i.e., with high degree of freedom), matching numerical experimental data
over a few limited conditions does not necessarily indicate a high-quality GEM and can result in very
misleading conclusions. This was clearly demonstrated in our recent study on the evaluation of the
two GEMs of S. stipitis iSS884 and iBB814 [170]. In that study, although iSS884 consistently showed
much better agreement with experimental measurements than iBB814 across multiple data sets in
terms of predicting product secretion rates, its predictions for several mutant strains are incorrect.
Such a lack of predictability suggests that model iSS884 contains internal errors that were not revealed
by point matching.

To address the shortcomings of point-matching validation approaches, we proposed a system
identification (SID)-based framework for GEM validation. In the SID framework, biological knowledge
embedded in a GEM is first extracted from a series of designed in silico experiments through multivariate
analysis methods such as principal component analysis (PCA); next, the extracted knowledge, such as
how cells respond under a given stimulus, is visualized and compared with the existing knowledge for
model validation and analysis [117,171]. We term the proposed approach “knowledge-matching” as the
simulation results are not directly compared with experimental data; instead, the knowledge captured
by the model is compared with available knowledge. Although rooted in simulations, the SID-based
approach is more of a qualitative validation, instead of a quantitative approach, and offers additional
robustness against measurement errors. In [117], through the knowledge-matching based validation,
we have shown that although iSS884 exhibited much better agreement with experimentally measured
cross-membrane fluxes, it contains some significant errors. On the other hand, although iBB814 shows
poorer performance in quantitative point-matching validations, it captures the knowledge that aligns
better with existing knowledge on S. stipitis [117,170].

The work by Somvanshi et al. [74] is another example of knowledge matching where the
model-based observations are compared with the interplay of oxidative stress, inflammation,
insulin resistance, and energy deficit observed from the data. In addition, the trends predicted
by the model are qualitatively compared to the observed physiological responses reported in the
literature. Zomorrodi et al. [139] also paid special attention to knowledge matching when it comes to
optimizing metabolic models, where it recommends against conditional modifications to resolve an
inconsistency in prediction.
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4.2. Knowledge-Guided Unsupervised Learning

Clustering methods are the most commonly utilized unsupervised learning methods for analyzing
biological data such as gene expression [172,173]. In pure data-driven clustering, the algorithms focus
on mathematical similarity of genes and conditions, while the biological meanings of the clusters
are neglected. As a result, genes are usually clustered into disjoint groups, which for example, do
not capture the biological fact that many gene products participate in more than one biological
process [174]. To overcome these limitations, many biological knowledge-guided clustering methods
have been proposed in the past decade. For example, Fang et al. [174] proposed a knowledge-guided
clustering method for microarray expression data clustering based on gene ontology (GO). It is shown
that the GO knowledge-guided clustering is more advantageous than pure data-driven clustering
in both the quality of clusters and the precision of biological annotations. In a more recent study,
a multi-objective clustering algorithm guided by a priori biological knowledge was proposed to find
clusters of genes with high levels of co-expression, biological coherence, and also good compactness and
separation [175]. In the proposed method, cluster quality indexes are used to simultaneously optimize
gene relationships at expression level and biological functionality. Specifically, the information of genetic
elements regarding their levels of expression and biological functions was integrated into clustering to
optimize the biology- and expression-based distances. In another study, Yang et al. [176] proposed to
improve clustering of microRNA microarray data by incorporating functional similarity. The clustering
of microRNA expression profiles was improved by incorporating the gene ontology information
of the target genes of miRNAs to obtain more functionally compact clusters, which benefits the
identification of potential miRNA biomarkers and the construction of miRNA co-regulation networks.
Schwaber et al. [177] also proposed a knowledge-based clustering, where intelligent software agents
are implemented to gather knowledge automatically from pathway databases for clustering.

Besides clustering, domain knowledge has been used to enhance other unsupervised machine
learning, such as widely used PCA for dimension reduction or feature extraction, where regular
PCA can fail to accurately capture the characteristics of a biology system or process. For example,
regular PCA assumes a multivariate normal distribution. However, studies have demonstrated
that microarray gene expression measurements follow a super-Gaussian distribution instead [178].
In addition, PCA decomposes the data based on the maximization of its variance. However, in some
cases, the biological question may not be related to the highest variance in the data [179,180].
To address these limitations, various variations of knowledge-guided PCA have been proposed,
such as ontology-guided PCA [181], knowledge-guided gene ranking by coordinative component
analysis [182]. In addition, maximum likelihood PCA (MLPCA) has been proposed that can integrate
process knowledge into PCA such as measurement errors, nonstationary behavior, and heterogeneous
variances and correlations [183–186]. There are other knowledge-guided or enhanced unsupervised
learning techniques, the interested readers are referred to two recent review papers [187,188].

4.3. Knowledge-Guided Supervised Learning

Domain knowledge can also help guide supervised machine learning. In a recent work [189],
we examined whether the so-called focused factory theory (i.e., factories that concentrate on narrow
range of services or operations produce better products at low costs) is applicable to hospital operations.
Specifically, we examine whether the hospitals that are specialized in certain diseases achieve better
results in terms of costs and patient outcomes using a large national healthcare cost and utilization
project (HCUP) dataset. Pure data-driven ML approaches based on multiple linear regression (MLR),
principal component regression (PCR), partial least squares (PLS), Fisher discriminant analysis (FDA),
ordinal regression (OR) and logistic regression (LR) were used to investigate the effects of hospital
specialization on hospital performance in terms of cost (measured by total charge) and patient outcome
(measured by death of patient during hospitalization). We show that, without domain knowledge,
pure data-driven ML approaches only reveal direct effect of specialization on total charge, as illustrated
in Figure 6a. To address the limitation, we propose a knowledge-guided ML approach by defining
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model structures based on domain knowledge and hypothesis. The results from knowledge-guided
ML indicate that specialization reduces total charge both directly and indirectly (i.e., through reducing
number of diagnosis and length of hospital stay) as illustrated in Figure 6b, which is consistent with
the common belief that operational efficiency and physician effectiveness are two important factors
determining the total charge.Processes 2020, 8, x FOR PEER REVIEW 18 of 30 
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Figure 6. (a) Pure data-driven ML models only reveal direct effects between independent variables
and dependent variables. (b) Domain knowledge helps identify three independent variables
(i.e., LOS, NPR and NDX) that mediate the indirect effects between Is and TOTCHG. Although pure
data-driven methods can quantify the correlations among independent variables, they cannot reveal
the causal relationships such as mediation.

There are a variety of other studies where domain knowledge has been explicitly used to guide
supervised learning. For example, Shen et al. [190] propose a knowledge-guided bioinformatics
model for identifying autism spectrum disorder diagnostic microRNA biomarkers. An autism-specific
miRNA–mRNA network was constructed, and candidate autism biomarker miRNAs were inferred
based on their regulatory modes and functions. Hvidsten et al. [191] introduced a supervised
clustering methodology for functional classification of gene expressions from microarray hybridization
experiments. The methodology is different from the commonly used unsupervised clustering
approaches in that it exploits background knowledge of gene function in a supervised manner. Genes are
annotated using Ashburner’s Gene Ontology and the functional classes used for learning are mined
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from these annotations [191]. In another study, to achieve accurate prostate segmentation, which is
necessary for maximizing the effectiveness of radiation therapy of prostate cancer, Park et al. [192]
propose a semi-supervised learning approach that utilizes a priori knowledge of training data and
domain knowledge through user interactions. More knowledge-guided supervised learning techniques
and their applications to biological big data can be found in some recent review papers [193,194].

4.4. Knowledge-Guided Feature Engineering and Feature Selection

Besides direct utilization, domain knowledge has been extensively used in feature engineering and
selection to indirectly enhance statistical and machine learning. From PSE perspective, what features or
variables to be measured and used as inputs is the very first step in developing a model. For example,
in a multi-omic biomarker identification and validation study for diagnosing warzone-related
post-traumatic stress disorder [54], domain area expertise of multiple researchers were utilized in
conjunction with multiple machine learning approaches for drastically reducing over a million features
or biomarkers (molecular datasets from GWAS, DNA methylation, miRNA, protein, metabolites,
small molecules, endocrine, clinical labs, and biometrics/physiological data) to 343 before further
refinement to 28.

Knowledge-guided feature engineering and selection is particularly important for mining clinical
data. For these application, it has been recognized that without using predictors (i.e., features) rooted
in (patho)physiology for clinical prediction, there is a risk of capturing a factor that may change at
any time, invalidating a model that appears to produce computationally reproducible results [195].
This is supported by our recent study showing that knowledge-guided feature selection methods are
significantly less sensitive to the training samples used for feature selection [196]. Specifically, we show
that, unlike existing data-driven feature/variable selection methods, consistency-enhanced evolution
for variable selection (CEEVS) is able to identify the underlying chemical information of a sample from
its NIR spectrum, i.e., the wavelengths corresponding to the chemical bounds or functional groups
that determine the sample properties of interest. We show that the knowledge-associated features
are significantly less sensitive to the training samples, which in turn significantly improves model
accuracy and robustness.

Knowledge-guided feature engineering and selection has also drawn increased attention in
computer vision, including medical image analysis, in recent years. For example, approaches have
been proposed to mimic the human intelligence capabilities by combining prior sematic and contextual
knowledge and visual information in knowledge based vision systems, which is a step towards
cognitive vision. [197]. Several studies [197–200], including automated prostate segmentation in
magnetic resonance imaging (MRI) images and colon segmentation in computed tomography (CT)
colonography images, have shown that knowledge based vision systems resulted in increased accuracy,
and were more robust and less dependent on data.

There are other studies where domain knowledge has played critical role in feature engineering
and feature selection. For example, in the study of arrayCGH [65,66], the features (i.e., the DNA
copy numbers along the genome) have the natural spatial order, and incorporating the structure
information using an extension of the `1-norm outperforms the Lasso in both classification and
feature selection. In other studies, Garla and Brandt [201] presented a feature engineering technique,
namely ontology-guided feature engineering, that leverages the biomedical domain knowledge
encoded in the Unified Medical Language System (UMLS) to improve machine-learning based clinical
text classification. Yao et al. [202] proposed a knowledge-guided feature engineering and deep learning
models for effective disease classification. For more discussions in this area, interested readers are
referred to several review papers [48,195,197].

4.5. Summary and Discussion

In summary, there are concerns about the recent overhype of deep learning without domain
knowledge or theory. Although there are applications where domain knowledge may have appeared
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to be playing a lesser role, we demonstrated with ample examples that, for analyzing biological big
data, domain knowledge has been and will continue to be playing a significant role. Studies have
also shown that domain knowledge is particularly useful when developing and validating highly
flexible models (i.e., models with high degree of freedom) that are often underdetermined. In these
cases, domain knowledge or theory can help select an appropriate model structure, serve as
constraints to ensure qualitatively correct model behavior, or guide the development of biologically
meaningful features/predictors. Specifically, we show that the gold standard of point-matching has
severe limitations when it comes to validating biological models with a high degree of freedom.
In contrast, knowledge-matching is a much more reliable alternative. Studies have also shown that
knowledge-guided unsupervised and supervised learning usually performs significantly better than
their pure data-driven counterparts. In these knowledge-guided approaches, domain knowledge
or theory is usually used as a guide for model selection and simplification, or serves as constraints,
or incorporated into a regularization term on model parameters. Alternatively, domain knowledge
can also assist feature engineering for developing features that are rooted in biological mechanisms
such as (patho)physiology for biomedical and clinical applications. Last but not least, data-driven
machine learning models are often tuned based on, and evaluated by, some numerical metrics
(e.g., mean-square-error, sensitivity, specificity, AUC, etc.), which could lead to suboptimal or even
misleading results. For example in biomedical and clinical research, without domain knowledge,
classification errors (i.e., false positive or type I error, and false negative or type II error) are often
treated the same without taking into account the often different clinical and economic consequences
of these two different types of errors [203,204]. Therefore, we argue that domain knowledge plays
important roles at every stage of biological data analytics, and should be incorporated into decision
making wherever possible.

5. Conclusions

The discipline of process systems engineering has contributed significantly to the field of biological
big data analytics. In this work, we reviewed and discussed the application of systems engineering
principles and techniques in addressing some of the most important challenges in big data analytics
for biological, biomedical and healthcare applications. The systems engineering principles emphasize
parsimonious modeling. In this work, we discussed direct and indirect means of checking for overfitting,
and reducing the risk of overfitting through the principle of parsimony. We classified strategies of
reducing overfitting into three categories: (1) reducing parameter space; (2) reducing feature space; and
(3) increasing sample space. Reducing parameter space is a direct and top-down approach for reducing
overfitting. It starts with the selection of a model (structure) with a small number of parameters or
imposing regularizations on model parameters without explicitly evaluating the features. The selected
models are often based on knowledge from domain expertise or prior studies. The data are used
for estimating model parameters, as well as for model validation. The second strategy is to reduce
feature space, which is an indirect and bottom-up approach for reducing overfitting. In this strategy,
experimental data are used to evaluate the importance of features. This step is often carried out without
the involvement of domain knowledge other than an objective function to be optimized. The goal is to
retain only the important features (through feature reduction or combination) in the final prediction or
classification models, which indirectly, but effectively, reduces model parameters. The third strategy is
to increase sample space through data augmentation, which is often a complementary, rather than
stand-alone, approach to the first two strategies. When implemented properly, data augmentation can
improve the accuracy and precision of model parameter estimation and enhance the performance of
feature selection or extraction. In particular, this strategy can be very effective in coping with small
datasets and/or datasets with limited labeled samples.

The systems engineering principles also promote dynamic analysis of biological data, where cellular
systems are treated as networks of interacting components that change with time in response to external
and internal events. It has been gradually recognized that studying the dynamic behavior of these
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networks ought to be the basis for understanding cellular functions and disease mechanisms. In this
work, we reviewed the progress made towards dynamic analysis of gene regulatory networks, metabolic
networks, and signal transduction networks. Progress has also been made in the integrated dynamic
analysis of these networks simultaneously. For gene regulatory networks, several recent studies have
highlighted the importance of studying the dynamic transient response of gene expression data in
order to understand the global response triggered by various perturbations, and to gain knowledge on
potential gene regulatory mechanisms. For metabolic networks, mathematical analysis of metabolite
flux distribution in a metabolic network can guide the metabolic engineering process. Since cellular
metabolic networks are rarely at steady state under non-laboratory conditions, the dynamics of
these metabolic networks have to be studied for biotechnology development. This has led to the
rapid development of dynamic approaches such as dynamic metabolic flux analysis and dynamic
flux balance analysis. Similarly, for signal transduction networks, the cellular signals are not static
but dynamic. Therefore, analyzing the steady-state behavior alone is insufficient for characterizing
the response. There are also emerging studies that investigate the integrated dynamic analysis
of multi-omics data. Finally, there are other applications of dynamic data analysis, such as in
public health and biomedical applications. As experimental and computational challenges being
adequately addressed, generating and analyzing time-series expression data has become one of the
most fundamental methods for understanding a variety of biological processes. One outstanding
challenge in this area is that obtaining time-series genome-scale measurements is still costly and
laborious. In addition, more studies and standards/protocols are needed for technical considerations
related to data acquisition such as experimental design and data reproducibility.

Finally, the systems engineering principles advocate the integration of domain knowledge with
data-driven machine learning in analyzing biological big data. In this work, we reviewed the
role of domain knowledge in model validation, unsupervised and supervised machine learning,
and feature engineering. For model validation, many studies, including our own, have demonstrated
advantages of knowledge matching in model validation compared to the conventional point matching
approach. This is particularly important when we attempt to validate complex models with very high
degree of freedoms, such as genome-scale metabolic network models. We also reviewed studies that
integrate biological or (patho)physiological knowledge with unsupervised learning. Generally speaking,
domain knowledge has been found instrumental in the success of many of these applications. There are
also various studies where domain knowledge has been used explicitly to guide supervised learning,
particularly in determining appropriate model structures. Besides direct utilization, domain knowledge
has been extensively used in feature engineering and selection to indirectly enhance machine
learning. Many studies, including our own, have demonstrated that knowledge-associated features are
more robust and less dependent on data (i.e., less sensitive to the training samples), which in turn
significantly improves model accuracy and robustness. This is particularly important for clinical data
modeling where predictive features rooted in (patho)physiology are important for model interpretation
and clinical prediction.

Similar to the field of systems biology where researchers from PSE community have been integral
and essential components of many interdisciplinary research teams, PSE community has played
important role in the field of biological big data analytics. Despite many challenges, we envision that
synergistic collaborations between researchers from PSE community and biologists, oncologists and
physicians will continue to evolve and open new research avenues to address important questions in
biology, life sciences, and healthcare.
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