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Abstract: Over the past few decades, there has been widespread development of pressure swing adsorption
(PSA) systems, with their applications expanding from traditional bulk gas separation and drying, to CO»
sequestration, trace contaminant removal, and many others. With extensive industrial applications, there is
a significant need for effective monitoring methods to detect and diagnose process abnormalities in real-
time, as well as to facilitate predictive maintenance for avoiding major production disruptions ahead.
Although periodic operations such as PSA have been used widely in chemical and petrochemical industries,
the process monitoring of these operations has received limited attention compared to non-periodic
continuous or batch processes. A potential reason is that the monitoring of periodic processes is
significantly more challenging than that of processes operated at steady-state. In this work, we propose a
data-driven feature space monitoring (FSM) approach for PSA processes. We show that the FSM based
fault detection naturally addresses the challenges in monitoring periodic processes, such as unequal step
and/or cycle time that requires trajectory alignment or synchronization for the traditional statistical process
monitoring (SPM) methods. In addition, we demonstrate the superior fault detection performance of the
proposed method compared to the conventional SPM methods using both simulated faults and real faults

from an industrial PSA process.
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1. INTRODUCTION

In the past few decades, pressure swing adsorption (PSA)
processes have gained increasing commercial acceptance as an
energy efficient separation technology (Jiang et al., 2004).
PSA applications range from traditional bulk gas separation
and drying, to CO, sequestration, trace contaminant removal,
and other. With its extensive industrial applications, PSA has
drawn significant research interests from the process systems
engineering community recently. The research has focused
mainly on PSA system modelling and simulation (Choi and
Wen-Chung, 1994; Chou and Huang, 1994; Nikolic et al.,
2008), design and optimization (Boukouvala et al., 2017; Jiang
et al., 2004, 2003). Although there is a significant need for
effective monitoring methods to detect and diagnose PSA
process abnormalities in real-time to avoid major production
disruptions, research in this area has been scarce. This is
mainly due to the non-stationary and periodic nature of the
process, which pose special challenges to the monitoring of
such a process. For example, the application of the
conventional multivariate statistical process monitoring
(MSPM) methods, such as principal component analysis
(PCA) and its variants, can lead to frequent false alarms and/or
missed faults (Pan et al., 2004). To address this challenge, Pan
et al. (2004) proposed a process monitoring approach for
continuous processes with periodic characteristics by
identifying a stochastic state space model that captures the
statistical behavior of changes occurring from period to period.
The approach was validated using a waste water treatment

process (WWTP). While there are similarities between WWTP
and PSA processes, there are also differences. For example,
the activated sludge process, which is a main part of a WWTP,
is a natural periodic process with somewhat constant cycle
time that is driven by the diurnal temperature and light
fluctuations. In contrast, PSA is a forced periodic process with
cycle time dynamically controlled to address many
disturbances that affect the PSA operations (e.g., increased or
decreased product throughput to meet customer demand or to
minimize cost by scheduling based on electricity pricing, raw
material feed composition variations),  even weather
conditions can affect the plant operations. As a result, the cycle
time is heavily and frequently adjusted, which renders the
approach proposed in (Pan et al., 2004) less effective for PSA
processes. Another difference is that while the biological
process in the WWTP is a very slow process, PSA is a very
fast process. Recently, Wang et al. (2017) proposed a
geometric framework for the monitoring and fault detection of
periodic processes. The proposed approach was applied to two
simulated periodic processes with superior performance
compared to the conventional dynamic PCA (DPCA) and
multiway PCA (MPCA). For the simulated 2-bed PSA
process, a total of 26 variables relating to the flow rate of the
feed, as well as pressures and concentrations in and across both
beds were used for observation. However, in industrial PSA
processes, not all of these variables were measured, especially
the concentrations in and across the beds. In addition, pressure
is the major process variable to be monitored, in this case the
proposed method is not applicable as there is no centroid for a
single variable. Another method specifically proposed for
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monitoring industrial PSA processes is a US patent (Arslan et
al., 2014). In this method, a moving window discrete Fourier
transform (DFT) was applied to process the data such as
pressure profile. A number of “relevant” peaks were identified
from the frequency spectra (i.e., their frequencies and
amplitudes). Then calculate the logarithm of the amplitude
ratio of peak k between beds i and j, which is defined as R in
this work as the following.

R = log (—) (1)
Ajk
where A is peak amplitude, i and j are the bed or vessel
indices, k is the peak index. R is then monitored over time,
where the control upper and lower limits were calculated based
on normal operation data. In this work, we propose a
completely different method based on a feature space
monitoring (FSM) framework we proposed recently (Peter He
and Wang, 2018). The basic idea of the proposed approach is
that instead of monitoring the original pressure profile of a
PSA process, we characterize the pressure profile of each PSA
step by statistics and shape or morphology features. These
features are then grouped by cycles and monitored by a linear
or nonlinear MSPM method such as PCA for process
monitoring (i.e., fault detection and diagnosis). The rest of the
paper is organized as follows. Sec. 2 discusses some of the
characteristics of the industrial PSA process and the challenges
posed to the conventional MSPM methods by these
characteristics. Sec. 3 briefly reviews statistics pattern analysis
(SPA), which is the predecessor and a special case of FSM.
Sec. 4 introduces the proposed FSM method for PSA
processes. Sec. 5 presents several case studies, including
simulated and real faults in an industrial PSA process to
demonstrate the performance of the proposed method, which
is compared to those of the conventional MSPM methods.
Because only pressure was used for PSA process fault
detection and diagnosis in this study, the method proposed by
Wang et al. (2017) does not apply. While for the patent filed
by Arslan et al. (2014), because there are no technical details
as how the peaks were defined or classified as “relevant”, and
the criteria used for peak selection and control limits
determination are unknown, it is not compared either. Sec. 6
discuss the results and Sec. 7 draws conclusions.

2.PROCESS AND DATA CHARACTERISTICS

In this section, we discuss the unique characteristics of a PSA
process and how these characteristics pose challenges to
process monitoring. Fig. 1 shows the typical pressure profile
of'a multi-bed PSA process. Due to the sensitivity of the actual
operation and production data of the process, all axis tick
labels in this and other figures based on real operation data
were omitted. To reduce clutter, only the pressure profiles
from three beds are plotted. This type of pressure time series
plot is good for visualizing and observing between-bed
variations. However, only obvious deviations/faults can be
observed from this type of plot and it can become very
cluttered and difficult to read if all beds were plotted on the
same figure. Fig. 2 plots the overlapping of multiple cycles of
a single bed, which can be used to visualize within-bed
variations. Fig. 3 plots the durations of the cycles over a period
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Fig. 1 Typical pressure profiles of three beds in a multi-bed
PSA process
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Fig. 2 Overlapping pressure profiles of a single bed over
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Fig. 3 The cycle duration varies significantly from cycle to
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of time. There are several points that can be made based on
these three figures. First, the cycles are asynchronous across
different beds as shown in Fig. 1. They do not exactly overlap
each other after unfolding for the same bed as shown in Fig. 2,
even for the onset, i.e., the start of the repressurization step, of
the cycle. Second, the cycle duration, as well as the durations
of the steps, vary from cycle to cycle as shown in Fig. 3. These
durations are dynamically controlled to ensure product quality
in response to dynamic scheduling, and/or disturbances such
as demand change and weather conditions. Third, the process
is highly nonlinear as shown in
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Figs. 1 and 2. These characteristics pose significantly
challenges to conventional MSPM methods such as multi-way
PCA (MPCA), trilinear decomposition (TLD) and parallel
factor analysis (PARAFAC) (Wise et al., 1999), or recently
proposed methods such as multi-way independent component
analysis (MICA) (Yoo et al., 2004) and kernel PCA (KPCA)
(Choi et al., 2005). All these methods require the construction
of a 2D or 3D array, which means that they all require
synchronization of all steps of the entire cycle to equal step
and cycle durations. This can be done through different ways,
including simple cut, interpolation, dynamic time warping
(DTW), etc. However, all these pre-processing steps have their
drawbacks, including trajectory distortion, information loss,
etc. (He and Wang, 2007; Peter He and Wang, 2018). It is
particularly undesirable for PSA process because the step and
cycle durations are dynamically controlled. As shown in Fig.
3, there are significant variabilities in step and cycle durations
in a PSA process under normal operations. Step durations are
not shown due to limited space, however, about half of them
follow similar trends as the cycle duration while the other half
of the steps were maintained relatively constant. Therefore, the
pre-processing steps mentioned above is highly undesirable
for PSA process. To address these challenges, we propose a
feature space monitoring (FSM) based fault detection method
for PSA. In the next section, we first briefly review statistics
pattern analysis (SPA), which is the predecessor of FSM, then
introduce the FSM based framework for PSA process
monitoring.

3. STATISTICS PATTERN ANALYSIS (SPA)

Statistics pattern analysis (SPA) was originally proposed for
monitoring batch processes (He and Wang, 2011) and later
extended to the monitoring of continuous processes and other
applications such as soft sensor (Shah et al., 2019; Wang and
He, 2010). Since then many variations and extensions have
been proposed in the literature (He and Xu, 2016; Yang et al.,
2018; Zhang et al., 2018; Zhou and Gu, 2019). Because cyclic
or periodic continuous processes share many similarities with
batch processes (e.g., they are usually highly nonlinear
processes with multiple steps or phases and their behaviours
somewhat repeat from cycle to cycle or batch to batch), batch-
based SPA is reviewed here.

Batch-based SPA hypothesizes that the batch behaviour can be
better characterized by the variance-covariance of batch
statistics than by the variance-covariance of process variables.
In SPA, a statistics pattern (SP) is a collection of various
statistics calculated from a batch trajectory which capture the
characteristics of each individual variable (e.g., mean and
variance), the interactions among different variables (e.g.,
covariance), the dynamics (e.g., auto-, cross-correlations), as
well as process nonlinearity and process data non-Gaussianity
(e.g., skewness, kurtosis, and other higher order statistics or
HOS). The basic idea of SPA is that the SPs of normal batches
follow a similar pattern (i.e., normal pattern), while the SPs of
abnormal or faulty batches must show some deviation from the
normal pattern. More details on batch-based SPA can be found
in (He and Wang, 2011).
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4. THE PROPOSED FRAMEWORK

In this work, since only the pressure profile is monitored, only
univariate statistics are calculated. However, to better capture
the characteristics of pressure behavior in each step of the
process, we include not only statistics, but also shape or
morphological features. Therefore, the proposed approach
falls into more general feature space monitoring (FCM)
framework we proposed recently (Peter He and Wang, 2018).
Specifically, the following statistical and morphological
features have been evaluated in this work: mean (u), standard
deviation (o), skewness (y), kurtosis (k), coefficient of
variation ( Cy ), coefficient of quartile variation ( Cpy ),
interquartile range (R,q), slope (S), slope of linear regression
line (S;;), mean absolute deviation (Djeqr ), median absolute
deviation (Dyeq), and mean absolute error (MAE). Fig. 4
shows the flow diagram of the proposed FSM based fault
detection approach. The first step is cycle feature generation
where various statistical and morphological features are
generated for each step of a cycle based on the raw data. These
features are stacked row-wise to form a feature vector for each
cycle and multiple cycle features are stacked column-wise to
form a feature matrix. The second step is to perform fault
detection based on the feature matrix, where a conventional
fault detection method such as PCA can be applied.

Fault

detection

Cycle

—_—
Features

—_—
Variable

(a) (by (c)
Fig. 4 Flow diagram of the proposed FSM method: (a) cycle
trajectories with unequal cycle-times; (b) cycle features
consists of various step features, which form the feature
matrix when stacked column-wise; (¢) fault detection based
on the feature matrix.

Since features of a cycle consists of various statistical and
morphological features calculated based on each step of the
cycle, its dimension is independent of step durations as shown
in Fig. 4. Therefore, FSM naturally handles unequal step
durations and asynchronous cycle trajectories. In addition,
FSM quantifies process dynamics and nonlinearity through
various features as discussed previously. Therefore, FSM is
well suited for the monitoring of PSA processes.

5. AN INDUSTRIAL CASE STUDY

In this section, we use an industrial PSA case study to
demonstrate the performance of the proposed FSM method,
and compare it to the traditional MPCA method. Because
MPCA requires that each step across all cycles has the same
duration, two different data preprocessing techniques are
studied: one with simple cut denoted as MPCAsc and the other
with dynamic time warping (DTW) denoted as MPCAprw.
Totally 2070 cycles under normal operations were used as the
training set. It is not necessary to use this many cycles as the
training for the proposed FSM method. However, for
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MPCAbptw, the number of variables after unfolding is about
700. Therefore, we decided to use 2070 cycles, which is about
three times the number of variables for MPCAprw. When
simple cut is used, the shortest step duration across all cycles
is used as the reference while the last measurements of any
cycle with longer step duration were simply removed to match
the shortest, which resulted in the number of variables to be
about 440. While for FSM, 60 features were used. Six fault
scenarios of a PSA process is studied in this work as listed in
Table 1. The first four are simulated faults while the last two
are from real industrial data. For each fault scenario, 16 cycles
are used as the test set and among which 3 (cycle 4, 9 and 14)
are faulty cycles. For the simulated faults, similar behaviours
have been observed in actual operations, but the historical data
for those types of faults are no longer available. In these cases,
the faults were introduced by manipulating the real industrial
data under normal operations. Details are provided later. It is
worth noting that, it is only for better comparison that the
faulty cycles were arrange in the same way for different fault
scenarios, i.e., cycle 4, 9 and 14. For all methods, the number
of principal component (PCs) is determined through 10-fold
cross validation. The control limits on Hoteling’s T? and
squared prediction error (SPE) are calculated empirically
using the training dataset at confidence level 99%. The number
of PCs and other information discussed above are listed in
Table 2.

Table 1. Fault scenarios studied in this work

Fault# Description

During adsorption step, the faulty cycles have lower pressure

1 than normal cycles.

2 During adsorption step, the faulty cycles have higher pressure
variations than normal cycles

3 During a hold step, the pressure of the faulty cycles decreases
instead of being held steady
During an equalization step, the pressure of the faulty cycles was

4 held steady followed by a sudden drop instead of smooth
decrease

5 During re-pressurization, the pressure of the faulty cycles does
not follow the normal cycle trajectory

6 During an equalization step, the pressure of the faulty cycles

follows a zig-zag or stair-like profile instead of a smooth increase

Table 2. Training, testing datasets and model parameters

MPCAsc MPCAprw FSM
# of features/variables 438 705 60
# of PC’s 24 32 20
Training 2070 normal cycles
Testing 16 cycles (13 normal, 3 faulty: cycle 4, 9, 16)

Confidence level 99%

6. RESULTS

Due to limited space, only the fault detection results of fault
scenario 1 and 5 in the residual subspace (i.e., using SPE
index) are shown in Fig. 5 and Fig. 6. In both figures, (a) is the
SEP plot based on MPCAsc, (b) based on MPCAprtw, and (c)
based on FSM. Fig. 5 shows that for fault scenario 1, MPCAsc
has difficulty in detecting Fault 1: missing two out of three
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faulty cycles. MPCAprw detects all three faulty cycles but also
generated a false alarm. Only FSM detects all three faulty
cycles without generating false alarms. Fig. 6 shows that for
fault scenario 5, MPCAsc detects all three faulty cycles while
generating a false alarm. MPCAprw failed to detect two out of
three faulty cycles. Again, only FSM successfully detects all
faulty cycles without generating false alarms.

Further investigation is conducted to understand the reason for
MPCAptw’s failure in detecting faulty cycles under fault
scenario 5. Since MPCAsc was able to detect all faulty cycles,
we suspect that the failure is related to data preprocessing by
DTW. Therefore, we plotted the original pressure profiles of
the 16 test cycles, which are shown in Fig. 7 (a), and compared
to the pressure profiles after DTW as shown in Fig. 7 (b). The
comparison clearly indicates that the irregular discrepancies of
the faulty cycles shown in the original pressure profiles
diminished after DTW. Therefore, it can be concluded that
DTW caused severe information loss or distortion in the faulty
cycles. This observation is consistent with our previous
findings that data manipulations during preprocessing,
including DTW, can cause information loss or distortion (He
and Wang, 2011). This example further raise the alarm that the
widely used DTW for batch trajectory warping or alignment in
process monitoring applications is actually a problematic
practice that can lead to missed detections of process faults.
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Fig. 5 Fault scenario 1: fault detection in residual subspace
(SPE) from (a) MPCAsc, (b) MPCAprw and (c) FSM
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Fig. 6 Fault scenario 5: fault detection in residual subspace
(SPE) from (a) MPCAsc, (b) MPCAprw and (¢) FSM
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Fig. 7 Comparison between the pressure profiles of (a)
the original 16 test cycles and (b) the test cycles after
DTW. The irregular discrepancies among cycles shown
in the original profiles (highlighted in the dashed ellipse)
have diminished after DTW, indicating that DTW causes
severe information loss or distortion.

By considering faults detected in both residual subspace using
SPE and principal subspace using T2, the overall fault
detection results are shown in Table 3. Specifically, the table
lists faulty cycles detected by either SPE, or T2, or both. These
results are also summarized in fault detection rates shown in
Table 4, and false alarm rates shown in Table 5. These tables
show that FSM detects all faulty cycles under all fault
scenarios without generating false alarms. In comparison,
MPCAsc has missed detection under fault scenario 1, while
MPCAptw has missed detection under fault scenario 5. In
addition, both MPCAgsc and MPCAprw have false alarms.

Table 3. Fault detection results (true fault cycles: 4, 9 & 14)

Fault FSM MPCAsc MPCAbDTW
1 4,9,14 4,14,15 4,9,10, 14
4,9, 14 4,9,14,15 4,9,10, 14
4,9, 14 4,9,14,15 4,9,10, 14
4,9,14 4,9,14,15 4,9,10, 14
4,9,14 4,9,14,15 9,10
4,9,14 4,9,14,15 4,9,10, 14

NN || W
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Table 4. Fault detection rate (out of 3 faulty test cycles)

Fault FSM MPCAsc MPCAprw
1 100% 66.7% 100%
2 100% 100% 100%
3 100% 100% 100%
4 100% 100% 100%
5 100% 100% 33.3%
6 100% 100% 100%

Table 5. False alarm rate (out of 13 normal test cycles)

Fault FSM MPCAsc MPCAprw
1 0% 7.7% 7.7%
2 0% 7.7% 7.7%
3 0% 7.7% 7.7%
4 0% 7.7% 7.7%
5 0% 7.7% 7.7%
6 0% 7.7% 7.7%

7. CONCLUSIONS

In this work, we proposed a simple yet effective fault detection
method for pressure swing adsorption (PSA) processes. The
proposed feature space monitoring (FSM) approach
characterizes cycle behaviour with various statistical and
shape/morphological features that are step-based. In this way,
FSM naturally handles asynchronous cycle trajectories and
variable step and cycle durations. We demonstrated that FSM
outperforms MPCA with simple cut (SC) or dynamic time
warping (DTW) data preprocessing in six PSA fault scenarios.
Specifically, FSM successfully detected all three faulty cycles
in each fault scenario without generating false alarms. In
comparison, both MPCAsc and MPCAprw had missed
detections in some fault scenarios, and both had false alarms
in all fault scenarios.
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