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Recent experiments on rotational quenching of HD in the v = 1, j = 2 rovibrational state in collisions with H2, D2
and He near 1 K have revealed strong stereodynamic preference stemming from isolated shape resonances. So far, the
experiments and subsequent theoretical analyses have considered initial HD rotational state in an orientation specified
by the projection quantum number m or a coherent superposition of different m states. However, it is known that such
stereodynamic control is generally not effective in the ultracold energy regime due to the dominance of the incoming
s-wave (l = 0 partial wave). Here, we provide a detailed analysis of stereodynamics of rotational quenching of HD by
He with both m and m′ resolution where m′ refers to the inelastically scattered HD. We show the existence of significant
m dependence in the m′-resolved differential and integral cross sections even in the ultracold s-wave regime with a
factor greater than 60 for j = 2→ j′ = 1 and a factor greater than 1300 for j = 3→ j′ = 2 transitions. In the helicity
frame, however, the integral cross section has no initial orientation (k) dependence in the ultracold energy regime even
resolving with respect to final orientation (k′). The distribution of final rotational state orientations (k′) is found to be
statistical (uniform) regardless of the initial orientation.

I. INTRODUCTION

Cold and ultracold molecules are rapidly transforming our
understanding of chemical reaction dynamics and energy
transfer phenomena in the deep quantum regime. The ability
to control their properties and interaction through external
electric, magnetic and optical fields has led to new appli-
cations in emerging areas of quantum information process-
ing, quantum computing, quantum sensing, and precision
spectroscopy.1–11 Ultracold chemistry experiments can offer
much insights into reaction intermediates and energy dispersal
as recently demonstrated for the benchmark KRb+KRb →
K2+Rb2 reaction that was shown to occur through a four-
center mechanism and a transient K2Rb2 intermediate com-
plex.12,13 Even for closed-shell molecules without an electric
dipole moment (or molecules with a weak dipole moment
like HD) or hyperfine structure, selective preparation of the
initial molecular rotational state in an orientation specified by
projection quantum number m (or a superposition of m-states)
allows considerable control of angular distribution of the
inelastically scattered molecule as demonstrated in recent
experiments of Perreault et al.14–18

There is a long history of molecular collisions exploring
the dependence of inelastic and elastic (polarization) cross
sections on the projection quantum numbers m and m′ of
initial and final molecular rotational states.19–31 In particular,
the search for propensities ∆m = m′−m yielded new insights
into collisional reorientation providing ideas for developing
approximate calculation methods such as the jz conserv-
ing coupled-states/centrifugal-sudden (CS) approximation as
well as the infinite-order sudden (IOS) approximation.23–25,29

Analogous efforts to relate dynamical outcomes to reagent
approach geometry in chemical reactions (dynamical stere-
ochemistry) have also been developed.32–34 Nowadays, such
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efforts have been broadly termed as stereodynamics in which
the correlation between various vector properties in collisions
and reactions is examined drawing extensive research interests
to deepen physical insight into the underlying dynamics.35–45

An experimental scheme recently proposed by Perreault
et al.14–16 has proved to be a powerful tool for probing
stereodynamics of molecular collisions when a small number
of partial waves control the collision outcome. In their
intra-beam scheme, a co-expansion of colliding species in
a supersonic molecular beam effectively reduces the relative
collision energy to around 1 K (provided the collision partners
have comparable initial velocity distribution). The initial rovi-
brational state (v, j) as well as the orientation of the molecular
rotational state specified by the projection quantum number m
onto the initial relative velocity vector between the collision
partners is prepared by the Stark-induced adiabatic Raman
Passage (SARP) method.17,18 This approach eliminates the
requirement of external electromagnetic fields to confine and
control molecules during the collision process and enables
collisional studies of molecules that are not amenable to
external field control. Perreault et al. showed that rotational
quenching of HD (v = 1, j = 2) in collisions with H2, D2
and He depends strongly on whether the initial HD molecular
bond axis is preferentially aligned horizontal (H-SARP) or
vertical (V-SARP) to the initial relative velocity vector. For
more details of the intra-beam method for cold and ultracold
collisions we refer to recent works of Amarasinghe et al.46,47

The pioneering experiments of Perreault et al. motivated
theoretical studies48–51 that revealed rotational quenching of
HD by H2 and He is governed by isolated shape resonances
near a collision energy of∼ 1 K. Thus, stereodynamic control
of the resonance features provides a direct handle to influence
the collision outcome. As shown in a recent theoretical study,
such control is not limited to isolated shape resonances but
also in the presence of overlapping shape resonances, as
demonstrated for the H2+HCl52 system that is characterized
by a stronger anisotropic interaction than H2+HD.

While these successful demonstrations are promising, it im-
plies that stereodynamic control is effective only in the energy
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region where one or more shape resonances exist. In other
words, it is difficult to control collision outcomes utilizing
the m-dependence of cross sections (stereodynamic prefer-
ence) in the ultracold energy regime (< 1 mK) dominated
by an incoming s-wave (l = 0 partial wave). Furthermore,
it has been shown that stereodynamic control of collisional
rotational transition and chemical reaction is not possible at
the level of the integral cross section (ICS) for the l = 0
partial wave.53 Nonetheless, here we show that there exists
complex stereodynamics in the ultracold energy regime and
the control of the outcomes by preparing initial m is still
possible by a selective measurement of inelastically scattered
molecules in an oriented rotational state designated by m′. We
demonstrate that both m and m′-resolved measurements can
reveal significant stereodynamic effect over a wide range of
energy regardless of the presence of a shape resonance.

In this paper, we examine He+HD collisions as an il-
lustrative case as it has already been studied by the SARP
experiment and is a benchmark system for both experiment
and theory. Use of He as the collision partner also avoids the
difficulty of preparing H2 in a single rotational level of ortho
(nuclear spin I = 1, odd rotational levels) or para (nuclear
spin I = 0, even rotational levels) states due to thermal
population of rotational states.14,15 Further, highly accurate
potential energy surfaces (PESs) with spectroscopic accuracy
are available for the HeH2 system.54–56 Indeed, our recent
study51 of rotational quenching of HD (v = 1, j = 2→ v′ =
1, j = 0) in cold collisions with He yielded good agreement
with experimental results of Perreault et al.16 for the angular
distribution of inelastically scattered HD.

The paper is organized as follows: Section II provides a
brief outline of the theory and computational details. Re-
sults for rotational quenching processes v = 1, j = 2→ v′ =
1, j′ = 1 (Section III A) and v = 1, j = 3 → v′ = 1, j′ = 2
(Section III B) are presented in Section III and a summary of
our findings is given in Section IV.

II. THEORY AND COMPUTATION

A. Scattering formalism

The quantum mechanical scattering problem of collisions
between He (1S) and HD (1Σ) is numerically solved using
the MOLSCAT (v.14) code57. It implements solution of
the close-coupling (CC) equations58 derived from the time-
independent Schrödinger equation using the total angular
momentum representation in the space-fixed (SF) coordinate
frame.

The Hamiltonian for the collision complex of He+HD may
be written (h̄ = 1) in Jacobi coordinate as

Ĥ =− 1
2µR

d2

dR2 R+
l̂2

2µR2 + ĥHD +Vint(R,r,γ), (1)

where µ(= 1.721871434 amu) is the reduced mass of He
and HD, l̂ is the orbital angular momentum operator for the
relative motion of He and HD, and ĥHD is the rovibrational

Hamiltonian for the isolated HD molecule. The interaction
potential Vint(R,r,γ) between He and HD in the electronic
ground state is generated from the BSP3 PES for the HeH2
system.54

The total wavefunction for a given value of the total
angular momentum J of the collision complex, its projection
component M onto the SF z-axis, and the inversion parity
εI = (−1) j+l (all three quantities are conserved during the
collision) is expanded as

Ψ
JMεI =

1
R ∑

v jl
FJMεI

v jl (R)
χ

j
v (r)
r
|JMεI(l j)> (2)

where FJMεI
v jl (R) are the radial expansion coefficients in R,

χ
j

v (r) denote rovibrational eigenfunctions of HD specified
by quantum numbers of v and j, and |JMεI(l j) > denotes
basis functions for the angular degrees of freedom in the total
angular momentum representation for a given parity εI .

The coefficients FJMεI
v jl (R) satisfy the CC equations ob-

tained by substituting Eq. (2) into the time-independent
Schrödinger equation,

[ 1
2µ

d2

dR2 −
l(l +1)
2µR2 +EC

]
FJεI

v jl (R)

= ∑
v′ j′l′

FJεI
v′ j′l′(R)

∫
∞

0
〈JεI(l j)|χ j

v (r)Vint(R,r,γ)χ
j′

v′ (r)|JεI(l′ j′)〉dr,

(3)

where M is omitted since the CC equations are independent of
M. The collision energy EC is given by EC = E−Ev, j where E
denotes the total energy and Ev, j denote the rovibrational en-
ergies of the HD molecule obtained by solving the eigenvalue
problem

[
− 1

2µHD

d2

dr2 +
j( j+1)
2µHDr2 +VHD(r)

]
χ

j
v (r) = Ev, jχ

j
v (r), (4)

where µHD(= 0.6716999 amu) is the reduced mass of HD.
For the potential energy curve VHD(r) in the electronic ground
state of the HD molecule, we adopt a modified version
of Schwenke’s H2 potential (X1Σ+

g ) reported by Boothroyd
et al.59 The modified log-derivative propagation method of
Manolopoulos60 is employed to numerically solve the CC
equations from R = 2.0 Å to 50.0 Å with a propagation
interval of ∆R = 0.05 Å.

As discussed in our recent work51 the BSP3 PES54 used
in our calculations is the most accurate ab initio PES for the
HeH2 system and it yields line-shape parameters of H2 and
HD immersed in He in excellent (subpercent) agreement with
highly accurate experimental results55,56. The uncertainty of
the BSP3 PES in the van der Walls well region is estimated
to be less than 0.04 K, sufficiently below the mean collision
energies in the experiments of Perreault et al.16 As illustrated
in our previous work,51 other available He-H2 PESs59,61 also
yield very similar results as the BSP3 PES.
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B. Rotational quenching cross section

Solution of the CC equations yields the scattering S-
matrix from which scattering amplitudes for various state-to-
state transitions specified by quantum numbers (v, j,m) and
(v′, j′,m′) can be constructed. Since the S-matrix is evaluated
in the total angular momentum representation in the SF
coordinate frame, its elements are specified by the quantum
numbers (v, j,l) and (v′, j′,l′). It is necessary to transform
the basis set to obtain the scattering amplitudes specified by
(v, j,m). Here, we focus on pure rotational transitions within a
vibrational manifold, and omit v and the parity designation
εI for simplicity. Cross sections for vibrational transitions
are 5 to 6 orders of magnitude smaller than pure rotational
transitions as in H2+HD48 and H2+HCl52 collisions.

The scattering amplitude for rotational transition between
oriented (m and m′-specified) HD rotational states is given
by,22,51,58,62,63

f jm→ j′m′(θ ,φ ,E)

=
√

π(−1) j+ j′
∑
J=0

J+ j

∑
l=|J− j|

J+ j′

∑
l′=|J− j′|

il
′−l(2J+1)

√
2l +1

×
(

j l J
m 0 −m

)(
j′ l′ J

m′ m−m′ −m

)
T J

jl, j′l′(E)Yl′m−m′(R̂),

(5)

where θ and φ are the scattering polar and azimuthal angles,
T (E) is the T-matrix obtained from the S-matrix as T (E) =
1−S(E), and Y denotes a spherical harmonic as a function of
R̂= (θ ,φ).

The corresponding differential cross section (DCS) is given
by the square of modulus of the scattering amplitude:

dσ jm→ j′m′

dΩ
=
| f jm→ j′m′(θ ,φ ,E)|2

k2
C

, (6)

where kC =
√

2µEC is the magnitude of the wave vector in
the incident channel. In the experiment of Perreault et al.51

the φ -dependence is not observed and the θ -dependence of
the DCS is obtained after averaging over φ 51,

dσ jm→ j′m′

dθ
= 2πsinθ

| f jm→ j′m′(θ ,E)|2
k2

C
, (7)

where f jm→ j′m′(θ ,E) is related to the full scattering am-
plitude of Eq. (5) by the relation f jm→ j′m′(θ ,φ ,E) =
f jm→ j′m′(θ ,E)exp{−i(m − m′)φ}. The ICS (σ jm→ j′m′ ) is
obtained by taking an integral of the DCS over θ from 0 to
π .

In our previous studies,51 we examined the quenching from
v = 1, j = 2 to v′ = 1, j′ = 0 for comparison with experiment
results of Perreault et al.16 Here, we consider the stereody-
namic effect of the quenching to v′ = 1, j′ = 1 from the same
initial rovibrational state with a focus on the ultracold regime.
We show that significant stereodynamic effect can be observed
in the ultracold energy regime by selective measurement of
the inelastically scattered HD (v′ = 1, j′ = 1) in an orientation
specified by the value of m′. Similar effect is reported for
quenching from v = 1, j = 3 to v′ = 1, j′ = 2.
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FIG. 1. Integral cross sections for rotational quenching of initially
prepared HD (v = 1, j = 2,m) to (v′ = 1, j′ = 0) and (v′ = 1, j′ = 1)
in collisions with He. Initial m-dependence is displayed with red
(m = 0), green (|m| = 1), and blue (|m| = 2). Non polarized case
without preparation of m is displayed in black (isotropic).

III. RESULTS AND DISCUSSIONS

A. v = 1, j = 2→ v′ = 1, j′ = 1

Figure 1 shows the calculated ICS for the rotational quench-
ing of initially oriented HD (v = 1, j = 2,m) by collisions
with He to j′ = 0 (∆ j = −2) and j′ = 1 (∆ j = −1) within
the v = 1 manifold. We note that |m| in the legend of the
figure means that the resultant cross section is independent
of the sign of m, thus the cross section is invariant even if
we prepare the molecule in a state described by a coherent
superposition of | j,−m > and | j,m > with any (normalized)
expansion coefficients. Effects of relative phases in initial
coherent superposition of different m states is not observed
unless we observe the DCS with φ resolution. The results for
j = 2→ j′ = 0 are the same as those reported previously.51

As discussed in our previous paper, the primary peak centered
around a collision energy of 0.2 cm−1 and the shoulder around
2 cm−1 are due to shape resonances from incoming p-wave
(l = 1) and d-wave (l = 2), respectively. Except for the
overall magnitude, the ICSs for both j′ = 0 and j′ = 1 feature
similar energy dependence and m-dependence. The higher
magnitude for |∆ j| = 1 reflects the leading anisotropic term
V1(R,r) in the angular dependence of the interaction potential
(Vint(R,r,γ) = ∑λ Vλ (R,r)Pλ (cosγ) where Pλ is a Legendre
polynomial) that drives the |∆ j| = 1 transition. Note that
unlike He-H2, the leading Vλ (R,r) terms of odd order in λ

are non-zero for He-HD.
The m-dependence in the ICSs is pronounced only around

the resonances for both transitions consistent with previous
theoretical results for other systems.49,50,52 Thus, it is ex-
pected that the stereodynamic control of collision outcomes
by preparing the initial molecular rotational state in an ori-
entation specified by the value of m is most effective in the
region of a shape resonance. It has been shown rigorously
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FIG. 2. Integral cross sections for rotational quenching of initially prepared HD (v = 1, j = 2,m) to (v′ = 1, j′ = 1,m′) in collisions with He:
(a) m′ = 0; (b) m′ = 1. Results for m′ =−1 are identical to (b) by inverting the sign of m in the legend. Results for initial k and final k′ helicity
dependences are displayed in (c) and (d) for k′ = 0 and k′ = 1, respectively. Results for k′ =−1 are identical to (d) by inverting the sign of k
in the legend.

that there is no m-dependence for the ICS in s-wave collisions
even if the molecule has internal angular momenta such as
spin or electronic orbital angular momentum in addition to
the rotational angular momentum.53 These findings raise the
following questions: 1). Is stereodynamics relevant in the
ultracold energy regime? and 2). Does the similar qualitative
m-dependence of the ICS between ∆ j = −1 and ∆ j = −2
imply that these processes are driven by similar dynamic
effects and are not influenced by stereodynamic preparation?

To address the above questions, for j = 2 → j′ = 1, we
decompose the ICS into the 3 contributions designated by the
m′ values (m′ =−1,0,1 for j′ = 1) although such m′ selective
detection has not been realized in the experiments of Perreault
et al. However, we note that Perreault et al.14 indirectly ex-
tracted the m,m′ dependence for HD+D2 collisions by fitting
the observed angular distributions of inelastically scattered
HD to an of expansion of relevant outgoing partial waves
present in the experiment. Recently, Sharples et al.31 re-
ported four vector correlation between relative velocities and

rotational angular momenta in initial and final states, namely
k-j-k′-j′ correlation (k: relative momentum), for collisions
of electronically excited NO (A 2Σ+) with Ne by observing the
scattering angle dependence of ionization probabilities using
a circularly polarized light at a collision energy of about 680
cm−1.

In Fig. 2 (a) and (b), we show the m-dependence of the ICS
for m′ = 0 and m′ = 1, respectively, for the j′ = 1 state. In
(a), we see a significant m-dependence for the cross section in
the entire energy region including the ultracold energy regime
dominated by the Wigner threshold behavior. The largest
cross section corresponds to m = 0→ m′ = 0 that conserves
m. On the other hand, more than an order of magnitude
suppression is observed in the quenching from |m| = 2. We
note that the ICS with any type of initial rotational state
preparation, including the HD bond axis alignment performed
previously in the SARP experiment, is given as the sum of
these cross sections in (a) with positive valued weighting
factors,50,51 thus the upper and lower limits of the control
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range with initial HD preparation is given by the red (m =
0→m′ = 0) and blue (|m|= 2→m′ = 0) curves, respectively.
In Fig. 2 (b), the ICS for m = 2→ m′ = 1 (blue solid curve)
is the largest, and the m-conserving process m = 1→ m′ = 1
(green solid curve) becomes largest only in the vicinity of the
l = 1 resonance (0.2 cm−1) indicating that the stereodynamic
preference may largely depend on the partial wave (l) and
collision energy. On the other hand, the efficiencies for
processes that involve a change in the sign of m (dashed lines,
|∆m| = 2 and 3) are largely suppressed. Including the blue
curve in (a) for |m| = 2 (|∆m| = 2), significant suppression
of the ICS for these processes in the ultracold energy (s-
wave) regime correlates with the restriction on the number
of outgoing partial waves. For the initial rotational sate of
j = 2, the total angular momentum quantum number for the
collision complex with the incoming s-wave (l = 0) is J = 2,
thus, due to the conservation of the total angular momentum
and the parity (J = J′ and (−1) j+l = (−1) j′+l′ ), the possible
outgoing partial waves for the final rotational state of j′ = 1
are l′ = 1 and 3. Furthermore, due to the conservation of the
projection of J, the relation M = m+ml = m′+ml′ is satisfied
for the sum of the projections of rotational and orbital angular
momenta yielding ml′ = m−m′ for the case of l = 0 (ml = 0),
thus the l′ = 1 component cannot exist for the processes
|∆m| ≥ 2. A suppression of ICS with increasing |∆m| was
also reported by Krems and Dalgarno27 for the reorientation of
electronic angular momentum in O(3Pj=2,m=2)+He collisions
at ultracold temperatures.

The non-polarized cross sections without preparing the
initial orientation (black solid curves) show very similar
behavior in (a) and (b) and that m′ selective measurement
without preparing the initial orientation (m) is not useful in
gaining insights into the stereodynamics in the ultracold en-
ergy regime. In all, the hidden information on stereodynamics
in the ultracold energy regime is revealed only when the
ICS examined with both m and m′ resolution. While the
m-dependence for j = 2 → j′ = 1 and j = 2 → j′ = 0 in
Fig. 1 is similar when m′ is not resolved, stereodynamics of
j = 2→ j′ = 1 reveals a much more intricate picture when
m′ is specified. The quenching to the rotational ground state
( j′ = 0) does not exhibit m-dependence because there is only
a single m′ = 0 component (no m′ resolution). We omit the
results for m′ =−1 because they can be obtained by inverting
the sign of m in the legend in Fig. 2 (b).

Next, we point out that some qualitative features in stereo-
dynamic preference (order of magnitude of ICS with respect
to m and m′) are independent of the system in the ultracold
energy regime. In Eq. (5), for the incoming s-wave (l = 0),
there are two possible terms related to the l′ = 1 and 3
outgoing partial waves for J = 2, j = 2 and j′ = 1 as discussed
above. For each l′, the relative m,m′ dependence for the partial
ICS is determined by the product of two 3-j symbols since
the T-matrix element is independent of m and m′, and the
integral of the square of the modulus of spherical harmonic
Yl′,m−m′ over θ yields unity in evaluating ICS. As discussed
in our previous work,51 for m′ = 0 in Fig. 2 (a), the ratio of
the partial ICS for l′ = 1 is 1 : 0.75 for m = 0 and |1| (see
Appendix A for more details) and zero for |m| = 2. On the

other hand, for l′ = 3, the ratio of the partial ICS with m′ = 0
is 1 : 0.89 : 0.56 for m = 0, |1| and |2|, respectively. Thus,
we can conclude that for m′ = 0 the stereodynamic preference
is m = 0 > |m| = 1 > |m| = 2 regardless of the value of the
T-matrix elements which are system dependent. This trend is
clearly displayed in Fig. 2 (a). It is important to emphasize
that the above trend for the stereodynamic preference comes
from purely algebraic character of the scattering amplitude.

An important goal of stereodynamics is to gain insights into
how the anisotropy of the interaction potential (interaction
force) controls the collision outcome. However, in the s-wave
regime, the overall trend in stereodynamic preference may not
reflect details of the interaction potential. In such cases, sys-
tem dependent information coded in the T-matrix (S-matrix)
elements is revealed only by quantitative measurements of
m,m′- resolved ICS. On the other hand, in the case of m′ = 1
(Fig. 2 (b)), we cannot predict even qualitative trend of ICS
with respect to m without the information of T-matrix since
the 3-j symbols give rise to a different trend of stereodynamic
preference between l′ = 1 and l′ = 3 (see Appendix A). These
aspects underscore the difficulty in pinpointing specific stere-
odynamic preference in the ultracold regime. Yet, it is worth
emphasizing that some qualitative trends in stereodynamic
preference are independent of the interaction potential for
purely s-wave collisions. At higher energies (> 1 cm−1), due
to contributions from multiple partial wave, it is difficult to
analytically discuss the feature of m,m′ dependence. How-
ever, the large m-dependence even around 10 cm−1 implies
that higher partial waves result in mechanisms similar to that
of s-wave.

The orientations (m,m′) of the initial and final HD rota-
tional states are specified in the SF coordinate frame whose
z-axis is parallel to the initial relative velocity for the colli-
sion. In the SARP experiments, due to the co-expansion of
colliding species, the initial relative velocity is also parallel
to the laboratory fixed molecular beam as well as the direc-
tion of time-of-flight axis, simplifying the relation between
experimental data and scattering properties defined in the
SF frame.14,15 However, to investgate more details of the
dynamics as well as hidden propensity rules, it would be worth
exploring stereodynamics in other frames. Here, we consider
initial and final helicity64,65 dependence of the ICS in Fig. 2
(c) and (d). The initial projection (helicity) component k is
obtained by taking the projection of the molecular rotational
angular momentum onto the axis parallel to the incident
relative momentum. On the other hand, the final helicity
(k′) for the inelastically scattered HD (here, v′ = 1, j′ = 1)
is defined by the projection onto the direction of the final
(recoil) relative momentum. The scattering amplitude in the
helicity frame is expressed using the scattering amplitued in
SF (Eq. (5)) and the Wigner D-matrix as22,25

f jk(=m)→ j′k′(θ ,φ ,E) =
j′

∑
m′=− j′

D j′∗
m′k′(φ ,θ ,0) f jm→ j′m′(θ ,φ ,E),

(8)
where k is equal to m since the quantization z-axis for the
initial helicity component is parallel to the initial relative
velocity vector. Similar to the transformation between SF
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FIG. 3. Differential cross sections for rotational quenching of initially prepared HD (v = 1, j = 2,m) to (v′ = 1, j′ = 1,m′) in collisions with
He at a collision energy of 10−4 cm−1. (a) Initial orientation (m) dependence; (b) Initial orientation (m) dependence with m′ = 0; (c) initial
orientation (k) dependence with k′ = 0 in the helicity frame.

frame and body-fixed (BF) frame, the 3rd Euler angle in the
D-matrix is not unique unless we define it. Here, we set the
angle to be zero adopting the convention of Alexander.22 An
explicit form of the θ -dependent scattering amplitude similar
to f jm→ j′m′(θ ,E) in Eq. (7) is convenient in the following
discussion:65,66

f jk→ j′k′(θ ,E)

=
(−1) j+ j′

2 ∑
J=0

(2J+1)dJ
k′,k(θ)

J+ j

∑
l=|J− j|

J+ j′

∑
l′=|J− j′|

il
′−l+1

×
√

2l +1
√

2l′+1
(

j J l
k −k 0

)(
j′ J l′

k′ −k′ 0

)
T J

jl, j′l′(E).

(9)

We note that the T-matrix in the right hand side is specified by
( j, l) index.

Since k and m are the same, the k-dependence of the ICSs
is identical to the m-dependence in Fig. 1 as long as we sum
over contributions from all k′ (= −1,0,1) components. On
the other hand, once we specify k′, the k-dependence (Fig. 2
(c) and (d)) is drastically different from the m-dependence in
(a) and (b). Evidently, the k-dependence is significant only
around the resonance regions as seen in (c) and (d). Further-
more, the k dependence fades with decreasing the collision
energy and it vanishes in the ultracold limit. This particular
k independence of the ICS is due to the dominance of s-wave
(l = 0) and resultant dominance of J = j component. For J = j
and l = 0, the first 3-j symbol in the right hand side of Eq. (9)
results in (−1)J−k/

√
2J+1(= (−1) j−k/

√
2 j+1),67,68 thus k

appears only as a phase factor. The remaining k dependence is
captured in the Wigner small d-matrix dJ

k′,k(θ). While the be-
havior of the d-matrix is reflected in the DCS, it has no effect
on the magnitude of the ICS once integrated over θ from 0
to π . Thus, as a universal feature, there is no k-dependence in
the ICS in the ultracold energy regime even with k′-resolution.
This feature applies regardless of the collision energy for the
l = 0 partial wave. On the other hand, the absolute value of
the (k-independent) ICS is system dependent and determined
by the T-matrix elements associated with l′ = 1 and 3.

So far, we have focused on the m/k-dependence in a selected
m′/k′ component. Now, we shall discuss the final m′/k′

distribution with an initial preparation specified by the value
of m/k. To obtain the m′ distribution, we need to compare
the curves with same color in (a) and (b). At the collision
energy of 10−4 cm−1, the m′ = 0 to m′ = 1 ratio of the ICSs
(branching ratio) is 3.81, 23.2, 1.02, 0.333, and 0.0113 with
initial orientations m = 0,−1,1,−2 and 2, respectively. Here
we clearly observe the m-dependence in ICS (Fig. 2 (a) and
(b)) and predict branching ratios by resolving final orientation
m′. In the same way, we consider the final k′ distributions
given by the k′= 0 to k′= 1 ratio of the ICSs at 10−4 cm−1. As
we can expect from Fig. 2 (c) and (d), the ratio is independent
of the initial k value, yielding 1.46 with all possible k values
(k = 0,−1,1,−2 and 2), implying that the branching ratio is
similar to a statistical (uniform) distribution. We note that the
branching ratio is not universal because it determined by the
T-matrix elements associated with l′ = 1 and 3.

We described the same stereodynamics in two different
frames (SF vs helicity), thus the different final distributions
of the (projection) components are not necessarily impor-
tant. Previous studies of the m,m′-dependence at higher
collision energies (∼ 10 cm−1 to ∼ 1000 cm−1) have ad-
dressed frame dependence to explore the ∆m propensity
and develop associated approximation methods.22,25,26,28,30

Indeed, a statistical distribution22,25 as well as asymmetric
distribution with respect to the sign of m′/k′ were observed
in some cases. However, to our knowledge, a significant
m′-dependence similar to the one presented here was not
reported. Previous studies analyzed the frame dependence
based on the difference in the interaction potentials in the
short-range repulsive and long-rang attractive regions, and the
resultant scattering directions. It is not obvious whether such
criterion is effective also in the ultracold energy regime where
both the long-range and short-range forces strongly influence
the scattering dynamics and the collision is dominated by a
single incoming partial wave. Furthermore, as pointed above,
the qualitative orientation dependence in the cross section
is not necessarily related to the system dependent properties
such as interaction potential energy surface. There might



7

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

103

m′ = 0 (a)

Isotropic
m = 0
|m| = 1
|m| = 2
|m| = 3

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

103

m′ = 1 (b)

Isotropic
m = 0
m = −1
m = 1

m = −2
m = 2
m = −3
m = 3

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

103

m′ = 2 (c)

Isotropic
m = 0
m = −1
m = 1

m = −2
m = 2
m = −3
m = 3

10−4 10−3 10−2 10−1 100 101
10−4

10−3

10−2

10−1

100

101

102

103

Sum over m′
(m′ = −2,−1, 0, 1, 2)

(d)

Collision energy (cm−1)

C
ro
ss

se
ct
io
n
(Å
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FIG. 4. Integral cross sections for rotational quenching of initially prepared HD (v = 1, j = 3,m) to (v′ = 1, j′ = 2,m′) in collisions with He:
(a) m′ = 0; (b) m′ = 1. Results for m′ =−1 are identical to (b) by inverting the sign of m in the legend. Results for initial k and final k′ helicity
dependences are displayed in (c) and (d) for k′ = 0 and k′ = 1, respectively. Results for k′ =−1 are identical to (d) by inverting the sign of k
in the legend.

exist a frame exhibiting a specific propensity rule in ultracold
collisions but an elaborate systematic search for finding such
a frame is beyond the scope of this work.

Next, we examine the effect of m′/k′ selection on the
m/k-dependence for the differential cross section (DCS).
Such fully resolved DCS corresponds to k-j-k′-j′ correlation
and has recently been reported for collisions of NO with
rare-gas atoms at around 500 to 700 cm−1 to analyze irregular
diffraction patterns for NO and identify propensity rules.30

Unlike ICS, DCS can exhibit m-dependence even at ultracold
energies without m′ resolution.53 However, as shown in Fig. 3
(a), the m-dependence for the DCS is actually very weak at
a collision energy of 10−4 cm−1 if we sum over all m′. We
note that the m-dependence in (a) is equal to k-dependence as
long as we sum over all k′ components since m is equal to k
as discussed above. With non-polarized initial HD (black),
the DCS is characterized by the sinθ in Eq. (7) indicating
the isotropic character of the DCS in the form of Eq. (6)
for s-wave as discussed by Aldegunde et al.53 Thus, without

m′ resolution it is very difficult to detect the m-dependence
of the DCS in the ultracold energy regime. On the other
hand, the m′-resolved DCS ((b) m′ = 0) exhibits a large
m-dependence both in the magnitude and oscillatory behavior
(θ -dependence). Compared to (a), it is easy to observe the
m-dependence even without fine resolution in θ and absolute
magnitude. The results in the helicity frame in (c) exhibit
distinct oscillations in θ for different k, thus k′ resolution has a
substantial impact on the DCS in the ultracold energy regime
in the helicity frame unlike ICS (Fig. 2 (c) and (d)). In other
words, the integrals of the DCSs in Fig. 3 (c) over θ result in
essentially identical ICS values regardless of the value k.

B. v = 1, j = 3→ v′ = 1, j′ = 2

Finally, in Fig. 4, we present the ICS for the rotational
quenching of initially oriented HD (v = 1, j = 3,m) by col-
lisions with He to j′ = 2 within the v = 1 manifold. Similar to
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the j = 2 results in Fig. 1, the ICS exhibits a primary peak due
to the l = 1 shape resonance near 0.2 cm−1 and a shoulder
due to the l = 2 partial wave in the 1-3 cm−1 regime. We
observe strong m-dependence of the ICS with m′ resolution
as shown in Fig. 4 (a) to (c). Compared to Fig. 2 (a) and
(b), the basic trend in m-dependence prevails except for the
number of possible values of m. Again, ∆m transitions that
involve a sign change of m are significantly suppressed. The
quenching rate generally decreases with increase in |∆m| with
some exceptions. For example, the |∆m| propensity is reversed
between |m| = 2→ m′ = 0 and |m| = 3→ m′ = 0 in (a). We
see that the order of magnitude of the control range of the
ICS with respect to m is larger than that in Fig. 2 (a) and
(b) for j = 2. Thus, it may be possible to expand the range
of control for higher initial rotational states. The panel (d) in
Fig. 4 shows results obtained by adding the contributions from
all possible m′(=−2,−1,0,1,2) (similar to Fig. 1) indicating
that the conventional stereodynamic control of the collision
outcomes is not effective except in the resonance region.

The m′ distribution for a given m at a collision energy of
10−4 cm−1 is as follows: the m′ = 0 to m′ = 1 ratio of the
ICSs is 3.03, 39.5, 0.759, 0.026, 0.0006, 27.7, 1.01 for m =
0,−1,1,−2,2,−3 and 3, respectively and the m′= 0 to m′= 2
ratio is 47.1, 59.3, 4.95, 0.50, 0.0013, 11.1, 0.016 for m =
0,−1,1,−2,2,−3 and 3, respectively. Again, this leads to
a highly asymmetric final distribution with respect to the sign
and magnitude of m′. We omit the corresponding results in the
helicity frame as the k-dependence is limited to the resonance
regions even with k′ resolution as in Fig. 2 (c) and (d).

IV. SUMMARY AND CONCLUSIONS

We have carried out rigorous quantum scattering calcula-
tions of m and m′ resolved cross sections in He+HD (v =
1, j, m) → He+HD (v′ = 1, j′, m′) collisions for the j = 2
to j′ = 1 and j = 3 to j′ = 2 transitions in an energy range
of 10−4 to 10 cm−1 spanning the ultracold and cold regimes.
For both transitions, the integral cross sections display a l = 1
shape resonance near 0.2 cm−1 and a shoulder feature from
a l = 2 partial wave in the 1-3 cm−1 regime similar to the
previously studied j = 2 to j′ = 0 transition.

Key findings of this work are summarized below:

• For a given initial rotational level, the stereodynamic
preference for the different final rotational levels is
found to be similar even in the resonance region if the
orientation of the final rotational state is not specified
by resolving the m′ quantum number. However, this
result is not universal and may depend on the molecular
system.

• There exists intricate stereodynamics in the ultracold
regime that is revealed only by resolving the cross
sections in both m and m′.

• No initial helicity (k(= m))-dependence for the integral
cross section even by detecting inelastically scattered
HD in a given helicity (k′) component.

• Stereodynamic preference is frame-dependent in the
ultracold regime. However, this vanishes for the inte-
gral cross section when summed over all possible m′/k′

components.

• The m-dependence of each m′ component of ICS is
partly accounted for without details of the T-matrix
elements (and in turn, the details of the interaction
potential). Similar universal trend has been discussed
in our previous study51 in the region of a l = 1 partial
wave shape resonance.

Our findings indicate that stereodynamic control of colli-
sion outcomes in the ultracold energy regime governed by
the l = 0 partial wave is possible if selective measurements
of the orientation of final rotational states are carried out.
As discussed before m′-dependence of the differential cross
section for rotationally inelastic collisions of HD by D2 has
been extracted in the experiment of Perreault et al.14 through a
partial wave analysis and a non-linear fit to experimental data.
However, their analysis includes l = 0 and a few higher-order
partial waves and explicit nature of the stereodynamics for the
purely s-wave regime was not revealed. It is our expectation
that sensitive detection schemes may allow direct m′-resolved
measurements and even attain the l = 0 regime for collisions
involving light species with similar masses (e.g., intrabeam
collisions of 3He and HD) or merged beam techniques.

The analysis of the scattering amplitudes in the helicity
frame and the k,k′ dependence of the resultant integral cross
section may provide additional insights into the dynamics
and sensitive comparisons between theory and experiment.
Our findings indicate that the m,m′ analyses similar to those
performed in earlier studies for discussing the propensities in
various frames may also be effective in the ultracold energy
regime.

The results presented here are for collisions in the ab-
sence of external fields and motivated by the SARP ex-
periments which use co-expansion of colliding species in a
co-propagating molecular beam. It may also apply to buffer-
gas cooled molecules or merged beam techniques which are
applicable to a broader class of molecules. Many techniques
for cooling, trapping, and controlling cold molecule collisions
involve external electric and/or magnetic fields and open shell
molecules. The degeneracy of the rotational levels will be
lifted in an external field and this would affect preparation of
initial state, especially when a linear combination of initial
m-states are involved as in the case of V-SARP. Also, for
collisions in confined geometries, stereodynamics may play
an even greater role in ultracold collisions39,69.
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Appendix A

As discussed in the main text, the product of two 3-j
symbols in the term associated with the incoming s-wave
(l = 0) and an outgoing partial wave l′ in the scattering
amplitude (Eq. (5)) determines the relative m,m′ dependence
of the partial ICS in the ultracold energy regime. Since the
cross section is related to the square of the modulus of the
scattering amplitude, the key quantity is∣∣∣∣( j l J

m 0 −m

)(
j′ l′ J

m′ m−m′ −m

)∣∣∣∣2 . (A1)

For the quenching of HD ( j = 2,m→ j′ = 1,m′) in the s-wave
regime outgoing partial waves l′ = 1 and 3 contribute. For
l′ = 1, the m-dependence of the ICS for m′ = 0 (Fig. 2 (a)) is
determined by ∣∣∣∣(2 0 2

m 0 −m

)(
1 1 2
0 m −m

)∣∣∣∣2 . (A2)

Evaluating the 3-j symbols yields67,68, for the ratio of the ICS,
1 : 0.75 for m = 0 and |1| and zero for |m| = 2 as discussed
in the main text. We note that the first 3-j symbol results in
(−1)−m/

√
5 in which the m value determines only the sign,

thus the second 3-j symbol controls the ratio of the ICS with
respect to m. For the l′ = 3 term,∣∣∣∣(2 0 2

m 0 −m

)(
1 3 2
0 m −m

)∣∣∣∣2 , (A3)

the ratio is 1 : 0.89 : 0.56 for m = 0, |1| and |2| for the ICS.
From these results, we can conclude that the ratio of the ICS
in the ultracold energy regime is m = 0 > |m| = 1 > |m| = 2
for m′ = 0 as shown in Fig. 2 (a). On the other hand, the
relative contribution between l′ = 1 and 3 is system and
energy dependent because it is determined by the values of
the respective T-matrix elements in Eq. (5). Thus the ratio
of the total (sum of the l′ = 1 and 3 contributions) ICSs
with respect to m in Fig. 2 (a) reflects the system dependent
information such as the interaction potential.

For m′ = 1 (Fig. 2 (b)), we can perform similar analysis
for l′ = 1 and l′ = 3. However, as shown below, the resultant

relative ratios for the partial ICS with respect to m show a
different trend between l′= 1 and l′= 3. Thus, for an accurate
prediction of the trend in the magnitude of total ICS the T-
matrix information also needs to be considered. For the l′ = 1
component, ∣∣∣∣(2 0 2

m 0 −m

)(
1 1 2
1 m−1 −m

)∣∣∣∣2 (A4)

yields the ratio of the partial ICS to be 0.17 : 0.5 : 1 for m =
0,1 and 2, respectively. Here, m = −1 and −2 result in 0 as
discussed in the main text. For the l′ = 3 component,∣∣∣∣(2 0 2

m 0 −m

)(
1 3 2
1 m−1 −m

)∣∣∣∣2 (A5)

yields 1 : 0.5 : 0.17 : 1.7 : 2.5 for m = 0, 1, 2, −1 and −2 for
the ICS ratio, thus m =−2 shows the largest partial ICS. The
ratio of Eq. (A4) with m = 2 (l′ = 1) to Eq. (A5) with m =−2
(l′ = 3) is 1.4. Therefore, to explain the significant difference
of m = 2 and m =−2 in Fig. 2 (b), the square of the modulus
of the T-matrix element associated with l′ = 1 is much larger
than that with l′ = 3 (In fact, the actual ratio of the square of
the modulus of the T-matrix elements of l′ = 1 and l′ = 3 is
21.3 at 10−4 cm−1).
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R. Ciuryło, D. Lisak, and P. Wcisło, “H2-He collisions: Ab initio theory
meets cavity-enhanced spectra,” Phys. Rev. A 101, 052705 (2020).

56F. Thibault, R. Z. Martínez, D. Bermejo, and P. Wcisło, “Line-shape
parameters for the first rotational lines of HD in He,” Mol. Astrophys. 19,
100063 (2020).

57J. M. Hutson and S. Green, MOLSCAT v.14, Swindon: Engineering and
Physical Sciences Research Council (1994).

58A. M. Arthurs and A. Dalgarno, “The theory of scattering by a rigid rotator,”
Proc. R. Soc. London A 256, 540–551 (1960).

59A. I. Boothroyd, P. G. Martin, and M. R. Peterson, “Accurate analytic
He-H2 potential energy surface from a greatly expanded set of ab initio
energies,” J. Chem. Phys. 119, 3187–3207 (2003).

60D. E. Manolopoulos, “An improved log derivative method for inelastic
scattering,” J. Chem. Phys. 85, 6425–6429 (1986).

61B. W. Bakr, D. G. A. Smith, and K. Patkowski, “Highly accurate potential
energy surface for the He-H2 dimer,” J. Chem. Phys. 139, 144305 (2013).

62J. M. Blatt and L. C. Biedenharn, “The angular distribution of scattering
and reaction cross sections,” Rev. Mod. Phys. 24, 258–272 (1952).

63M. H. Alexander, P. J. Dagdigian, and A. E. DePristo, “Quantum interpre-
tation of fully state-selected rotationally inelastic collision experiments,” J.
Chem. Phys. 66, 59–66 (1977).

64M. Jacob and G. Wick, “On the general theory of collisions for particles
with spin,” Ann. Phys. 7, 404 – 428 (1959).

65W. H. Miller, “Coupled equations and the minimum principle for collisions

http://dx.doi.org/ 10.1063/1.5096531
http://dx.doi.org/ 10.1063/1.5096531
http://dx.doi.org/10.1063/1.4818526
http://dx.doi.org/10.1063/1.4818526
http://dx.doi.org/10.1063/1.4865131
http://dx.doi.org/10.1146/annurev.pc.27.100176.001301
http://dx.doi.org/10.1146/annurev.pc.27.100176.001301
http://dx.doi.org/10.1080/00268977600100701
http://dx.doi.org/ 10.1063/1.434627
http://dx.doi.org/ 10.1063/1.434627
http://dx.doi.org/10.1063/1.435184
http://dx.doi.org/ 10.1063/1.436432
http://dx.doi.org/ https://doi.org/10.1016/0009-2614(78)87002-X
http://dx.doi.org/ https://doi.org/10.1016/0009-2614(78)87002-X
http://dx.doi.org/10.1063/1.441337
http://dx.doi.org/10.1063/1.441337
http://dx.doi.org/10.1080/00268978300102301
http://dx.doi.org/10.1103/PhysRevA.67.050704
http://dx.doi.org/ 10.1080/00268978600102681
http://dx.doi.org/10.1039/C3CP50558H
http://dx.doi.org/10.1039/C3CP50558H
http://dx.doi.org/ 10.1038/nchem.2640
http://dx.doi.org/ 10.1038/nchem.2640
http://dx.doi.org/10.1038/s41557-018-0121-9
http://dx.doi.org/10.1038/s41557-018-0121-9
http://dx.doi.org/ 10.1021/ja00974a059
http://dx.doi.org/ 10.1021/ja00974a059
http://dx.doi.org/ 10.1146/annurev.pc.40.100189.003021
http://www.jstor.org/stable/1742300
http://www.jstor.org/stable/1742300
http://dx.doi.org/ 10.1039/FT9969200881
http://dx.doi.org/ 10.1039/FT9969200881
http://dx.doi.org/ 10.1063/1.473483
http://dx.doi.org/10.1126/science.279.5358.1875
http://dx.doi.org/10.1126/science.279.5358.1875
http://dx.doi.org/ 10.1021/jp0512208
http://dx.doi.org/10.1038/nphys1939
http://dx.doi.org/10.1038/nphys1939
http://dx.doi.org/10.1038/nchem.1383
http://dx.doi.org/10.1038/nchem.1383
http://dx.doi.org/10.1039/C4SC03842H
http://dx.doi.org/10.1021/acs.jpca.5b08472
http://dx.doi.org/10.1039/C5CP03273C
http://dx.doi.org/10.1039/C8CP06892E
http://dx.doi.org/10.1002/9781119382638.ch12
http://dx.doi.org/ 10.1021/acs.jpclett.7b02378
http://dx.doi.org/ 10.1063/5.0007382
http://dx.doi.org/ 10.1063/5.0007382
http://dx.doi.org/ 10.1103/PhysRevLett.121.113401
http://dx.doi.org/ 10.1103/PhysRevLett.121.113401
http://dx.doi.org/ 10.1103/PhysRevLett.123.043401
http://dx.doi.org/10.1063/1.5091576
http://dx.doi.org/ 10.1063/5.0022190
http://dx.doi.org/ 10.1103/PhysRevResearch.2.032018
http://dx.doi.org/ 10.1103/PhysRevResearch.2.032018
http://dx.doi.org/10.1063/1.2212418
http://dx.doi.org/ https://doi.org/10.1016/j.jqsrt.2017.08.014
http://dx.doi.org/ https://doi.org/10.1016/j.jqsrt.2017.08.014
http://dx.doi.org/10.1103/PhysRevA.101.052705
http://dx.doi.org/ https://doi.org/10.1016/j.molap.2020.100063
http://dx.doi.org/ https://doi.org/10.1016/j.molap.2020.100063
http://dx.doi.org/10.1098/rspa.1960.0125
http://dx.doi.org/10.1063/1.1589734
http://dx.doi.org/ 10.1063/1.451472
http://dx.doi.org/10.1063/1.4824299
http://dx.doi.org/ 10.1103/RevModPhys.24.258
http://dx.doi.org/10.1063/1.433611
http://dx.doi.org/10.1063/1.433611
http://dx.doi.org/ https://doi.org/10.1016/0003-4916(59)90051-X


11

of an atom and a diatomic molecule, including rearrangements,” J. Chem
Phys. 50, 407–418 (1969).

66J. Schaefer and W. A. Lester, “Theoretical study of inelastic scattering of
H2 by Li+ on SCF and CI potential energy surfaces,” J. Chem. Phys. 62,
1913–1924 (1975).

67R. N. Zare, Angular momentum (Wiley, NY, 1988).
68I. Wolfram Research, “Mathematica online, Version 12.1,” Champaign, IL,

2020.
69Z. Li, S. V. Alyabyshev, and R. V. Krems, “Ultracold inelastic collisions in

two dimensions,” Phys. Rev. Lett. 100, 073202 (2008).

http://dx.doi.org/10.1063/1.1670812
http://dx.doi.org/10.1063/1.1670812
http://dx.doi.org/10.1063/1.430678
http://dx.doi.org/10.1063/1.430678
https://www.wolfram.com/mathematica
http://dx.doi.org/ 10.1103/PhysRevLett.100.073202

	Stereodynamics of ultracold rotationally inelastic collisions
	Abstract
	Introduction
	Theory and computation
	 Scattering formalism
	 Rotational quenching cross section

	Results and discussions
	 v=1,j=2 v'=1,j'=1
	 v=1,j=3 v'=1,j'=2

	 Summary and Conclusions
	Dedication
	Acknowledgments
	Data availability statement
	


